Shuwei Hou commited on
Commit
67d6834
·
1 Parent(s): 9d6e044
.gitignore ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Python
2
+ __pycache__/
3
+ *.py[cod]
4
+ *.pyo
5
+ *.pyd
6
+ *.egg
7
+ *.egg-info/
8
+ dist/
9
+ build/
10
+ .env
11
+ .venv/
12
+ *.sqlite3
13
+
14
+ # Jupyter Notebook Checkpoints
15
+ .ipynb_checkpoints/
16
+
17
+ # VSCode / IDEs
18
+ .vscode/
19
+ .idea/
20
+
21
+ # OS Files
22
+ .DS_Store
23
+ Thumbs.db
24
+
25
+ # Log and Cache
26
+ *.log
27
+ *.tmp
28
+ *.bak
29
+ .cache/
30
+ *.swp
31
+
32
+ # Node.js
33
+ node_modules/
34
+ npm-debug.log*
35
+
36
+ # Compiled files
37
+ *.o
38
+ *.so
39
+ *.exe
40
+ *.dll
41
+ *.class
42
+
43
+ # Docker
44
+ .dockerignore
45
+ docker-compose.override.yml
46
+ .docker/
47
+
48
+ # SATE
49
+ ENNI_test/
50
+ ENNI_test.py
51
+ ENNI_transcript.py
52
+ input/
53
+ performance_eval/
54
+ session_data/
55
+
56
+ # Model
57
+ CrisperWhisper_local/
CrisperWhisper/.gitignore ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ *.egg-info/
24
+ .installed.cfg
25
+ *.egg
26
+ MANIFEST
27
+
28
+ # PyInstaller
29
+ # Usually these files are written by a python script from a template
30
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
31
+ *.manifest
32
+ *.spec
33
+
34
+ # Installer logs
35
+ pip-log.txt
36
+ pip-delete-this-directory.txt
37
+
38
+ # Unit test / coverage reports
39
+ htmlcov/
40
+ .tox/
41
+ .nox/
42
+ .coverage
43
+ .coverage.*
44
+ .cache
45
+ nosetests.xml
46
+ coverage.xml
47
+ *.cover
48
+ .hypothesis/
49
+ .pytest_cache/
50
+ cover/
51
+
52
+ # Translations
53
+ *.mo
54
+ *.pot
55
+
56
+ # Django stuff:
57
+ *.log
58
+ local_settings.py
59
+ db.sqlite3
60
+ db.sqlite3-journal
61
+
62
+ # Flask stuff:
63
+ instance/
64
+ .webassets-cache
65
+
66
+ # Scrapy stuff:
67
+ .scrapy
68
+
69
+ # Sphinx documentation
70
+ docs/_build/
71
+ docs/_build/doctrees/
72
+ docs/_build/html/
73
+
74
+ # PyBuilder
75
+ target/
76
+
77
+ # Jupyter Notebook
78
+ .ipynb_checkpoints
79
+
80
+ # IPython
81
+ profile_default/
82
+ ipython_config.py
83
+
84
+ # pyenv
85
+ .python-version
86
+
87
+ # Celery stuff
88
+ celerybeat-schedule
89
+ celerybeat.pid
90
+
91
+ # SageMath parsed files
92
+ *.sage.py
93
+
94
+ # Environments
95
+ .env
96
+ .venv
97
+ env/
98
+ venv/
99
+ ENV/
100
+ env.bak/
101
+ venv.bak/
102
+
103
+ # Spyder project settings
104
+ .spyderproject
105
+ .spyproject
106
+
107
+ # Rope project settings
108
+ .ropeproject
109
+
110
+ # mkdocs documentation
111
+ /site
112
+
113
+ # mypy
114
+ .mypy_cache/
115
+ .dmypy.json
116
+ dmypy.json
117
+
118
+ # Pyre type checker
119
+ .pyre/
120
+
121
+ # pyright type checker
122
+ .pyright/
123
+
124
+ # End of https://www.toptal.com/developers/gitignore/api/python
125
+
126
+ .idea
CrisperWhisper/LICENSE ADDED
@@ -0,0 +1,407 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Attribution-NonCommercial 4.0 International
2
+
3
+ =======================================================================
4
+
5
+ Creative Commons Corporation ("Creative Commons") is not a law firm and
6
+ does not provide legal services or legal advice. Distribution of
7
+ Creative Commons public licenses does not create a lawyer-client or
8
+ other relationship. Creative Commons makes its licenses and related
9
+ information available on an "as-is" basis. Creative Commons gives no
10
+ warranties regarding its licenses, any material licensed under their
11
+ terms and conditions, or any related information. Creative Commons
12
+ disclaims all liability for damages resulting from their use to the
13
+ fullest extent possible.
14
+
15
+ Using Creative Commons Public Licenses
16
+
17
+ Creative Commons public licenses provide a standard set of terms and
18
+ conditions that creators and other rights holders may use to share
19
+ original works of authorship and other material subject to copyright
20
+ and certain other rights specified in the public license below. The
21
+ following considerations are for informational purposes only, are not
22
+ exhaustive, and do not form part of our licenses.
23
+
24
+ Considerations for licensors: Our public licenses are
25
+ intended for use by those authorized to give the public
26
+ permission to use material in ways otherwise restricted by
27
+ copyright and certain other rights. Our licenses are
28
+ irrevocable. Licensors should read and understand the terms
29
+ and conditions of the license they choose before applying it.
30
+ Licensors should also secure all rights necessary before
31
+ applying our licenses so that the public can reuse the
32
+ material as expected. Licensors should clearly mark any
33
+ material not subject to the license. This includes other CC-
34
+ licensed material, or material used under an exception or
35
+ limitation to copyright. More considerations for licensors:
36
+ wiki.creativecommons.org/Considerations_for_licensors
37
+
38
+ Considerations for the public: By using one of our public
39
+ licenses, a licensor grants the public permission to use the
40
+ licensed material under specified terms and conditions. If
41
+ the licensor's permission is not necessary for any reason--for
42
+ example, because of any applicable exception or limitation to
43
+ copyright--then that use is not regulated by the license. Our
44
+ licenses grant only permissions under copyright and certain
45
+ other rights that a licensor has authority to grant. Use of
46
+ the licensed material may still be restricted for other
47
+ reasons, including because others have copyright or other
48
+ rights in the material. A licensor may make special requests,
49
+ such as asking that all changes be marked or described.
50
+ Although not required by our licenses, you are encouraged to
51
+ respect those requests where reasonable. More considerations
52
+ for the public:
53
+ wiki.creativecommons.org/Considerations_for_licensees
54
+
55
+ =======================================================================
56
+
57
+ Creative Commons Attribution-NonCommercial 4.0 International Public
58
+ License
59
+
60
+ By exercising the Licensed Rights (defined below), You accept and agree
61
+ to be bound by the terms and conditions of this Creative Commons
62
+ Attribution-NonCommercial 4.0 International Public License ("Public
63
+ License"). To the extent this Public License may be interpreted as a
64
+ contract, You are granted the Licensed Rights in consideration of Your
65
+ acceptance of these terms and conditions, and the Licensor grants You
66
+ such rights in consideration of benefits the Licensor receives from
67
+ making the Licensed Material available under these terms and
68
+ conditions.
69
+
70
+
71
+ Section 1 -- Definitions.
72
+
73
+ a. Adapted Material means material subject to Copyright and Similar
74
+ Rights that is derived from or based upon the Licensed Material
75
+ and in which the Licensed Material is translated, altered,
76
+ arranged, transformed, or otherwise modified in a manner requiring
77
+ permission under the Copyright and Similar Rights held by the
78
+ Licensor. For purposes of this Public License, where the Licensed
79
+ Material is a musical work, performance, or sound recording,
80
+ Adapted Material is always produced where the Licensed Material is
81
+ synched in timed relation with a moving image.
82
+
83
+ b. Adapter's License means the license You apply to Your Copyright
84
+ and Similar Rights in Your contributions to Adapted Material in
85
+ accordance with the terms and conditions of this Public License.
86
+
87
+ c. Copyright and Similar Rights means copyright and/or similar rights
88
+ closely related to copyright including, without limitation,
89
+ performance, broadcast, sound recording, and Sui Generis Database
90
+ Rights, without regard to how the rights are labeled or
91
+ categorized. For purposes of this Public License, the rights
92
+ specified in Section 2(b)(1)-(2) are not Copyright and Similar
93
+ Rights.
94
+ d. Effective Technological Measures means those measures that, in the
95
+ absence of proper authority, may not be circumvented under laws
96
+ fulfilling obligations under Article 11 of the WIPO Copyright
97
+ Treaty adopted on December 20, 1996, and/or similar international
98
+ agreements.
99
+
100
+ e. Exceptions and Limitations means fair use, fair dealing, and/or
101
+ any other exception or limitation to Copyright and Similar Rights
102
+ that applies to Your use of the Licensed Material.
103
+
104
+ f. Licensed Material means the artistic or literary work, database,
105
+ or other material to which the Licensor applied this Public
106
+ License.
107
+
108
+ g. Licensed Rights means the rights granted to You subject to the
109
+ terms and conditions of this Public License, which are limited to
110
+ all Copyright and Similar Rights that apply to Your use of the
111
+ Licensed Material and that the Licensor has authority to license.
112
+
113
+ h. Licensor means the individual(s) or entity(ies) granting rights
114
+ under this Public License.
115
+
116
+ i. NonCommercial means not primarily intended for or directed towards
117
+ commercial advantage or monetary compensation. For purposes of
118
+ this Public License, the exchange of the Licensed Material for
119
+ other material subject to Copyright and Similar Rights by digital
120
+ file-sharing or similar means is NonCommercial provided there is
121
+ no payment of monetary compensation in connection with the
122
+ exchange.
123
+
124
+ j. Share means to provide material to the public by any means or
125
+ process that requires permission under the Licensed Rights, such
126
+ as reproduction, public display, public performance, distribution,
127
+ dissemination, communication, or importation, and to make material
128
+ available to the public including in ways that members of the
129
+ public may access the material from a place and at a time
130
+ individually chosen by them.
131
+
132
+ k. Sui Generis Database Rights means rights other than copyright
133
+ resulting from Directive 96/9/EC of the European Parliament and of
134
+ the Council of 11 March 1996 on the legal protection of databases,
135
+ as amended and/or succeeded, as well as other essentially
136
+ equivalent rights anywhere in the world.
137
+
138
+ l. You means the individual or entity exercising the Licensed Rights
139
+ under this Public License. Your has a corresponding meaning.
140
+
141
+
142
+ Section 2 -- Scope.
143
+
144
+ a. License grant.
145
+
146
+ 1. Subject to the terms and conditions of this Public License,
147
+ the Licensor hereby grants You a worldwide, royalty-free,
148
+ non-sublicensable, non-exclusive, irrevocable license to
149
+ exercise the Licensed Rights in the Licensed Material to:
150
+
151
+ a. reproduce and Share the Licensed Material, in whole or
152
+ in part, for NonCommercial purposes only; and
153
+
154
+ b. produce, reproduce, and Share Adapted Material for
155
+ NonCommercial purposes only.
156
+
157
+ 2. Exceptions and Limitations. For the avoidance of doubt, where
158
+ Exceptions and Limitations apply to Your use, this Public
159
+ License does not apply, and You do not need to comply with
160
+ its terms and conditions.
161
+
162
+ 3. Term. The term of this Public License is specified in Section
163
+ 6(a).
164
+
165
+ 4. Media and formats; technical modifications allowed. The
166
+ Licensor authorizes You to exercise the Licensed Rights in
167
+ all media and formats whether now known or hereafter created,
168
+ and to make technical modifications necessary to do so. The
169
+ Licensor waives and/or agrees not to assert any right or
170
+ authority to forbid You from making technical modifications
171
+ necessary to exercise the Licensed Rights, including
172
+ technical modifications necessary to circumvent Effective
173
+ Technological Measures. For purposes of this Public License,
174
+ simply making modifications authorized by this Section 2(a)
175
+ (4) never produces Adapted Material.
176
+
177
+ 5. Downstream recipients.
178
+
179
+ a. Offer from the Licensor -- Licensed Material. Every
180
+ recipient of the Licensed Material automatically
181
+ receives an offer from the Licensor to exercise the
182
+ Licensed Rights under the terms and conditions of this
183
+ Public License.
184
+
185
+ b. No downstream restrictions. You may not offer or impose
186
+ any additional or different terms or conditions on, or
187
+ apply any Effective Technological Measures to, the
188
+ Licensed Material if doing so restricts exercise of the
189
+ Licensed Rights by any recipient of the Licensed
190
+ Material.
191
+
192
+ 6. No endorsement. Nothing in this Public License constitutes or
193
+ may be construed as permission to assert or imply that You
194
+ are, or that Your use of the Licensed Material is, connected
195
+ with, or sponsored, endorsed, or granted official status by,
196
+ the Licensor or others designated to receive attribution as
197
+ provided in Section 3(a)(1)(A)(i).
198
+
199
+ b. Other rights.
200
+
201
+ 1. Moral rights, such as the right of integrity, are not
202
+ licensed under this Public License, nor are publicity,
203
+ privacy, and/or other similar personality rights; however, to
204
+ the extent possible, the Licensor waives and/or agrees not to
205
+ assert any such rights held by the Licensor to the limited
206
+ extent necessary to allow You to exercise the Licensed
207
+ Rights, but not otherwise.
208
+
209
+ 2. Patent and trademark rights are not licensed under this
210
+ Public License.
211
+
212
+ 3. To the extent possible, the Licensor waives any right to
213
+ collect royalties from You for the exercise of the Licensed
214
+ Rights, whether directly or through a collecting society
215
+ under any voluntary or waivable statutory or compulsory
216
+ licensing scheme. In all other cases the Licensor expressly
217
+ reserves any right to collect such royalties, including when
218
+ the Licensed Material is used other than for NonCommercial
219
+ purposes.
220
+
221
+
222
+ Section 3 -- License Conditions.
223
+
224
+ Your exercise of the Licensed Rights is expressly made subject to the
225
+ following conditions.
226
+
227
+ a. Attribution.
228
+
229
+ 1. If You Share the Licensed Material (including in modified
230
+ form), You must:
231
+
232
+ a. retain the following if it is supplied by the Licensor
233
+ with the Licensed Material:
234
+
235
+ i. identification of the creator(s) of the Licensed
236
+ Material and any others designated to receive
237
+ attribution, in any reasonable manner requested by
238
+ the Licensor (including by pseudonym if
239
+ designated);
240
+
241
+ ii. a copyright notice;
242
+
243
+ iii. a notice that refers to this Public License;
244
+
245
+ iv. a notice that refers to the disclaimer of
246
+ warranties;
247
+
248
+ v. a URI or hyperlink to the Licensed Material to the
249
+ extent reasonably practicable;
250
+
251
+ b. indicate if You modified the Licensed Material and
252
+ retain an indication of any previous modifications; and
253
+
254
+ c. indicate the Licensed Material is licensed under this
255
+ Public License, and include the text of, or the URI or
256
+ hyperlink to, this Public License.
257
+
258
+ 2. You may satisfy the conditions in Section 3(a)(1) in any
259
+ reasonable manner based on the medium, means, and context in
260
+ which You Share the Licensed Material. For example, it may be
261
+ reasonable to satisfy the conditions by providing a URI or
262
+ hyperlink to a resource that includes the required
263
+ information.
264
+
265
+ 3. If requested by the Licensor, You must remove any of the
266
+ information required by Section 3(a)(1)(A) to the extent
267
+ reasonably practicable.
268
+
269
+ 4. If You Share Adapted Material You produce, the Adapter's
270
+ License You apply must not prevent recipients of the Adapted
271
+ Material from complying with this Public License.
272
+
273
+
274
+ Section 4 -- Sui Generis Database Rights.
275
+
276
+ Where the Licensed Rights include Sui Generis Database Rights that
277
+ apply to Your use of the Licensed Material:
278
+
279
+ a. for the avoidance of doubt, Section 2(a)(1) grants You the right
280
+ to extract, reuse, reproduce, and Share all or a substantial
281
+ portion of the contents of the database for NonCommercial purposes
282
+ only;
283
+
284
+ b. if You include all or a substantial portion of the database
285
+ contents in a database in which You have Sui Generis Database
286
+ Rights, then the database in which You have Sui Generis Database
287
+ Rights (but not its individual contents) is Adapted Material; and
288
+
289
+ c. You must comply with the conditions in Section 3(a) if You Share
290
+ all or a substantial portion of the contents of the database.
291
+
292
+ For the avoidance of doubt, this Section 4 supplements and does not
293
+ replace Your obligations under this Public License where the Licensed
294
+ Rights include other Copyright and Similar Rights.
295
+
296
+
297
+ Section 5 -- Disclaimer of Warranties and Limitation of Liability.
298
+
299
+ a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
300
+ EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
301
+ AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
302
+ ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
303
+ IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
304
+ WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
305
+ PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
306
+ ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
307
+ KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
308
+ ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
309
+
310
+ b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
311
+ TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
312
+ NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
313
+ INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
314
+ COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
315
+ USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
316
+ ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
317
+ DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
318
+ IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
319
+
320
+ c. The disclaimer of warranties and limitation of liability provided
321
+ above shall be interpreted in a manner that, to the extent
322
+ possible, most closely approximates an absolute disclaimer and
323
+ waiver of all liability.
324
+
325
+
326
+ Section 6 -- Term and Termination.
327
+
328
+ a. This Public License applies for the term of the Copyright and
329
+ Similar Rights licensed here. However, if You fail to comply with
330
+ this Public License, then Your rights under this Public License
331
+ terminate automatically.
332
+
333
+ b. Where Your right to use the Licensed Material has terminated under
334
+ Section 6(a), it reinstates:
335
+
336
+ 1. automatically as of the date the violation is cured, provided
337
+ it is cured within 30 days of Your discovery of the
338
+ violation; or
339
+
340
+ 2. upon express reinstatement by the Licensor.
341
+
342
+ For the avoidance of doubt, this Section 6(b) does not affect any
343
+ right the Licensor may have to seek remedies for Your violations
344
+ of this Public License.
345
+
346
+ c. For the avoidance of doubt, the Licensor may also offer the
347
+ Licensed Material under separate terms or conditions or stop
348
+ distributing the Licensed Material at any time; however, doing so
349
+ will not terminate this Public License.
350
+
351
+ d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
352
+ License.
353
+
354
+
355
+ Section 7 -- Other Terms and Conditions.
356
+
357
+ a. The Licensor shall not be bound by any additional or different
358
+ terms or conditions communicated by You unless expressly agreed.
359
+
360
+ b. Any arrangements, understandings, or agreements regarding the
361
+ Licensed Material not stated herein are separate from and
362
+ independent of the terms and conditions of this Public License.
363
+
364
+
365
+ Section 8 -- Interpretation.
366
+
367
+ a. For the avoidance of doubt, this Public License does not, and
368
+ shall not be interpreted to, reduce, limit, restrict, or impose
369
+ conditions on any use of the Licensed Material that could lawfully
370
+ be made without permission under this Public License.
371
+
372
+ b. To the extent possible, if any provision of this Public License is
373
+ deemed unenforceable, it shall be automatically reformed to the
374
+ minimum extent necessary to make it enforceable. If the provision
375
+ cannot be reformed, it shall be severed from this Public License
376
+ without affecting the enforceability of the remaining terms and
377
+ conditions.
378
+
379
+ c. No term or condition of this Public License will be waived and no
380
+ failure to comply consented to unless expressly agreed to by the
381
+ Licensor.
382
+
383
+ d. Nothing in this Public License constitutes or may be interpreted
384
+ as a limitation upon, or waiver of, any privileges and immunities
385
+ that apply to the Licensor or You, including from the legal
386
+ processes of any jurisdiction or authority.
387
+
388
+ =======================================================================
389
+
390
+ Creative Commons is not a party to its public
391
+ licenses. Notwithstanding, Creative Commons may elect to apply one of
392
+ its public licenses to material it publishes and in those instances
393
+ will be considered the “Licensor.” The text of the Creative Commons
394
+ public licenses is dedicated to the public domain under the CC0 Public
395
+ Domain Dedication. Except for the limited purpose of indicating that
396
+ material is shared under a Creative Commons public license or as
397
+ otherwise permitted by the Creative Commons policies published at
398
+ creativecommons.org/policies, Creative Commons does not authorize the
399
+ use of the trademark "Creative Commons" or any other trademark or logo
400
+ of Creative Commons without its prior written consent including,
401
+ without limitation, in connection with any unauthorized modifications
402
+ to any of its public licenses or any other arrangements,
403
+ understandings, or agreements concerning use of licensed material. For
404
+ the avoidance of doubt, this paragraph does not form part of the
405
+ public licenses.
406
+
407
+ Creative Commons may be contacted at creativecommons.org.
CrisperWhisper/README.md ADDED
@@ -0,0 +1,325 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # CrisperWhisper
2
+
3
+ **CrisperWhisper** is an advanced variant of OpenAI's Whisper, designed for fast, precise, and verbatim speech recognition with accurate (**crisp**) word-level timestamps. Unlike the original Whisper, which tends to omit disfluencies and follows more of a intended transcription style, CrisperWhisper aims to transcribe every spoken word exactly as it is, including fillers, pauses, stutters and false starts.
4
+
5
+ ## Key Features
6
+
7
+ - 🎯 **Accurate Word-Level Timestamps**: Provides precise timestamps, even around disfluencies and pauses, by utilizing an adjusted tokenizer and a custom attention loss during training.
8
+ - 📝 **Verbatim Transcription**: Transcribes every spoken word exactly as it is, including and differentiating fillers like "um" and "uh".
9
+ - 🔍 **Filler Detection**: Detects and accurately transcribes fillers.
10
+ - 🛡️ **Hallucination Mitigation**: Minimizes transcription hallucinations to enhance accuracy.
11
+
12
+ ## Table of Contents
13
+
14
+ - [Key Features](#key-features)
15
+ - [Highlights](#highlights)
16
+ - [Performance Overview](#1-performance-overview)
17
+ - [Qualitative Performance Overview](#11-qualitative-performance-overview)
18
+ - [Quantitative Performance Overview](#12-quantitative-performance-overview)
19
+ - [Transcription Performance](#transcription-performance)
20
+ - [Segmentation Performance](#segmentation-performance)
21
+ - [Setup](#2-setup-⚙️)
22
+ - [Prerequisites](#21-prerequisites)
23
+ - [Environment Setup](#22-environment-setup)
24
+ - [Usage](#3-usage)
25
+ - [with transformers](#31-usage-with-🤗-transformers)
26
+ - [with faster whisper](#32-usage-with-faster-whisper)
27
+ - [Running the Streamlit App](#4-running-the-streamlit-app)
28
+ - [Prerequisites](#41-prerequisites)
29
+ - [Steps to Run the Streamlit App](#42-steps-to-run-the-streamlit-app)
30
+ - [Features of the App](#43-features-of-the-app)
31
+ - [How](#5-how)
32
+ - [License](#license)
33
+
34
+
35
+ ## Highlights
36
+
37
+ - 🏆 **1st place** on the [OpenASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard) in verbatim datasets (TED, AMI) and overall.
38
+ - 🎓 **Accepted at INTERSPEECH 2024**.
39
+ - 📄 **Paper Drop**: Check out our [paper](https://arxiv.org/abs/2408.16589) for details and reasoning behind our tokenizer adjustment.
40
+ - ✨ **New Feature**: Not mentioned in the paper is a added AttentionLoss to further improve timestamp accuracy. By specifically adding a loss to train the attention scores used for the DTW alignment using timestamped data we significantly boosted the alignment performance.
41
+
42
+
43
+
44
+ ## 1. Performance Overview
45
+
46
+ ### 1.1 Qualitative Performance Overview
47
+
48
+
49
+ | Audio | Whisper Large V3 | Crisper Whisper |
50
+ |-------|------------------------|------------------------|
51
+ | [Demo de 1](https://github.com/user-attachments/assets/c8608ca8-5e02-4c4a-afd3-8f7c5bff75d5) | Er war kein Genie, aber doch ein fähiger Ingenieur. | Es ist zwar kein. Er ist zwar kein Genie, aber doch ein fähiger Ingenieur.|
52
+ | [Demo de 2](https://github.com/user-attachments/assets/c68414b1-0f84-441c-b39b-29069487edb6) | Leider müssen wir in diesen schweren Zeiten auch unserem Tagesgeschäft nachgehen. Der hier vorgelegte Kulturhaushalt der Ampelregierung strebt an, den Erfolgskurs der Union zumindest fiskalisch fortzuführen. | Leider [UH] müssen wir in diesen [UH] schweren Zeiten auch [UH] unserem [UH] Tagesgeschäft nachgehen. Der hier [UH] vorgelegte [UH] Kulturhaushalt der [UH] Ampelregierung strebt an, den [UH] Erfolgskurs der Union [UH] zumindest [UH] fiskalisch fortzuführen. Es. |
53
+ | [Demo de 3](https://github.com/user-attachments/assets/0c1ed60c-2829-47e4-b7ba-eb584b0a5e9a) | die über alle FRA-Fraktionen hinweg gut im Blick behalten sollten, auch weil sie teilweise sehr teeteuer sind. Aber nicht nur, weil sie teeteuer sind. Wir steigen mit diesem Endentwurf ein in die sogenannten Pandemie-Bereitschaftsverträge.| Die über alle Fr Fraktionen hinweg gut im [UH] Blick behalten sollten, auch weil sie teil teilweise sehr te teuer sind. Aber nicht nur, weil sie te teuer sind. Wir [UH] steigen mit diesem Ent Entwurf ein in die sogenannten Pand Pandemiebereitschaftsverträge. |
54
+ | [Demo en 1](https://github.com/user-attachments/assets/cde5d69c-657f-4ae4-b4ae-b958ea2eacc5) | alternative is you can get like, you have those Dr. Bronner's| Alternative is you can get like [UH] you have those, you know, those doctor Brahmer's. |
55
+ | [Demo en 2](https://github.com/user-attachments/assets/906e307d-5613-4c41-9c61-65f4beede1fd) | influence our natural surrounding? How does it influence our ecosystem? | Influence our [UM] our [UH] our natural surrounding. How does it influence our ecosystem? |
56
+ | [Demo en 3](https://github.com/user-attachments/assets/6c09cd58-a574-4697-9a7e-92e416cf2522) | and always find a place on the street to park and it was easy and you weren't a long distance away from wherever it was that you were trying to go. So I remember that being a lot of fun and easy to do and there were nice places to go and good events to attend. Come downtown and you had the Warner Theater and | And always find a place on the street to park. And and it was it was easy and you weren't a long distance away from wherever it was that you were trying to go. So, I I I remember that being a lot of fun and easy to do and there were nice places to go and, [UM] i good events to attend. Come downtown and you had the Warner Theater and, [UM] |
57
+ | [Demo en 4](https://github.com/user-attachments/assets/7df19486-5e4e-4443-8528-09b07dddf61a) | you know, more masculine, who were rough, and that definitely wasn't me. Then, you know, I was very smart because my father made sure I was smart, you know. So, you know, I hung around those people, you know. And then you had the ones that were just out doing things that they shouldn't have been doing also. So, yeah, I was in the little geek squad. You were in the little geek squad. Yeah. | you know, more masculine, who were rough, and that definitely wasn't me. Then, you know, I was very smart because my father made sure I was smart. You know, so, [UM] you know, I I hung around those people, you know. And then you had the ones that were just just out doing things that they shouldn't have been doing also. So yeah, I was the l I was in the little geek squad. Do you |
58
+
59
+ ### 1.2 Quantitative Performance Overview
60
+
61
+ #### Transcription Performance
62
+
63
+ CrisperWhisper significantly outperforms Whisper Large v3, especially on datasets that have a more verbatim transcription style in the ground truth, such as AMI and TED-LIUM.
64
+
65
+ | Dataset | CrisperWhisper | Whisper Large v3 |
66
+ |----------------------|:--------------:|:----------------:|
67
+ | [AMI](https://huggingface.co/datasets/edinburghcstr/ami) | **8.72** | 16.01 |
68
+ | [Earnings22](https://huggingface.co/datasets/revdotcom/earnings22) | 12.37 | **11.3** |
69
+ | [GigaSpeech](https://huggingface.co/datasets/speechcolab/gigaspeech) | 10.27 | **10.02** |
70
+ | [LibriSpeech clean](https://huggingface.co/datasets/openslr/librispeech_asr) | **1.74** | 2.03 |
71
+ | [LibriSpeech other](https://huggingface.co/datasets/openslr/librispeech_asr) | 3.97 | **3.91** |
72
+ | [SPGISpeech](https://huggingface.co/datasets/kensho/spgispeech) | **2.71** | 2.95 |
73
+ | [TED-LIUM](https://huggingface.co/datasets/LIUM/tedlium) | **3.35** | 3.9 |
74
+ | [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) | **8.61** | 9.52 |
75
+ | [CommonVoice](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0) | **8.19** | 9.67 |
76
+ | **Average WER** | **6.66** | 7.7 |
77
+
78
+ #### Segmentation Performance
79
+
80
+ CrisperWhisper demonstrates superior performance segmentation performance. This performance gap is especially pronounced around disfluencies and pauses.
81
+ The following table uses the metrics as defined in the paper. For this table we used a collar of 50ms. Heads for each Model were selected using the method described in the [How](#5-how) section and the result attaining the highest F1 Score was choosen for each model using varying number of heads.
82
+
83
+ | Dataset | Metric | CrisperWhisper | Whisper Large v2 | Whisper Large v3 |
84
+ |---------|--------|------------------|------------------|------------------|
85
+ | [AMI IHM](https://groups.inf.ed.ac.uk/ami/corpus/) | F1 Score | **0.79** | 0.63 | 0.66 |
86
+ | | Avg IOU | **0.67** | 0.54 | 0.53 |
87
+ | [Common Voice](https://commonvoice.mozilla.org/en/datasets) | F1 Score | **0.80** | 0.42 | 0.48 |
88
+ | | Avg IOU | **0.70** | 0.32 | 0.43 |
89
+ | [TIMIT](https://catalog.ldc.upenn.edu/LDC93S1) | F1 Score | **0.69** | 0.40 | 0.54 |
90
+ | | Avg IOU | **0.56** | 0.32 | 0.43 |
91
+
92
+ More plots and ablations can be found in the `run_experiments/plots` folder.
93
+
94
+ ## 2. Setup ⚙️
95
+
96
+ ### 2.1 Prerequisites
97
+
98
+ - **Python**: 3.10
99
+ - **PyTorch**: 2.0
100
+ - **NVIDIA Libraries**: cuBLAS 11.x and cuDNN 8.x (for GPU execution)
101
+
102
+ ### 2.2 Environment Setup
103
+
104
+ 1. **Clone the Repository**:
105
+ ```bash
106
+ git clone https://github.com/nyrahealth/CrisperWhisper.git
107
+ cd CrisperWhisper
108
+ ```
109
+
110
+ 2. **Create Python Environment**:
111
+ ```bash
112
+ conda create --name crisperWhisper python=3.10
113
+ conda activate crisperWhisper
114
+ ```
115
+
116
+
117
+ 3. **Install Dependencies**:
118
+ ```bash
119
+ pip install -r requirements.txt
120
+ ```
121
+
122
+ 4. **Additional Installations**:
123
+ Follow OpenAI's instructions to install additional dependencies like `ffmpeg` and `rust`: [Whisper Setup](https://github.com/openai/whisper#setup).
124
+
125
+ ## 3. Usage
126
+
127
+ Here's how to use CrisperWhisper in your Python scripts:
128
+ First install our custom transformers fork for the most accurate timestamps:
129
+ ```
130
+ pip install git+https://github.com/nyrahealth/transformers.git@crisper_whisper
131
+ ```
132
+
133
+ ### 3.1 Usage with 🤗 transformers
134
+ First make sure that you have a huggingface account and accept the licensing of the [model](https://huggingface.co/nyrahealth/CrisperWhisper). Grab you huggingface access token and login so you are certainly able to download the model.
135
+
136
+ ```bash
137
+ huggingface-cli login
138
+ ```
139
+
140
+ ```python
141
+ import os
142
+ import sys
143
+ import torch
144
+
145
+ from datasets import load_dataset
146
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
147
+ from utils import adjust_pauses_for_hf_pipeline_output
148
+
149
+
150
+
151
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
152
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
153
+
154
+ model_id = "nyrahealth/CrisperWhisper"
155
+
156
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
157
+ model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
158
+ )
159
+ model.to(device)
160
+
161
+ processor = AutoProcessor.from_pretrained(model_id)
162
+
163
+ pipe = pipeline(
164
+ "automatic-speech-recognition",
165
+ model=model,
166
+ tokenizer=processor.tokenizer,
167
+ feature_extractor=processor.feature_extractor,
168
+ chunk_length_s=30,
169
+ batch_size=16,
170
+ return_timestamps='word',
171
+ torch_dtype=torch_dtype,
172
+ device=device,
173
+ )
174
+
175
+ dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
176
+ sample = dataset[0]["audio"]
177
+ hf_pipeline_output = pipe(sample)
178
+ crisper_whisper_result = adjust_pauses_for_hf_pipeline_output(hf_pipeline_output)
179
+ print(crisper_whisper_result)
180
+ ```
181
+ ### 3.2 Usage with faster whisper
182
+
183
+ We also provide a converted model to be compatible with [faster whisper](https://github.com/SYSTRAN/faster-whisper). However, due to the different implementation of the timestamp calculation in faster whisper or more precisely [CTranslate2](https://github.com/OpenNMT/CTranslate2/) the timestamp accuracy can not be guaranteed.
184
+
185
+ First make sure that you have a huggingface account and accept the licensing of the [model](https://huggingface.co/nyrahealth/faster_CrisperWhisper). Grab you huggingface access token and login so you are certainly able to download the model.
186
+ ```bash
187
+ huggingface-cli login
188
+ ```
189
+
190
+ ```python
191
+ from faster_whisper import WhisperModel
192
+ from datasets import load_dataset
193
+ faster_whisper_model = 'nyrahealth/faster_CrisperWhisper'
194
+
195
+ # Initialize the Whisper model
196
+
197
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
198
+ torch_dtype = "float16" if torch.cuda.is_available() else "float32"
199
+ model = WhisperModel(faster_whisper_model, device=device, compute_type="float32")
200
+ dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
201
+ sample = dataset[0]["audio"]
202
+
203
+ segments, info = model.transcribe(sample['array'], beam_size=1, language='en', word_timestamps = True, without_timestamps= True)
204
+
205
+ for segment in segments:
206
+ print(segment)
207
+ ```
208
+
209
+ ### 3.3 Commandline usage
210
+
211
+ First make sure that you have a huggingface account and accept the licensing of the model. Grab you huggingface access token and login so you are certainly able to download the model.
212
+ ```bash
213
+ huggingface-cli login
214
+ ```
215
+ afterwards:
216
+
217
+ To transcribe an audio file, use the following command:
218
+
219
+ ```bash
220
+ python transcribe.py --f <path_to_audio_file>
221
+ ```
222
+
223
+ ## 4. Running the Streamlit App
224
+
225
+ To use the CrisperWhisper model with a user-friendly interface, you can run the provided Streamlit app. This app allows you to record or upload audio files for transcription and view the results with accurate word-level timestamps.
226
+
227
+ ### 4.1 Prerequisites
228
+
229
+ Make sure you have followed the [Setup ⚙️](#setup) instructions above and have the `crisperWhisper` environment activated.
230
+
231
+ ### 4.2 Steps to Run the Streamlit App
232
+
233
+ 1. **Activate the Conda Environment**
234
+
235
+ Ensure you are in the `crisperWhisper` environment:
236
+ ```sh
237
+ conda activate crisperWhisper
238
+ ```
239
+
240
+ 2. **Navigate to the App Directory**
241
+
242
+ Change directory to where the `app.py` script is located:
243
+
244
+
245
+ 3. **Run the Streamlit App**
246
+
247
+ Use the following command to run the app. Make sure to replace `/path/to/your/model` with the actual path to your CrisperWhisper model directory:
248
+ ```sh
249
+ streamlit run app.py -- --model_id /path/to/your/model
250
+ ```
251
+
252
+ For example:
253
+ ```sh
254
+ streamlit run app.py -- --model_id nyrahealth/CrisperWhisper
255
+ ```
256
+
257
+ 4. **Access the App**
258
+
259
+ After running the command, the Streamlit server will start, and you can access the app in your web browser at:
260
+ ```
261
+ http://localhost:8501
262
+ ```
263
+
264
+ ### 4.3 Features of the App
265
+
266
+ - **Record Audio**: Record audio directly using your microphone.
267
+ - **Upload Audio**: Upload audio files in formats like WAV, MP3, or OGG.
268
+ - **Transcription**: Get accurate verbatim transcriptions including fillers
269
+ - **Video Generation**: View the transcription with timestamps alongside a video with a black background.
270
+
271
+ ## 5. How?
272
+
273
+
274
+ We employ the popular Dynamic Time Warping (DTW) on the Whisper cross-attention scores, as detailed in our [paper](https://arxiv.org/abs/2408.16589) to derive word-level timestamps. By leveraging our retokenization process, this method allows us to consistently detect pauses. Given that the accuracy of the timestamps heavily depends on the DTW cost matrix and, consequently, on the quality of the cross-attentions, we developed a specialized loss function for the selected alignment heads to enhance precision.
275
+
276
+ Although this loss function was not included in the original [paper](https://arxiv.org/abs/2408.16589) due to time constraints preventing the completion of experiments and training before the submission deadline, it has been used to train our publicly available models.
277
+ Key Features of this loss are as follows:
278
+
279
+ 1. **Data Preparation**
280
+ - We used datasets with word-level timestamp annotations, such as [AMI IHM](https://groups.inf.ed.ac.uk/ami/corpus/) and [TIMIT](https://catalog.ldc.upenn.edu/LDC93S1) , but required additional timestamped data.
281
+ - To address this, we validated the alignment accuracy of several forced alignment tools using a small hand-labeled dataset.
282
+ - Based on this validation, we chose the [PyTorch CTC aligner](https://pytorch.org/audio/main/tutorials/ctc_forced_alignment_api_tutorial.html) to generate more time-aligned data from the CommonVoice dataset.
283
+ - Because the [PyTorch CTC aligner](https://pytorch.org/audio/main/tutorials/ctc_forced_alignment_api_tutorial.html) tends to overestimate pause durations, we applied the same pause-splitting method detailed in our [paper](...) to correct these errors. The effectiveness of this correction was confirmed using our hand-labeled dataset.
284
+
285
+ 2. **Token-Word Alignment**
286
+ - Due to retokenization as detailed in our [paper](https://arxiv.org/abs/2408.16589), each token is either part of a word or a pause/space, but never both
287
+ - Therefore each token can be cleanly aligned to a word OR a space/pause
288
+
289
+ 3. **Ground Truth Cross-Attention**
290
+ - We define the cross-attention ground truth for tokens as the L2-normalized vector, where:
291
+ - A value of 1 indicates that the word is active according to the word-level ground truth timestamp.
292
+ - A value of 0 indicates that no attention should be paid.
293
+ - To account for small inaccuracies in the ground truth timestamps, we apply a linear interpolation of 4 steps (8 milliseconds) on both sides of the ground truth vector, transitioning smoothly from 0 to 1.
294
+
295
+ 4. **Loss Calculation**
296
+ - The loss function is defined as `1 - cosine similarity` between the predicted cross-attention vector (when predicting a token) and the ground truth cross-attention vector.
297
+ - This loss is averaged across all predicted tokens and alignment heads.
298
+
299
+ 5 **Alignment Head selection**
300
+ - To choose the heads for alignment we evaluated the alignment performance of each individual decoder attention head on the timestamped timit dataset.
301
+ - We choose the 15 best performing heads and finetune them using our attention loss.
302
+
303
+ 5. **Training Details**
304
+ - Since most of our samples during training were shorter than 30 seconds we shift the audio sample and corresponding timestamp ground truth around with a 50% probability to mitigate the cross attentions ,,overfitting" to early positions of the encoder output.
305
+ - If we have more than 40ms of silence (before or after shifting) we prepend the ground truth transcript ( and corresponding cross attention ground truth) with a space so the model has to accurately predict the starting time of the first word.
306
+ - We use [WavLM](https://arxiv.org/abs/2110.13900) augmentations during Training adding random speech samples or noise to the audio wave to generally increase robustness of the transcription and stability of the alignment heads.
307
+ - We clip ,,predicted" values in the cross attention vectors 4 seconds before and 4 seconds after the groundtruth word they belong to to 0. This is to decrease the dimensionality of the cross attention vector and therefore emphasize the attention where it counts in the loss and ultimately for the alignment.
308
+ - With a probability of 1% we use samples containing exclusively noise where the model has to return a empty prediction to improve hallucination.
309
+ - The Model is trained in three stages, in the first stage we use around 10000 hours of audio to adjust Whisper to the new tokenizer. In the second stage we exclusively use high quality datasets that are transcribed in a verbatim fashion. Finally we continue training on this verbatim mixture and add the attention loss for another 6000 steps.
310
+
311
+
312
+ ## License
313
+
314
+ ```markdown
315
+ Shield: [![CC BY-NC 4.0][cc-by-nc-shield]][cc-by-nc]
316
+
317
+ This work is licensed under a
318
+ [Creative Commons Attribution-NonCommercial 4.0 International License][cc-by-nc].
319
+
320
+ [![CC BY-NC 4.0][cc-by-nc-image]][cc-by-nc]
321
+
322
+ [cc-by-nc]: https://creativecommons.org/licenses/by-nc/4.0/
323
+ [cc-by-nc-image]: https://licensebuttons.net/l/by-nc/4.0/88x31.png
324
+ [cc-by-nc-shield]: https://img.shields.io/badge/License-CC%20BY--NC%204.0-lightgrey.svg
325
+ ```
CrisperWhisper/app.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import io
3
+ from typing import Any, Dict, List, Tuple, Union
4
+
5
+ import moviepy.editor as mp
6
+ import numpy as np
7
+ import streamlit as st
8
+ import torch
9
+ import torchaudio
10
+ import torchaudio.transforms as T
11
+ from scipy.io import wavfile
12
+ from streamlit_mic_recorder import mic_recorder
13
+ from transformers import (
14
+ AutomaticSpeechRecognitionPipeline,
15
+ AutoModelForSpeechSeq2Seq,
16
+ AutoProcessor,
17
+ pipeline,
18
+ )
19
+
20
+
21
+ def parse_arguments() -> argparse.Namespace:
22
+ """Parse command-line arguments."""
23
+ parser = argparse.ArgumentParser(
24
+ description="Streamlit app for speech transcription."
25
+ )
26
+ parser.add_argument(
27
+ "--model_id", type=str, required=True, help="Path to the model directory"
28
+ )
29
+ return parser.parse_args()
30
+
31
+
32
+ # Load model and processor from the specified path
33
+ @st.cache_resource # type: ignore
34
+ def load_model_and_processor(
35
+ model_id: str,
36
+ ) -> Tuple[AutoModelForSpeechSeq2Seq, AutoProcessor]:
37
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
38
+ model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
39
+ )
40
+ model.to(device)
41
+ model.generation_config.median_filter_width = 3
42
+ processor = AutoProcessor.from_pretrained(model_id)
43
+ return model, processor
44
+
45
+
46
+ # Setup the pipeline
47
+ @st.cache_resource # type: ignore
48
+ def setup_pipeline(
49
+ _model: AutoModelForSpeechSeq2Seq, _processor: AutoProcessor
50
+ ) -> AutomaticSpeechRecognitionPipeline:
51
+ return pipeline(
52
+ "automatic-speech-recognition",
53
+ model=_model,
54
+ tokenizer=_processor.tokenizer,
55
+ feature_extractor=_processor.feature_extractor,
56
+ chunk_length_s=30,
57
+ batch_size=1,
58
+ return_timestamps=True,
59
+ torch_dtype=torch_dtype,
60
+ device=device,
61
+ )
62
+
63
+
64
+ def wav_to_black_mp4(wav_path: str, output_path: str, fps: int = 25) -> None:
65
+ """Convert WAV file to a black-screen MP4 with the same audio."""
66
+ waveform, sample_rate = torchaudio.load(wav_path)
67
+ duration: float = waveform.shape[1] / sample_rate
68
+ audio = mp.AudioFileClip(wav_path)
69
+ black_clip = mp.ColorClip((256, 250), color=(0, 0, 0), duration=duration)
70
+ final_clip = black_clip.set_audio(audio)
71
+ final_clip.write_videofile(output_path, fps=fps)
72
+
73
+
74
+ def timestamps_to_vtt(timestamps: List[Dict[str, Union[str, Any]]]) -> str:
75
+ """Convert timestamps to VTT format."""
76
+ vtt_content: str = "WEBVTT\n\n"
77
+ for word in timestamps:
78
+ start_time, end_time = word["timestamp"]
79
+ start_time_str = f"{int(start_time // 3600)}:{int(start_time // 60 % 60):02d}:{start_time % 60:06.3f}"
80
+ end_time_str = f"{int(end_time // 3600)}:{int(end_time // 60 % 60):02d}:{end_time % 60:06.3f}"
81
+ vtt_content += f"{start_time_str} --> {end_time_str}\n{word['text']}\n\n"
82
+ return vtt_content
83
+
84
+
85
+ def process_audio_bytes(audio_bytes: bytes) -> torch.Tensor:
86
+ """Process audio bytes to the required format."""
87
+ audio_stream = io.BytesIO(audio_bytes)
88
+ sr, y = wavfile.read(audio_stream)
89
+ y = y.astype(np.float32)
90
+ y_mean = np.mean(y)
91
+ y_std = np.std(y)
92
+ y_normalized = (y - y_mean) / y_std
93
+ transform = T.Resample(sr, 16000)
94
+ waveform = transform(torch.unsqueeze(torch.tensor(y_normalized / 8), 0))
95
+ torchaudio.save("sample.wav", waveform, sample_rate=16000)
96
+ return waveform
97
+
98
+
99
+ def transcribe(audio_bytes: bytes) -> Dict[str, Any]:
100
+ """Transcribe the given audio bytes."""
101
+ waveform = process_audio_bytes(audio_bytes)
102
+ transcription = pipe(waveform[0, :].numpy(), return_timestamps="word")
103
+ return transcription
104
+
105
+
106
+ args = parse_arguments()
107
+ model_id = args.model_id
108
+
109
+ # Set up device and data type for processing
110
+ device: str = "cuda:0" if torch.cuda.is_available() else "cpu"
111
+ torch_dtype: torch.dtype = torch.float16 if torch.cuda.is_available() else torch.float32
112
+ model, processor = load_model_and_processor(model_id)
113
+ pipe = setup_pipeline(model, processor)
114
+
115
+ # Streamlit app interface
116
+ st.title("CrisperWhisper++ 🦻")
117
+ st.subheader("Caution when using. Make sure you can handle the crispness. ⚠️")
118
+ st.write("🎙️ Record an audio to transcribe or 📁 upload an audio file.")
119
+
120
+ # Audio recorder component
121
+ audio = mic_recorder(
122
+ start_prompt="Start recording",
123
+ stop_prompt="Stop recording",
124
+ just_once=False,
125
+ use_container_width=False,
126
+ format="wav",
127
+ callback=None,
128
+ args=(),
129
+ kwargs={},
130
+ key=None,
131
+ )
132
+
133
+ audio_bytes: Union[bytes, None] = audio["bytes"] if audio else None
134
+
135
+ # Audio file upload handling
136
+ audio_file = st.file_uploader("Or upload an audio file", type=["wav", "mp3", "ogg"])
137
+
138
+ if audio_file is not None:
139
+ audio_bytes = audio_file.getvalue()
140
+
141
+ if audio_bytes:
142
+ try:
143
+ transcription = transcribe(audio_bytes)
144
+ vtt = timestamps_to_vtt(transcription["chunks"])
145
+
146
+ with open("subtitles.vtt", "w") as file:
147
+ file.write(vtt)
148
+
149
+ wav_to_black_mp4("sample.wav", "video.mp4")
150
+
151
+ st.video("video.mp4", subtitles="subtitles.vtt")
152
+ st.subheader("Transcription:")
153
+ st.markdown(
154
+ f"""
155
+ <div style="background-color: #f0f0f0; padding: 10px; border-radius: 5px;">
156
+ <p style="font-size: 16px; color: #333;">{transcription['text']}</p>
157
+ </div>
158
+ """,
159
+ unsafe_allow_html=True,
160
+ )
161
+ except Exception as e:
162
+ st.error(f"An error occurred during transcription: {e}")
163
+
164
+ # Footer
165
+ st.markdown(
166
+ """
167
+ <hr>
168
+ <footer>
169
+ <p style="text-align: center;">© 2024 nyra health GmbH</p>
170
+ </footer>
171
+ """,
172
+ unsafe_allow_html=True,
173
+ )
CrisperWhisper/requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ torch
2
+ torchaudio
3
+ git+https://github.com/nyrahealth/transformers.git@crisper_whisper
4
+ accelerate
5
+ scipy
6
+ streamlit
7
+ moviepy
8
+ streamlit_mic_recorder
9
+ librosa
CrisperWhisper/transcribe.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import sys
4
+ import torch
5
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
6
+
7
+
8
+ def transcribe_audio(file_path):
9
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
11
+
12
+ model_id = "nyrahealth/CrisperWhisper" # You can change this to a different model if needed
13
+
14
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
15
+ model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
16
+ )
17
+ model.to(device)
18
+
19
+ processor = AutoProcessor.from_pretrained(model_id)
20
+
21
+ pipe = pipeline(
22
+ "automatic-speech-recognition",
23
+ model=model,
24
+ tokenizer=processor.tokenizer,
25
+ feature_extractor=processor.feature_extractor,
26
+ chunk_length_s=30,
27
+ batch_size=16,
28
+ return_timestamps="word",
29
+ torch_dtype=torch_dtype,
30
+ device=device,
31
+ )
32
+
33
+ result = pipe(file_path)
34
+ return result
35
+
36
+
37
+ def main():
38
+ parser = argparse.ArgumentParser(description="Transcribe an audio file.")
39
+ parser.add_argument("--f", type=str, required=True, help="Path to the audio file")
40
+ args = parser.parse_args()
41
+
42
+ if not os.path.exists(args.f):
43
+ print(f"Error: The file '{args.f}' does not exist.")
44
+ sys.exit(1)
45
+
46
+ try:
47
+ transcription = transcribe_audio(args.f)
48
+ print("Transcription:")
49
+ print(transcription["text"])
50
+ except Exception as e:
51
+ print(f"An error occurred while transcribing the audio: {str(e)}")
52
+ sys.exit(1)
53
+
54
+
55
+ if __name__ == "__main__":
56
+ main()
CrisperWhisper/utils.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def adjust_pauses_for_hf_pipeline_output(pipeline_output, split_threshold=0.12):
2
+ """
3
+ Adjust pause timings by distributing pauses up to the threshold evenly between adjacent words.
4
+ """
5
+
6
+ adjusted_chunks = pipeline_output["chunks"].copy()
7
+
8
+ for i in range(len(adjusted_chunks) - 1):
9
+ current_chunk = adjusted_chunks[i]
10
+ next_chunk = adjusted_chunks[i + 1]
11
+
12
+ current_start, current_end = current_chunk["timestamp"]
13
+ next_start, next_end = next_chunk["timestamp"]
14
+ pause_duration = next_start - current_end
15
+
16
+ if pause_duration > 0:
17
+ if pause_duration > split_threshold:
18
+ distribute = split_threshold / 2
19
+ else:
20
+ distribute = pause_duration / 2
21
+
22
+ # Adjust current chunk end time
23
+ adjusted_chunks[i]["timestamp"] = (current_start, current_end + distribute)
24
+
25
+ # Adjust next chunk start time
26
+ adjusted_chunks[i + 1]["timestamp"] = (next_start - distribute, next_end)
27
+ pipeline_output["chunks"] = adjusted_chunks
28
+
29
+ return pipeline_output
Dockerfile ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM continuumio/miniconda3:24.11.1-0
2
+ WORKDIR /sate
3
+
4
+ COPY . .
5
+
6
+ RUN conda env create -f environment_sate_0.11.yml
7
+
8
+ SHELL ["conda", "run", "-n", "SATE", "/bin/bash", "-c"]
9
+
10
+ EXPOSE 5000
11
+
12
+ CMD ["conda", "run", "--no-capture-output", "-n", "SATE", "python", "main_socket.py"]
13
+
annotation.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+
4
+ def annotate_transcript(session_id, base_dir="session_data"):
5
+
6
+ session_dir = os.path.join(base_dir, session_id)
7
+ json_file = os.path.join(session_dir, f"{session_id}_transcriptionCW.json")
8
+ output_file = os.path.join(session_dir, "annotation_result.txt")
9
+
10
+ if not os.path.exists(json_file):
11
+ print(f"Error: could not find {json_file}")
12
+ return
13
+
14
+ with open(json_file, "r", encoding="utf-8") as f:
15
+ data = json.load(f)
16
+
17
+ segments = data.get("segments", [])
18
+ annotated_lines = []
19
+
20
+ for segment in segments:
21
+ speaker = segment.get("speaker", "UNKNOWN")
22
+ words = segment.get("words", [])
23
+ n = len(words)
24
+
25
+ pause_map = {}
26
+ for pause in segment.get("pauses", []):
27
+ pause_start = pause.get("start")
28
+ duration = pause.get("duration")
29
+ for idx, token in enumerate(words):
30
+ if abs(token.get("end", 0) - pause_start) < 0.01:
31
+ pause_map.setdefault(idx, []).append(f"({duration})")
32
+ break
33
+
34
+ rep_map = {}
35
+ for rep in segment.get("repetitions", []):
36
+ indices = rep.get("words", [])
37
+ if indices:
38
+ start_idx = indices[0]
39
+ end_idx = indices[-1]
40
+ rep_content = rep.get("content", "")
41
+ rep_map[start_idx] = (end_idx, rep_content)
42
+
43
+ annotated_tokens = []
44
+ i = 0
45
+ while i < n:
46
+ if i in rep_map:
47
+ rep_end, rep_content = rep_map[i]
48
+ rep_str = f"<{rep_content}> [/]"
49
+ annotated_tokens.append(rep_str)
50
+ if rep_end in pause_map:
51
+ for pause_marker in pause_map[rep_end]:
52
+ annotated_tokens.append(pause_marker)
53
+ i = rep_end + 1
54
+ else:
55
+ token_word = words[i].get("word", "")
56
+ annotated_tokens.append(token_word)
57
+ if i in pause_map:
58
+ for pause_marker in pause_map[i]:
59
+ annotated_tokens.append(pause_marker)
60
+ i += 1
61
+
62
+ # join all transcript
63
+ transcript = " ".join(annotated_tokens)
64
+ # gen *SPEAKER:\ttranscript
65
+ line = f"*{speaker}\t{transcript}"
66
+ annotated_lines.append(line)
67
+
68
+ # write annotation_result.txt
69
+ with open(output_file, "w", encoding="utf-8") as f:
70
+ for line in annotated_lines:
71
+ f.write(line + "\n")
72
+
73
+ print(f"Annotation done in {output_file}")
74
+ return output_file
75
+
76
+ if __name__ == "__main__":
77
+
78
+ annotate_transcript("000030")
environment.yml ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: SATE
2
+ channels:
3
+ - conda-forge
4
+ - nvidia
5
+ - defaults
6
+ - https://repo.anaconda.com/pkgs/main
7
+ - https://repo.anaconda.com/pkgs/r
8
+ dependencies:
9
+ - _libgcc_mutex=0.1
10
+ - _openmp_mutex=5.1
11
+ - bzip2=1.0.8
12
+ - ca-certificates=2025.2.25
13
+ - cudatoolkit=11.1.74
14
+ - cudnn=8.0.4
15
+ - ffmpeg=4.3.2
16
+ - freetype=2.10.4
17
+ - gmp=6.2.1
18
+ - gnutls=3.6.13
19
+ - lame=3.100
20
+ - ld_impl_linux-64=2.40
21
+ - libffi=3.4.4
22
+ - libgcc-ng=11.2.0
23
+ - libgomp=11.2.0
24
+ - libpng=1.6.37
25
+ - libstdcxx-ng=11.2.0
26
+ - libuuid=1.41.5
27
+ - ncurses=6.4
28
+ - nettle=3.6
29
+ - openh264=2.1.1
30
+ - openssl=3.0.16
31
+ - pip=25.0
32
+ - python=3.10.16
33
+ - readline=8.2
34
+ - setuptools=75.8.0
35
+ - sqlite=3.45.3
36
+ - tk=8.6.14
37
+ - wheel=0.45.1
38
+ - x264=1!161.3030
39
+ - xz=5.6.4
40
+ - zlib=1.2.13
41
+ - pip:
42
+ - accelerate==1.2.1
43
+ - aiohappyeyeballs==2.6.1
44
+ - aiohttp==3.11.14
45
+ - aiosignal==1.3.2
46
+ - alembic==1.15.1
47
+ - antlr4-python3-runtime==4.9.3
48
+ - asteroid-filterbanks==0.4.0
49
+ - async-timeout==5.0.1
50
+ - attrs==25.3.0
51
+ - av==14.2.0
52
+ - blinker==1.9.0
53
+ - certifi==2025.1.31
54
+ - cffi==1.17.1
55
+ - charset-normalizer==3.4.1
56
+ - click==8.1.8
57
+ - coloredlogs==15.0.1
58
+ - colorlog==6.9.0
59
+ - contourpy==1.3.1
60
+ - ctranslate2==4.4.0
61
+ - cycler==0.12.1
62
+ - docopt==0.6.2
63
+ - einops==0.8.1
64
+ - faster-whisper==1.1.0
65
+ - filelock==3.18.0
66
+ - flask==3.1.0
67
+ - flatbuffers==25.2.10
68
+ - fonttools==4.56.0
69
+ - frozenlist==1.5.0
70
+ - fsspec==2025.3.0
71
+ - greenlet==3.1.1
72
+ - huggingface-hub==0.29.3
73
+ - humanfriendly==10.0
74
+ - hyperpyyaml==1.2.2
75
+ - idna==3.10
76
+ - itsdangerous==2.2.0
77
+ - jinja2==3.1.6
78
+ - joblib==1.4.2
79
+ - julius==0.2.7
80
+ - kiwisolver==1.4.8
81
+ - lightning==2.5.1
82
+ - lightning-utilities==0.14.2
83
+ - mako==1.3.9
84
+ - markdown-it-py==3.0.0
85
+ - markupsafe==3.0.2
86
+ - matplotlib==3.10.1
87
+ - mdurl==0.1.2
88
+ - mpmath==1.3.0
89
+ - multidict==6.2.0
90
+ - networkx==3.4.2
91
+ - nltk==3.9.1
92
+ - numpy==2.0.2
93
+ - nvidia-cublas-cu12==12.4.5.8
94
+ - nvidia-cuda-cupti-cu12==12.4.127
95
+ - nvidia-cuda-nvrtc-cu12==12.4.127
96
+ - nvidia-cuda-runtime-cu12==12.4.127
97
+ - nvidia-cudnn-cu12==9.1.0.70
98
+ - nvidia-cufft-cu12==11.2.1.3
99
+ - nvidia-curand-cu12==10.3.5.147
100
+ - nvidia-cusolver-cu12==11.6.1.9
101
+ - nvidia-cusparse-cu12==12.3.1.170
102
+ - nvidia-cusparselt-cu12==0.6.2
103
+ - nvidia-nccl-cu12==2.21.5
104
+ - nvidia-nvjitlink-cu12==12.4.127
105
+ - nvidia-nvtx-cu12==12.4.127
106
+ - omegaconf==2.3.0
107
+ - onnxruntime==1.21.0
108
+ - optuna==4.2.1
109
+ - packaging==24.2
110
+ - pandas==2.2.3
111
+ - pillow==11.1.0
112
+ - primepy==1.3
113
+ - propcache==0.3.0
114
+ - protobuf==6.30.1
115
+ - psutil==7.0.0
116
+ - pyannote-audio==3.3.2
117
+ - pyannote-core==5.0.0
118
+ - pyannote-database==5.1.3
119
+ - pyannote-metrics==3.2.1
120
+ - pyannote-pipeline==3.0.1
121
+ - pycparser==2.22
122
+ - pydub==0.25.1
123
+ - pygments==2.19.1
124
+ - pyparsing==3.2.3
125
+ - python-dateutil==2.9.0.post0
126
+ - pytorch-lightning==2.5.1
127
+ - pytorch-metric-learning==2.8.1
128
+ - pytz==2025.2
129
+ - pyyaml==6.0.2
130
+ - regex==2024.11.6
131
+ - requests==2.32.3
132
+ - rich==13.9.4
133
+ - ruamel-yaml==0.18.10
134
+ - ruamel-yaml-clib==0.2.12
135
+ - safetensors==0.5.3
136
+ - scikit-learn==1.6.1
137
+ - scipy==1.15.2
138
+ - semver==3.0.4
139
+ - sentencepiece==0.2.0
140
+ - shellingham==1.5.4
141
+ - six==1.17.0
142
+ - sortedcontainers==2.4.0
143
+ - soundfile==0.12.1
144
+ - speechbrain==1.0.2
145
+ - sqlalchemy==2.0.39
146
+ - sympy==1.13.1
147
+ - tabulate==0.9.0
148
+ - tensorboardx==2.6.2.2
149
+ - threadpoolctl==3.6.0
150
+ - tokenizers==0.15.2
151
+ - torch==2.5.1
152
+ - torch-audiomentations==0.12.0
153
+ - torch-pitch-shift==1.2.5
154
+ - torchaudio==2.5.1
155
+ - torchmetrics==1.7.0
156
+ - tqdm==4.67.1
157
+ - transformers==4.37.2
158
+ - triton==3.1.0
159
+ - typer==0.15.2
160
+ - typing-extensions==4.12.2
161
+ - tzdata==2025.2
162
+ - urllib3==2.3.0
163
+ - werkzeug==3.1.3
164
+ - whisperx==3.3.1
165
+ - yarl==1.18.3
166
+ prefix: /home/easgrad/shuweiho/workspace/miniconda3/envs/SATE
environment_sate_0.11.yml ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: SATE
2
+ channels:
3
+ - conda-forge
4
+ - nvidia
5
+ - defaults
6
+ - https://repo.anaconda.com/pkgs/main
7
+ - https://repo.anaconda.com/pkgs/r
8
+ dependencies:
9
+ - _libgcc_mutex=0.1=main
10
+ - _openmp_mutex=5.1=1_gnu
11
+ - bzip2=1.0.8=h5eee18b_6
12
+ - ca-certificates=2025.2.25=h06a4308_0
13
+ - cudatoolkit=11.1.74=h6bb024c_0
14
+ - cudnn=8.0.4=cuda11.1_0
15
+ - ffmpeg=4.3.2=hca11adc_0
16
+ - freetype=2.10.4=h0708190_1
17
+ - gmp=6.2.1=h58526e2_0
18
+ - gnutls=3.6.13=h85f3911_1
19
+ - lame=3.100=h7f98852_1001
20
+ - ld_impl_linux-64=2.40=h12ee557_0
21
+ - libffi=3.4.4=h6a678d5_1
22
+ - libgcc-ng=11.2.0=h1234567_1
23
+ - libgomp=11.2.0=h1234567_1
24
+ - libpng=1.6.37=h21135ba_2
25
+ - libstdcxx-ng=11.2.0=h1234567_1
26
+ - libuuid=1.41.5=h5eee18b_0
27
+ - ncurses=6.4=h6a678d5_0
28
+ - nettle=3.6=he412f7d_0
29
+ - openh264=2.1.1=h780b84a_0
30
+ - openssl=3.0.16=h5eee18b_0
31
+ - pip=25.0=py310h06a4308_0
32
+ - python=3.10.16=he870216_1
33
+ - readline=8.2=h5eee18b_0
34
+ - setuptools=75.8.0=py310h06a4308_0
35
+ - sqlite=3.45.3=h5eee18b_0
36
+ - tk=8.6.14=h39e8969_0
37
+ - wheel=0.45.1=py310h06a4308_0
38
+ - x264=1!161.3030=h7f98852_1
39
+ - xz=5.6.4=h5eee18b_1
40
+ - zlib=1.2.13=h5eee18b_1
41
+ - pip:
42
+ - accelerate==1.2.1
43
+ - aiohappyeyeballs==2.6.1
44
+ - aiohttp==3.11.14
45
+ - aiosignal==1.3.2
46
+ - alembic==1.15.1
47
+ - antlr4-python3-runtime==4.9.3
48
+ - asteroid-filterbanks==0.4.0
49
+ - async-timeout==5.0.1
50
+ - attrs==25.3.0
51
+ - av==14.2.0
52
+ - blinker==1.9.0
53
+ - certifi==2025.1.31
54
+ - cffi==1.17.1
55
+ - charset-normalizer==3.4.1
56
+ - click==8.1.8
57
+ - coloredlogs==15.0.1
58
+ - colorlog==6.9.0
59
+ - contourpy==1.3.1
60
+ - ctranslate2==4.4.0
61
+ - cycler==0.12.1
62
+ - docopt==0.6.2
63
+ - einops==0.8.1
64
+ - faster-whisper==1.1.0
65
+ - filelock==3.18.0
66
+ - flask==3.1.0
67
+ - flatbuffers==25.2.10
68
+ - fonttools==4.56.0
69
+ - frozenlist==1.5.0
70
+ - fsspec==2025.3.0
71
+ - greenlet==3.1.1
72
+ - huggingface-hub==0.29.3
73
+ - humanfriendly==10.0
74
+ - hyperpyyaml==1.2.2
75
+ - idna==3.10
76
+ - imbalanced-learn==0.13.0
77
+ - itsdangerous==2.2.0
78
+ - jinja2==3.1.6
79
+ - joblib==1.4.2
80
+ - julius==0.2.7
81
+ - kiwisolver==1.4.8
82
+ - lightning==2.5.1
83
+ - lightning-utilities==0.14.2
84
+ - mako==1.3.9
85
+ - markdown-it-py==3.0.0
86
+ - markupsafe==3.0.2
87
+ - matplotlib==3.10.1
88
+ - mdurl==0.1.2
89
+ - mpmath==1.3.0
90
+ - multidict==6.2.0
91
+ - networkx==3.4.2
92
+ - nltk==3.9.1
93
+ - numpy==2.0.2
94
+ - nvidia-cublas-cu12==12.4.5.8
95
+ - nvidia-cuda-cupti-cu12==12.4.127
96
+ - nvidia-cuda-nvrtc-cu12==12.4.127
97
+ - nvidia-cuda-runtime-cu12==12.4.127
98
+ - nvidia-cudnn-cu12==9.1.0.70
99
+ - nvidia-cufft-cu12==11.2.1.3
100
+ - nvidia-curand-cu12==10.3.5.147
101
+ - nvidia-cusolver-cu12==11.6.1.9
102
+ - nvidia-cusparse-cu12==12.3.1.170
103
+ - nvidia-cusparselt-cu12==0.6.2
104
+ - nvidia-nccl-cu12==2.21.5
105
+ - nvidia-nvjitlink-cu12==12.4.127
106
+ - nvidia-nvtx-cu12==12.4.127
107
+ - omegaconf==2.3.0
108
+ - onnxruntime==1.21.0
109
+ - optuna==4.2.1
110
+ - packaging==24.2
111
+ - pandas==2.2.3
112
+ - pillow==11.1.0
113
+ - primepy==1.3
114
+ - propcache==0.3.0
115
+ - protobuf==6.30.1
116
+ - psutil==7.0.0
117
+ - pyannote-audio==3.3.2
118
+ - pyannote-core==5.0.0
119
+ - pyannote-database==5.1.3
120
+ - pyannote-metrics==3.2.1
121
+ - pyannote-pipeline==3.0.1
122
+ - pycparser==2.22
123
+ - pydub==0.25.1
124
+ - pygments==2.19.1
125
+ - pyparsing==3.2.3
126
+ - python-dateutil==2.9.0.post0
127
+ - pytorch-lightning==2.5.1
128
+ - pytorch-metric-learning==2.8.1
129
+ - pytz==2025.2
130
+ - pyyaml==6.0.2
131
+ - regex==2024.11.6
132
+ - requests==2.32.3
133
+ - rich==13.9.4
134
+ - ruamel-yaml==0.18.10
135
+ - ruamel-yaml-clib==0.2.12
136
+ - safetensors==0.5.3
137
+ - scikit-learn==1.6.1
138
+ - scipy==1.15.2
139
+ - semver==3.0.4
140
+ - sentencepiece==0.2.0
141
+ - shellingham==1.5.4
142
+ - six==1.17.0
143
+ - sklearn-compat==0.1.3
144
+ - sortedcontainers==2.4.0
145
+ - soundfile==0.12.1
146
+ - speechbrain==1.0.2
147
+ - sqlalchemy==2.0.39
148
+ - sympy==1.13.1
149
+ - tabulate==0.9.0
150
+ - tensorboardx==2.6.2.2
151
+ - threadpoolctl==3.6.0
152
+ - tokenizers==0.15.2
153
+ - torch==2.5.1
154
+ - torch-audiomentations==0.12.0
155
+ - torch-pitch-shift==1.2.5
156
+ - torchaudio==2.5.1
157
+ - torchmetrics==1.7.0
158
+ - tqdm==4.67.1
159
+ - transformers==4.37.2
160
+ - triton==3.1.0
161
+ - typer==0.15.2
162
+ - typing-extensions==4.12.2
163
+ - tzdata==2025.2
164
+ - urllib3==2.3.0
165
+ - werkzeug==3.1.3
166
+ - whisperx==3.3.1
167
+ - xgboost==3.0.0
168
+ - yarl==1.18.3
169
+ prefix: /home/easgrad/shuweiho/workspace/miniconda3/envs/SATE
feature_extraction.py ADDED
@@ -0,0 +1,393 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import re
4
+ from collections import Counter
5
+
6
+ def target_speaker(segments):
7
+ speakers = [seg.get("speaker", "UNKNOWN") for seg in segments]
8
+ most_common = Counter(speakers).most_common(1)
9
+ return most_common[0][0] if most_common else "UNKNOWN"
10
+
11
+ def pause_feature(session_id, base_dir="session_data"):
12
+
13
+ json_file = os.path.join(base_dir, session_id, f"{session_id}_transcriptionCW.json")
14
+ feature_file = os.path.join(base_dir, session_id, f"{session_id}_feature.json")
15
+
16
+ if not os.path.exists(json_file):
17
+ print(f"[Error] transcriptionCW file not found: {json_file}")
18
+ return
19
+
20
+ with open(json_file, "r", encoding="utf-8") as f:
21
+ data = json.load(f)
22
+
23
+ segments = data.get("segments", [])
24
+ tgt_speaker = target_speaker(segments)
25
+ tgt_segments = [seg for seg in segments if seg.get("speaker") == tgt_speaker]
26
+
27
+ total_words = 0
28
+ total_duration = 0.0
29
+ all_pauses = []
30
+
31
+ for seg in tgt_segments:
32
+ words = seg.get("words", [])
33
+ total_words += len(words)
34
+ duration = seg.get("end", 0) - seg.get("start", 0)
35
+ total_duration += duration
36
+ pauses = seg.get("pauses", [])
37
+ all_pauses.extend(pauses)
38
+
39
+ total_pauses = len(all_pauses)
40
+ pause_durations = [p["duration"] for p in all_pauses]
41
+ pause_total_duration = sum(pause_durations)
42
+ avg_pause_duration = sum(pause_durations) / total_pauses if total_pauses > 0 else 0
43
+ longest_pause = max(pause_durations) if pause_durations else 0
44
+
45
+ pause_density_1 = (total_pauses / total_words * 100) if total_words > 0 else 0
46
+ pause_density_2 = (total_pauses / total_duration * 60) if total_duration > 0 else 0
47
+ pause_proportion = (pause_total_duration / total_duration) * 100 if total_duration > 0 else 0
48
+
49
+ pause_feat = {
50
+ "Pause Density I": round(pause_density_1, 3),
51
+ "Pause Density II": round(pause_density_2, 3),
52
+ "Pause Proportion": round(pause_proportion, 3),
53
+ "Average Pause Duration": round(avg_pause_duration, 3),
54
+ "Longest Pause Duration": round(longest_pause, 3)
55
+ }
56
+
57
+ if os.path.exists(feature_file):
58
+ with open(feature_file, "r", encoding="utf-8") as f:
59
+ feature_data = json.load(f)
60
+ else:
61
+ feature_data = {}
62
+
63
+ feature_data.setdefault("pause", []).append(pause_feat)
64
+
65
+ with open(feature_file, "w", encoding="utf-8") as f:
66
+ json.dump(feature_data, f, indent=4, ensure_ascii=False)
67
+
68
+ print(f"[Done] Pause features written to {feature_file}")
69
+
70
+
71
+
72
+ def get_syllable_weight(cv_pattern):
73
+ weight1_patterns = {'CV', 'CVC', 'VC', 'V'}
74
+ weight2_patterns = {'VCC', 'CVCC', 'CCV', 'CCVC'}
75
+ if cv_pattern in weight1_patterns:
76
+ return 1
77
+ elif cv_pattern in weight2_patterns:
78
+ return 10
79
+ else:
80
+ return 100
81
+
82
+
83
+ def syllable_feature(session_id, base_dir="session_data"):
84
+ json_file = os.path.join(base_dir, session_id, f"{session_id}_transcriptionCW.json")
85
+ feature_file = os.path.join(base_dir, session_id, f"{session_id}_feature.json")
86
+
87
+ if not os.path.exists(json_file):
88
+ print(f"[Error] transcriptionCW file not found: {json_file}")
89
+ return
90
+
91
+ with open(json_file, "r", encoding="utf-8") as f:
92
+ data = json.load(f)
93
+
94
+ segments = data.get("segments", [])
95
+ tgt_speaker = target_speaker(segments)
96
+ tgt_segments = [seg for seg in segments if seg.get("speaker") == tgt_speaker]
97
+
98
+ total_duration = sum(seg["end"] - seg["start"] for seg in tgt_segments)
99
+ syllable_types = set()
100
+ total_syllables = 0
101
+ total_weight = 0
102
+ max_syllable_len = 0
103
+ word_syllable_count = {}
104
+ word_counter = 0
105
+
106
+ for seg in tgt_segments:
107
+ syllables = seg.get("syllables", [])
108
+ for syl in syllables:
109
+ cv = syl.get("CV_pattern", "")
110
+ phonemes = syl.get("phonemes", [])
111
+ syllable_types.add(cv)
112
+ total_syllables += 1
113
+ total_weight += get_syllable_weight(cv)
114
+ max_syllable_len = max(max_syllable_len, len(phonemes))
115
+
116
+ local_idx = syl.get("word_index")
117
+ global_idx = word_counter + local_idx
118
+ word_syllable_count[global_idx] = word_syllable_count.get(global_idx, 0) + 1
119
+ word_counter += len(seg.get("words", []))
120
+
121
+ all_words = []
122
+ for seg in tgt_segments:
123
+ all_words.extend(seg.get("words", []))
124
+ total_words = len(all_words)
125
+
126
+ multi_syll_2 = sum(1 for c in word_syllable_count.values() if c >= 2)
127
+ multi_syll_3 = sum(1 for c in word_syllable_count.values() if c >= 3)
128
+
129
+ feat = {
130
+ "Number of Syllable Types": len(syllable_types),
131
+ "Syllable Complexity Index": round(total_weight / total_syllables, 3) if total_syllables > 0 else 0,
132
+ "Average Syllable Rate": round(total_syllables / total_duration, 3) if total_duration > 0 else 0,
133
+ "Longest Syllable Length": max_syllable_len,
134
+ "Proportion of Multisyllabic Words I": round((multi_syll_2 / total_words) * 100, 3) if total_words > 0 else 0,
135
+ "Proportion of Multisyllabic Words II": round((multi_syll_3 / total_words) * 100, 3) if total_words > 0 else 0
136
+ }
137
+
138
+ if os.path.exists(feature_file):
139
+ with open(feature_file, "r", encoding="utf-8") as f:
140
+ feature_data = json.load(f)
141
+ else:
142
+ feature_data = {}
143
+
144
+ feature_data.setdefault("syllable", []).append(feat)
145
+
146
+ with open(feature_file, "w", encoding="utf-8") as f:
147
+ json.dump(feature_data, f, indent=4, ensure_ascii=False)
148
+
149
+ print(f"[Done] Syllable features written to {feature_file}")
150
+
151
+
152
+
153
+ def get_rep_weight(length):
154
+ if length == 1:
155
+ return 1
156
+ elif length == 2:
157
+ return 5
158
+ elif length == 3:
159
+ return 10
160
+ elif length == 4:
161
+ return 20
162
+ else:
163
+ return 40
164
+
165
+
166
+ def repetition_feature(session_id, base_dir="session_data"):
167
+ json_file = os.path.join(base_dir, session_id, f"{session_id}_transcriptionCW.json")
168
+ feature_file = os.path.join(base_dir, session_id, f"{session_id}_feature.json")
169
+
170
+ if not os.path.exists(json_file):
171
+ print(f"[Error] transcriptionCW file not found: {json_file}")
172
+ return
173
+
174
+ with open(json_file, "r", encoding="utf-8") as f:
175
+ data = json.load(f)
176
+
177
+ segments = data.get("segments", [])
178
+ tgt_speaker = target_speaker(segments)
179
+ tgt_segments = [seg for seg in segments if seg.get("speaker") == tgt_speaker]
180
+
181
+ total_duration = sum(seg["end"] - seg["start"] for seg in tgt_segments)
182
+ total_words = sum(len(seg.get("words", [])) for seg in tgt_segments)
183
+
184
+ rep_count = 0
185
+ rep_weights = 0
186
+ rep_lengths = []
187
+ rep_durations = []
188
+
189
+ for seg in tgt_segments:
190
+ words = seg.get("words", [])
191
+ repetitions = seg.get("repetitions", [])
192
+ for rep in repetitions:
193
+ indices = rep.get("words", [])
194
+ if not indices:
195
+ continue
196
+ length = len(indices)
197
+ rep_lengths.append(length)
198
+ rep_weights += get_rep_weight(length)
199
+ rep_count += 1
200
+
201
+ # compute duration based on word timestamps
202
+ start_idx = indices[0]
203
+ end_idx = indices[-1]
204
+ if 0 <= start_idx < len(words) and 0 <= end_idx < len(words):
205
+ start_time = words[start_idx]["start"]
206
+ end_time = words[end_idx]["end"]
207
+ rep_durations.append(end_time - start_time)
208
+
209
+ total_rep_time = sum(rep_durations)
210
+ longest_rep = max(rep_lengths) if rep_lengths else 0
211
+ avg_rep_len = sum(rep_lengths) / len(rep_lengths) if rep_lengths else 0
212
+
213
+ rep_feat = {
214
+ "Word Repetition Index": round(rep_weights / rep_count, 3) if rep_count > 0 else 0,
215
+ "Repetition Density I": round(rep_count / total_words * 100, 3) if total_words > 0 else 0,
216
+ "Repetition Density II": round(rep_count / total_duration * 60, 3) if total_duration > 0 else 0,
217
+ "Repetition Proportion": round((total_rep_time / total_duration) * 100, 3) if total_duration > 0 else 0,
218
+ "Longest Repetition Length": longest_rep,
219
+ "Average Repetition Length": round(avg_rep_len, 3)
220
+ }
221
+
222
+ if os.path.exists(feature_file):
223
+ with open(feature_file, "r", encoding="utf-8") as f:
224
+ feature_data = json.load(f)
225
+ else:
226
+ feature_data = {}
227
+
228
+ feature_data.setdefault("repetition", []).append(rep_feat)
229
+
230
+ with open(feature_file, "w", encoding="utf-8") as f:
231
+ json.dump(feature_data, f, indent=4, ensure_ascii=False)
232
+
233
+ print(f"[Done] Repetition features written to {feature_file}")
234
+
235
+
236
+
237
+ def fillerword_feature(session_id, base_dir="session_data"):
238
+ json_file = os.path.join(base_dir, session_id, f"{session_id}_transcriptionCW.json")
239
+ feature_file = os.path.join(base_dir, session_id, f"{session_id}_feature.json")
240
+
241
+ if not os.path.exists(json_file):
242
+ print(f"[Error] transcriptionCW file not found: {json_file}")
243
+ return
244
+
245
+ with open(json_file, "r", encoding="utf-8") as f:
246
+ data = json.load(f)
247
+
248
+ segments = data.get("segments", [])
249
+ tgt_speaker = target_speaker(segments)
250
+ tgt_segments = [seg for seg in segments if seg.get("speaker") == tgt_speaker]
251
+
252
+ total_duration = sum(seg["end"] - seg["start"] for seg in tgt_segments)
253
+ total_words = sum(len(seg.get("words", [])) for seg in tgt_segments)
254
+
255
+ filler_total = 0
256
+ filler_durations = []
257
+ filler_intervals = []
258
+
259
+ for seg in tgt_segments:
260
+ fillers = seg.get("fillerwords", [])
261
+ words = seg.get("words", [])
262
+
263
+ filler_total += len(fillers)
264
+ filler_durations += [fw["duration"] for fw in fillers]
265
+
266
+ if len(fillers) >= 2:
267
+ indices = []
268
+ for fw in fillers:
269
+ for i, w in enumerate(words):
270
+ if abs(w.get("start", 0) - fw["start"]) < 0.01:
271
+ indices.append(i)
272
+ break
273
+ indices.sort()
274
+ intervals = [indices[i+1] - indices[i] - 1 for i in range(len(indices)-1)]
275
+ if intervals:
276
+ filler_intervals.append(sum(intervals) / len(intervals))
277
+
278
+ avg_duration = sum(filler_durations) / len(filler_durations) if filler_durations else 0
279
+ longest_duration = max(filler_durations) if filler_durations else 0
280
+ avg_interval = sum(filler_intervals) / len(filler_intervals) if filler_intervals else 0
281
+
282
+ feat = {
283
+ "Filler Word Density I": round(filler_total / total_words * 100, 3) if total_words > 0 else 0,
284
+ "Filler Word Density II": round(filler_total / total_duration * 60, 3) if total_duration > 0 else 0,
285
+ "Filler Word Proportion": round((sum(filler_durations) / total_duration) * 100, 3) if total_duration > 0 else 0,
286
+ "Average Filler Word Duration": round(avg_duration, 3),
287
+ "Longest Filler Word Duration": round(longest_duration, 3),
288
+ "Average Filler Word Interval": round(avg_interval, 3)
289
+ }
290
+
291
+ if os.path.exists(feature_file):
292
+ with open(feature_file, "r", encoding="utf-8") as f:
293
+ feature_data = json.load(f)
294
+ else:
295
+ feature_data = {}
296
+
297
+ feature_data.setdefault("fillerword", []).append(feat)
298
+
299
+ with open(feature_file, "w", encoding="utf-8") as f:
300
+ json.dump(feature_data, f, indent=4, ensure_ascii=False)
301
+
302
+ print(f"[Done] Filler word features written to {feature_file}")
303
+
304
+
305
+ def plm_feature(session_id, base_dir="session_data"):
306
+
307
+
308
+ json_file = os.path.join(base_dir, session_id, f"{session_id}_transcriptionCW.json")
309
+ feature_file = os.path.join(base_dir, session_id, f"{session_id}_feature.json")
310
+
311
+ if not os.path.exists(json_file):
312
+ print(f"[Error] transcriptionCW file not found: {json_file}")
313
+ return
314
+
315
+ with open(json_file, "r", encoding="utf-8") as f:
316
+ data = json.load(f)
317
+
318
+ segments = data.get("segments", [])
319
+ tgt_speaker = target_speaker(segments)
320
+ tgt_segments = [seg for seg in segments if seg.get("speaker") == tgt_speaker]
321
+
322
+ sequence = ''.join(seg.get("mispronunciation", "") for seg in tgt_segments)
323
+ sequence = re.sub(r"[^CE]", "", sequence.upper())
324
+
325
+ n = len(sequence)
326
+ if n == 0:
327
+ feat = {
328
+ "Mispronunciation Density": 0,
329
+ "Normalized Transition Count": 0,
330
+ "Average Common Correct": 0,
331
+ "Average Common Error": 0,
332
+ "Longest Common Correct": 0,
333
+ "Longest Common Error": 0
334
+ }
335
+ else:
336
+ transitions = sum(1 for i in range(1, n) if sequence[i] != sequence[i - 1])
337
+ MPD = sum(1 for ch in sequence if ch == 'E') / n
338
+ NTC = transitions / n
339
+
340
+ def run_lengths(s, ch):
341
+ return [len(g) for g in re.findall(f"{ch}+", s)]
342
+
343
+ c_runs = run_lengths(sequence, 'C')
344
+ e_runs = run_lengths(sequence, 'E')
345
+
346
+ ACC = sum(c_runs) / len(c_runs) if c_runs else 0
347
+ ACE = sum(e_runs) / len(e_runs) if e_runs else 0
348
+ LCC = max(c_runs) if c_runs else 0
349
+ LCE = max(e_runs) if e_runs else 0
350
+
351
+ feat = {
352
+ "Mispronunciation Density": round(MPD, 3),
353
+ "Normalized Transition Count": round(NTC, 3),
354
+ "Average Common Correct": round(ACC, 3),
355
+ "Average Common Error": round(ACE, 3),
356
+ "Longest Common Correct": LCC,
357
+ "Longest Common Error": LCE
358
+ }
359
+
360
+ if os.path.exists(feature_file):
361
+ with open(feature_file, "r", encoding="utf-8") as f:
362
+ feature_data = json.load(f)
363
+ else:
364
+ feature_data = {}
365
+
366
+ feature_data.setdefault("plm", []).append(feat)
367
+
368
+ with open(feature_file, "w", encoding="utf-8") as f:
369
+ json.dump(feature_data, f, indent=4, ensure_ascii=False)
370
+
371
+ print(f"[Done] PLM features written to {feature_file}")
372
+
373
+
374
+
375
+ def feature_extraction(session_id, base_dir="session_data"):
376
+
377
+ feature_file = os.path.join(base_dir, session_id, f"{session_id}_feature.json")
378
+
379
+ if not os.path.exists(feature_file):
380
+ with open(feature_file, "w", encoding="utf-8") as f:
381
+ json.dump({}, f, indent=4)
382
+
383
+ pause_feature(session_id, base_dir=base_dir)
384
+ syllable_feature(session_id, base_dir=base_dir)
385
+ repetition_feature(session_id, base_dir=base_dir)
386
+ fillerword_feature(session_id, base_dir=base_dir)
387
+ plm_feature(session_id, base_dir=base_dir)
388
+
389
+ print(f"[All Analysis Done] Feature extraction complete for session {session_id}")
390
+
391
+
392
+ if __name__ == "__main__":
393
+ feature_extraction("000030")
fillerword.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import re
4
+
5
+ def annotate_fillerwords(session_id, base_dir="session_data"):
6
+ session_dir = os.path.join(base_dir, session_id)
7
+ json_file = os.path.join(session_dir, f"{session_id}_transcriptionCW.json")
8
+
9
+ if not os.path.exists(json_file):
10
+ print(f"[Error] File not found: {json_file}")
11
+ return
12
+
13
+ with open(json_file, "r", encoding="utf-8") as f:
14
+ data = json.load(f)
15
+
16
+ for segment in data.get("segments", []):
17
+ words = segment.get("words", [])
18
+ fillerwords = []
19
+ for w in words:
20
+ word_content = w.get("word", "").strip()
21
+ if re.fullmatch(r"\[.*?\]", word_content):
22
+ fillerwords.append({
23
+ "start": w.get("start"),
24
+ "end": w.get("end"),
25
+ "content": word_content,
26
+ "duration": round(w.get("end", 0) - w.get("start", 0), 3)
27
+ })
28
+ segment["fillerwords"] = fillerwords
29
+
30
+ with open(json_file, "w", encoding="utf-8") as f:
31
+ json.dump(data, f, ensure_ascii=False, indent=4)
32
+
33
+ print(f"Session {session_id} fillerword annotation done: {json_file}")
34
+ return data
35
+
36
+ if __name__ == "__main__":
37
+ annotate_fillerwords("000003")
main_socket.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import tempfile
3
+ import json
4
+ from flask import Flask, request, jsonify
5
+ from werkzeug.utils import secure_filename
6
+
7
+ from preprocess import process_audio_file
8
+ from pause import annotate_pauses
9
+ from repetition import annotate_repetitions
10
+ from syllable import annotate_syllables
11
+ from fillerword import annotate_fillerwords
12
+
13
+ from annotation import annotate_transcript
14
+
15
+
16
+
17
+ app = Flask(__name__)
18
+
19
+ @app.route('/process_old', methods=['POST'])
20
+ def process_audio_old():
21
+ data = request.get_json()
22
+ if not data or 'input_audio_file' not in data:
23
+ return jsonify({'error': 'Missing input_audio_file parameter'}), 400
24
+
25
+ input_audio_file = data['input_audio_file']
26
+ device = data.get('device', 'cuda')
27
+ pause_threshold = data.get('pause_threshold', 0.5)
28
+ num_speakers = data.get('num_speakers', 2)
29
+
30
+ app.logger.info(f"Processing audio file: {input_audio_file}")
31
+
32
+ session_id = process_audio_file(input_audio_file, num_speakers=num_speakers, device=device)
33
+ annotate_pauses(session_id, pause_threshold)
34
+ annotate_repetitions(session_id)
35
+ annotate_syllables(session_id)
36
+ annotate_fillerwords(session_id)
37
+
38
+ output_annotation = annotate_transcript(session_id)
39
+
40
+ result = {
41
+ 'session_id': session_id,
42
+ 'annotation_result': output_annotation
43
+ }
44
+ return jsonify(result), 200
45
+
46
+
47
+
48
+ @app.route('/process', methods=['POST'])
49
+ def process_audio():
50
+ if 'audio_file' not in request.files:
51
+ return jsonify({'error': 'Missing audio file '}), 400
52
+ audio_file = request.files['audio_file']
53
+ filename = secure_filename(audio_file.filename)
54
+
55
+ suffix = os.path.splitext(filename)[1] or '.wav'
56
+ with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
57
+ audio_path = tmp.name
58
+ audio_file.save(audio_path)
59
+
60
+ device = request.form.get('device', 'cuda')
61
+ pause_threshold = float(request.form.get('pause_threshold', 0.5))
62
+ num_speakers = int(request.form.get('num_speakers', 2))
63
+
64
+ app.logger.info(f"Processing uploaded audio: {audio_path}")
65
+
66
+ session_id = process_audio_file(audio_path, num_speakers=num_speakers, device=device)
67
+ annotate_pauses(session_id, pause_threshold)
68
+ annotate_repetitions(session_id)
69
+ annotate_syllables(session_id)
70
+ annotate_fillerwords(session_id)
71
+ # annotate_transcript(session_id)
72
+
73
+
74
+ json_path = f"/sate/session_data/{session_id}/{session_id}_transcriptionCW.json"
75
+ if not os.path.isfile(json_path):
76
+ return jsonify({'error': f"Annotation file {json_path} not found"}), 500
77
+
78
+ with open(json_path, 'r', encoding='utf-8') as f:
79
+ transcription = json.load(f)
80
+
81
+
82
+ try:
83
+ os.remove(audio_path)
84
+ except OSError:
85
+ pass
86
+
87
+ return jsonify(transcription), 200
88
+
89
+
90
+ if __name__ == "__main__":
91
+ app.run(host="0.0.0.0", port=5000, debug=True)
mispronunciation.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import base64
4
+ import requests
5
+
6
+ def wav_to_base64_url(wav_path):
7
+ with open(wav_path, "rb") as f:
8
+ b64_audio = base64.b64encode(f.read()).decode()
9
+ return f"data:audio/wav;base64,{b64_audio}"
10
+
11
+ def is_api_available(api_url):
12
+ try:
13
+ response = requests.get(api_url)
14
+ return response.status_code < 500
15
+ except Exception as e:
16
+ print("[Error] Cannot reach API:", e)
17
+ return False
18
+
19
+ def annotate_mispronunciation(session_id, api_url="http://localhost:8080", base_dir="session_data"):
20
+ json_path = os.path.join(base_dir, session_id, f"{session_id}_transcriptionCW.json")
21
+ if not os.path.exists(json_path):
22
+ print(f"[Error] File not found: {json_path}")
23
+ return
24
+
25
+ if not is_api_available(api_url):
26
+ print(f"[Error] API not available at {api_url}")
27
+ return
28
+
29
+ with open(json_path, "r", encoding="utf-8") as f:
30
+ data = json.load(f)
31
+
32
+ segments = data.get("segments", [])
33
+ for segment in segments:
34
+ start = segment["start"]
35
+ end = segment["end"]
36
+ speaker = segment["speaker"]
37
+ filename = f"{session_id}-{start:.2f}-{end:.2f}-{speaker}.wav"
38
+ filepath = os.path.join(base_dir, session_id, filename)
39
+ if not os.path.exists(filepath):
40
+ print(f"[Warning] Audio file missing: {filename}")
41
+ continue
42
+
43
+ audio_url = wav_to_base64_url(filepath)
44
+ try:
45
+ resp = requests.post(
46
+ f"{api_url}/vocallens/api/analyze",
47
+ headers={"Content-Type": "application/json"},
48
+ data=json.dumps([audio_url])
49
+ )
50
+ if resp.status_code == 200:
51
+ result = resp.json()
52
+ segment["mispronunciation"] = result.get("ce", "")
53
+ else:
54
+ print(f"[Warning] API error {resp.status_code} for {filename}")
55
+ segment["mispronunciation"] = ""
56
+ except Exception as e:
57
+ print(f"[Error] Exception during API call for {filename}:", e)
58
+ segment["mispronunciation"] = ""
59
+
60
+ with open(json_path, "w", encoding="utf-8") as f:
61
+ json.dump(data, f, indent=4, ensure_ascii=False)
62
+
63
+ print(f"Session {session_id} mispronunciation annotation done: {json_path}")
64
+ return data
65
+
66
+ if __name__ == "__main__":
67
+ annotate_mispronunciation("000030")
pause.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+
4
+ def annotate_pauses(session_id, threshold, base_dir="session_data"):
5
+
6
+ session_dir = os.path.join(base_dir, session_id)
7
+ json_file = os.path.join(session_dir, f"{session_id}_transcriptionCW.json")
8
+
9
+ if not os.path.exists(json_file):
10
+ print(f"Error: could not finf {json_file}")
11
+ return
12
+
13
+ with open(json_file, "r", encoding="utf-8") as f:
14
+ data = json.load(f)
15
+
16
+ segments = data.get("segments", [])
17
+ for segment in segments:
18
+ words = segment.get("words", [])
19
+ if "pauses" in segment:
20
+ del segment["pauses"]
21
+
22
+ pauses = []
23
+ if words and len(words) > 1:
24
+ for i in range(1, len(words)):
25
+ prev_word = words[i - 1]
26
+ current_word = words[i]
27
+ gap = current_word["start"] - prev_word["end"]
28
+ if gap > threshold:
29
+ pause_info = {
30
+ "start": round(prev_word["end"], 3),
31
+ "end": round(current_word["start"], 3),
32
+ "duration": round(gap, 3)
33
+ }
34
+ pauses.append(pause_info)
35
+ segment["pauses"] = pauses
36
+
37
+ with open(json_file, "w", encoding="utf-8") as f:
38
+ json.dump(data, f, ensure_ascii=False, indent=4)
39
+
40
+ print(f"Session {session_id} pause annotation done: {json_file}")
41
+ return data
42
+
43
+ if __name__ == "__main__":
44
+ annotated_data = annotate_pauses("000030", 0.1)
preprocess.py ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ from pathlib import Path
4
+ import whisperx
5
+ import soundfile as sf
6
+ import numpy as np
7
+ import re
8
+ import torch
9
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
10
+ import sys
11
+
12
+ from dotenv import load_dotenv
13
+ load_dotenv()
14
+ token = os.getenv("HF_TOKEN")
15
+
16
+ print("Start Preprocessing ... ...")
17
+
18
+ sys.path.append('./CrisperWhisper/')
19
+ from utils import adjust_pauses_for_hf_pipeline_output
20
+
21
+ def generate_session_id():
22
+ session_root = "session_data"
23
+ if not os.path.exists(session_root):
24
+ os.makedirs(session_root)
25
+ return "000001"
26
+
27
+ existing_ids = [d for d in os.listdir(session_root)
28
+ if os.path.isdir(os.path.join(session_root, d)) and d.isdigit()]
29
+ if existing_ids:
30
+ new_id = max(int(x) for x in existing_ids) + 1
31
+ else:
32
+ new_id = 1
33
+ return f"{new_id:06d}"
34
+
35
+ def assign_speakers(segments, diarization_segments):
36
+ speaker_map = {}
37
+ for segment in segments:
38
+ segment_start = segment["start"]
39
+ segment_end = segment["end"]
40
+ max_overlap = 0
41
+ assigned_speaker = "Unknown"
42
+
43
+ for _, diar in diarization_segments.iterrows():
44
+ speaker = diar["speaker"]
45
+ diar_start = diar["start"]
46
+ diar_end = diar["end"]
47
+ overlap_start = max(segment_start, diar_start)
48
+ overlap_end = min(segment_end, diar_end)
49
+ overlap_duration = max(0, overlap_end - overlap_start)
50
+ if overlap_duration > max_overlap:
51
+ max_overlap = overlap_duration
52
+ assigned_speaker = speaker
53
+
54
+ speaker_map[segment_start] = assigned_speaker
55
+ return speaker_map
56
+
57
+ def load_audio_for_split(input_audio_file):
58
+
59
+ if input_audio_file.lower().endswith('.mp3'):
60
+ from pydub import AudioSegment
61
+ audio_seg = AudioSegment.from_file(input_audio_file)
62
+ sr = audio_seg.frame_rate
63
+ samples = np.array(audio_seg.get_array_of_samples()).astype(np.float32)
64
+ samples = samples / 32768.0
65
+ if audio_seg.channels > 1:
66
+ samples = samples.reshape((-1, audio_seg.channels))
67
+ return samples, sr
68
+ else:
69
+ return sf.read(input_audio_file)
70
+
71
+ def process_audio_file(input_audio_file, num_speakers, device="cuda"):
72
+
73
+ print("Loading WhisperX model (English)...")
74
+ model = whisperx.load_model("medium", device, language="en")
75
+
76
+ audio = whisperx.load_audio(input_audio_file)
77
+
78
+ print("Transcribing audio with WhisperX...")
79
+ result = model.transcribe(audio)
80
+
81
+ print("Performing forced alignment with WhisperX...")
82
+ alignment_model, metadata = whisperx.load_align_model(language_code="en", device=device)
83
+ result_aligned = whisperx.align(result["segments"], alignment_model, metadata, audio, device, return_char_alignments=True)
84
+
85
+ print("Detecting speakers with WhisperX...")
86
+ diarization_model = whisperx.DiarizationPipeline(use_auth_token=token,
87
+ device=device)
88
+ diarization_segments = diarization_model(audio)
89
+
90
+ speaker_map = assign_speakers(result_aligned["segments"], diarization_segments)
91
+ for segment in result_aligned["segments"]:
92
+ segment["speaker"] = speaker_map.get(segment["start"], "Unknown")
93
+ segment.pop("chars", None)
94
+
95
+ session_id = generate_session_id()
96
+ session_dir = os.path.join("session_data", session_id)
97
+ os.makedirs(session_dir, exist_ok=True)
98
+
99
+ data, sr = load_audio_for_split(input_audio_file)
100
+
101
+ for segment in result_aligned["segments"]:
102
+ start_time = segment["start"]
103
+ end_time = segment["end"]
104
+ speaker = segment["speaker"]
105
+ start_sample = int(start_time * sr)
106
+ end_sample = int(end_time * sr)
107
+ segment_audio = data[start_sample:end_sample]
108
+
109
+ segment_filename = f"{session_id}-{start_time:.2f}-{end_time:.2f}-{speaker}.wav"
110
+ segment_filepath = os.path.join(session_dir, segment_filename)
111
+ sf.write(segment_filepath, segment_audio, sr)
112
+ print(f"Saved segment: {segment_filepath}")
113
+
114
+
115
+ transcript_path = os.path.join(session_dir, f"{session_id}_transcription.txt")
116
+ with open(transcript_path, "w", encoding="utf-8") as f:
117
+ for segment in result_aligned["segments"]:
118
+ f.write(f"[{segment['start']} - {segment['end']}] (Speaker {segment['speaker']}): {segment['text']}\n")
119
+
120
+
121
+ del model
122
+ torch.cuda.empty_cache()
123
+
124
+
125
+ print("Loading CrisperWhisper model...")
126
+ device_str = "cuda:0" if torch.cuda.is_available() else "cpu"
127
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
128
+ local_model_dir = "./CrisperWhisper_local"
129
+
130
+ cw_model = AutoModelForSpeechSeq2Seq.from_pretrained(
131
+ local_model_dir,
132
+ torch_dtype=torch_dtype,
133
+ low_cpu_mem_usage=True,
134
+ use_safetensors=True
135
+ )
136
+ cw_model.to(device_str)
137
+
138
+ processor = AutoProcessor.from_pretrained(local_model_dir)
139
+
140
+ asr_pipeline = pipeline(
141
+ "automatic-speech-recognition",
142
+ model=cw_model,
143
+ tokenizer=processor.tokenizer,
144
+ feature_extractor=processor.feature_extractor,
145
+ chunk_length_s=30,
146
+ batch_size=4,
147
+ return_timestamps='word',
148
+ torch_dtype=torch_dtype,
149
+ device=0 if torch.cuda.is_available() else -1,
150
+ generate_kwargs={"language": "en"}
151
+ )
152
+
153
+ segments_cw = []
154
+ skipped_segments = []
155
+ segment_files = [f for f in os.listdir(session_dir) if f.endswith('.wav')]
156
+ for seg_file in sorted(segment_files):
157
+
158
+ match = re.match(r'^(\d+)-(\d+\.\d+)-(\d+\.\d+)-(.+)\.wav$', seg_file)
159
+ if not match:
160
+ continue
161
+
162
+ seg_session_id = match.group(1)
163
+ start_time = float(match.group(2))
164
+ end_time = float(match.group(3))
165
+ speaker = match.group(4)
166
+ seg_path = os.path.join(session_dir, seg_file)
167
+
168
+ print(f"Processing segment with CrisperWhisper: {seg_path}")
169
+ try:
170
+ cw_output = asr_pipeline(seg_path)
171
+ cw_result = adjust_pauses_for_hf_pipeline_output(cw_output)
172
+ except Exception as e:
173
+ print(f"[Warning] CrisperWhisper error, skiped this segment: {seg_path}\nError Message: {e}")
174
+ skipped_segments.append(seg_path)
175
+ continue
176
+
177
+ text = cw_result.get('text', '').strip()
178
+ if not text:
179
+ print(f"********** No text returned, skiped this segment: {seg_path} **********")
180
+ skipped_segments.append(seg_path)
181
+ continue
182
+
183
+ chunks = cw_result.get('chunks', [])
184
+ words_info = []
185
+ for i, chunk in enumerate(chunks):
186
+ word_text = chunk['text'].strip()
187
+ if not word_text:
188
+ continue
189
+
190
+ chunk_start, chunk_end = chunk['timestamp']
191
+
192
+ if chunk_start is None:
193
+ if i == 0:
194
+ chunk_start = 0.0
195
+ else:
196
+ chunk_start = words_info[-1]['end'] - start_time
197
+
198
+ if chunk_end is None:
199
+ if i < len(chunks) - 1:
200
+ next_chunk_start, _ = chunks[i+1]['timestamp']
201
+ if next_chunk_start is None:
202
+ next_chunk_start = chunk_start
203
+ chunk_end = next_chunk_start
204
+ else:
205
+ chunk_end = end_time - start_time
206
+
207
+ word_start = round(start_time + chunk_start, 3)
208
+ word_end = round(start_time + chunk_end, 3)
209
+ words_info.append({
210
+ "word": word_text,
211
+ "start": word_start,
212
+ "end": word_end
213
+ })
214
+
215
+ segment_entry = {
216
+ "start": round(start_time, 3),
217
+ "end": round(end_time, 3),
218
+ "speaker": speaker,
219
+ "text": text,
220
+ "words": words_info
221
+ }
222
+ segments_cw.append(segment_entry)
223
+
224
+ segments_cw = sorted(segments_cw, key=lambda x: x["start"])
225
+ cw_json_path = os.path.join(session_dir, f"{session_id}_transcriptionCW.json")
226
+ with open(cw_json_path, "w", encoding="utf-8") as f:
227
+ json.dump({"segments": segments_cw}, f, ensure_ascii=False, indent=4)
228
+ print(f"CrisperWhisper transcription saved to: {cw_json_path}")
229
+
230
+ if skipped_segments:
231
+ skipped_file = os.path.join(session_dir, "skipped_segments.txt")
232
+ with open(skipped_file, "w", encoding="utf-8") as f:
233
+ for s in sorted(skipped_segments):
234
+ f.write(s + "\n")
235
+ print(f"Skipped segments recorded in: {skipped_file}")
236
+
237
+ return session_id
238
+
239
+ if __name__ == "__main__":
240
+ session = process_audio_file("/home/easgrad/shuweiho/workspace/volen/SATE_docker_test/input/454.mp3", num_speakers=2, device="cuda")
241
+ print("Processing complete. Session ID:", session)
readme.md ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ This is the SATE MVP, integrate the all the pipelines into one framework.
2
+ Contain the main entrance, build for docker.
3
+
4
+ main.py:
5
+ Input: Entire audio file
6
+ Output: Transcription with annotation
7
+
8
+ Preprocess:
9
+ Segmentation + speaker diarization -> crisper whisper transcriptions for each segmentation
10
+
11
+
12
+ P.S. Should keep transcript consist in each pipelines.
13
+
14
+
15
+
16
+ IMAGE CREATION:
17
+
18
+ docker build -t sate_0.11 .
19
+
20
+
21
+ (New) HOW TO USE after image created:
22
+
23
+ docker run --gpus all -it --rm \
24
+ -v /home/easgrad/shuweiho/workspace/volen/SATE_docker_test/input:/sate/input \
25
+ -v /home/easgrad/shuweiho/workspace/volen/SATE_docker_test/session_data:/sate/session_data \
26
+ -p 5000:5000 \
27
+ sate_0.11
28
+
29
+
30
+ curl -X POST http://localhost:5000/process \
31
+ -F "audio_file=@/home/easgrad/shuweiho/workspace/volen/SATE_docker_test/input/454.mp3" \
32
+ -F "device=cuda" \
33
+ -F "pause_threshold=0.25"
34
+
35
+
36
+
37
+
38
+ (Old - don't follow it) HOW TO USE after image created:
39
+
40
+ docker run --gpus all -it --rm \
41
+ -v /home/easgrad/shuweiho/workspace/volen/SATE_docker_test/input:/sate/input \
42
+ -v /home/easgrad/shuweiho/workspace/volen/SATE_docker_test/session_data:/sate/session_data \
43
+ -p 5000:5000 \
44
+ sate_0.10
45
+
46
+
47
+ curl -X POST http://localhost:5000/process \
48
+ -H "Content-Type: application/json" \
49
+ -d '{
50
+ "input_audio_file": "/sate/input/454.mp3",
51
+ "device": "cuda",
52
+ "pause_threshold": 0.5
53
+ }'
repetition.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+
4
+ def annotate_repetitions(session_id, base_dir="session_data"):
5
+
6
+ session_dir = os.path.join(base_dir, session_id)
7
+ json_file = os.path.join(session_dir, f"{session_id}_transcriptionCW.json")
8
+
9
+ if not os.path.exists(json_file):
10
+ print(f"Error: could not find {json_file}")
11
+ return
12
+
13
+ with open(json_file, "r", encoding="utf-8") as f:
14
+ data = json.load(f)
15
+
16
+ segments = data.get("segments", [])
17
+ for segment in segments:
18
+ if "repetitions" in segment:
19
+ del segment["repetitions"]
20
+
21
+ words_list = segment.get("words", [])
22
+ tokens = [w.get("word", "") for w in words_list]
23
+ reps = []
24
+ i = 0
25
+ n = len(tokens)
26
+ while i < n:
27
+ found = False
28
+ maxL = (n - i) // 2
29
+ for L in range(maxL, 0, -1):
30
+ if tokens[i:i+L] == tokens[i+L:i+2*L]:
31
+ count = 2
32
+ while i + count * L <= n and tokens[i:i+L] == tokens[i+(count-1)*L:i+count*L]:
33
+ count += 1
34
+ count -= 1
35
+
36
+ rep_count = count - 1
37
+ rep_obj = {
38
+ "content": " ".join(tokens[i:i+L] * rep_count),
39
+ "words": list(range(i, i + rep_count * L)),
40
+ "mark_location": i + rep_count * L - 1
41
+ }
42
+ reps.append(rep_obj)
43
+ i += count * L
44
+ found = True
45
+ break
46
+ if not found:
47
+ i += 1
48
+ segment["repetitions"] = reps
49
+
50
+ with open(json_file, "w", encoding="utf-8") as f:
51
+ json.dump(data, f, ensure_ascii=False, indent=4)
52
+
53
+ print(f"Session {session_id} repetition annotation done: {json_file}")
54
+ return data
55
+
56
+ if __name__ == "__main__":
57
+ annotate_repetitions("000030")
syllable.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import re
4
+ import string
5
+
6
+ # Load Dict
7
+ def load_custom_dict(dict_path):
8
+ with open(dict_path, 'r', encoding='utf-8') as f:
9
+ return json.load(f)
10
+
11
+ custom_dict_path = "./syllable_dict_ENNI_refine.json"
12
+ custom_dict = load_custom_dict(custom_dict_path)
13
+
14
+ vowels_phonemes = [
15
+ "iː", "uː", "ɜː", "ɔː", "ɑː",
16
+ "ɪ", "ʊ", "e", "ə", "æ", "ʌ", "ɛ", "ɒ",
17
+ "eɪ", "aɪ", "ɔɪ", "aʊ", "əʊ", "ɪə", "eə", "ʊə"
18
+ ]
19
+
20
+ def phoneme_type(phoneme):
21
+ return 'V' if phoneme in vowels_phonemes else 'C'
22
+
23
+ def get_pronunciation_from_dict(word):
24
+ clean_word = word.strip(string.punctuation).lower()
25
+ return custom_dict.get(clean_word, "")
26
+
27
+ def split_ipa_into_syllables(ipa_str):
28
+ ipa_str = ipa_str.replace("ˈ", ".").replace("ˌ", ".")
29
+ return [s for s in ipa_str.split('.') if s.strip()]
30
+
31
+ def split_syllable_into_phonemes(syllable):
32
+ vowels_sorted = sorted(vowels_phonemes, key=len, reverse=True)
33
+ phonemes = []
34
+ i = 0
35
+ while i < len(syllable):
36
+ matched = None
37
+ for v in vowels_sorted:
38
+ if syllable[i:i+len(v)] == v:
39
+ matched = v
40
+ break
41
+ if matched:
42
+ phonemes.append(matched)
43
+ i += len(matched)
44
+ else:
45
+ phonemes.append(syllable[i])
46
+ i += 1
47
+ return phonemes
48
+
49
+ def analyze_word_syllables(word):
50
+ ipa_str = get_pronunciation_from_dict(word)
51
+ if not ipa_str:
52
+ return []
53
+ syllables_ipa = split_ipa_into_syllables(ipa_str)
54
+ syllable_data = []
55
+ for syl in syllables_ipa:
56
+ phs = split_syllable_into_phonemes(syl)
57
+ CV = ''.join(phoneme_type(p) for p in phs)
58
+ syllable_data.append({
59
+ "syllable": ''.join(phs),
60
+ "phonemes": phs,
61
+ "CV_pattern": CV
62
+ })
63
+ return syllable_data
64
+
65
+ def annotate_syllables(session_id, base_dir="session_data"):
66
+ json_file = os.path.join(base_dir, session_id, f"{session_id}_transcriptionCW.json")
67
+ if not os.path.exists(json_file):
68
+ print(f"[Error] Cannot find file: {json_file}")
69
+ return
70
+
71
+ with open(json_file, "r", encoding="utf-8") as f:
72
+ data = json.load(f)
73
+
74
+ for segment in data.get("segments", []):
75
+ text = segment.get("text", "")
76
+ words_info = segment.get("words", [])
77
+ syllables = []
78
+
79
+ for idx, word_obj in enumerate(words_info):
80
+ word = word_obj.get("word", "")
81
+ if re.fullmatch(r"\[.*?\]", word): # 跳过 filler
82
+ continue
83
+ word_syllables = analyze_word_syllables(word)
84
+ for syl in word_syllables:
85
+ syl["word_index"] = idx
86
+ syllables.extend(word_syllables)
87
+
88
+ segment["syllables"] = syllables
89
+
90
+ with open(json_file, "w", encoding="utf-8") as f:
91
+ json.dump(data, f, indent=4, ensure_ascii=False)
92
+
93
+ print(f"Session {session_id} syllable annotation done: {json_file}")
94
+ return data
95
+
96
+
97
+ if __name__ == "__main__":
98
+ annotate_syllables("000030")
syllable_dict_ENNI_refine.json ADDED
@@ -0,0 +1,3793 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "A": "eɪ",
3
+ "ABC": "ˌeɪ.biːˈsiː",
4
+ "ARGH": "",
5
+ "Aaron": "",
6
+ "About": "əˈbaʊt",
7
+ "Accident": "ˈæk.sɪ.dənt",
8
+ "Accidentally": "ˌæk.sɪˈden.təl.i",
9
+ "Actually": "ˈæk.tʃu.ə.li",
10
+ "Adam": "ˈæd.əm",
11
+ "Adamor": "",
12
+ "Addison": "ˈæd.ɪ.sənz dɪˌziːz",
13
+ "Adia": "",
14
+ "Admiral": "ˈæd.mər.əl",
15
+ "African": "ˈæf.rɪ.kən",
16
+ "After": "ˈɑːf.tər",
17
+ "Again": "əˈɡen",
18
+ "Ah": "ɑː",
19
+ "Aha": "ɑːˈhɑː",
20
+ "Airpin": "",
21
+ "Airplane": "ˈeə.pleɪn",
22
+ "Alana": "",
23
+ "Albert": "",
24
+ "Alex": "",
25
+ "Alfie": "",
26
+ "Alfred": "",
27
+ "Ali": "",
28
+ "Alison": "",
29
+ "All": "ɔːl",
30
+ "Alley": "ˈæl.i",
31
+ "Allison": "",
32
+ "Almost": "ˈɔːl.məʊst",
33
+ "Alon": "",
34
+ "Already": "ɔːlˈred.i",
35
+ "Alright": "ɔːlˈraɪt",
36
+ "Also": "ˈɔːl.səʊ",
37
+ "Although": "ɔːlˈðəʊ",
38
+ "Alvin": "",
39
+ "Alway": "ˈɔːl.weɪ",
40
+ "Amanda": "",
41
+ "Amber": "ˈæm.bər",
42
+ "An": "æn",
43
+ "And": "ænd",
44
+ "Andra": "",
45
+ "Andrea": "",
46
+ "Andrew": "",
47
+ "Angelina": "",
48
+ "Animal": "ˈæn.ɪ.məl",
49
+ "Ann": "",
50
+ "Anna": "",
51
+ "Annette": "",
52
+ "Annie": "",
53
+ "Another": "əˈnʌð.ər",
54
+ "Anthony": "",
55
+ "Anton": "",
56
+ "Anybody": "ˈen.iˌbɒd.i",
57
+ "Anyone": "ˈen.i.wʌn",
58
+ "Anything": "ˈen.i.θɪŋ",
59
+ "Anyway": "ˈen.i.weɪ",
60
+ "Apple": "ˈæp.əl",
61
+ "April": "ˈeɪ.prəl",
62
+ "Are": "ɑːr",
63
+ "Arlene": "",
64
+ "Ashley": "",
65
+ "Ask": "ɑːsk",
66
+ "Asked": "ɑːsk",
67
+ "Askin": "",
68
+ "At": "æt",
69
+ "Aunt": "ɑːnt",
70
+ "Avalon": "",
71
+ "Average": "ˈæv.ər.ɪdʒ",
72
+ "Aw": "ɔː",
73
+ "Awesome": "ˈɔː.səm",
74
+ "Aww": "ɔː",
75
+ "BOOM": "buːm",
76
+ "Bab": "bæb",
77
+ "Back": "bæk",
78
+ "Bake": "beɪk",
79
+ "Ball": "bɔːl",
80
+ "Balloon": "bəˈluːn",
81
+ "Ballooner": "",
82
+ "Band": "bænd",
83
+ "Band-Aid": "ˈbænd.eɪd",
84
+ "Bang": "bæŋ",
85
+ "Barbera": "",
86
+ "Basket": "ˈbɑː.skɪt",
87
+ "Be": "biː",
88
+ "Bea": "",
89
+ "Bec": "",
90
+ "Because": "bɪˈkəz",
91
+ "Before": "bɪˈfɔːr",
92
+ "Bell": "bel",
93
+ "Belvedere": "ˈbel.və.dɪər",
94
+ "Ben": "ben",
95
+ "Benny": "ˈben.i",
96
+ "Beth": "",
97
+ "Bianca": "",
98
+ "Big": "bɪɡ",
99
+ "Bill": "bɪl",
100
+ "Billy": "ˈbɪl.i",
101
+ "Bit": "bɪt",
102
+ "Blake": "",
103
+ "Ble": "",
104
+ "Bloom": "bluːm",
105
+ "Bloomsailor": "",
106
+ "Blue": "bluː",
107
+ "Bob": "bɒb",
108
+ "Body": "ˈbɒd.i",
109
+ "Boing": "",
110
+ "Bonnie": "",
111
+ "Book": "bʊk",
112
+ "Boom": "buːm",
113
+ "Boon": "buːn",
114
+ "Boop": "buːp",
115
+ "Both": "bəʊθ",
116
+ "Bounce": "baʊns",
117
+ "Bow": "baʊ",
118
+ "Boy": "bɔɪ",
119
+ "Brace": "breɪs",
120
+ "Braden": "",
121
+ "Brady": "",
122
+ "Braeden": "",
123
+ "Bray": "breɪ",
124
+ "Break": "breɪk",
125
+ "Brent": "",
126
+ "Brett": "",
127
+ "Brianna": "",
128
+ "Bringing": "brɪŋ",
129
+ "Brittany": "",
130
+ "Broke": "brəʊk",
131
+ "Brought": "brɔːt",
132
+ "Bryce": "ˌbraɪs ˌkæn.jən ˌnæʃ.ən.əl ˈpɑːk",
133
+ "Buddy": "ˈbʌd.i",
134
+ "Bull": "bʊl",
135
+ "Bunch": "bʌntʃ",
136
+ "Bunny": "ˈbʌn.i",
137
+ "Bushabai": "",
138
+ "But": "bʌt",
139
+ "Butt": "bʌt",
140
+ "Buying": "baɪ",
141
+ "By": "baɪ",
142
+ "Bye": "baɪ",
143
+ "Bye-bye": "baɪ",
144
+ "C": "siː",
145
+ "CC": "ˌsiːˈsiː",
146
+ "Caitlin": "",
147
+ "Caitlyn": "",
148
+ "Cal": "kæl",
149
+ "Caleb": "",
150
+ "Call": "kɔːl",
151
+ "Calm": "kɑːm",
152
+ "Calvin": "",
153
+ "Came": "keɪm",
154
+ "Cameron": "",
155
+ "Can": "kæn",
156
+ "Can't": "kɑːnt",
157
+ "Captain": "ˈkæp.tɪn",
158
+ "Careful": "ˈkeə.fəl",
159
+ "Carl": "",
160
+ "Carrick": "",
161
+ "Carrot": "ˈkær.ət",
162
+ "Cash": "kæʃ",
163
+ "Cast": "kɑːst",
164
+ "Castle": "ˈkɑː.səl",
165
+ "Casual": "ˈkæʒ.ju.əl",
166
+ "Cat": "kæt",
167
+ "Catchy": "ˈkætʃ.i",
168
+ "Catherine": "ˈkæθ.rɪn ˌwiːl",
169
+ "Cause": "kɔːz",
170
+ "Causing": "kɔːz",
171
+ "Chadiah": "",
172
+ "Challenge": "ˈtʃæl.ɪndʒ",
173
+ "Check": "tʃek",
174
+ "Checked": "tʃekt",
175
+ "Cheer": "tʃɪər",
176
+ "Chela": "",
177
+ "Chelsea": "ˌtʃel.si ˈbʌn",
178
+ "Cheyla": "",
179
+ "Chose": "tʃəʊz",
180
+ "Chri": "",
181
+ "Christina": "",
182
+ "Christma": "",
183
+ "Christopher": "",
184
+ "Chrysantha": "",
185
+ "Chug": "tʃʌɡ",
186
+ "Clean": "kliːn",
187
+ "Coach": "kəʊtʃ",
188
+ "Cody": "",
189
+ "Colby": "ˈkɒl.bi",
190
+ "Come": "kʌm",
191
+ "Cone": "kəʊn",
192
+ "Connie": "",
193
+ "Connor": "",
194
+ "Cook": "kʊk",
195
+ "Cookie": "ˈkʊk.i",
196
+ "Cooking": "ˈkʊk.ɪŋ",
197
+ "Cool": "kuːl",
198
+ "Copper": "ˈkɒp.ər",
199
+ "Corbin": "",
200
+ "Could": "kʊd",
201
+ "Couldn't": "ˈkʊd.ənt",
202
+ "Courtney": "",
203
+ "Cow": "kaʊ",
204
+ "Crabby": "ˈkræb.i",
205
+ "Crisatha": "",
206
+ "Cron": "",
207
+ "Crying": "ˈkraɪ.ɪŋ",
208
+ "Crystal": "ˈkrɪs.təl",
209
+ "Cure": "kjʊər",
210
+ "Curti": "",
211
+ "Dad": "dæd",
212
+ "Daddy": "ˈdæd.i",
213
+ "Daffron": "",
214
+ "Damien": "",
215
+ "Dan": "dæn",
216
+ "Dana": "",
217
+ "Danciba": "",
218
+ "Danciber": "",
219
+ "Dang": "dæŋ",
220
+ "Daniel": "",
221
+ "Danielle": "",
222
+ "Darlene": "",
223
+ "Darlin": "",
224
+ "Darling": "ˈdɑː.lɪŋ",
225
+ "Darryl": "",
226
+ "Darwin": "ˈdɑː.wɪn",
227
+ "Daryl": "",
228
+ "Dave": "",
229
+ "Davern": "",
230
+ "David": "ˌstɑː.r əv ˈdeɪ.vɪd",
231
+ "Davin": "",
232
+ "Davrin": "",
233
+ "Dawn": "dɔːn",
234
+ "Debbie": "",
235
+ "Demi": "ˈdem.i-",
236
+ "Devin": "",
237
+ "Devon": "ˈdev.ən",
238
+ "Diba": "",
239
+ "Did": "dɪd",
240
+ "Didn't": "ˈdɪd.ənt",
241
+ "Different": "ˈdɪf.ər.ənt",
242
+ "Digging": "ˈdɪɡ.ɪŋ",
243
+ "Dina": "",
244
+ "Diving": "ˈdaɪ.vɪŋ",
245
+ "Dizzy": "ˈdɪz.i",
246
+ "Do": "də",
247
+ "Doc": "dɒk",
248
+ "Doctor": "ˈdɒk.tər",
249
+ "Dodger": "ˈdɒdʒ.ər",
250
+ "Doe": "dəʊ",
251
+ "Doesn't": "ˈdʌz.ənt",
252
+ "Dog": "dɒɡ",
253
+ "Doggie": "ˈdɔ·ɡi",
254
+ "Doggy": "ˈdɒɡ.i",
255
+ "Doing": "ˈduː.ɪŋ",
256
+ "Dolly": "ˈdɒl.i",
257
+ "Don": "dɒn",
258
+ "Don't": "dəʊnt",
259
+ "Done": "dʌn",
260
+ "Donkey": "ˈdɒŋ.ki",
261
+ "Doorman": "ˈdɔː.mən",
262
+ "Dora": "",
263
+ "Doran": "",
264
+ "Dot": "dɒt",
265
+ "Doug": "",
266
+ "Down": "daʊn",
267
+ "Dr": "ˈdɑk·tər",
268
+ "Draft": "drɑːft",
269
+ "Dragon": "ˈdræɡ.ən",
270
+ "Drava": "",
271
+ "Dried": "draɪd",
272
+ "Drive": "draɪv",
273
+ "Drop": "drɒp",
274
+ "Dropped": "",
275
+ "Drossage": "",
276
+ "Duckie": "",
277
+ "Dump": "dʌmp",
278
+ "Dumped": "dʌmp",
279
+ "Dun": "dʌn",
280
+ "Duncan": "",
281
+ "Dusty": "dʌst",
282
+ "Dylan": "",
283
+ "E.N": "ˌɒn ˈblɒk",
284
+ "END": "end",
285
+ "Each": "iːtʃ",
286
+ "Easter": "ˈiː.stər",
287
+ "Easy": "ˈiː.zi",
288
+ "Eat": "iːt",
289
+ "Eating": "iːt",
290
+ "Edmonton": "ˈed.mən.tən",
291
+ "Egg": "eɡ",
292
+ "Elephant": "ˈel.ɪ.fənt",
293
+ "Elf": "elf",
294
+ "Elfin": "ˈel.fɪn",
295
+ "Elisa": "",
296
+ "Eliza": "",
297
+ "Ella": "",
298
+ "Ellie": "",
299
+ "Elvin": "",
300
+ "Emily": "",
301
+ "Emma": "",
302
+ "End": "end",
303
+ "Enjoy": "ɪnˈdʒɔɪ",
304
+ "Eric": "",
305
+ "Erin": "",
306
+ "Ernie": "",
307
+ "Even": "ˈiː.vən",
308
+ "Everlet": "",
309
+ "Every": "ˈev.ri",
310
+ "Everybody": "ˈev.riˌbɒd.i",
311
+ "Everyone": "ˈev.ri.wʌn",
312
+ "Everything": "ˈev.ri.θɪŋ",
313
+ "Exactly": "ɪɡˈzækt.li",
314
+ "Excellent": "ˈek.səl.ənt",
315
+ "Except": "ɪkˈsept",
316
+ "Excuse": "ɪkˈskjuːz",
317
+ "Eyebrow": "ˈaɪ.braʊ",
318
+ "Faked": "feɪk",
319
+ "Fall": "fɔːl",
320
+ "Fantastic": "fænˈtæs.tɪk",
321
+ "Far": "fɑːr",
322
+ "Fell": "fel",
323
+ "Ferguson": "",
324
+ "Finally": "ˈfaɪ.nəl.i",
325
+ "Finish": "ˈfɪn.ɪʃ",
326
+ "First": "ˈfɜːst",
327
+ "Five": "faɪv",
328
+ "Fixed": "fɪkst",
329
+ "Fixicane": "",
330
+ "Fluffball": "ˈflʌf ˌbɔːl",
331
+ "Fluffy": "ˈflʌf.i",
332
+ "Fly": "flaɪ",
333
+ "Fog": "fɒɡ",
334
+ "Follow": "ˈfɒl.əʊ",
335
+ "For": "fɔːr",
336
+ "Forget": "fəˈɡet",
337
+ "From": "frɒm",
338
+ "Full": "fʊl",
339
+ "Fulton": "",
340
+ "Gave": "ɡeɪv",
341
+ "George": "",
342
+ "Get": "ɡet",
343
+ "Getting": "",
344
+ "Giddy": "ˈɡɪd.i",
345
+ "Giraffe": "dʒɪˈrɑːf",
346
+ "Girl": "ɡɜːl",
347
+ "Give": "ɡɪv",
348
+ "Glen": "ɡlen",
349
+ "Go": "ɡəʊ",
350
+ "God": "ɡɒd",
351
+ "Goe": "",
352
+ "Goed": "",
353
+ "Going": "ɡəʊ",
354
+ "Good": "ɡʊd",
355
+ "Good-bye": "",
356
+ "Goodbye": "ɡʊdˈbaɪ",
357
+ "Gossed": "",
358
+ "Got": "ɡɒt",
359
+ "Grabbed": "",
360
+ "Grace": "ɡreɪs",
361
+ "Graf": "",
362
+ "Graham": "ˈɡreɪ.əm ˌkræk.ər",
363
+ "Grandma": "ˈɡræn.mɑː",
364
+ "Graydon": "",
365
+ "Great": "ɡreɪt",
366
+ "Gro": "",
367
+ "Grrr": "",
368
+ "Ha": "hɑː",
369
+ "Had": "hæd",
370
+ "Hailey": "",
371
+ "Haley": "",
372
+ "Half": "hɑːf",
373
+ "Hang": "hæŋ",
374
+ "Hannah": "",
375
+ "Happy": "ˈhæp.i",
376
+ "Hare": "heər",
377
+ "Harold": "",
378
+ "Harry": "ˈhær.i",
379
+ "Have": "hæv",
380
+ "Having": "",
381
+ "Hayley": "",
382
+ "He": "hiː",
383
+ "He'd": "hiːd",
384
+ "Hear": "hɪər",
385
+ "Heather": "ˈheð.ər",
386
+ "Held": "held",
387
+ "Hello": "heˈləʊ",
388
+ "Help": "help",
389
+ "Helping": "ˈhel.pɪŋ",
390
+ "Her": "hɜːr",
391
+ "Here": "hɪər",
392
+ "Hey": "heɪ",
393
+ "Hi": "haɪ",
394
+ "High": "haɪ",
395
+ "Hillary": "",
396
+ "Hip": "hɪp",
397
+ "Hippo": "ˌhɪp.əˈpɒt.ə.məs",
398
+ "Hmm": "həm",
399
+ "Hold": "həʊld",
400
+ "Homesteader": "ˈhəʊmˌsted.ər",
401
+ "Hook": "hʊk",
402
+ "Hope": "həʊp",
403
+ "Horse": "hɔːs",
404
+ "How": "haʊ",
405
+ "Hugged": "",
406
+ "Hugh": "",
407
+ "Huh": "hə",
408
+ "Hungry": "ˈhʌŋ.ɡri",
409
+ "Hurry": "ˈhʌr.i",
410
+ "Hurt": "hɜːt",
411
+ "I": "aɪ",
412
+ "I'd": "aɪd",
413
+ "I'll": "aɪl",
414
+ "I'm": "aɪm",
415
+ "I've": "aɪv",
416
+ "Ian": "æn",
417
+ "If": "ɪf",
418
+ "In": "ɪn",
419
+ "Inside": "ɪnˈsaɪd",
420
+ "Instead": "ɪnˈsted",
421
+ "Into": "ˈɪn.tuː",
422
+ "Involve": "ɪnˈvɒlv",
423
+ "It": "ɪt",
424
+ "It'll": "ˈɪt.əl",
425
+ "JSCOT": "",
426
+ "Jabba": "",
427
+ "Jack": "dʒæk",
428
+ "Jaff": "",
429
+ "Jaffer": "",
430
+ "Jake": "",
431
+ "Jame": "",
432
+ "Jamie": "",
433
+ "Jap": "",
434
+ "Jared": "",
435
+ "Jason": "",
436
+ "Jayden": "",
437
+ "Je": "ˌʒə nə seɪ ˈkwɑː",
438
+ "Jeff": "ef",
439
+ "Jelinda": "",
440
+ "Jelly": "ˈdʒel.i",
441
+ "Jennifer": "",
442
+ "Jenny": "ˌkriː.pɪŋ ˈdʒen.i",
443
+ "Jermone": "",
444
+ "Jerome": "",
445
+ "Jessalyn": "",
446
+ "Jessica": "",
447
+ "Jillian": "",
448
+ "Jim": "ˌdʒɪm ˈkrəʊ",
449
+ "Jiro": "",
450
+ "Joanna": "",
451
+ "Jocko": "",
452
+ "Joe": "dʒəʊ",
453
+ "Joff": "",
454
+ "John": "ˈdʒɒn",
455
+ "Johnny": "ˈdʒɒn.i",
456
+ "Jonathan": "ˈdʒɒn.ə.θən",
457
+ "Joph": "",
458
+ "Jordan": "ˈdʒɔː.dən",
459
+ "Jory": "",
460
+ "Joseph": "",
461
+ "Joy": "dʒɔɪ",
462
+ "Juice": "dʒuːs",
463
+ "Julia": "",
464
+ "Juliana": "",
465
+ "Julie": "",
466
+ "Juliet": "ˌdʒuː.li.ət ˈbæl.kə.ni",
467
+ "July": "dʒuˈlaɪ",
468
+ "Jump": "dʒʌmp",
469
+ "June": "dʒuːn",
470
+ "Jung": "",
471
+ "Junk": "dʒʌŋk",
472
+ "Just": "dʒʌst",
473
+ "Justin": "",
474
+ "Juvi": "",
475
+ "K": "keɪ",
476
+ "Kaia": "",
477
+ "Kangaroo": "ˌkæŋ.ɡərˈuː",
478
+ "Kate": "",
479
+ "Katie": "",
480
+ "Kay": "",
481
+ "Kayla": "",
482
+ "Kaylee": "",
483
+ "Keegan": "",
484
+ "Keenan": "",
485
+ "Keep": "kiːp",
486
+ "Keisha": "",
487
+ "Kevin": "",
488
+ "Ki": "",
489
+ "Kicked": "kɪk",
490
+ "Kimberly": "",
491
+ "Kind": "kaɪnd",
492
+ "Kleenex": "ˈkliː.neks",
493
+ "Kovacevic": "",
494
+ "Kristen": "",
495
+ "Kyle": "",
496
+ "Kylo": "",
497
+ "LA": "lɑː",
498
+ "Lady": "ˈleɪ.di",
499
+ "Lala": "",
500
+ "Lane": "leɪn",
501
+ "Larissa": "",
502
+ "Last": "lɑːst",
503
+ "Later": "ˈleɪ.tər",
504
+ "Lauderdale": "",
505
+ "Laughing": "lɑːf",
506
+ "Lauren": "",
507
+ "Laying": "leɪ",
508
+ "Leah": "",
509
+ "Leanne": "",
510
+ "Lee": "liː",
511
+ "Lefker": "",
512
+ "Leo": "ˈliː.əʊ",
513
+ "Leslie": "",
514
+ "Let": "let",
515
+ "Level": "ˈlev.əl",
516
+ "Lifeguard": "ˈlaɪf.ɡɑːd",
517
+ "Like": "laɪk",
518
+ "Lily": "ˈlɪl.i",
519
+ "Lincoln": "ˌlɪŋ.kən ˈred",
520
+ "Little": "ˈlɪt.əl",
521
+ "Long": "lɒŋ",
522
+ "Long-Neck": "ˈlɒŋ.nek",
523
+ "Long-Nose": "",
524
+ "Longnose": "",
525
+ "Look": "lʊk",
526
+ "Look!\"": "lʊk",
527
+ "Looked": "lʊk",
528
+ "Looking": "ˈlʊk.ɪŋ",
529
+ "Lot": "lɒt",
530
+ "Louie": "",
531
+ "Love": "lʌv",
532
+ "Loved": "lʌv",
533
+ "Luca": "",
534
+ "Luke": "",
535
+ "M": "em",
536
+ "Machine": "məˈʃiːn",
537
+ "Mackenzie": "",
538
+ "Mad": "mæd",
539
+ "Maddie": "",
540
+ "Make": "meɪk",
541
+ "Making": "ˈmeɪ.kɪŋ",
542
+ "Mama": "məˈmɑː",
543
+ "Man": "mæn",
544
+ "Manager": "ˈmæn.ɪ.dʒər",
545
+ "Marie": "ˌbæn.məˈriː",
546
+ "Marnie": "",
547
+ "Martha": "",
548
+ "Mary": "ˌheɪl ˈmeə.ri",
549
+ "Matt": "mæt",
550
+ "Matthew": "",
551
+ "Maybe": "ˈmeɪ.bi",
552
+ "McKenzie": "",
553
+ "McKinsey": "",
554
+ "Me": "miː",
555
+ "Megan": "",
556
+ "Melanie": "",
557
+ "Merry": "ˈmer.i",
558
+ "Mesa": "ˈmeɪ.sə",
559
+ "Mi": "miː",
560
+ "Michael": "",
561
+ "Michelle": "",
562
+ "Mike": "maɪk",
563
+ "Mikey": "",
564
+ "Milk": "mɪlk",
565
+ "Miller": "ˈmɪl.ər",
566
+ "Mitchell": "",
567
+ "Mm": "",
568
+ "Mm-hmm": "",
569
+ "Mom": "mɒm",
570
+ "Mommy": "ˈmɒm.i",
571
+ "Money": "ˈmʌn.i",
572
+ "Monica": "",
573
+ "Monster": "ˈmɒn.stər",
574
+ "Moon": "muːn",
575
+ "Moore": "",
576
+ "Moose": "muːs",
577
+ "More": "mɔːr",
578
+ "Morgan": "",
579
+ "Mose": "",
580
+ "Most": "məʊst",
581
+ "Mother": "ˈmʌð.ər",
582
+ "Mouse": "maʊs",
583
+ "Mr": "ˈmɪs.tər",
584
+ "Munching": "mʌntʃ",
585
+ "My": "maɪ",
586
+ "Nathan": "",
587
+ "Neck": "nek",
588
+ "New": "njuː",
589
+ "Next": "nekst",
590
+ "Nice": "naɪs",
591
+ "Nichola": "",
592
+ "Nick": "nɪk",
593
+ "Nicole": "",
594
+ "No": "nəʊ",
595
+ "Nobody": "ˈnəʊ.bə.di",
596
+ "Nooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo": "",
597
+ "Nope": "nəʊp",
598
+ "Norse": "nɔːs",
599
+ "North": "nɔːθ",
600
+ "Nose": "nəʊz",
601
+ "Not": "nɒt",
602
+ "Nothing": "ˈnʌθ.ɪŋ",
603
+ "November": "nəʊˈvem.bər",
604
+ "Now": "naʊ",
605
+ "Number": "ˈnʌm.bər",
606
+ "Nurse": "nɜːs",
607
+ "O": "əʊ",
608
+ "OK": "ˌəʊˈkeɪ",
609
+ "Of": "əv",
610
+ "Off": "ɒf",
611
+ "Office": "ˈɒf.ɪs",
612
+ "Oh": "əʊ",
613
+ "Ohad": "",
614
+ "Okay": "ˌəʊˈkeɪ",
615
+ "Old": "əʊld",
616
+ "On": "ɒn",
617
+ "Once": "wʌns",
618
+ "One": "wʌn",
619
+ "Only": "ˈəʊn.li",
620
+ "Onto": "ˈɒn.tu",
621
+ "Ooh": "uː",
622
+ "Oop": "ˌæl.iˈuːp",
623
+ "Oopsie": "",
624
+ "Open": "ˈəʊ.pən",
625
+ "Or": "ɔːr",
626
+ "Orange": "ˈɒr.ɪndʒ",
627
+ "Oscar": "ˈɒs.kər",
628
+ "Other": "ˈʌð.ər",
629
+ "Ouch": "aʊtʃ",
630
+ "Our": "aʊər",
631
+ "Out": "aʊt",
632
+ "Outward": "ˈaʊt.wəd",
633
+ "Over": "ˈəʊ.vər",
634
+ "Ow": "aʊ",
635
+ "PJ": "",
636
+ "Papa": "pəˈpɑː",
637
+ "Pardon": "ˈpɑː.dən",
638
+ "Part": "pɑːt",
639
+ "Paulina": "",
640
+ "Pauline": "",
641
+ "Pax": "pæks",
642
+ "Peanut": "ˈpiː.nʌt",
643
+ "Percy": "",
644
+ "Peter": "ˈpiː.tə",
645
+ "Pick": "pɪk",
646
+ "Picking": "ˈpɪkɪŋz",
647
+ "Picnic": "ˈpɪk.nɪk",
648
+ "Pig": "pɪɡ",
649
+ "Piggy": "ˈpɪɡ.i",
650
+ "Pimperray": "",
651
+ "Pina": "ˌpiːnə kəˈlɑː.də",
652
+ "Pink": "pɪŋk",
653
+ "Pitcher": "ˈpɪtʃ.ər",
654
+ "Place": "pleɪs",
655
+ "Play": "pleɪ",
656
+ "Playgirl": "",
657
+ "Playing": "kɑːd",
658
+ "Please": "pliːz",
659
+ "Plyfar": "",
660
+ "Po": "ˌpiːˈəʊ",
661
+ "Pointing": "ˈpɔɪn.tɪŋ",
662
+ "Polka": "ˈpɒl.kə",
663
+ "Polkadot": "ˈpɒl.kə ˌdɒt",
664
+ "Pool": "puːl",
665
+ "Pop": "pɒp",
666
+ "Poppy": "ˈpɒp.i",
667
+ "Pour": "pɔːr",
668
+ "Pre": "priː-",
669
+ "Pretty": "ˈprɪt.i",
670
+ "Price": "praɪs",
671
+ "Probably": "ˈprɒb.ə.bəl",
672
+ "Proof": "pruːf",
673
+ "Proud": "praʊd",
674
+ "Puddle": "ˈpʌd.əl",
675
+ "Pudge": "",
676
+ "Pull": "pʊl",
677
+ "Pulling": "pʊl",
678
+ "Puppy": "ˈpʌp.i",
679
+ "Push": "pʊʃ",
680
+ "Pushed": "pʊʃt",
681
+ "Pushing": "ˈpʊʃ.ɪŋ",
682
+ "Put": "pʊt",
683
+ "Putting": "",
684
+ "Puzzle": "ˈpʌz.əl",
685
+ "Quarter": "ˈkwɔː.tər",
686
+ "Quick": "kwɪk",
687
+ "Quickly": "kwɪk",
688
+ "R": "ɑːr",
689
+ "RJ": "",
690
+ "Rabbi": "ˈræb.aɪ",
691
+ "Rabbit": "ˈræb.ɪt",
692
+ "Rabid": "ˈræb.ɪd",
693
+ "Rachel": "",
694
+ "Rachelle": "",
695
+ "Rafi": "",
696
+ "Randy": "ˈræn.di",
697
+ "Raph": "",
698
+ "Rattle": "ˈræt.əl",
699
+ "Ready": "ˈred.i",
700
+ "Reagan": "",
701
+ "Real": "rɪəl",
702
+ "Really": "ˈrɪə.li",
703
+ "Rebe": "",
704
+ "Red": "red",
705
+ "Refresh": "rɪˈfreʃ",
706
+ "Reggie": "",
707
+ "Remember": "rɪˈmem.bər",
708
+ "Revée": "",
709
+ "Rex": "reks",
710
+ "Rhian": "",
711
+ "Ricky": "",
712
+ "Right": "raɪt",
713
+ "Rihanna": "",
714
+ "Riley": "",
715
+ "Ringing": "ˈrɪŋ.ɪŋ",
716
+ "River": "ˈrɪv.ər",
717
+ "Rivet": "ˈrɪv.ɪt",
718
+ "Robert": "ˌhɜːb ˈrɒb.ət",
719
+ "Robin": "ˈrɒb.ɪn",
720
+ "Rochelle": "",
721
+ "Rocking": "rɒk",
722
+ "Roger": "ˈrɒdʒ.ər",
723
+ "Ronald": "",
724
+ "Rose": "rəʊz",
725
+ "Rosie": "ˌrəʊ.zi ˈliː",
726
+ "Rudy": "",
727
+ "Run": "rʌn",
728
+ "Running": "ˈrʌn.ɪŋ",
729
+ "Ryan": "",
730
+ "S": "es",
731
+ "Sad": "sæd",
732
+ "Said": "sed",
733
+ "Sally": "ˈsæl.i",
734
+ "Sam": "sæm",
735
+ "Samantha": "",
736
+ "Same": "seɪm",
737
+ "Sand": "sænd",
738
+ "Sandash": "",
739
+ "Sandcastle": "ˈsændˌkɑː.səl",
740
+ "Sandy": "ˈsæn.dɪ",
741
+ "Santa": "ˈsæn.tə ˌklɔːz",
742
+ "Sarah": "",
743
+ "Saria": "",
744
+ "Save": "seɪv",
745
+ "Say": "seɪ",
746
+ "Saying": "ˈseɪ.ɪŋ",
747
+ "Scared": "skeəd",
748
+ "School": "skuːl",
749
+ "Scott": "",
750
+ "Scratch": "skrætʃ",
751
+ "Second": "ˈsek.ənd",
752
+ "See": "siː",
753
+ "Seeing": "ˈsiː.ɪŋ",
754
+ "Seven": "ˈsev.ən",
755
+ "Shaking": "",
756
+ "Shall": "ʃæl",
757
+ "Shalooza": "",
758
+ "Shane": "",
759
+ "Shani": "",
760
+ "Sharon": "ˈʃær.ən ˌfruːt",
761
+ "She": "ʃiː",
762
+ "Sheila": "ˈʃiː.lə",
763
+ "Shelby": "",
764
+ "Shell": "ʃel",
765
+ "Sherlock": "",
766
+ "Shh": "ʃ",
767
+ "Shine": "ʃaɪn",
768
+ "Shooting": "ˈʃuː.tɪŋ",
769
+ "Shopping": "ˈʃɒp.ɪŋ",
770
+ "Short": "ʃɔːt",
771
+ "Should": "ʃʊd",
772
+ "Shouldn't": "ˈʃʊd.ənt",
773
+ "Show": "ʃəʊ",
774
+ "Shut": "ʃʌt",
775
+ "Shy": "ʃaɪ",
776
+ "Signing": "ˈsaɪ.nɪŋ",
777
+ "Since": "sɪns",
778
+ "Sink": "sɪŋk",
779
+ "Sip": "sɪp",
780
+ "Sit": "sɪt",
781
+ "Sitting": "ˈsɪt.ɪŋ",
782
+ "Skye": "ˌskaɪ ˈter.i.ər",
783
+ "Slipped": "",
784
+ "Slippery": "ˈslɪp.ər.i",
785
+ "Slopper": "",
786
+ "Smaller": "smɔːl",
787
+ "Snack": "snæk",
788
+ "Snap": "snæp",
789
+ "Snout": "snaʊt",
790
+ "Snow": "snəʊ",
791
+ "So": "es",
792
+ "Solly": "",
793
+ "Some": "sʌm",
794
+ "Somebody": "ˈsʌm.bə.di",
795
+ "Someone": "ˈsʌm.wʌn",
796
+ "Something": "ˈsʌm.θɪŋ",
797
+ "Sometime": "ˈsʌm.taɪm",
798
+ "Soon": "suːn",
799
+ "Sorensen": "",
800
+ "Sorry": "ˈsɒr.i",
801
+ "Sound": "saʊnd",
802
+ "Sounded": "saʊnd",
803
+ "Spanked": "spæŋk",
804
+ "Speak": "spiːk",
805
+ "Spilling": "spɪl",
806
+ "Spilt": "",
807
+ "Splash": "splæʃ",
808
+ "Spooz": "",
809
+ "St": "",
810
+ "Stained": "steɪn",
811
+ "Standing": "ˈstæn.dɪŋ",
812
+ "Star": "stɑːr",
813
+ "Start": "stɑːt",
814
+ "Started": "stɑːt",
815
+ "Starting": "ˈstɑː.tɪŋ",
816
+ "Stay": "steɪ",
817
+ "Stefan": "",
818
+ "Steinha": "",
819
+ "Stephane": "",
820
+ "Stephanie": "",
821
+ "Stephon": "",
822
+ "Steve": "",
823
+ "Stewart": "",
824
+ "Stick": "stɪk",
825
+ "Sticked": "ˈhaɪˌstɪk",
826
+ "Still": "stɪl",
827
+ "Stole": "stəʊl",
828
+ "Stop": "stɒp",
829
+ "Store": "stɔːr",
830
+ "Story": "ˈstɔː.ri",
831
+ "Suck": "sʌk",
832
+ "Suddenly": "ˈsʌd.ən.li",
833
+ "Sumpra": "",
834
+ "Super": "ˈsuː.pər",
835
+ "Supervisor": "ˈsuː.pə.vaɪz",
836
+ "Sure": "ʃɔːr",
837
+ "Susan": "ˌleɪ.zi ˈsuː.zən",
838
+ "Suzanne": "",
839
+ "Sway": "sweɪ",
840
+ "Swim": "swɪm",
841
+ "Swimmed": "",
842
+ "Swimming": "swɪm",
843
+ "T": "tiː",
844
+ "T-Rex": "ˈtiːˌreks",
845
+ "T-Star": "",
846
+ "T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-": "tiː",
847
+ "T.O.S": "ˌtiː.əʊˈes",
848
+ "TJ": "",
849
+ "Ta-da": "təˈdɑː",
850
+ "Take": "teɪk",
851
+ "Taking": "",
852
+ "Tali": "",
853
+ "Talk": "tɔːk",
854
+ "Talked": "tɔːk",
855
+ "Talking": "tɔːk",
856
+ "Tammy": "",
857
+ "Taryn": "",
858
+ "Tassel": "ˈtæs.əl",
859
+ "Tata": "",
860
+ "Tate": "",
861
+ "Tatum": "",
862
+ "Tayden": "",
863
+ "Taylor": "ˈteɪ.lə rɪˌpɔːt",
864
+ "Tea": "tiː",
865
+ "Tear": "teər",
866
+ "Ted": "ˈted.i ˌbɔɪ",
867
+ "Teddy": "ˈted.i",
868
+ "Teden": "",
869
+ "Teeth": "tiːθ",
870
+ "Tell": "tel",
871
+ "Teppany": "",
872
+ "Terry": "ˈter.i",
873
+ "Tevi": "",
874
+ "Tevin": "",
875
+ "Thank": "θæŋk",
876
+ "That": "ðæt",
877
+ "The": "ðiː",
878
+ "Their": "ðeər",
879
+ "Then": "ðen",
880
+ "There": "ðeər",
881
+ "These": "ðiːz",
882
+ "They": "ðeɪ",
883
+ "They'll": "ðeɪl",
884
+ "They're": "ðeər",
885
+ "Thi": "",
886
+ "Think": "θɪŋk",
887
+ "Third": "θɜːd",
888
+ "Thoma": "",
889
+ "Those": "ðəʊz",
890
+ "Three": "θriː",
891
+ "Through": "θruː",
892
+ "Thumper": "ˈbaɪ.bəlˌθʌmp.ɚ",
893
+ "Tia": "ˌtiː.aɪˈeɪ",
894
+ "Tidy": "ˈtaɪ.di",
895
+ "Tiger": "ˈtaɪ.ɡər",
896
+ "Till": "tɪl",
897
+ "Tim": "",
898
+ "Time": "taɪm",
899
+ "Timmy": "",
900
+ "Tini": "",
901
+ "To": "tuː",
902
+ "Toby": "ˈtəʊ.bi ˌdʒʌɡ",
903
+ "Today": "təˈdeɪ",
904
+ "Tolly": "",
905
+ "Tommy": "ˈtɒm.i ɡʌn",
906
+ "Tomorrow": "təˈmɒr.əʊ",
907
+ "Tony": "ˈtəʊn.i",
908
+ "Too": "tuː",
909
+ "Took": "tʊk",
910
+ "Tornadoe": "",
911
+ "Touched": "tʌtʃt",
912
+ "Tour": "tʊər",
913
+ "Toward": "tɔːrd",
914
+ "Toy": "tɔɪ",
915
+ "Tree": "triː",
916
+ "Trev": "",
917
+ "Tried": "traɪd",
918
+ "Trinity": "ˈtrɪn.ə.ti",
919
+ "Try": "traɪ",
920
+ "Trying": "ˈtraɪ.ɪŋ",
921
+ "Tully": "",
922
+ "Tumble": "ˈtʌm.bəl",
923
+ "Turn": "tɜːn",
924
+ "Turned": "tɜːn",
925
+ "Two": "tuː",
926
+ "Ty": "",
927
+ "Tyler": "",
928
+ "U": "juː",
929
+ "Uh": "ɜː",
930
+ "Uh-huh": "ʌˈhʌ",
931
+ "Uh-oh": "ˌʌˈəʊ",
932
+ "Uh-uh": "ɜː",
933
+ "Uh-uh-uh": "ɜː",
934
+ "Um": "əm",
935
+ "Untied": "ʌnˈtaɪ",
936
+ "Until": "ənˈtɪl",
937
+ "Up": "ʌp",
938
+ "Upon": "əˈpɒn",
939
+ "Val": "",
940
+ "Vanessa": "",
941
+ "Velociraptor": "vɪˌlɒs.ɪˈræp.tər",
942
+ "Verola": "",
943
+ "Veronica": "vəˈrɒn.ɪ.kə",
944
+ "Very": "ˈver.i",
945
+ "Viva": "ˈvaɪ.və",
946
+ "Wa": "",
947
+ "Wade": "weɪd",
948
+ "Wagon": "ˈwæɡ.ən",
949
+ "Wait": "weɪt",
950
+ "Wake": "weɪk",
951
+ "Walk": "wɔːk",
952
+ "Walked": "wɔːk",
953
+ "Walking": "ˈwɔː.kɪŋ",
954
+ "Wanna": "ˈwɒn.ə",
955
+ "Want": "wɒnt",
956
+ "Wanted": "ˈwɒn.tɪd",
957
+ "Wasn't": "ˈwɒz.ənt",
958
+ "Watch": "wɒtʃ",
959
+ "Wave": "weɪv",
960
+ "Waving": "weɪv",
961
+ "Way": "weɪ",
962
+ "We": "wiː",
963
+ "We'll": "wiːl",
964
+ "We're": "wɪər",
965
+ "Weird": "wɪəd",
966
+ "Well": "wel",
967
+ "Went": "went",
968
+ "Were": "wɜːr",
969
+ "Wham": "wæm",
970
+ "What": "wɒt",
971
+ "Whatever": "wɒtˈev.ər",
972
+ "Whee": "wiː",
973
+ "When": "wen",
974
+ "Where": "weər",
975
+ "Which": "wɪtʃ",
976
+ "While": "waɪl",
977
+ "White": "waɪt",
978
+ "Whitney": "",
979
+ "Who": "huː",
980
+ "Whoa": "wəʊ",
981
+ "Whoop": "wuːp",
982
+ "Whoops-a-daisy": "",
983
+ "Whoopsie": "",
984
+ "Why": "waɪ",
985
+ "Why'd": "",
986
+ "Wife": "waɪf",
987
+ "Wilderill": "",
988
+ "With": "wɪð",
989
+ "Won": "wʌn",
990
+ "Wonderful": "ˈwʌn.də.fəl",
991
+ "Would": "wʊd",
992
+ "Wow": "waʊ",
993
+ "Wrappy": "",
994
+ "X": "eks",
995
+ "Ya-haaa": "",
996
+ "Yahoo": "ˈjɑː.huː",
997
+ "Yay": "jeɪ",
998
+ "Ye": "jiː",
999
+ "Yeah": "jeə",
1000
+ "Yeek": "",
1001
+ "Yep": "jep",
1002
+ "Yippee": "jɪˈpiː",
1003
+ "You": "juː",
1004
+ "You'll": "juːl",
1005
+ "You're": "jɔːr",
1006
+ "You've": "juːv",
1007
+ "Your": "jɔːr",
1008
+ "Zach": "",
1009
+ "Zachary": "",
1010
+ "Zebra": "ˈzeb.rə",
1011
+ "Zenyak": "",
1012
+ "a": "eɪ",
1013
+ "abandoned": "əˈbæn.dənd",
1014
+ "able": "ˈeɪ.bəl",
1015
+ "about": "əˈbaʊt",
1016
+ "above": "əˈbʌv",
1017
+ "accident": "ˈæk.sɪ.dənt",
1018
+ "accidentally": "ˌæk.sɪˈden.təl.i",
1019
+ "accidently": "",
1020
+ "according": "əˈkɔːd",
1021
+ "ache": "eɪk",
1022
+ "acro": "",
1023
+ "acting": "ˈæk.tɪŋ",
1024
+ "actually": "ˈæk.tʃu.ə.li",
1025
+ "ad": "æd",
1026
+ "add": "æd",
1027
+ "added": "ˈæd.ɪd",
1028
+ "adder": "ˈæd.ər",
1029
+ "adding": "æd",
1030
+ "adept": "əˈdept",
1031
+ "adly": "",
1032
+ "admire": "ədˈmaɪər",
1033
+ "admiring": "ədˈmaɪə.rɪŋ",
1034
+ "adult": "ˈæd.ʌlt",
1035
+ "aeroplane": "ˈeə.rə.pleɪn",
1036
+ "afe": "",
1037
+ "afety": "",
1038
+ "afford": "əˈfɔːd",
1039
+ "afraid": "əˈfreɪd",
1040
+ "after": "ˈɑːf.tər",
1041
+ "afternoon": "ˌɑːf.təˈnuːn",
1042
+ "again": "əˈɡen",
1043
+ "against": "əˈɡenst",
1044
+ "age": "eɪdʒ",
1045
+ "ago": "əˈɡəʊ",
1046
+ "agree": "əˈɡriː",
1047
+ "ah": "ɑː",
1048
+ "ahead": "əˈhed",
1049
+ "aid": "eɪd",
1050
+ "ail": "eɪl",
1051
+ "ailed": "eɪl",
1052
+ "ailing": "ˈeɪ.lɪŋ",
1053
+ "ailman": "",
1054
+ "ailor": "",
1055
+ "ain't": "eɪnt",
1056
+ "air": "eər",
1057
+ "airplane": "ˈeə.pleɪn",
1058
+ "airport": "ˈeə.pɔːt",
1059
+ "aisle": "aɪl",
1060
+ "alad": "",
1061
+ "ale": "eɪl",
1062
+ "alesman": "",
1063
+ "alesmen": "",
1064
+ "alesperson": "",
1065
+ "alive": "əˈlaɪv",
1066
+ "all": "ɔːl",
1067
+ "alley": "ˈæl.i",
1068
+ "alligator": "ˈæl.ɪ.ɡeɪ.tər",
1069
+ "allowance": "əˈlaʊ.əns",
1070
+ "allowed": "əˈlaʊ",
1071
+ "allying": "əˈlaɪ",
1072
+ "almon": "",
1073
+ "almost": "ˈɔːl.məʊst",
1074
+ "alone": "əˈləʊn",
1075
+ "along": "əˈlɒŋ",
1076
+ "already": "ɔːlˈred.i",
1077
+ "alright": "ɔːlˈraɪt",
1078
+ "also": "ˈɔːl.səʊ",
1079
+ "alt": "ɒlt",
1080
+ "altered": "ˈɒl.təd",
1081
+ "although": "ɔːlˈðəʊ",
1082
+ "alway": "ˈɔːl.weɪ",
1083
+ "am": "æm",
1084
+ "amazed": "əˈmeɪzd",
1085
+ "amazement": "əˈmeɪz.mənt",
1086
+ "amazing": "əˈmeɪ.zɪŋ",
1087
+ "ame": "ˈeɪˌemˈiː",
1088
+ "ample": "ˈæm.pəl",
1089
+ "amusing": "əˈmjuː.zɪŋ",
1090
+ "an": "æn",
1091
+ "and": "ænd",
1092
+ "andal": "",
1093
+ "andbar": "",
1094
+ "andbox": "",
1095
+ "andcastle": "",
1096
+ "andcloth": "",
1097
+ "andpack": "",
1098
+ "andpit": "",
1099
+ "andwich": "",
1100
+ "andwiche": "",
1101
+ "angel": "ˈeɪn.dʒəl",
1102
+ "anger": "ˈæŋ.ɡər",
1103
+ "angry": "ˈæŋ.ɡri",
1104
+ "animal": "ˈæn.ɪ.məl",
1105
+ "ank": "",
1106
+ "ankle": "ˈæŋ.kəl",
1107
+ "annoyed": "əˈnɔɪd",
1108
+ "another": "əˈnʌð.ər",
1109
+ "answered": "ˈɑːn.sər",
1110
+ "answering": "ˈɑːn.sər",
1111
+ "ant": "ænt",
1112
+ "antler": "ˈænt.lər",
1113
+ "any": "ˈen.i",
1114
+ "anybody": "ˈen.iˌbɒd.i",
1115
+ "anymore": "ˌen.iˈmɔːr",
1116
+ "anyone": "ˈen.i.wʌn",
1117
+ "anything": "ˈen.i.θɪŋ",
1118
+ "anytime": "ˈen.i.taɪm",
1119
+ "anyway": "ˈen.i.weɪ",
1120
+ "anywhere": "ˈen.i.weər",
1121
+ "apart": "əˈpɑːt",
1122
+ "apartment": "əˈpɑːt.mənt",
1123
+ "ape": "eɪp",
1124
+ "apologize": "əˈpɒl.ə.dʒaɪz",
1125
+ "apologizing": "əˈpɒl.ə.dʒaɪz",
1126
+ "apparel": "əˈpær.əl",
1127
+ "appear": "əˈpɪər",
1128
+ "apple": "ˈæp.əl",
1129
+ "appointment": "əˈpɔɪnt.mənt",
1130
+ "appreciate": "əˈpriː.ʃi.eɪt",
1131
+ "apprised": "əˈpraɪz",
1132
+ "arc": "ɑːk",
1133
+ "are": "ɑːr",
1134
+ "aren't": "ɑːnt",
1135
+ "argh": "",
1136
+ "argument": "ˈɑːɡ.jə.mənt",
1137
+ "arm": "ɑːm",
1138
+ "around": "əˈraʊnd",
1139
+ "arrived": "əˈraɪv",
1140
+ "arrow": "ˈær.əʊ",
1141
+ "ashamed": "əˈʃeɪmd",
1142
+ "ask": "ɑːsk",
1143
+ "asked": "ɑːsk",
1144
+ "asking": "ɑːsk",
1145
+ "asleep": "əˈsliːp",
1146
+ "assle": "",
1147
+ "at": "æt",
1148
+ "ate": "et",
1149
+ "attached": "əˈtætʃt",
1150
+ "attack": "əˈtæk",
1151
+ "attendance": "əˈten.dəns",
1152
+ "attention": "əˈten.ʃən",
1153
+ "aunt": "ɑːnt",
1154
+ "avalanche": "ˈæv.əl.ɑːntʃ",
1155
+ "ave": "æv",
1156
+ "aved": "",
1157
+ "average": "ˈæv.ər.ɪdʒ",
1158
+ "avocadion": "",
1159
+ "aw": "ɔː",
1160
+ "awake": "əˈweɪk",
1161
+ "awakened": "əˈweɪ.kən",
1162
+ "away": "əˈweɪ",
1163
+ "awed": "ɔːd",
1164
+ "awesome": "ˈɔː.səm",
1165
+ "awful": "ˈɔː.fəl",
1166
+ "ay": "aɪ",
1167
+ "aying": "",
1168
+ "azote": "",
1169
+ "ba-ba": "ˌbiːˈeɪ",
1170
+ "babie": "",
1171
+ "baboon": "bəˈbuːn",
1172
+ "baby": "ˈbeɪ.bi",
1173
+ "back": "bæk",
1174
+ "backed": "-bækt",
1175
+ "backpack": "ˈbæk.pæk",
1176
+ "backward": "ˈbæk.wəd",
1177
+ "backyard": "ˌbækˈjɑːd",
1178
+ "bad": "bæd",
1179
+ "badly": "ˈbæd.li",
1180
+ "bag": "bæɡ",
1181
+ "baker": "ˈbeɪ.kər",
1182
+ "bakery": "ˈbeɪ.kər.i",
1183
+ "balance": "ˈbæl.əns",
1184
+ "ball": "bɔːl",
1185
+ "ball-": "bɔːl",
1186
+ "balloon": "bəˈluːn",
1187
+ "ballooned": "bəˈluːn",
1188
+ "banana": "bəˈnɑː.nə",
1189
+ "band": "bænd",
1190
+ "band-aid": "ˈbænd.eɪd",
1191
+ "bandage": "ˈbæn.dɪdʒ",
1192
+ "bandaged": "ˈbæn.dɪdʒ",
1193
+ "bandaid": "",
1194
+ "banded": "bænd",
1195
+ "banding": "bænd",
1196
+ "bandy": "ˈbæn.di",
1197
+ "bang": "bæŋ",
1198
+ "banged": "bæŋ",
1199
+ "banging": "ˈbæŋ.ɪŋ",
1200
+ "bank": "bæŋk",
1201
+ "banker": "ˈbæŋ.kər",
1202
+ "banner": "ˈbæn.ər",
1203
+ "bar": "bɑːr",
1204
+ "bare": "beər",
1205
+ "barely": "ˈbeə.li",
1206
+ "bark": "bɑːk",
1207
+ "barking": "ˈbɑː.kɪŋ",
1208
+ "barrel": "ˈbær.əl",
1209
+ "baseball": "ˈbeɪs.bɔːl",
1210
+ "baseballing": "",
1211
+ "basket": "ˈbɑː.skɪt",
1212
+ "basketball": "ˈbɑː.skɪt.bɔːl",
1213
+ "bat": "bæt",
1214
+ "bath": "bɑːθ",
1215
+ "bathing": "ˈbeɪ.ðɪŋ",
1216
+ "bathroom": "ˈbɑːθ.ruːm",
1217
+ "batter": "ˈbæt.ər",
1218
+ "battling": "ˈbæt.əl",
1219
+ "be": "biː",
1220
+ "beach": "biːtʃ",
1221
+ "beam": "biːm",
1222
+ "bear": "beər",
1223
+ "beat": "biːt",
1224
+ "beautiful": "ˈbjuː.tɪ.fəl",
1225
+ "became": "bɪˈkeɪm",
1226
+ "because": "bɪˈkəz",
1227
+ "bed": "bed",
1228
+ "bee": "biː",
1229
+ "beehole": "",
1230
+ "been": "biːn",
1231
+ "before": "bɪˈfɔːr",
1232
+ "began": "bɪˈɡæn",
1233
+ "begged": "",
1234
+ "begging": "",
1235
+ "begin": "bɪˈɡɪn",
1236
+ "beginning": "bɪˈɡɪn.ɪŋ",
1237
+ "behind": "bɪˈhaɪnd",
1238
+ "being": "ˈbiː.ɪŋ",
1239
+ "believe": "bɪˈliːv",
1240
+ "bell": "bel",
1241
+ "belly": "ˈbel.i",
1242
+ "bellyache": "ˈbel.i.eɪk",
1243
+ "belong": "bɪˈlɒŋ",
1244
+ "belonged": "bɪˈlɒŋ",
1245
+ "below": "bɪˈləʊ",
1246
+ "belting": "belt",
1247
+ "bench": "bentʃ",
1248
+ "benche": "",
1249
+ "bend": "bend",
1250
+ "bendy": "ˈben.di",
1251
+ "bent": "bent",
1252
+ "berrie": "",
1253
+ "beside": "bɪˈsaɪd",
1254
+ "best": "best",
1255
+ "bestest": "ˈbest.ɪst",
1256
+ "better": "ˈbet.ər",
1257
+ "between": "bɪˈtwiːn",
1258
+ "big": "bɪɡ",
1259
+ "bigger": "",
1260
+ "biggest": "",
1261
+ "bill": "bɪl",
1262
+ "billion": "ˈbɪl.jən",
1263
+ "bin": "bɪn",
1264
+ "binder": "ˈbaɪn.dər",
1265
+ "bird": "bɜːd",
1266
+ "birthday": "ˈbɜːθ.deɪ",
1267
+ "biscuit": "ˈbɪs.kɪt",
1268
+ "bit": "bɪt",
1269
+ "bite": "baɪt",
1270
+ "bitten": "ˈbɪt.ən",
1271
+ "bitter": "ˈbɪt.ər",
1272
+ "black": "blæk",
1273
+ "blah": "blɑː",
1274
+ "blaming": "bleɪm",
1275
+ "blanket": "ˈblæŋ.kɪt",
1276
+ "blast": "blɑːst",
1277
+ "bleeding": "ˈbliː.dɪŋ",
1278
+ "blend": "blend",
1279
+ "blew": "bluː",
1280
+ "bloat": "bləʊt",
1281
+ "block": "blɒk",
1282
+ "blonde": "blɒnd",
1283
+ "blood": "blʌd",
1284
+ "bloom": "bluːm",
1285
+ "blow": "bləʊ",
1286
+ "blowed": "",
1287
+ "blower": "ˈbləʊ.ər",
1288
+ "blowing": "bləʊ",
1289
+ "blue": "bluː",
1290
+ "blunt": "blʌnt",
1291
+ "blush": "blʌʃ",
1292
+ "blushed": "blʌʃ",
1293
+ "blushing": "blʌʃ",
1294
+ "bo": "ˌbiːˈəʊ",
1295
+ "board": "bɔːd",
1296
+ "boat": "bəʊt",
1297
+ "body": "ˈbɒd.i",
1298
+ "bogeyman": "ˈbəʊ.ɡi.mæn",
1299
+ "boil": "bɔɪl",
1300
+ "bone": "bəʊn",
1301
+ "bonked": "bɒŋk",
1302
+ "boo": "buː",
1303
+ "boo-boo": "ˈbuː.buː",
1304
+ "boob": "buːb",
1305
+ "boobie": "",
1306
+ "booboo": "",
1307
+ "booing": "buː",
1308
+ "book": "bʊk",
1309
+ "boom": "buːm",
1310
+ "boomerang": "ˈbuː.mə.ræŋ",
1311
+ "boon": "buːn",
1312
+ "boot": "buːt",
1313
+ "bored": "bɔːd",
1314
+ "borrow": "ˈbɒr.əʊ",
1315
+ "borrowed": "ˈbɒr.əʊ",
1316
+ "both": "bəʊθ",
1317
+ "bottle": "ˈbɒt.əl",
1318
+ "bottom": "ˈbɒt.əm",
1319
+ "bought": "bɔːt",
1320
+ "bounce": "baʊns",
1321
+ "bounced": "baʊns",
1322
+ "bouncing": "ˈbaʊn.sɪŋ",
1323
+ "bouncy": "ˈbaʊn.si",
1324
+ "bound": "baʊnd",
1325
+ "bounty": "ˈbaʊn.ti",
1326
+ "bow": "baʊ",
1327
+ "bowl": "bəʊl",
1328
+ "bowling": "ˈbəʊ.lɪŋ",
1329
+ "box": "bɒks",
1330
+ "boxe": "",
1331
+ "boy": "bɔɪ",
1332
+ "boyfriend": "ˈbɔɪ.frend",
1333
+ "brain": "breɪn",
1334
+ "braked": "breɪk",
1335
+ "branch": "brɑːntʃ",
1336
+ "brand": "brænd",
1337
+ "brave": "breɪv",
1338
+ "bread": "bred",
1339
+ "break": "breɪk",
1340
+ "breaking": "ˈbreɪ.kɪŋ",
1341
+ "breath": "breθ",
1342
+ "breathe": "briːð",
1343
+ "brick": "brɪk",
1344
+ "bridge": "brɪdʒ",
1345
+ "bright": "braɪt",
1346
+ "bring": "brɪŋ",
1347
+ "bringing": "brɪŋ",
1348
+ "brink": "brɪŋk",
1349
+ "broke": "brəʊk",
1350
+ "broken": "ˈbrəʊ.kən",
1351
+ "broom": "bruːm",
1352
+ "brother": "ˈbrʌð.ər",
1353
+ "brought": "brɔːt",
1354
+ "bruise": "bruːz",
1355
+ "bruised": "bruːzd",
1356
+ "brush": "brʌʃ",
1357
+ "brushe": "",
1358
+ "bubble": "ˈbʌb.əl",
1359
+ "buck": "bʌk",
1360
+ "bucket": "ˈbʌk.ɪt",
1361
+ "buddie": "",
1362
+ "budding": "ˈbʌd.ɪŋ",
1363
+ "buddy": "ˈbʌd.i",
1364
+ "budget": "ˈbʌdʒ.ɪt",
1365
+ "bug": "bʌɡ",
1366
+ "bugging": "",
1367
+ "build": "bɪld",
1368
+ "build-up": "bɪld",
1369
+ "builded": "",
1370
+ "building": "ˈbɪl.dɪŋ",
1371
+ "built": "bɪlt",
1372
+ "bull": "bʊl",
1373
+ "bump": "bʌmp",
1374
+ "bumped": "bʌmp",
1375
+ "bun": "bʌn",
1376
+ "bunch": "bʌntʃ",
1377
+ "bunion": "ˈbʌn.jən",
1378
+ "bunnie": "",
1379
+ "bunny": "ˈbʌn.i",
1380
+ "burie": "",
1381
+ "buried": "ˈber.i",
1382
+ "burn": "bɜːn",
1383
+ "burned": "bɜːn",
1384
+ "burning": "ˈbɜː.nɪŋ",
1385
+ "burnt": "bɜːnt",
1386
+ "burp": "bɜːp",
1387
+ "burped": "bɜːp",
1388
+ "burping": "bɜːp",
1389
+ "burst": "bɜːst",
1390
+ "bury": "ˈber.i",
1391
+ "buse": "",
1392
+ "busine": "",
1393
+ "busse": "",
1394
+ "busy": "ˈbɪz.i",
1395
+ "but": "bʌt",
1396
+ "butter": "ˈbʌt.ər",
1397
+ "butterflie": "",
1398
+ "butterfly": "ˈbʌt.ə.flaɪ",
1399
+ "button": "ˈbʌt.ən",
1400
+ "buy": "baɪ",
1401
+ "buying": "baɪ",
1402
+ "buzze": "",
1403
+ "by": "baɪ",
1404
+ "bye": "baɪ",
1405
+ "cab": "kæb",
1406
+ "cabbed": "",
1407
+ "cake": "keɪk",
1408
+ "call": "kɔːl",
1409
+ "called": "kɔːl",
1410
+ "calling": "ˈkɔː.lɪŋ",
1411
+ "calm": "kɑːm",
1412
+ "came": "keɪm",
1413
+ "camel": "ˈkæm.əl",
1414
+ "camera": "ˈkæm.rə",
1415
+ "camp": "kæmp",
1416
+ "can": "kæn",
1417
+ "can't": "kɑːnt",
1418
+ "cancel": "ˈkæn.səl",
1419
+ "candy": "ˈkæn.di",
1420
+ "cane": "keɪn",
1421
+ "canned": "kænd",
1422
+ "cannonball": "ˈkæn.ən.bɔːl",
1423
+ "cannot": "ˈkæn.ɒt",
1424
+ "cant": "kænt",
1425
+ "cape": "keɪp",
1426
+ "car": "kɑːr",
1427
+ "card": "kɑːd",
1428
+ "care": "keər",
1429
+ "cared": "keər",
1430
+ "caredy": "",
1431
+ "careful": "ˈkeə.fəl",
1432
+ "carefully": "ˈkeə.fəl.i",
1433
+ "carpet": "ˈkɑː.pɪt",
1434
+ "carriage": "��kær.ɪdʒ",
1435
+ "carrie": "",
1436
+ "carried": "ˈkær.i",
1437
+ "carrier": "ˈkær.i.ər",
1438
+ "carrot": "ˈkær.ət",
1439
+ "carry": "ˈkær.i",
1440
+ "carrying": "ˈkær.i",
1441
+ "cart": "kɑːt",
1442
+ "carton": "ˈkɑː.tən",
1443
+ "cary": "",
1444
+ "case": "keɪs",
1445
+ "cash": "kæʃ",
1446
+ "cashier": "kæʃˈɪər",
1447
+ "cast": "kɑːst",
1448
+ "castle": "ˈkɑː.səl",
1449
+ "casual": "ˈkæʒ.ju.əl",
1450
+ "cat": "kæt",
1451
+ "catch": "kætʃ",
1452
+ "catche": "",
1453
+ "catched": "",
1454
+ "catcher": "ˈkætʃ.ər",
1455
+ "catching": "ˈkætʃ.ɪŋ",
1456
+ "caught": "kɔːt",
1457
+ "cause": "kɔːz",
1458
+ "ceased": "siːs",
1459
+ "cell": "sel",
1460
+ "cellar": "ˈsel.ər",
1461
+ "cement": "sɪˈment",
1462
+ "cene": "",
1463
+ "cent": "sent",
1464
+ "center": "ˈsen.tər",
1465
+ "cereal": "ˈsɪə.ri.əl",
1466
+ "chair": "tʃeər",
1467
+ "change": "tʃeɪndʒ",
1468
+ "changed": "tʃeɪndʒd",
1469
+ "chapter": "ˈtʃæp.tər",
1470
+ "character": "ˈkær.ək.tər",
1471
+ "charge": "tʃɑːdʒ",
1472
+ "charged": "tʃɑːdʒd",
1473
+ "charming": "ˈtʃɑː.mɪŋ",
1474
+ "chase": "tʃeɪs",
1475
+ "chased": "tʃeɪs",
1476
+ "chasing": "tʃeɪs",
1477
+ "chat": "tʃæt",
1478
+ "chatted": "tʃæt",
1479
+ "check": "tʃek",
1480
+ "checked": "tʃekt",
1481
+ "checking": "tʃek",
1482
+ "checkup": "ˈtʃek.ʌp",
1483
+ "cheek": "tʃiːk",
1484
+ "cheer": "tʃɪər",
1485
+ "cheering": "ˈtʃɪə.rɪŋ",
1486
+ "cheese": "tʃiːz",
1487
+ "cheetah": "ˈtʃiː.tə",
1488
+ "chick": "tʃɪk",
1489
+ "chief": "tʃiːf",
1490
+ "child": "tʃaɪld",
1491
+ "children": "ˈtʃɪl.drən",
1492
+ "chilly": "ˈtʃɪl.i",
1493
+ "chip": "tʃɪp",
1494
+ "chocolate": "ˈtʃɒk.lət",
1495
+ "choked": "tʃəʊkt",
1496
+ "choo-choo": "ˈtʃuː.tʃuː",
1497
+ "chool": "",
1498
+ "choose": "tʃuːz",
1499
+ "chopped": "",
1500
+ "chopper": "ˈtʃɒp.ər",
1501
+ "chopping": "",
1502
+ "chose": "tʃəʊz",
1503
+ "chosen": "ˈtʃəʊ.zən",
1504
+ "chowing": "",
1505
+ "chubby": "ˈtʃʌb.i",
1506
+ "chucked": "tʃʌk",
1507
+ "chug": "tʃʌɡ",
1508
+ "circle": "ˈsɜː.kəl",
1509
+ "circly": "",
1510
+ "circu": "",
1511
+ "city": "ˈsɪt.i",
1512
+ "cla": "",
1513
+ "clapped": "",
1514
+ "classe": "",
1515
+ "clean": "kliːn",
1516
+ "cleaned": "kliːn",
1517
+ "cleaner": "ˈkliː.nər",
1518
+ "cleaning": "ˈkliː.nɪŋ",
1519
+ "clear": "klɪər",
1520
+ "clearing": "ˈklɪə.rɪŋ",
1521
+ "clerk": "klɑːk",
1522
+ "clever": "ˈklev.ər",
1523
+ "climb": "klaɪm",
1524
+ "climbed": "klaɪm",
1525
+ "climbing": "ˈklaɪ.mɪŋ",
1526
+ "clip": "klɪp",
1527
+ "close": "kləʊz",
1528
+ "closed": "kləʊzd",
1529
+ "closer": "ˈkləʊ.zər",
1530
+ "closing": "ˈkləʊ.zɪŋ",
1531
+ "cloth": "klɒθ",
1532
+ "clothe": "kləʊð",
1533
+ "cloud": "klaʊd",
1534
+ "clown": "klaʊn",
1535
+ "club": "klʌb",
1536
+ "clump": "klʌmp",
1537
+ "coach": "kəʊtʃ",
1538
+ "coache": "",
1539
+ "coast": "kəʊst",
1540
+ "coat": "kəʊt",
1541
+ "coated": "ˈkəʊ.tɪd",
1542
+ "coconut": "ˈkəʊ.kə.nʌt",
1543
+ "coin": "kɔɪn",
1544
+ "cold": "kəʊld",
1545
+ "collapse": "kəˈlæps",
1546
+ "collapsed": "kəˈlæpst",
1547
+ "collecting": "kəˈlekt",
1548
+ "color": "ˈkʌl.ər",
1549
+ "colossal": "kəˈlɒs.əl",
1550
+ "comb": "kəʊm",
1551
+ "come": "kʌm",
1552
+ "comfort": "ˈkʌm.fət",
1553
+ "coming": "ˈkʌm.ɪŋ",
1554
+ "comment": "ˈkɒm.ent",
1555
+ "commonly": "ˈkɒm.ən.li",
1556
+ "complain": "kəmˈpleɪn",
1557
+ "complaining": "kəmˈpleɪ.nɪŋ",
1558
+ "complimented": "ˈkɒm.plɪ.mənt",
1559
+ "condition": "kənˈdɪʃ.ən",
1560
+ "cone": "kəʊn",
1561
+ "confused": "kənˈfjuːzd",
1562
+ "consciou": "",
1563
+ "constantly": "ˈkɒn.stənt.li",
1564
+ "continue": "kənˈtɪn.juː",
1565
+ "continued": "kənˈtɪn.juːd",
1566
+ "control": "kənˈtrəʊl",
1567
+ "cook": "kʊk",
1568
+ "cookie": "ˈkʊk.i",
1569
+ "cool": "kuːl",
1570
+ "coop": "kuːp",
1571
+ "cooped": "ˌkuːpt ˈʌp",
1572
+ "cooper": "ˈkuː.pər",
1573
+ "cooping": "kuːp",
1574
+ "cooter": "",
1575
+ "cord": "kɔːd",
1576
+ "core": "kɔːr",
1577
+ "corner": "ˈkɔː.nər",
1578
+ "cost": "kɒst",
1579
+ "costed": "kɒst",
1580
+ "costume": "ˈkɒs.tʃuːm",
1581
+ "could": "kʊd",
1582
+ "couldn't": "ˈkʊd.ənt",
1583
+ "council": "ˈkaʊn.səl",
1584
+ "count": "kaʊnt",
1585
+ "country": "ˈkʌn.tri",
1586
+ "couple": "ˈkʌp.əl",
1587
+ "courage": "ˈkʌr.ɪdʒ",
1588
+ "course": "kɔːs",
1589
+ "court": "kɔːt",
1590
+ "covered": "ˈkʌv.əd",
1591
+ "covering": "ˈkʌv.ər.ɪŋ",
1592
+ "cow": "kaʊ",
1593
+ "cow-cow-cow": "kaʊ",
1594
+ "cow-like": "",
1595
+ "cowardly": "ˈkaʊ.əd.li",
1596
+ "crabby": "ˈkræb.i",
1597
+ "crack": "kræk",
1598
+ "craft": "krɑːft",
1599
+ "cranky": "ˈkræŋ.ki",
1600
+ "crap": "kræp",
1601
+ "crape": "kreɪp",
1602
+ "craped": "",
1603
+ "crash": "kræʃ",
1604
+ "crashe": "",
1605
+ "crashed": "kræʃ",
1606
+ "crashing": "ˈkræʃ.ɪŋ",
1607
+ "cratch": "",
1608
+ "cratched": "",
1609
+ "crawled": "krɔːl",
1610
+ "crazy": "ˈkreɪ.zi",
1611
+ "cream": "kriːm",
1612
+ "creamed": "kriːm",
1613
+ "creaming": "kriːm",
1614
+ "crewing": "kruː",
1615
+ "crie": "",
1616
+ "cried": "kraɪd",
1617
+ "cro": "ˌkrəʊˈmæɡ.nən",
1618
+ "crossed": "krɒst",
1619
+ "crow": "krəʊ",
1620
+ "crowd": "kraʊd",
1621
+ "crowded": "ˈkraʊ.dɪd",
1622
+ "crown": "kraʊn",
1623
+ "crumb": "krʌm",
1624
+ "crumpled": "ˈkrʌm.pəld",
1625
+ "crushe": "",
1626
+ "crushed": "krʌʃ",
1627
+ "cry": "kraɪ",
1628
+ "crying": "ˈkraɪ.ɪŋ",
1629
+ "culture": "ˈkʌl.tʃər",
1630
+ "cup": "kʌp",
1631
+ "curb": "kɜːb",
1632
+ "cure": "kjʊər",
1633
+ "curiou": "",
1634
+ "curse": "kɜːs",
1635
+ "customer": "ˈkʌs.tə.mər",
1636
+ "cut": "kʌt",
1637
+ "cute": "kjuːt",
1638
+ "cutting": "ˈkʌt.ɪŋ",
1639
+ "cuz": "kəz",
1640
+ "dad": "dæd",
1641
+ "dada": "ˈdɑː.dɑː",
1642
+ "daddy": "ˈdæd.i",
1643
+ "dainty": "ˈdeɪn.ti",
1644
+ "daisy": "ˈdeɪ.zi",
1645
+ "daisying": "",
1646
+ "damaging": "ˈdæm.ɪ.dʒɪŋ",
1647
+ "damien": "",
1648
+ "damper": "ˈdæm.pər",
1649
+ "dance": "dɑːns",
1650
+ "dancing": "ˈdɑːn.sɪŋ",
1651
+ "dang": "dæŋ",
1652
+ "danger": "ˈdeɪn.dʒər",
1653
+ "dark": "dɑːk",
1654
+ "darker": "dɑːk",
1655
+ "darlin": "",
1656
+ "darling": "ˈdɑː.lɪŋ",
1657
+ "date": "deɪt",
1658
+ "daughter": "ˈdɔː.tər",
1659
+ "day": "deɪ",
1660
+ "daycare": "ˈdeɪ ˌkeər",
1661
+ "dazzled": "ˈdæz.əl",
1662
+ "dead": "ded",
1663
+ "deaf": "def",
1664
+ "dear": "dɪər",
1665
+ "decide": "dɪˈsaɪd",
1666
+ "decided": "dɪˈsaɪ.dɪd",
1667
+ "deck": "dek",
1668
+ "decoration": "ˌdek.əˈreɪ.ʃən",
1669
+ "deep": "diːp",
1670
+ "deeper": "diːp",
1671
+ "definitely": "ˈdef.ɪ.nət.li",
1672
+ "deliciou": "",
1673
+ "delightful": "dɪˈlaɪt.fəl",
1674
+ "densely": "ˈdens.li",
1675
+ "dentist": "ˈden.tɪst",
1676
+ "dessert": "dɪˈzɜːt",
1677
+ "destroy": "dɪˈstrɔɪ",
1678
+ "destroyed": "dɪˈstrɔɪ",
1679
+ "devil": "ˈdev.əl",
1680
+ "did": "dɪd",
1681
+ "did-": "dɪd",
1682
+ "didn't": "ˈdɪd.ənt",
1683
+ "die": "daɪ",
1684
+ "died": "daɪ",
1685
+ "diet": "ˈdaɪ.ət",
1686
+ "different": "ˈdɪf.ər.ənt",
1687
+ "dig": "dɪɡ",
1688
+ "digged": "",
1689
+ "digger": "ˈdɪɡ.ər",
1690
+ "digging": "ˈdɪɡ.ɪŋ",
1691
+ "dinner": "ˈdɪn.ər",
1692
+ "dinosaur": "ˈdaɪ.nə.sɔːr",
1693
+ "dip": "dɪp",
1694
+ "dipped": "",
1695
+ "dippity": "",
1696
+ "dirt": "dɜːt",
1697
+ "dirty": "ˈdɜː.ti",
1698
+ "disappear": "ˌdɪs.əˈpɪər",
1699
+ "disappeared": "ˌdɪs.əˈpɪəd",
1700
+ "disappointed": "ˌdɪs.əˈpɔɪn.tɪd",
1701
+ "disc": "dɪsk",
1702
+ "disciplining": "ˈdɪs.ə.plɪn",
1703
+ "discouraged": "dɪˈskʌr.ɪdʒd",
1704
+ "dish": "dɪʃ",
1705
+ "diskette": "dɪsˈket",
1706
+ "display": "dɪˈspleɪ",
1707
+ "distance": "ˈdɪs.təns",
1708
+ "distract": "dɪˈstrækt",
1709
+ "ditty": "ˈdɪt.i",
1710
+ "dive": "daɪv",
1711
+ "dived": "daɪv",
1712
+ "diver": "ˈdaɪ.vər",
1713
+ "diving": "ˈdaɪ.vɪŋ",
1714
+ "dizzier": "ˈdɪz.i",
1715
+ "dizzy": "ˈdɪz.i",
1716
+ "do": "də",
1717
+ "doc": "dɒk",
1718
+ "doctor": "ˈdɒk.tər",
1719
+ "dodge": "dɒdʒ",
1720
+ "doe": "dəʊ",
1721
+ "doesn't": "ˈdʌz.ənt",
1722
+ "dog": "dɒɡ",
1723
+ "doggie": "ˈdɔ·ɡi",
1724
+ "doggy": "ˈdɒɡ.i",
1725
+ "doing": "ˈduː.ɪŋ",
1726
+ "doll": "dɒl",
1727
+ "dollar": "ˈdɒl.ər",
1728
+ "dolly": "ˈdɒl.i",
1729
+ "dolphin": "ˈdɒl.fɪn",
1730
+ "dome": "dəʊm",
1731
+ "don't": "dəʊnt",
1732
+ "done": "dʌn",
1733
+ "donkey": "ˈdɒŋ.ki",
1734
+ "door": "dɔːr",
1735
+ "doorkeeper": "ˈdɔːˌkiː.pər",
1736
+ "doorman": "ˈdɔː.mən",
1737
+ "dot": "dɒt",
1738
+ "double": "ˈdʌb.əl",
1739
+ "doubt": "daʊt",
1740
+ "dough": "dəʊ",
1741
+ "dove": "dʌv",
1742
+ "down": "daʊn",
1743
+ "down-bait": "",
1744
+ "draft": "drɑːft",
1745
+ "drafted": "drɑːft",
1746
+ "drag": "dræɡ",
1747
+ "dragged": "",
1748
+ "dragging": "",
1749
+ "dragon": "ˈdræɡ.ən",
1750
+ "drank": "dræŋk",
1751
+ "drastery": "",
1752
+ "draw": "drɔː",
1753
+ "drawing": "ˈdrɔː.ɪŋ",
1754
+ "dre": "",
1755
+ "dressed": "drest",
1756
+ "dribbling": "ˈdrɪb.əl.ɪŋ",
1757
+ "dried": "draɪd",
1758
+ "drift": "drɪft",
1759
+ "drifted": "drɪft",
1760
+ "drill": "drɪl",
1761
+ "drink": "drɪŋk",
1762
+ "drinking": "ˈdrɪŋ.kɪŋ",
1763
+ "dripping": "ˈdrɪp.ɪŋ",
1764
+ "drippy": "ˈdrɪp.i",
1765
+ "drive": "draɪv",
1766
+ "drived": "ˈtest ˌdraɪv",
1767
+ "driver": "ˈdraɪ.vər",
1768
+ "driving": "ˈdraɪ.vɪŋ",
1769
+ "drooling": "druːl",
1770
+ "drop": "drɒp",
1771
+ "dropped": "",
1772
+ "dropping": "",
1773
+ "drove": "drəʊv",
1774
+ "drown": "draʊn",
1775
+ "drowned": "draʊn",
1776
+ "drowning": "ˈdraʊn.ɪŋ",
1777
+ "drowse": "draʊz",
1778
+ "drowsy": "ˈdraʊ.zi",
1779
+ "drug": "drʌɡ",
1780
+ "drunk": "drʌŋk",
1781
+ "dry": "draɪ",
1782
+ "duck": "dʌk",
1783
+ "duckle": "",
1784
+ "dude": "duːd",
1785
+ "dug": "dʌɡ",
1786
+ "dumb": "dʌm",
1787
+ "dumbstruck": "ˌdʌmˈfaʊn.dɪd",
1788
+ "dummy": "ˈdʌm.i",
1789
+ "dump": "dʌmp",
1790
+ "dumped": "dʌmp",
1791
+ "dumping": "ˈdʌm.pɪŋ",
1792
+ "dun": "dʌn",
1793
+ "dungeon": "ˈdʌn.dʒən",
1794
+ "duper": "ˌsuː.pəˈduː.pər",
1795
+ "dusty": "ˈdʌs.ti",
1796
+ "ea": "ˌiːˈeɪ",
1797
+ "each": "iːtʃ",
1798
+ "eagle": "ˈiː.ɡəl",
1799
+ "ear": "ɪər",
1800
+ "earched": "",
1801
+ "early": "ˈɜː.li",
1802
+ "earned": "ɜːn",
1803
+ "earphone": "ˈiə.fəʊn",
1804
+ "earring": "ˈɪə.rɪŋ",
1805
+ "earth": "ɜːθ",
1806
+ "easick": "",
1807
+ "easier": "ˈiː.zi",
1808
+ "easily": "ˈiː.zəl.i",
1809
+ "easy": "ˈiː.zi",
1810
+ "eat": "iːt",
1811
+ "eaten": "",
1812
+ "eater": "ˈiː.tər",
1813
+ "eating": "iːt",
1814
+ "ec": "ˌiːˈsiː",
1815
+ "econd": "",
1816
+ "ecret": "",
1817
+ "ection": "",
1818
+ "ecurity": "",
1819
+ "edge": "edʒ",
1820
+ "ee": "-iː",
1821
+ "eed": "",
1822
+ "eeded": "",
1823
+ "eeing": "",
1824
+ "eem": "",
1825
+ "eemed": "",
1826
+ "een": "",
1827
+ "effect": "ɪˈfekt",
1828
+ "effort": "ˈef.ət",
1829
+ "egg": "eɡ",
1830
+ "egg-stricken": "",
1831
+ "eh": "eɪ",
1832
+ "eight": "eɪt",
1833
+ "eight-year-old": "",
1834
+ "either": "ˈaɪ.ðər",
1835
+ "elephant": "ˈel.ɪ.fənt",
1836
+ "elephant-sized": "",
1837
+ "elf": "elf",
1838
+ "ell": "",
1839
+ "eller": "",
1840
+ "elling": "",
1841
+ "else": "els",
1842
+ "elve": "",
1843
+ "elven": "",
1844
+ "embarrassed": "ɪmˈbær.əst",
1845
+ "emergency": "ɪˈmɜː.dʒən.si",
1846
+ "empty": "ˈemp.ti",
1847
+ "encouraged": "ɪnˈkʌr.ɪdʒd",
1848
+ "end": "end",
1849
+ "ended": "",
1850
+ "ending": "",
1851
+ "enemy": "ˈen.ə.mi",
1852
+ "enforcer": "ɪnˈfɔː.sər",
1853
+ "engaged": "ɪnˈɡeɪdʒd",
1854
+ "enjoy": "ɪnˈdʒɔɪ",
1855
+ "enjoyed": "ɪnˈdʒɔɪ",
1856
+ "enjoying": "ɪnˈdʒɔɪ",
1857
+ "enormou": "",
1858
+ "enough": "ɪˈnʌf",
1859
+ "ense": "",
1860
+ "ent": "ˌiː.enˈtiː",
1861
+ "entence": "",
1862
+ "entire": "ɪnˈtaɪər",
1863
+ "entrance": "ˈen.trəns",
1864
+ "equal": "ˈiː.kwəl",
1865
+ "er": "ɜːr",
1866
+ "errand": "ˈer.ənd",
1867
+ "et": "et ˈæl",
1868
+ "ettle": "",
1869
+ "even": "ˈiː.vən",
1870
+ "evening": "ˈiːv.nɪŋ",
1871
+ "event": "ɪˈvent",
1872
+ "eventh": "",
1873
+ "ever": "ˈev.ər",
1874
+ "every": "ˈev.ri",
1875
+ "everybody": "ˈev.riˌbɒd.i",
1876
+ "everyone": "ˈev.ri.wʌn",
1877
+ "everything": "ˈev.ri.θɪŋ",
1878
+ "everywhere": "ˈev.ri.weər",
1879
+ "ew": "ˈiːuː",
1880
+ "ewing": "ˌjuː.ɪŋz sɑːˈkəʊ.mə",
1881
+ "ewn": "",
1882
+ "exact": "ɪɡˈzækt",
1883
+ "exactly": "ɪɡˈzækt.li",
1884
+ "examine": "ɪɡˈzæm.ɪn",
1885
+ "examining": "ɪɡˈzæm.ɪn",
1886
+ "excellent": "ˈek.səl.ənt",
1887
+ "except": "ɪkˈsept",
1888
+ "excited": "ɪkˈsaɪ.tɪd",
1889
+ "excitement": "ɪkˈsaɪt.mənt",
1890
+ "excuse": "ɪkˈskjuːz",
1891
+ "explain": "ɪkˈspleɪn",
1892
+ "explained": "ɪkˈspleɪn",
1893
+ "explaining": "ɪkˈspleɪ.nɪŋ",
1894
+ "exploded": "ɪkˈspləʊd",
1895
+ "expression": "ɪkˈspreʃ.ən",
1896
+ "extra": "ˈek.strə",
1897
+ "eye": "aɪ",
1898
+ "eyeball": "ˈaɪ.bɔːl",
1899
+ "eyebrow": "ˈaɪ.braʊ",
1900
+ "face": "feɪs",
1901
+ "fact": "fækt",
1902
+ "factory": "ˈfæk.tər.i",
1903
+ "faddled": "",
1904
+ "fade": "feɪd",
1905
+ "faded": "ˈfeɪ.dɪd",
1906
+ "failed": "feɪld",
1907
+ "faint": "feɪnt",
1908
+ "fainted": "feɪnt",
1909
+ "fainting": "feɪnt",
1910
+ "fair": "feər",
1911
+ "fairy": "ˈfeə.ri",
1912
+ "faith": "feɪθ",
1913
+ "fake": "feɪk",
1914
+ "faked": "feɪk",
1915
+ "faking": "feɪk",
1916
+ "fall": "fɔːl",
1917
+ "falled": "",
1918
+ "fallen": "ˈfɔː.lən",
1919
+ "falling": "ˈfɔː.lɪŋ",
1920
+ "family": "ˈfæm.əl.i",
1921
+ "fanciest": "ˈfæn.si",
1922
+ "fantastic": "fænˈtæs.tɪk",
1923
+ "far": "fɑːr",
1924
+ "farther": "ˈfɑː.ðər",
1925
+ "fast": "fɑːst",
1926
+ "faster": "fɑːst",
1927
+ "fastest": "fɑːst",
1928
+ "fat": "fæt",
1929
+ "father": "ˈfɑː.ðər",
1930
+ "fatter": "",
1931
+ "fault": "fɒlt",
1932
+ "favorite": "ˈfeɪ.vər.ɪt",
1933
+ "fear": "fɪər",
1934
+ "fed": "fed",
1935
+ "feel": "fiːl",
1936
+ "feeling": "ˈfiː.lɪŋ",
1937
+ "feet": "fiːt",
1938
+ "fell": "fel",
1939
+ "felled": "fel",
1940
+ "felt": "felt",
1941
+ "fetch": "fetʃ",
1942
+ "fetcher": "",
1943
+ "fetching": "ˈfetʃ.ɪŋ",
1944
+ "fever": "ˈfiː.vər",
1945
+ "few": "fjuː",
1946
+ "field": "fiːld",
1947
+ "fifty": "ˈfɪf.ti",
1948
+ "fight": "faɪt",
1949
+ "fighting": "ˈfaɪ.tɪŋ",
1950
+ "figure": "ˈfɪɡ.ər",
1951
+ "fill": "fɪl",
1952
+ "filled": "-fɪld",
1953
+ "filling": "ˈfɪl.ɪŋ",
1954
+ "film": "fɪlm",
1955
+ "final": "ˈfaɪ.nəl",
1956
+ "finally": "ˈfaɪ.nəl.i",
1957
+ "find": "faɪnd",
1958
+ "finding": "ˈfaɪn.dɪŋ",
1959
+ "fine": "faɪn",
1960
+ "finger": "ˈfɪŋ.ɡər",
1961
+ "finish": "ˈfɪn.ɪʃ",
1962
+ "finished": "ˈfɪn.ɪʃt",
1963
+ "finishing": "ˈfɪn.ɪʃ",
1964
+ "fire": "faɪər",
1965
+ "fired": "-faɪəd",
1966
+ "firmly": "ˈfɜːm.li",
1967
+ "first": "ˈfɜːst",
1968
+ "fish": "fɪʃ",
1969
+ "fishe": "",
1970
+ "fished": "fɪʃ",
1971
+ "fishing": "ˈfɪʃ.ɪŋ",
1972
+ "fishnet": "ˈfɪʃ.net",
1973
+ "fist": "fɪst",
1974
+ "fit": "fɪt",
1975
+ "five": "faɪv",
1976
+ "fix": "fɪks",
1977
+ "fixe": "ˌiː.deɪ ˈfiːks",
1978
+ "fixed": "fɪkst",
1979
+ "fixing": "ˈfɪk.sɪŋ",
1980
+ "flag": "flæɡ",
1981
+ "flame": "fleɪm",
1982
+ "flapping": "",
1983
+ "flat": "flæt",
1984
+ "flattening": "ˈflæt.ən",
1985
+ "flatting": "",
1986
+ "flaw": "flɔː",
1987
+ "flew": "fluː",
1988
+ "flie": "",
1989
+ "flied": "flaɪ",
1990
+ "flighted": "ˈflaɪ.tɪd",
1991
+ "fling": "flɪŋ",
1992
+ "flinging": "flɪŋ",
1993
+ "flip": "flɪp",
1994
+ "flipped": "",
1995
+ "float": "fləʊt",
1996
+ "floated": "fləʊt",
1997
+ "floating": "ˈfləʊ.tɪŋ",
1998
+ "floor": "flɔːr",
1999
+ "flow": "fləʊ",
2000
+ "flowed": "fləʊ",
2001
+ "flower": "flaʊər",
2002
+ "flowing": "ˈfləʊ.ɪŋ",
2003
+ "fluid": "ˈfluː.ɪd",
2004
+ "fluttering": "ˈflʌt.ər",
2005
+ "fly": "flaɪ",
2006
+ "flyed": "",
2007
+ "flying": "ˈflaɪ.ɪŋ",
2008
+ "foal": "fəʊl",
2009
+ "fola": "",
2010
+ "fold": "fəʊld",
2011
+ "folding": "ˈfəʊl.dɪŋ",
2012
+ "follow": "ˈfɒl.əʊ",
2013
+ "followed": "ˈfɒl.əʊ",
2014
+ "following": "ˈfɒl.əʊ.ɪŋ",
2015
+ "food": "fuːd",
2016
+ "fool": "fuːl",
2017
+ "fooled": "fuːl",
2018
+ "foot": "fʊt",
2019
+ "for": "fɔːr",
2020
+ "forehead": "ˈfɒr.ɪd",
2021
+ "forest": "ˈfɒr.ɪst",
2022
+ "forever": "fəˈre.vər",
2023
+ "forget": "fəˈɡet",
2024
+ "forgetting": "fəˈɡet",
2025
+ "forgot": "fəˈɡet",
2026
+ "form": "fɔːm",
2027
+ "fought": "fɔːt",
2028
+ "found": "faʊnd",
2029
+ "four": "fɔːr",
2030
+ "fox": "fɒks",
2031
+ "frame": "freɪm",
2032
+ "fraud": "frɔːd",
2033
+ "freak": "friːk",
2034
+ "freaked": "friːk",
2035
+ "freaking": "ˈfriː.kɪŋ",
2036
+ "free": "friː",
2037
+ "fricked": "",
2038
+ "friend": "frend",
2039
+ "fright": "fraɪt",
2040
+ "frightened": "ˈfraɪ.tənd",
2041
+ "from": "frɒm",
2042
+ "front": "frʌnt",
2043
+ "frown": "fraʊn",
2044
+ "frowning": "fraʊn",
2045
+ "froze": "frəʊz",
2046
+ "fruit": "fruːt",
2047
+ "fu": "ˌkʌŋ ˈfuː",
2048
+ "fucking": "ˈfʌk.ɪŋ",
2049
+ "full": "fʊl",
2050
+ "fuller": "fʊl",
2051
+ "fun": "fʌn",
2052
+ "funner": "",
2053
+ "funny": "ˈfʌn.i",
2054
+ "furiou": "",
2055
+ "further": "ˈfɜː.ðər",
2056
+ "ga": "",
2057
+ "gag": "ɡæɡ",
2058
+ "game": "ɡeɪm",
2059
+ "garbage": "ˈɡɑː.bɪdʒ",
2060
+ "garden": "ˈɡɑː.dən",
2061
+ "gather": "ˈɡæð.ər",
2062
+ "gave": "ɡeɪv",
2063
+ "gay": "ɡeɪ",
2064
+ "gear": "ɡɪər",
2065
+ "geniu": "",
2066
+ "get": "ɡet",
2067
+ "getting": "",
2068
+ "ghetto": "ˈɡet.əʊ",
2069
+ "ghost": "ɡəʊst",
2070
+ "ghosty": "",
2071
+ "giddy": "ˈɡɪd.i",
2072
+ "gifted": "ˈɡɪf.tɪd",
2073
+ "gigantic": "ˌdʒaɪˈɡæn.tɪk",
2074
+ "giggled": "ˈɡɪɡ.əl",
2075
+ "giraffe": "dʒɪˈrɑːf",
2076
+ "giraffe-like": "",
2077
+ "girl": "ɡɜːl",
2078
+ "girlfriend": "ˈɡɜːl.frend",
2079
+ "give": "ɡɪv",
2080
+ "giving": "ˈɡɪvɪŋ",
2081
+ "gla": "",
2082
+ "glad": "ɡlæd",
2083
+ "glasse": "",
2084
+ "glide": "ɡlaɪd",
2085
+ "glided": "ɡlaɪd",
2086
+ "glowed": "ɡləʊ",
2087
+ "go": "ɡəʊ",
2088
+ "goal": "ɡəʊl",
2089
+ "goat": "ɡəʊt",
2090
+ "gobble": "ˈɡɒb.əl",
2091
+ "gobbling": "ˈɡɒb.əl",
2092
+ "god": "ɡɒd",
2093
+ "godson": "ˈɡɒd.sʌn",
2094
+ "goe": "",
2095
+ "going": "ˈɡəʊ.ɪŋ",
2096
+ "gold": "ɡəʊld",
2097
+ "gone": "ɡɒn",
2098
+ "gonna": "ˈɡə.nə",
2099
+ "goo-lop": "",
2100
+ "good": "ɡʊd",
2101
+ "goodbye": "ɡʊdˈbaɪ",
2102
+ "goodie": "",
2103
+ "goodne": "",
2104
+ "goofy": "ˈɡuː.fi",
2105
+ "gorilla": "ɡəˈrɪl.ə",
2106
+ "gosh": "ɡɒʃ",
2107
+ "gossanet": "",
2108
+ "gosset": "",
2109
+ "got": "ɡɒt",
2110
+ "gotta": "ˈɡɒt.ə",
2111
+ "gotten": "ˈɡɒt.ən",
2112
+ "gra": "",
2113
+ "grab": "ɡræb",
2114
+ "grabbed": "",
2115
+ "grabbing": "-ɡræb.ɪŋ",
2116
+ "grade": "ɡreɪd",
2117
+ "grandma": "ˈɡræn.mɑː",
2118
+ "grandmother": "ˈɡræn.mʌð.ər",
2119
+ "grandpa": "ˈɡræn.pɑː",
2120
+ "grandson": "ˈɡræn.sʌn",
2121
+ "granny": "ˈɡræn.i",
2122
+ "graph": "ɡrɑːf",
2123
+ "gray": "ɡreɪ",
2124
+ "great": "ɡreɪt",
2125
+ "greedy": "ˈɡriː.di",
2126
+ "green": "ɡriːn",
2127
+ "greet": "ɡriːt",
2128
+ "grew": "ɡruː",
2129
+ "grin": "ɡrɪn",
2130
+ "grinched": "",
2131
+ "grinning": "ˈɡrɪn.ɪŋ",
2132
+ "grip": "ɡrɪp",
2133
+ "gro": "",
2134
+ "grocer": "ˈɡrəʊ.sər",
2135
+ "grocerie": "",
2136
+ "grocery": "ˈɡrəʊ.sər.i",
2137
+ "ground": "ɡraʊnd",
2138
+ "grounded": "ˈɡraʊn.dɪd",
2139
+ "grow": "ɡrəʊ",
2140
+ "growl": "ɡraʊl",
2141
+ "growled": "ɡraʊl",
2142
+ "growling": "ˈɡraʊ.lɪŋ",
2143
+ "grown": "ɡrəʊn",
2144
+ "grown-up": "ˌɡrəʊn ˈʌp",
2145
+ "grueling": "ˈɡruː.ə.lɪŋ",
2146
+ "grumpy": "ˈɡrʌm.pi",
2147
+ "guard": "ɡɑːd",
2148
+ "guarded": "ˈɡɑː.dɪd",
2149
+ "guarding": "ɡɑːd",
2150
+ "gue": "",
2151
+ "guilty": "ˈɡɪl.ti",
2152
+ "gurgling": "ˈɡɜː.ɡəl",
2153
+ "gushed": "ɡʌʃ",
2154
+ "guy": "ɡaɪ",
2155
+ "gym": "dʒɪm",
2156
+ "ha": "hɑː",
2157
+ "habedapa": "",
2158
+ "habit": "ˈhæb.ɪt",
2159
+ "had": "hæd",
2160
+ "hade": "",
2161
+ "hadn't": "ˈhæd.ənt",
2162
+ "hair": "heər",
2163
+ "hake": "heɪk",
2164
+ "haking": "",
2165
+ "half": "hɑːf",
2166
+ "halfway": "ˌhɑːfˈweɪ",
2167
+ "hall": "hɔːl",
2168
+ "hallway": "ˈhɔːl.weɪ",
2169
+ "hammer": "ˈhæm.ər",
2170
+ "hand": "hænd",
2171
+ "handed": "-hæn.dɪd",
2172
+ "handle": "ˈhæn.dəl",
2173
+ "handy-dandy": "",
2174
+ "hang": "hæŋ",
2175
+ "hangar": "ˈhæŋ.ər",
2176
+ "hanging": "ˈhæŋ.ɪŋ",
2177
+ "hape": "",
2178
+ "haped": "",
2179
+ "haping": "",
2180
+ "happen": "ˈhæp.ən",
2181
+ "happened": "ˈhæp.ən",
2182
+ "happening": "ˈhæp.ən.ɪŋ",
2183
+ "happier": "ˈhæp.i",
2184
+ "happily": "ˈhæp.əl.i",
2185
+ "happy": "ˈhæp.i",
2186
+ "hard": "hɑːd",
2187
+ "harder": "hɑːd",
2188
+ "hardly": "ˈhɑːd.li",
2189
+ "hare": "heər",
2190
+ "hared": "heər",
2191
+ "hark": "hɑːk",
2192
+ "hasn't": "ˈhæz.ənt",
2193
+ "hat": "hæt",
2194
+ "hate": "heɪt",
2195
+ "hateful": "ˈheɪt.fəl",
2196
+ "have": "hæv",
2197
+ "having": "",
2198
+ "hazelnut": "ˈheɪ.zəl.nʌt",
2199
+ "he": "hiː",
2200
+ "he'd": "hiːd",
2201
+ "he'll": "hiːl",
2202
+ "head": "hed",
2203
+ "headache": "ˈhed.eɪk",
2204
+ "heal": "hiːl",
2205
+ "healer": "ˈhɪə.lər",
2206
+ "healing": "ˈhiː.lɪŋ",
2207
+ "healthy": "ˈhel.θi",
2208
+ "heap": "hiːp",
2209
+ "hear": "hɪər",
2210
+ "heard": "hɪər",
2211
+ "hearing": "ˈhɪə.rɪŋ",
2212
+ "heart": "hɑːt",
2213
+ "hearty": "ˈhɑː.ti",
2214
+ "heat": "hiːt",
2215
+ "heather": "ˈheð.ər",
2216
+ "heaven": "ˈhev.ən",
2217
+ "heavy": "ˈhev.i",
2218
+ "heck": "hek",
2219
+ "heep": "",
2220
+ "height": "haɪt",
2221
+ "held": "held",
2222
+ "helf": "",
2223
+ "helicopter": "ˈhel.ɪˌkɒp.tər",
2224
+ "helium": "ˈhiː.li.əm",
2225
+ "hell": "hel",
2226
+ "hello": "heˈləʊ",
2227
+ "help": "help",
2228
+ "helped": "help",
2229
+ "helping": "ˈhel.pɪŋ",
2230
+ "her": "hɜːr",
2231
+ "herbling": "",
2232
+ "here": "hɪər",
2233
+ "hero": "ˈhɪə.rəʊ",
2234
+ "herself": "hɜːˈself",
2235
+ "hey": "heɪ",
2236
+ "hh": "",
2237
+ "hi": "haɪ",
2238
+ "hiccup": "ˈhɪk.ʌp",
2239
+ "hiccuping": "ˈhɪk.ʌp",
2240
+ "hid": "",
2241
+ "hide": "haɪd",
2242
+ "high": "haɪ",
2243
+ "higher": "ˈhaɪ.ər",
2244
+ "hill": "hɪl",
2245
+ "him": "hɪm",
2246
+ "himself": "hɪmˈself",
2247
+ "hining": "",
2248
+ "hiny": "",
2249
+ "hip": "hɪp",
2250
+ "hippo": "ˌhɪp.əˈpɒt.ə.məs",
2251
+ "hirt": "",
2252
+ "hit": "hɪt",
2253
+ "hitting": "",
2254
+ "hiya": "ˈhaɪ.jə",
2255
+ "hmm": "həm",
2256
+ "hocked": "hɒk",
2257
+ "hoe": "həʊ",
2258
+ "hogging": "hɒɡ",
2259
+ "hold": "həʊld",
2260
+ "holded": "",
2261
+ "holder": "ˈhəʊl.dər",
2262
+ "holding": "ˈhəʊl.dɪŋ",
2263
+ "hole": "həʊl",
2264
+ "holocaust": "ˈhɒl.ə.kɔːst",
2265
+ "home": "həʊm",
2266
+ "honey": "ˈhʌn.i",
2267
+ "hook": "hʊk",
2268
+ "hooked": "hʊkt",
2269
+ "hooking": "hʊk",
2270
+ "hoop": "huːp",
2271
+ "hooray": "həˈreɪ",
2272
+ "hoot": "huːt",
2273
+ "hooted": "huːt",
2274
+ "hooting": "huːt",
2275
+ "hop": "hɒp",
2276
+ "hope": "həʊp",
2277
+ "hopele": "",
2278
+ "hopkeeper": "",
2279
+ "hopped": "",
2280
+ "hopper": "ˈhɒp.ər",
2281
+ "hopperoo": "",
2282
+ "hopping": "",
2283
+ "hore": "",
2284
+ "horn": "hɔːn",
2285
+ "horrified": "ˈhɒr.ɪ.faɪd",
2286
+ "horse": "hɔːs",
2287
+ "horsey": "ˈhɔː.si",
2288
+ "hort": "",
2289
+ "horter": "",
2290
+ "hospital": "ˈhɒs.pɪ.təl",
2291
+ "hot": "hɒt",
2292
+ "hould": "",
2293
+ "houlder": "",
2294
+ "houldn't": "",
2295
+ "hour": "aʊər",
2296
+ "house": "haʊs",
2297
+ "hout": "",
2298
+ "houted": "",
2299
+ "houting": "",
2300
+ "hove": "həʊv",
2301
+ "hovel": "ˈhɒv.əl",
2302
+ "hoveled": "",
2303
+ "hoveling": "",
2304
+ "how": "haʊ",
2305
+ "how'd": "",
2306
+ "howed": "",
2307
+ "hower": "",
2308
+ "howing": "",
2309
+ "hrimp": "",
2310
+ "hrink": "",
2311
+ "hrugged": "",
2312
+ "hrugging": "",
2313
+ "hrunk": "",
2314
+ "hudder": "",
2315
+ "huffle": "",
2316
+ "hug": "hʌɡ",
2317
+ "huge": "hjuːdʒ",
2318
+ "hugged": "",
2319
+ "hugging": "",
2320
+ "huh": "hə",
2321
+ "human": "ˈhjuː.mən",
2322
+ "hump": "hʌmp",
2323
+ "hundred": "ˈhʌn.drəd",
2324
+ "hungrier": "ˈhʌŋ.ɡri",
2325
+ "hungriest": "ˈhʌŋ.ɡri",
2326
+ "hungry": "ˈhʌŋ.ɡri",
2327
+ "hunt": "hʌnt",
2328
+ "hunting": "ˈhʌn.tɪŋ",
2329
+ "hurl": "hɜːl",
2330
+ "hurried": "ˈhʌr.id",
2331
+ "hurry": "ˈhʌr.i",
2332
+ "hurt": "hɜːt",
2333
+ "hurted": "",
2334
+ "hurting": "hɜːt",
2335
+ "husband": "ˈhʌz.bənd",
2336
+ "hut": "hʌt",
2337
+ "hutting": "",
2338
+ "hy": "",
2339
+ "hypnotized": "ˈhɪp.nə.taɪz",
2340
+ "i": "aɪ",
2341
+ "i'll": "aɪl",
2342
+ "i'm": "aɪm",
2343
+ "i've": "aɪv",
2344
+ "ice": "aɪs",
2345
+ "ick": "ɪk",
2346
+ "ick.\"": "ɪk",
2347
+ "icker": "",
2348
+ "ide": "",
2349
+ "idea": "aɪˈdɪə",
2350
+ "identify": "aɪˈden.tɪ.faɪ",
2351
+ "idetracked": "",
2352
+ "idewalk": "",
2353
+ "if": "ɪf",
2354
+ "ighed": "",
2355
+ "ight": "",
2356
+ "ighted": "",
2357
+ "ign": "",
2358
+ "ignore": "ɪɡˈnɔːr",
2359
+ "ignoring": "ɪɡˈnɔːr",
2360
+ "ill": "ɪl",
2361
+ "illier": "",
2362
+ "illy": "",
2363
+ "ilver": "",
2364
+ "imitate": "ˈɪm.ɪ.teɪt",
2365
+ "impact": "ˈɪm.pækt",
2366
+ "imple": "",
2367
+ "important": "ɪmˈpɔː.tənt",
2368
+ "impossible": "ɪmˈpɒs.ə.bəl",
2369
+ "impressed": "ɪmˈpres",
2370
+ "in": "ɪn",
2371
+ "in-charge": "",
2372
+ "ince": "",
2373
+ "inch": "ɪntʃ",
2374
+ "indoor": "ˌɪnˈdɔːr",
2375
+ "infant": "ˈɪn.fənt",
2376
+ "infected": "ɪnˈfek.tɪd",
2377
+ "ing": "-ɪŋ",
2378
+ "inging": "",
2379
+ "ingle": "",
2380
+ "ink": "ɪŋk",
2381
+ "inked": "ɪŋk",
2382
+ "inking": "ɪŋk",
2383
+ "inning": "ˈɪn.ɪŋ",
2384
+ "innocence": "ˈɪn.ə.səns",
2385
+ "innocent": "ˈɪn.ə.sənt",
2386
+ "innocently": "ˈɪn.ə.sənt.li",
2387
+ "inside": "ɪnˈsaɪd",
2388
+ "install": "ɪnˈstɔːl",
2389
+ "instead": "ɪnˈsted",
2390
+ "interested": "ˈɪn.tres.tɪd",
2391
+ "interesting": "ˈɪn.tres.tɪŋ",
2392
+ "interrupt": "ˌɪn.təˈrʌpt",
2393
+ "interruption": "ˌɪn.təˈrʌp.ʃən",
2394
+ "into": "ˈɪn.tuː",
2395
+ "involve": "ɪnˈvɒlv",
2396
+ "ir": "",
2397
+ "ir,\"": "",
2398
+ "isn't": "ˈɪz.ənt",
2399
+ "ister": "",
2400
+ "it": "ɪt",
2401
+ "it'd": "ˈɪt.əd",
2402
+ "it'll": "ˈɪt.əl",
2403
+ "ite": "-aɪt",
2404
+ "item": "ˈaɪ.təm",
2405
+ "itself": "ɪtˈself",
2406
+ "itting": "",
2407
+ "ix": "",
2408
+ "ix-year-old": "",
2409
+ "ize": "-aɪz",
2410
+ "jack": "dʒæk",
2411
+ "jackal": "ˈdʒæk.əl",
2412
+ "jacket": "ˈdʒæk.ɪt",
2413
+ "jam": "dʒæm",
2414
+ "jar": "dʒɑːr",
2415
+ "jason": "",
2416
+ "jaw": "dʒɔː",
2417
+ "jealou": "",
2418
+ "jennifer": "",
2419
+ "jet": "dʒet",
2420
+ "jinkly": "",
2421
+ "job": "dʒɒb",
2422
+ "jock": "dʒɒk",
2423
+ "joe": "dʒəʊ",
2424
+ "joey": "ˈdʒəʊ.i",
2425
+ "jog": "dʒɒɡ",
2426
+ "jogged": "",
2427
+ "jogging": "ˈdʒɒɡ.ɪŋ",
2428
+ "john": "ˈdʒɒn",
2429
+ "join": "dʒɔɪn",
2430
+ "joined": "dʒɔɪn",
2431
+ "joke": "dʒəʊk",
2432
+ "journal": "ˈdʒɜː.nəl",
2433
+ "joy": "dʒɔɪ",
2434
+ "joyed": "",
2435
+ "judge": "dʒʌdʒ",
2436
+ "juggle": "ˈdʒʌɡ.əl",
2437
+ "juggling": "ˈdʒʌɡ.lɪŋ",
2438
+ "juice": "dʒuːs",
2439
+ "jumbled": "ˈdʒʌm.bəl",
2440
+ "jump": "dʒʌmp",
2441
+ "jump-jump": "dʒʌmp",
2442
+ "jumped": "dʒʌmp",
2443
+ "jumper": "ˈdʒʌm.pər",
2444
+ "jumping": "dʒʌmp",
2445
+ "junk": "dʒʌŋk",
2446
+ "just": "dʒʌst",
2447
+ "kangaroo": "ˌkæŋ.ɡərˈuː",
2448
+ "keep": "kiːp",
2449
+ "keeper": "ˈkiː.pər",
2450
+ "keeping": "ˈkiː.pɪŋ",
2451
+ "kept": "kept",
2452
+ "ki": "",
2453
+ "kick": "kɪk",
2454
+ "kicked": "kɪk",
2455
+ "kid": "kɪd",
2456
+ "kidding": "",
2457
+ "kie": "",
2458
+ "kill": "kɪl",
2459
+ "killed": "kɪl",
2460
+ "killer": "ˈkɪl.ər",
2461
+ "killing": "ˈkɪl.ɪŋ",
2462
+ "kind": "kaɪnd",
2463
+ "kinda": "ˈkaɪ.ndə",
2464
+ "kindergarten": "ˈkɪn.dəˌɡɑː.tən",
2465
+ "king": "kɪŋ",
2466
+ "kinned": "",
2467
+ "kinny": "",
2468
+ "kip": "kɪp",
2469
+ "kipped": "kɪp",
2470
+ "kit": "kɪt",
2471
+ "kitten": "ˈkɪt.ən",
2472
+ "kitty": "ˈkɪ.ti",
2473
+ "kleenex": "ˈkliː.neks",
2474
+ "knee": "niː",
2475
+ "knee-haw": "",
2476
+ "kneecap": "ˈniː.kæp",
2477
+ "kneeled": "niːl",
2478
+ "kneeling": "niːl",
2479
+ "knew": "njuː",
2480
+ "knife": "naɪf",
2481
+ "knock": "nɒk",
2482
+ "knocked": "nɒk",
2483
+ "knocking": "nɒk",
2484
+ "knot": "nɒt",
2485
+ "know": "nəʊ",
2486
+ "ky": "",
2487
+ "ladder": "ˈlæd.ər",
2488
+ "lady": "ˈleɪ.di",
2489
+ "laid": "leɪd",
2490
+ "lake": "leɪk",
2491
+ "lala": "",
2492
+ "lamb": "læm",
2493
+ "lame": "leɪm",
2494
+ "lammed": "",
2495
+ "land": "lænd",
2496
+ "landed": "ˈlæn.dɪd",
2497
+ "lane": "leɪn",
2498
+ "lard": "lɑːd",
2499
+ "last": "lɑːst",
2500
+ "late": "leɪt",
2501
+ "later": "ˈleɪ.tər",
2502
+ "laugh": "lɑːf",
2503
+ "laughed": "lɑːf",
2504
+ "laugher": "",
2505
+ "laughing": "lɑːf",
2506
+ "law": "lɔː",
2507
+ "lawn": "lɔːn",
2508
+ "lay": "leɪ",
2509
+ "laying": "leɪ",
2510
+ "lazy": "ˈleɪ.zi",
2511
+ "lead": "liːd",
2512
+ "leaned": "liːn",
2513
+ "leapt": "",
2514
+ "learn": "lɜːn",
2515
+ "learned": "ˈlɜː.nɪd",
2516
+ "learning": "ˈlɜː.nɪŋ",
2517
+ "leash": "liːʃ",
2518
+ "least": "liːst",
2519
+ "leather": "ˈleð.ər",
2520
+ "leave": "liːv",
2521
+ "leaving": "",
2522
+ "led": "led",
2523
+ "leep": "",
2524
+ "leeping": "",
2525
+ "leepy": "",
2526
+ "leeve": "",
2527
+ "left": "left",
2528
+ "leg": "leɡ",
2529
+ "lemonade": "ˌlem.əˈneɪd",
2530
+ "len": "",
2531
+ "lend": "lend",
2532
+ "lept": "",
2533
+ "lesson": "ˈles.ən",
2534
+ "let": "let",
2535
+ "letter": "ˈlet.ər",
2536
+ "letting": "ˈlet.ɪŋ",
2537
+ "library": "ˈlaɪ.brər.i",
2538
+ "lick": "lɪk",
2539
+ "licked": "lɪk",
2540
+ "lide": "",
2541
+ "liding": "",
2542
+ "lie": "laɪ",
2543
+ "lied": "laɪ",
2544
+ "life": "laɪf",
2545
+ "lifeguard": "ˈlaɪf.ɡɑːd",
2546
+ "lifted": "lɪft",
2547
+ "light": "laɪt",
2548
+ "like": "laɪk",
2549
+ "liked": "laɪk",
2550
+ "limo": "ˈlɪm.əʊ",
2551
+ "line": "laɪn",
2552
+ "liney": "",
2553
+ "ling": "",
2554
+ "lining": "ˈlaɪ.nɪŋ",
2555
+ "lion": "ˈlaɪ.ən",
2556
+ "lip": "lɪp",
2557
+ "lipped": "ˌtaɪtˈlɪpt",
2558
+ "lippery": "",
2559
+ "lipping": "ˈlɪp.ɪŋ",
2560
+ "listen": "ˈlɪs.ən",
2561
+ "listening": "ˈlɪs.ən",
2562
+ "lit": "lɪt",
2563
+ "literally": "ˈlɪt.ər.əl.i",
2564
+ "little": "ˈlɪt.əl",
2565
+ "littler": "ˈlɪt.əl",
2566
+ "live": "lɪv",
2567
+ "lived": "lɪv",
2568
+ "locked": "lɒk",
2569
+ "lonely": "ˈləʊn.li",
2570
+ "long": "lɒŋ",
2571
+ "longer": "lɒŋ",
2572
+ "look": "lʊk",
2573
+ "looked": "lʊk",
2574
+ "looking": "ˈlʊk.ɪŋ",
2575
+ "loop": "luːp",
2576
+ "loop-de-loop": "ˌluːp ðə ˈluːp",
2577
+ "loose": "luːs",
2578
+ "loosened": "ˈluː.sən",
2579
+ "lop": "lɑp",
2580
+ "lose": "luːz",
2581
+ "losing": "",
2582
+ "lost": "lɒst",
2583
+ "lot": "lɒt",
2584
+ "loud": "laʊd",
2585
+ "louder": "laʊd",
2586
+ "loudly": "ˈlaʊd.li",
2587
+ "love": "lʌv",
2588
+ "loved": "lʌv",
2589
+ "lovely": "ˈlʌv.li",
2590
+ "loving": "ˈlʌv.ɪŋ",
2591
+ "low": "ləʊ",
2592
+ "lower": "ˈləʊ.ər",
2593
+ "lowing": "ləʊ",
2594
+ "lowly": "ˈləʊ.li",
2595
+ "luck": "lʌk",
2596
+ "luckily": "ˈlʌk.əl.i",
2597
+ "lucky": "ˈlʌk.i",
2598
+ "lumen": "ˈluː.mən",
2599
+ "lump": "lʌmp",
2600
+ "lunch": "lʌntʃ",
2601
+ "lunchboxe": "",
2602
+ "lunche": "",
2603
+ "lurred": "",
2604
+ "lying": "ˈlaɪ.ɪŋ",
2605
+ "machine": "məˈʃiːn",
2606
+ "macked": "",
2607
+ "mad": "mæd",
2608
+ "madder": "",
2609
+ "made": "meɪd",
2610
+ "madly": "ˈmæd.li",
2611
+ "magic": "ˈmædʒ.ɪk",
2612
+ "maid": "meɪd",
2613
+ "mailman": "ˈmeɪl.mæn",
2614
+ "make": "meɪk",
2615
+ "maker": "ˈmeɪ.kər",
2616
+ "making": "ˈmeɪ.kɪŋ",
2617
+ "mall": "mɔːl",
2618
+ "maller": "",
2619
+ "mama": "məˈmɑː",
2620
+ "man": "mæn",
2621
+ "manager": "ˈmæn.ɪ.dʒər",
2622
+ "manned": "mænd",
2623
+ "many": "ˈmen.i",
2624
+ "marble": "ˈmɑː.bəl",
2625
+ "mark": "mɑːk",
2626
+ "market": "ˈmɑː.kɪt",
2627
+ "mart": "mɑːt",
2628
+ "mashed": "mæʃt",
2629
+ "mask": "mɑːsk",
2630
+ "master": "ˈmɑː.stər",
2631
+ "mat": "mæt",
2632
+ "matter": "ˈmæt.ər",
2633
+ "may": "meɪ",
2634
+ "maybe": "ˈmeɪ.bi",
2635
+ "me": "miː",
2636
+ "meal": "mɪəl",
2637
+ "mean": "miːn",
2638
+ "meant": "",
2639
+ "meantime": "ˈmiːn.taɪm",
2640
+ "meat": "miːt",
2641
+ "med": "med",
2642
+ "medic": "ˈmed.ɪk",
2643
+ "medical": "ˈmed.ɪ.kəl",
2644
+ "medicine": "ˈmed.ɪ.sən",
2645
+ "medium": "ˈmiː.di.əm",
2646
+ "meet": "miːt",
2647
+ "meeting": "ˈmiː.tɪŋ",
2648
+ "mell": "ˌpelˈmel",
2649
+ "melt": "melt",
2650
+ "melted": "ˈmel.tɪd",
2651
+ "memory": "ˈmem.ər.i",
2652
+ "men": "men",
2653
+ "mercie": "",
2654
+ "messed": "mes",
2655
+ "messy": "ˈmes.i",
2656
+ "met": "met",
2657
+ "metal": "ˈmet.əl",
2658
+ "mhm": "",
2659
+ "mi": "miː",
2660
+ "mice": "maɪs",
2661
+ "microphone": "ˈmaɪ.krə.fəʊn",
2662
+ "middle": "ˈmɪd.əl",
2663
+ "might": "maɪt",
2664
+ "mike": "maɪk",
2665
+ "mikey": "",
2666
+ "mile": "maɪl",
2667
+ "miled": "",
2668
+ "miley": "",
2669
+ "miling": "",
2670
+ "milk": "mɪlk",
2671
+ "milker": "ˈmɪl.kər",
2672
+ "milled": "mɪl",
2673
+ "mind": "maɪnd",
2674
+ "minding": "maɪnd",
2675
+ "mine": "maɪn",
2676
+ "minor": "ˈmaɪ.nər",
2677
+ "mint": "mɪnt",
2678
+ "minute": "ˈmɪn.ɪt",
2679
+ "mirror": "ˈmɪr.ər",
2680
+ "missed": "mɪs",
2681
+ "missing": "ˈmɪs.ɪŋ",
2682
+ "mistake": "mɪˈsteɪk",
2683
+ "mister": "ˈmɪs.tər",
2684
+ "misty": "ˈmɪs.ti",
2685
+ "mix": "mɪks",
2686
+ "mixed": "mɪkst",
2687
+ "mixing": "mɪks",
2688
+ "mm": "",
2689
+ "mmm": "",
2690
+ "model": "ˈmɒd.əl",
2691
+ "moke": "",
2692
+ "mold": "məʊld",
2693
+ "molding": "ˈməʊl.dɪŋ",
2694
+ "mole": "məʊl",
2695
+ "mom": "mɒm",
2696
+ "mommy": "ˈmɒm.i",
2697
+ "money": "ˈmʌn.i",
2698
+ "moneymaker": "ˈmʌn.iˌmeɪ.kər",
2699
+ "monkey": "ˈmʌŋ.ki",
2700
+ "monster": "ˈmɒn.stər",
2701
+ "moon": "muːn",
2702
+ "moose": "muːs",
2703
+ "moothed": "",
2704
+ "moother": "",
2705
+ "more": "mɔːr",
2706
+ "morning": "ˈmɔː.nɪŋ",
2707
+ "mortar": "ˈmɔː.tər",
2708
+ "most": "məʊst",
2709
+ "mostly": "ˈməʊst.li",
2710
+ "mother": "ˈmʌð.ər",
2711
+ "motorcycle": "ˈməʊ.təˌsaɪ.kəl",
2712
+ "mound": "maʊnd",
2713
+ "mountain": "ˈmaʊn.tɪn",
2714
+ "mouse": "maʊs",
2715
+ "mouth": "maʊθ",
2716
+ "move": "muːv",
2717
+ "moved": "muːvd",
2718
+ "movie": "ˈmuː.vi",
2719
+ "moving": "ˈmuː.vɪŋ",
2720
+ "mr": "ˈmɪs.tər",
2721
+ "much": "mʌtʃ",
2722
+ "mud": "mʌd",
2723
+ "muller": "",
2724
+ "mum": "mʌm",
2725
+ "mummy": "ˈmʌm.i",
2726
+ "munching": "mʌntʃ",
2727
+ "munchy": "",
2728
+ "muscle": "ˈmʌs.əl",
2729
+ "mushed": "mʌʃ",
2730
+ "music": "ˈmjuː.zɪk",
2731
+ "must": "mʌst",
2732
+ "mustache": "məˈstɑːʃ",
2733
+ "mustard": "ˈmʌs.təd",
2734
+ "my": "maɪ",
2735
+ "myself": "maɪˈself",
2736
+ "nack": "ˈnɪk.næk",
2737
+ "nah": "næː",
2738
+ "nail": "neɪl",
2739
+ "naked": "ˈneɪ.kɪd",
2740
+ "name": "neɪm",
2741
+ "named": "neɪm",
2742
+ "nap": "næp",
2743
+ "napped": "",
2744
+ "natche": "",
2745
+ "natched": "",
2746
+ "naughty": "ˈnɔː.ti",
2747
+ "neak": "",
2748
+ "neaked": "",
2749
+ "near": "nɪər",
2750
+ "nearby": "ˌnɪəˈbaɪ",
2751
+ "nearly": "ˈnɪə.li",
2752
+ "neat": "niːt",
2753
+ "neck": "nek",
2754
+ "necklace": "ˈnek.ləs",
2755
+ "need": "niːd",
2756
+ "needed": "ˈniː.dɪd",
2757
+ "neezed": "",
2758
+ "neither": "ˈnaɪ.ðər",
2759
+ "nervou": "",
2760
+ "net": "net",
2761
+ "never": "ˈnev.ər",
2762
+ "new": "njuː",
2763
+ "next": "nekst",
2764
+ "nice": "naɪs",
2765
+ "nicely": "ˈnaɪs.li",
2766
+ "niche": "niːʃ",
2767
+ "nickel": "ˈnɪk.əl",
2768
+ "night": "naɪt",
2769
+ "nightly": "ˈnaɪt.li",
2770
+ "nighttime": "ˈnaɪt.taɪm",
2771
+ "nine": "naɪn",
2772
+ "ninja": "ˈnɪn.dʒə",
2773
+ "no": "nəʊ",
2774
+ "nobody": "ˈnəʊ.bə.di",
2775
+ "nod": "nɒd",
2776
+ "noise": "nɔɪz",
2777
+ "non-running": "",
2778
+ "none": "nʌn",
2779
+ "noodle": "ˈnuː.dəl",
2780
+ "nope": "nəʊp",
2781
+ "nor-ail": "",
2782
+ "normal": "ˈnɔː.məl",
2783
+ "north": "nɔːθ",
2784
+ "nose": "nəʊz",
2785
+ "not": "nɒt",
2786
+ "note": "nəʊt",
2787
+ "nothing": "ˈnʌθ.ɪŋ",
2788
+ "notice": "ˈnəʊ.tɪs",
2789
+ "noticed": "ˈnəʊ.tɪs",
2790
+ "noticing": "ˈnəʊ.tɪs",
2791
+ "now": "naʊ",
2792
+ "nowy": "",
2793
+ "nuggled": "",
2794
+ "number": "ˈnʌm.bər",
2795
+ "nurse": "nɜːs",
2796
+ "nut": "nʌt",
2797
+ "nutrition": "njuːˈtrɪʃ.ən",
2798
+ "o": "əʊ",
2799
+ "o'clock": "əˈklɒk",
2800
+ "oaked": "",
2801
+ "oaking": "",
2802
+ "oap": "ˌəʊ.eɪˈpiː",
2803
+ "oaring": "",
2804
+ "object": "ˈɒb.dʒɪkt",
2805
+ "observation": "ˌɒb.zəˈveɪ.ʃən",
2806
+ "occer": "",
2807
+ "ocean": "ˈəʊ.ʃən",
2808
+ "octopu": "",
2809
+ "of": "əv",
2810
+ "off": "ɒf",
2811
+ "offered": "ˈɒf.ər",
2812
+ "office": "ˈɒf.ɪs",
2813
+ "officer": "ˈɒf.ɪ.sər",
2814
+ "oftly": "",
2815
+ "oh": "əʊ",
2816
+ "okay": "ˌəʊˈkeɪ",
2817
+ "old": "əʊld",
2818
+ "older": "əʊld",
2819
+ "olid": "",
2820
+ "olve": "",
2821
+ "ome": "",
2822
+ "omebody": "",
2823
+ "omeone": "",
2824
+ "omeplace": "",
2825
+ "omething": "",
2826
+ "ometime": "",
2827
+ "omewhere": "",
2828
+ "on": "ɒn",
2829
+ "on-stand": "",
2830
+ "once": "wʌns",
2831
+ "one": "wʌn",
2832
+ "only": "ˈəʊn.li",
2833
+ "onto": "ˈɒn.tu",
2834
+ "ooh": "uː",
2835
+ "oon": "",
2836
+ "oop": "ˌæl.iˈuːp",
2837
+ "oops-a-daisy": "ˈʊp.səˌdeɪ.zi",
2838
+ "oopsie": "",
2839
+ "open": "ˈəʊ.pən",
2840
+ "opened": "ˈəʊ.pən",
2841
+ "opening": "ˈəʊ.pən.ɪŋ",
2842
+ "operating": "ˈɒp.ər.eɪ.tɪŋ",
2843
+ "or": "ɔːr",
2844
+ "orange": "ˈɒr.ɪndʒ",
2845
+ "order": "ˈɔː.dər",
2846
+ "ordinary": "ˈɔː.dən.əri",
2847
+ "ore": "ɔːr",
2848
+ "orphan": "ˈɔː.fən",
2849
+ "orry": "",
2850
+ "ort": "ɔːt",
2851
+ "orta": "",
2852
+ "other": "ˈʌð.ər",
2853
+ "ouch": "aʊtʃ",
2854
+ "ound": "",
2855
+ "ounding": "",
2856
+ "oup": "",
2857
+ "our": "aʊər",
2858
+ "ource": "",
2859
+ "out": "aʊt",
2860
+ "outbreak": "ˈaʊt.breɪk",
2861
+ "outdoor": "ˈaʊtˌdɔːr",
2862
+ "outer": "ˈaʊ.tər",
2863
+ "outfit": "ˈaʊt.fɪt",
2864
+ "outside": "ˌaʊtˈsaɪd",
2865
+ "oval": "ˈəʊ.vəl",
2866
+ "over": "ˈəʊ.vər",
2867
+ "ow": "aʊ",
2868
+ "owie": "",
2869
+ "owl": "aʊl",
2870
+ "own": "əʊn",
2871
+ "owned": "-əʊnd",
2872
+ "owner": "ˈəʊ.nər",
2873
+ "oy": "ɔɪ",
2874
+ "pa": "pɑː",
2875
+ "pace": "peɪs",
2876
+ "pack": "pæk",
2877
+ "package": "ˈpæk.ɪdʒ",
2878
+ "packed": "pækt",
2879
+ "packing": "ˈpæk.ɪŋ",
2880
+ "paddle": "ˈpæd.əl",
2881
+ "page": "peɪdʒ",
2882
+ "paid": "peɪd",
2883
+ "pail": "peɪl",
2884
+ "pain": "peɪn",
2885
+ "painkiller": "ˈpeɪnˌkɪl.ər",
2886
+ "paint": "peɪnt",
2887
+ "painted": "peɪnt",
2888
+ "pair": "peər",
2889
+ "panel": "ˈpæn.əl",
2890
+ "panked": "",
2891
+ "pant": "pænt",
2892
+ "panting": "pænt",
2893
+ "paper": "ˈpeɪ.pər",
2894
+ "parade": "pəˈreɪd",
2895
+ "paramedic": "ˌpær.əˈmed.ɪk",
2896
+ "parent": "ˈpeə.rənt",
2897
+ "park": "pɑːk",
2898
+ "part": "pɑːt",
2899
+ "party": "ˈpɑː.ti",
2900
+ "passe": "pɑːˈseɪ",
2901
+ "passed": "pɑːs",
2902
+ "passing": "ˈpɑː.sɪŋ",
2903
+ "past": "pɑːst",
2904
+ "pat": "pæt",
2905
+ "patch": "pætʃ",
2906
+ "patched": "pætʃ",
2907
+ "path": "pɑːθ",
2908
+ "patient": "ˈpeɪ.ʃənt",
2909
+ "patting": "",
2910
+ "pavement": "ˈpeɪv.mənt",
2911
+ "paw": "pɔː",
2912
+ "pay": "peɪ",
2913
+ "payer": "ˈpeɪ.ər",
2914
+ "paying": "peɪ",
2915
+ "peak": "piːk",
2916
+ "peaking": "piːk",
2917
+ "peanut": "ˈpiː.nʌt",
2918
+ "pear": "peər",
2919
+ "pearl": "pɜːl",
2920
+ "pecial": "",
2921
+ "pee": "piː",
2922
+ "peel": "piːl",
2923
+ "peeled": "piːl",
2924
+ "pell": "ˌpelˈmel",
2925
+ "pelled": "",
2926
+ "pen": "pen",
2927
+ "pennie": "",
2928
+ "people": "ˈpiː.pəl",
2929
+ "per": "pɜːr",
2930
+ "percent": "pəˈsent",
2931
+ "perfect": "ˈpɜː.fekt",
2932
+ "perhap": "",
2933
+ "person": "ˈpɜː.sən",
2934
+ "personally": "ˈpɜː.sən.əl.i",
2935
+ "pet": "pet",
2936
+ "petting": "",
2937
+ "phone": "fəʊn",
2938
+ "phoned": "fəʊn",
2939
+ "phrase": "freɪz",
2940
+ "pic": "pɪk",
2941
+ "pick": "pɪk",
2942
+ "picked": "pɪk",
2943
+ "picking": "ˈpɪkɪŋz",
2944
+ "pickle": "ˈpɪk.əl",
2945
+ "picnic": "ˈpɪk.nɪk",
2946
+ "picnick": "",
2947
+ "picnicking": "",
2948
+ "picture": "ˈpɪk.tʃər",
2949
+ "pie": "paɪ",
2950
+ "piece": "piːs",
2951
+ "pig": "pɪɡ",
2952
+ "pig-ish": "",
2953
+ "piggy": "ˈpɪɡ.i",
2954
+ "pike": "paɪk",
2955
+ "pile": "paɪl",
2956
+ "piled": "paɪl",
2957
+ "pill": "pɪl",
2958
+ "pilled": "pɪl",
2959
+ "pilling": "pɪl",
2960
+ "pillow": "ˈpɪl.əʊ",
2961
+ "pin": "pɪn",
2962
+ "pinch": "pɪntʃ",
2963
+ "pine": "paɪn",
2964
+ "ping": "pɪŋ",
2965
+ "pink": "pɪŋk",
2966
+ "pinkie": "ˈpɪŋ.ki",
2967
+ "pinkling": "",
2968
+ "pinning": "",
2969
+ "pinny": "ˈpɪn.i",
2970
+ "pipe": "paɪp",
2971
+ "pipeline": "ˈpaɪp.laɪn",
2972
+ "pit": "pɪt",
2973
+ "pitch": "pɪtʃ",
2974
+ "pitting": "",
2975
+ "pizza": "ˈpiːt.sə",
2976
+ "place": "pleɪs",
2977
+ "plague": "pleɪɡ",
2978
+ "plain": "pleɪn",
2979
+ "plan": "plæn",
2980
+ "plane": "pleɪn",
2981
+ "planning": "ˈplæn.ɪŋ",
2982
+ "plant": "plɑːnt",
2983
+ "plash": "plæʃ",
2984
+ "plashed": "plæʃ",
2985
+ "plashing": "ˈplæʃ.ɪŋ",
2986
+ "plastic": "ˈplæs.tɪk",
2987
+ "plate": "pleɪt",
2988
+ "platform": "ˈplæt.fɔːm",
2989
+ "play": "pleɪ",
2990
+ "played": "pleɪ",
2991
+ "player": "ˈpleɪ.ər",
2992
+ "playful": "ˈpleɪ.fəl",
2993
+ "playing": "pleɪ",
2994
+ "playpen": "ˈpleɪ.pen",
2995
+ "please": "pliːz",
2996
+ "pleased": "pliːzd",
2997
+ "pleasure": "ˈpleʒ.ər",
2998
+ "plight": "plaɪt",
2999
+ "plinch": "",
3000
+ "plit": "",
3001
+ "plop": "plɒp",
3002
+ "plopped": "",
3003
+ "plu": "",
3004
+ "pluck": "plʌk",
3005
+ "plugged": "",
3006
+ "plushed": "",
3007
+ "plying": "plaɪ",
3008
+ "pocket": "ˈpɒk.ɪt",
3009
+ "point": "pɔɪnt",
3010
+ "pointed": "ˈpɔɪn.tɪd",
3011
+ "pointing": "ˈpɔɪn.tɪŋ",
3012
+ "pointy": "ˈpɔɪn.ti",
3013
+ "poison": "ˈpɔɪ.zən",
3014
+ "poke": "pəʊk",
3015
+ "pole": "pəʊl",
3016
+ "policy": "ˈpɒl.ə.si",
3017
+ "politely": "pəˈlaɪt.li",
3018
+ "polka": "ˈpɒl.kə",
3019
+ "pond": "pɒnd",
3020
+ "pony": "ˈpəʊ.ni",
3021
+ "ponytail": "ˈpəʊ.ni.teɪl",
3022
+ "poo": "puː",
3023
+ "pooch": "puːtʃ",
3024
+ "poochie": "",
3025
+ "poof": "pʊf",
3026
+ "poofing": "",
3027
+ "pooing": "puː",
3028
+ "pooky": "",
3029
+ "pool": "puːl",
3030
+ "poon": "",
3031
+ "poop": "puːp",
3032
+ "pooped": "puːpt",
3033
+ "poor": "pɔːr",
3034
+ "pop": "pɒp",
3035
+ "popcorn": "ˈpɒp.kɔːn",
3036
+ "popped": "",
3037
+ "popping": "",
3038
+ "popsicle": "ˈpɒp.sɪ.kəl",
3039
+ "porch": "pɔːtʃ",
3040
+ "port": "pɔːt",
3041
+ "possible": "ˈpɒs.ə.b��l",
3042
+ "pot": "pɒt",
3043
+ "potato": "pəˈteɪ.təʊ",
3044
+ "potatoe": "",
3045
+ "potted": "ˈpɒt.ɪd",
3046
+ "pour": "pɔːr",
3047
+ "poured": "pɔːr",
3048
+ "pouring": "pɔːr",
3049
+ "power": "paʊər",
3050
+ "practically": "ˈpræk.tɪ.kəl.i",
3051
+ "practice": "ˈpræk.tɪs",
3052
+ "practicing": "ˈpræk.tɪ.sɪŋ",
3053
+ "prayed": "preɪ",
3054
+ "pre": "priː-",
3055
+ "pread": "",
3056
+ "pregnant": "ˈpreɡ.nənt",
3057
+ "prepare": "prɪˈpeər",
3058
+ "prepared": "prɪˈpeəd",
3059
+ "present": "ˈprez.ənt",
3060
+ "pressed": "prest",
3061
+ "pressing": "ˈpres.ɪŋ",
3062
+ "pretend": "prɪˈtend",
3063
+ "pretended": "prɪˈten.dɪd",
3064
+ "pretending": "prɪˈtend",
3065
+ "pretty": "ˈprɪt.i",
3066
+ "preview": "ˈpriː.vjuː",
3067
+ "pring": "",
3068
+ "pringboard": "",
3069
+ "pringtime": "",
3070
+ "print": "prɪnt",
3071
+ "prize": "praɪz",
3072
+ "probably": "ˈprɒb.ə.bli",
3073
+ "problem": "ˈprɒb.ləm",
3074
+ "proceed": "prəˈsiːd",
3075
+ "product": "ˈprɒd.ʌkt",
3076
+ "propeller": "prəˈpel.ər",
3077
+ "prototype": "ˈprəʊ.tə.taɪp",
3078
+ "proud": "praʊd",
3079
+ "puffer": "ˈpʌf.ər",
3080
+ "puffing": "pʌf",
3081
+ "puffy": "ˈpʌf.i",
3082
+ "puke": "pjuːk",
3083
+ "pull": "pʊl",
3084
+ "pulled": "pʊld",
3085
+ "puller": "ˈkraʊdˌpʊl.ər",
3086
+ "pulling": "pʊl",
3087
+ "pumped": "pʌmpt",
3088
+ "pup": "pʌp",
3089
+ "puppet": "ˈpʌp.ɪt",
3090
+ "puppie": "",
3091
+ "puppy": "ˈpʌp.i",
3092
+ "purple": "ˈpɜː.pəl",
3093
+ "purpose": "ˈpɜː.pəs",
3094
+ "purse": "pɜːs",
3095
+ "push": "pʊʃ",
3096
+ "pushed": "pʊʃt",
3097
+ "pushing": "ˈpʊʃ.ɪŋ",
3098
+ "put": "pʊt",
3099
+ "putting": "",
3100
+ "puzzle": "ˈpʌz.əl",
3101
+ "puzzled": "ˈpʌz.əld",
3102
+ "pyramid": "ˈpɪr.ə.mɪd",
3103
+ "quarter": "ˈkwɔː.tər",
3104
+ "queasy": "ˈkwiː.zi",
3105
+ "queeze": "",
3106
+ "queezed": "",
3107
+ "question": "ˈkwes.tʃən",
3108
+ "quick": "kwɪk",
3109
+ "quicker": "kwɪk",
3110
+ "quickly": "ˈkwɪk.li",
3111
+ "quiet": "ˈkwaɪ.ət",
3112
+ "quietly": "ˈkwaɪət.li",
3113
+ "quint": "kwɪnt",
3114
+ "quirting": "",
3115
+ "quite": "kwaɪt",
3116
+ "ra-": "ɑː ˈeɪ",
3117
+ "rabbi": "ˈræb.aɪ",
3118
+ "rabbit": "ˈræb.ɪt",
3119
+ "rabid": "ˈræb.ɪd",
3120
+ "race": "reɪs",
3121
+ "raced": "reɪs",
3122
+ "racing": "ˈreɪ.sɪŋ",
3123
+ "rack": "ræk",
3124
+ "raft": "rɑːft",
3125
+ "rain": "reɪn",
3126
+ "rained": "reɪn",
3127
+ "raining": "reɪn",
3128
+ "raising": "reɪz",
3129
+ "rake": "reɪk",
3130
+ "raked": "reɪkt",
3131
+ "ran": "ræn",
3132
+ "rang": "ræŋ",
3133
+ "raptor": "ˈræp.tər",
3134
+ "raspberrie": "",
3135
+ "rat": "ræt",
3136
+ "rating": "ˈreɪ.tɪŋ",
3137
+ "raved": "reɪv",
3138
+ "raver": "ˈreɪ.vər",
3139
+ "re-jump": "",
3140
+ "reach": "riːtʃ",
3141
+ "reache": "",
3142
+ "reached": "riːtʃ",
3143
+ "reaching": "riːtʃ",
3144
+ "read": "riːd",
3145
+ "reading": "ˈriː.dɪŋ",
3146
+ "ready": "ˈred.i",
3147
+ "real": "rɪəl",
3148
+ "realize": "ˈrɪə.laɪz",
3149
+ "realized": "ˈrɪəlaɪzd",
3150
+ "really": "ˈrɪə.li",
3151
+ "reason": "ˈriː.zən",
3152
+ "rebuild": "ˌriːˈbɪld",
3153
+ "rebuilt": "",
3154
+ "rece": "",
3155
+ "receipt": "rɪˈsiːt",
3156
+ "recognize": "ˈrek.əɡ.naɪz",
3157
+ "record": "rɪˈkɔːd",
3158
+ "recorder": "rɪˈkɔː.dər",
3159
+ "recording": "rɪˈkɔː.dɪŋ",
3160
+ "recursion": "rɪˈkɜː.ʒən",
3161
+ "red": "red",
3162
+ "reef": "riːf",
3163
+ "reform": "rɪˈfɔːm",
3164
+ "release": "rɪˈliːs",
3165
+ "relieved": "rɪˈliːvd",
3166
+ "remember": "rɪˈmem.bər",
3167
+ "remembered": "rɪˈmem.bər",
3168
+ "remembering": "rɪˈmem.bər",
3169
+ "remind": "rɪˈmaɪnd",
3170
+ "reminded": "rɪˈmaɪnd",
3171
+ "remote": "rɪˈməʊt",
3172
+ "rent": "rent",
3173
+ "repeating": "rɪˈpiːt",
3174
+ "replace": "rɪˈpleɪs",
3175
+ "rescue": "ˈres.kjuː",
3176
+ "resistance": "rɪˈzɪs.təns",
3177
+ "resource": "rɪˈzɔːs",
3178
+ "rest": "rest",
3179
+ "restaurant": "ˈres.tər.ɒnt",
3180
+ "rested": "ˈres.tɪd",
3181
+ "returned": "rɪˈtɜːnd",
3182
+ "returning": "rɪˈtɜːn",
3183
+ "rex": "reks",
3184
+ "rhino": "ˈraɪ.nəʊ",
3185
+ "ribbon": "ˈrɪb.ən",
3186
+ "ride": "raɪd",
3187
+ "riding": "ˈraɪ.dɪŋ",
3188
+ "right": "raɪt",
3189
+ "ring": "rɪŋ",
3190
+ "rip": "rɪp",
3191
+ "ripping": "",
3192
+ "rise": "raɪz",
3193
+ "river": "ˈrɪv.ər",
3194
+ "road": "rəʊd",
3195
+ "robert": "ˌhɜːb ˈrɒb.ət",
3196
+ "rock": "rɒk",
3197
+ "rocket": "ˈrɒk.ɪt",
3198
+ "rod": "rɒd",
3199
+ "rolled": "rəʊl",
3200
+ "roof": "ruːf",
3201
+ "room": "ruːm",
3202
+ "rooster": "ˈruː.stər",
3203
+ "rope": "rəʊp",
3204
+ "rose": "rəʊz",
3205
+ "rotten": "ˈrɒt.ən",
3206
+ "rough": "rʌf",
3207
+ "round": "raʊnd",
3208
+ "row": "rəʊ",
3209
+ "rub": "rʌb",
3210
+ "rubber": "ˈrʌb.ər",
3211
+ "rubbery": "ˈrʌb.ər.i",
3212
+ "rubbing": "",
3213
+ "ruin": "ˈruː.ɪn",
3214
+ "ruined": "ˈruː.ɪnd",
3215
+ "ruining": "ˈruː.ɪn",
3216
+ "rule": "ruːl",
3217
+ "rumble": "ˈrʌm.bəl",
3218
+ "run": "rʌn",
3219
+ "runned": "",
3220
+ "running": "ˈrʌn.ɪŋ",
3221
+ "rush": "rʌʃ",
3222
+ "rushe": "",
3223
+ "rushed": "rʌʃt",
3224
+ "rushing": "ˈrʌʃ.ɪŋ",
3225
+ "t-shirt": "ˈtiː.ʃɜːt",
3226
+ "table": "ˈteɪ.bəl",
3227
+ "tack": "tæk",
3228
+ "tacked": "tæk",
3229
+ "taff": "ˈtæf.i",
3230
+ "tag": "tæɡ",
3231
+ "tage": "",
3232
+ "tail": "teɪl",
3233
+ "tained": "",
3234
+ "take": "teɪk",
3235
+ "taken": "ˈteɪ.kən",
3236
+ "taking": "",
3237
+ "talk": "tɔːk",
3238
+ "talked": "tɔːk",
3239
+ "talking": "tɔːk",
3240
+ "tall": "tɔːl",
3241
+ "taller": "tɔːl",
3242
+ "tamp": "tæmp",
3243
+ "tand": "",
3244
+ "tanded": "",
3245
+ "tanding": "",
3246
+ "tangled": "ˈtæŋ.ɡəld",
3247
+ "tank": "tæŋk",
3248
+ "tape": "teɪp",
3249
+ "taped": "teɪp",
3250
+ "taping": "teɪp",
3251
+ "tapped": "",
3252
+ "tapping": "",
3253
+ "tar": "tɑːr",
3254
+ "tarantula": "təˈræn.tjə.lə",
3255
+ "tare": "teər",
3256
+ "tared": "",
3257
+ "taring": "",
3258
+ "tart": "tɑːt",
3259
+ "tarted": "tɑːt",
3260
+ "tarting": "tɑːt",
3261
+ "tassel": "ˈtæs.əl",
3262
+ "taste": "teɪst",
3263
+ "taught": "tɔːt",
3264
+ "taxi": "ˈtæk.si",
3265
+ "tay": "teɪˈsæks dɪˌziːz",
3266
+ "tayed": "",
3267
+ "taying": "",
3268
+ "tea": "tiː",
3269
+ "teach": "tiːtʃ",
3270
+ "teacher": "ˈtiː.tʃər",
3271
+ "teal": "tiːl",
3272
+ "tealing": "",
3273
+ "team": "tiːm",
3274
+ "teamed": "tiːm",
3275
+ "teaming": "ˈtiːmɪŋ",
3276
+ "tear": "teər",
3277
+ "teased": "tiːz",
3278
+ "teasing": "tiːz",
3279
+ "teen": "tiːn",
3280
+ "teeple": "",
3281
+ "teeter": "ˈtiː.tər",
3282
+ "teeth": "tiːθ",
3283
+ "telescope": "ˈtel.ɪ.skəʊp",
3284
+ "tell": "tel",
3285
+ "telling": "ˈtel.ɪŋ",
3286
+ "temperature": "ˈtem.prə.tʃər",
3287
+ "ten": "ten",
3288
+ "tendency": "ˈten.dən.si",
3289
+ "tenni": "",
3290
+ "tep": "",
3291
+ "tepped": "",
3292
+ "tepping": "",
3293
+ "terrible": "ˈter.ə.bəl",
3294
+ "terrified": "ˈter.ə.faɪd",
3295
+ "test": "test",
3296
+ "tested": "test",
3297
+ "testing": "ˈtes.tɪŋ",
3298
+ "than": "ðæn",
3299
+ "thank": "θæŋk",
3300
+ "thanked": "θæŋk",
3301
+ "thankful": "ˈθæŋk.fəl",
3302
+ "thanking": "θæŋk",
3303
+ "that": "ðæt",
3304
+ "the": "ðiː",
3305
+ "theater": "ˈθɪə.tər",
3306
+ "their": "ðeər",
3307
+ "theirself": "",
3308
+ "them": "ðem",
3309
+ "themselve": "",
3310
+ "then": "ðen",
3311
+ "there": "ðeər",
3312
+ "thermometer": "θəˈmɒm.ɪ.tər",
3313
+ "these": "ðiːz",
3314
+ "they": "ðeɪ",
3315
+ "they'd": "ðeɪd",
3316
+ "they'll": "ðeɪl",
3317
+ "they're": "ðeər",
3318
+ "they've": "ðeɪv",
3319
+ "thi": "",
3320
+ "thick": "θɪk",
3321
+ "thing": "θɪŋ",
3322
+ "thingy": "ˈθɪŋ.i",
3323
+ "think": "θɪŋk",
3324
+ "thinking": "ˈθɪŋ.kɪŋ",
3325
+ "third": "θɜːd",
3326
+ "thirsty": "ˈθɜː.sti",
3327
+ "those": "ðəʊz",
3328
+ "though": "ðəʊ",
3329
+ "thought": "θɔːt",
3330
+ "three": "θriː",
3331
+ "threw": "θruː",
3332
+ "thrilled": "θrɪld",
3333
+ "throat": "θrəʊt",
3334
+ "through": "θruː",
3335
+ "throw": "θrəʊ",
3336
+ "throwed": "",
3337
+ "throwing": "θrəʊ",
3338
+ "tick": "tɪk",
3339
+ "ticked": "tɪk",
3340
+ "ticker": "ˈtɪk.ər",
3341
+ "ticket": "ˈtɪk.ɪt",
3342
+ "tickie": "",
3343
+ "ticking": "ˈtɪk.ɪŋ",
3344
+ "ticky": "",
3345
+ "tie": "taɪ",
3346
+ "tied": "taɪ",
3347
+ "tight": "taɪt",
3348
+ "tightened": "ˈtaɪ.tən",
3349
+ "tighter": "taɪt",
3350
+ "till": "tɪl",
3351
+ "tim": "",
3352
+ "time": "taɪm",
3353
+ "timing": "ˈtaɪ.mɪŋ",
3354
+ "timmy": "",
3355
+ "ting": "tɪŋ",
3356
+ "tink": "",
3357
+ "tinky": "",
3358
+ "tiny": "ˈtaɪ.ni",
3359
+ "tipped": "",
3360
+ "tiptoed": "ˈtɪp.təʊ",
3361
+ "tire": "taɪər",
3362
+ "tired": "taɪəd",
3363
+ "tirring": "",
3364
+ "titan": "ˈtaɪ.tən",
3365
+ "titch": "tɪtʃ",
3366
+ "titched": "",
3367
+ "title": "ˈtaɪ.təl",
3368
+ "to": "tuː",
3369
+ "tocky": "",
3370
+ "today": "təˈdeɪ",
3371
+ "toe": "təʊ",
3372
+ "together": "təˈɡeð.ər",
3373
+ "toilet": "ˈtɔɪ.lət",
3374
+ "toiling": "tɔɪl",
3375
+ "told": "təʊld",
3376
+ "tole": "",
3377
+ "tolling": "ˈtəʊ.lɪŋ",
3378
+ "tomach": "",
3379
+ "tomachache": "",
3380
+ "tomorrow": "təˈmɒr.əʊ",
3381
+ "ton": "tʌn",
3382
+ "toner": "ˈtəʊ.nər",
3383
+ "tongue": "tʌŋ",
3384
+ "tonight": "təˈnaɪt",
3385
+ "too": "tuː",
3386
+ "tood": "",
3387
+ "took": "tʊk",
3388
+ "tool": "tuːl",
3389
+ "top": "tɒp",
3390
+ "topped": "",
3391
+ "toppled": "ˈtɒp.əl",
3392
+ "torage": "",
3393
+ "tore": "tɔːr",
3394
+ "torekeeper": "",
3395
+ "torie": "",
3396
+ "torm": "",
3397
+ "torn": "tɔːn",
3398
+ "tory": "ˈtɔː.ri",
3399
+ "torytelling": "",
3400
+ "totally": "ˈtəʊ.təl.i",
3401
+ "totter": "ˈtɒt.ər",
3402
+ "touch": "tʌtʃ",
3403
+ "touche": "tuːˈʃeɪ",
3404
+ "touched": "tʌtʃt",
3405
+ "touching": "ˈtʌtʃ.ɪŋ",
3406
+ "tour": "tʊər",
3407
+ "tove": "",
3408
+ "toward": "tɔːrd",
3409
+ "towel": "taʊəl",
3410
+ "tower": "taʊər",
3411
+ "town": "taʊn",
3412
+ "toy": "tɔɪ",
3413
+ "track": "træk",
3414
+ "trade": "treɪd",
3415
+ "trader": "ˈtreɪ.dər",
3416
+ "traight": "",
3417
+ "traightening": "",
3418
+ "trail": "treɪl",
3419
+ "trailer": "ˈtreɪ.lər",
3420
+ "trailing": "ˈtreɪ.lɪŋ",
3421
+ "train": "treɪn",
3422
+ "trained": "treɪnd",
3423
+ "trampoline": "ˈtræm.pəl.iːn",
3424
+ "trange": "",
3425
+ "trangely": "",
3426
+ "tranger": "",
3427
+ "trap": "træp",
3428
+ "trash": "træʃ",
3429
+ "travel": "ˈtræv.əl",
3430
+ "trawberrie": "",
3431
+ "tray": "treɪ",
3432
+ "treat": "triːt",
3433
+ "tree": "triː",
3434
+ "treet": "",
3435
+ "trength": "",
3436
+ "tretch": "",
3437
+ "tretched": "",
3438
+ "trick": "trɪk",
3439
+ "trie": "",
3440
+ "tried": "traɪd",
3441
+ "trifle": "ˈtraɪ.fəl",
3442
+ "trike": "traɪk",
3443
+ "tring": "",
3444
+ "trip": "trɪp",
3445
+ "tripped": "",
3446
+ "tripper": "ˈtrɪp.ər",
3447
+ "tripping": "",
3448
+ "trolled": "trəʊl",
3449
+ "troller": "",
3450
+ "trouble": "ˈtrʌb.əl",
3451
+ "troubled": "ˈtrʌb.əld",
3452
+ "truck": "trʌk",
3453
+ "tructure": "",
3454
+ "true": "truː",
3455
+ "truggled": "",
3456
+ "trunk": "trʌŋk",
3457
+ "truth": "truːθ",
3458
+ "try": "traɪ",
3459
+ "trying": "ˈtraɪ.ɪŋ",
3460
+ "tub": "tʌb",
3461
+ "tubby": "ˈtʌb.i",
3462
+ "tube": "tʃuːb",
3463
+ "tuck": "tʌk",
3464
+ "tucked": "tʌk",
3465
+ "tucking": "tʌk",
3466
+ "tudent": "",
3467
+ "tuff": "tʌf",
3468
+ "tuffed": "",
3469
+ "tugging": "",
3470
+ "tumble": "ˈtʌm.bəl",
3471
+ "tumbled": "ˈtʌm.bəl",
3472
+ "tumbling": "ˈtʌm.bəl",
3473
+ "tummie": "",
3474
+ "tummy": "ˈtʌm.i",
3475
+ "tunk": "",
3476
+ "tunnel": "ˈtʌn.əl",
3477
+ "tupid": "",
3478
+ "turkey": "ˈtɜː.ki",
3479
+ "turn": "tɜːn",
3480
+ "turned": "tɜːn",
3481
+ "turning": "ˈtɜː.nɪŋ",
3482
+ "turtle": "ˈtɜː.təl",
3483
+ "tweak": "twiːk",
3484
+ "twirl": "twɜːl",
3485
+ "twirled": "twɜːl",
3486
+ "twirling": "ˈtwɜː.lɪŋ",
3487
+ "twist": "twɪst",
3488
+ "twisted": "ˈtwɪs.tɪd",
3489
+ "twisting": "ˈtwɪs·tɪŋ",
3490
+ "two": "tuː",
3491
+ "tying": "ˈtaɪ.ɪŋ",
3492
+ "type": "taɪp",
3493
+ "u": "juː",
3494
+ "ub": "",
3495
+ "ubject": "",
3496
+ "ubmarine": "",
3497
+ "ucceeded": "",
3498
+ "uccessfully": "",
3499
+ "uch": "",
3500
+ "uck": "",
3501
+ "udden": "",
3502
+ "uddenly": "",
3503
+ "ufferer": "",
3504
+ "ugh": "ʊx",
3505
+ "uh": "ɜː",
3506
+ "uh-oh": "ˌʌˈəʊ",
3507
+ "uit": "",
3508
+ "um": "əm",
3509
+ "ummer": "",
3510
+ "ump": "ʌmp",
3511
+ "un": "ˌjuːˈen",
3512
+ "under": "ˈʌn.dər",
3513
+ "underground": "ˌʌn.dəˈɡraʊnd",
3514
+ "underneath": "ˌʌn.dəˈniːθ",
3515
+ "undersea": "ˌʌn.dəˈsiː",
3516
+ "understand": "ˌʌn.dəˈstænd",
3517
+ "understanding": "ˌʌn.dəˈstæn.dɪŋ",
3518
+ "understood": "",
3519
+ "underwater": "ˌʌn.dəˈwɔː.tər",
3520
+ "undid": "ʌnˈdɪd",
3521
+ "undo": "ʌnˈduː",
3522
+ "undoe": "",
3523
+ "undone": "ʌnˈdʌn",
3524
+ "undue": "ʌnˈdʒuː",
3525
+ "unfilling": "",
3526
+ "unfortunately": "ʌnˈfɔː.tʃən.ət.li",
3527
+ "unful": "",
3528
+ "unhappy": "ʌnˈhæp.i",
3529
+ "unhealthy": "ʌnˈhel.θi",
3530
+ "unk": "",
3531
+ "unle": "",
3532
+ "unleashed": "ʌnˈliːʃ",
3533
+ "unloaded": "ʌnˈləʊd",
3534
+ "unloading": "ʌnˈləʊd",
3535
+ "unloose": "",
3536
+ "unloosened": "",
3537
+ "unny": "",
3538
+ "unpack": "ʌnˈpæk",
3539
+ "unpacked": "ʌnˈpæk",
3540
+ "unpacking": "ʌnˈpæk",
3541
+ "unrope": "",
3542
+ "untie": "ʌnˈtaɪ",
3543
+ "untied": "ʌnˈtaɪ",
3544
+ "until": "ənˈtɪl",
3545
+ "untwist": "",
3546
+ "untying": "",
3547
+ "unwrap": "ʌnˈræp",
3548
+ "up": "ʌp",
3549
+ "uper": "",
3550
+ "upermarket": "",
3551
+ "upervisor": "",
3552
+ "upon": "əˈpɒn",
3553
+ "upper": "ˈʌp.ər",
3554
+ "upposed": "",
3555
+ "upposedly": "",
3556
+ "upset": "ʌpˈset",
3557
+ "upside": "ˈʌp.saɪd",
3558
+ "ure": "",
3559
+ "urf": "",
3560
+ "urgery": "",
3561
+ "urprise": "",
3562
+ "urprised": "",
3563
+ "use": "juːz",
3564
+ "used": "juːst",
3565
+ "user": "ˈjuː.zər",
3566
+ "using": "",
3567
+ "vegetable": "ˈvedʒ.tə.bəl",
3568
+ "velociraptor": "vɪˌlɒs.ɪˈræp.tər",
3569
+ "very": "ˈver.i",
3570
+ "view": "vjuː",
3571
+ "vitamin": "ˈvɪt.ə.mɪn",
3572
+ "voice": "vɔɪs",
3573
+ "voicemail": "ˈvɔɪ.s.meɪl",
3574
+ "volleyball": "ˈvɒl.i.bɔːl",
3575
+ "vroom": "vruːm",
3576
+ "wa": "",
3577
+ "waaaa": "",
3578
+ "wading": "weɪd",
3579
+ "wagging": "wæɡ",
3580
+ "wagon": "ˈwæɡ.ən",
3581
+ "wah": "ˈwɑː.wɑː",
3582
+ "wait": "weɪt",
3583
+ "waited": "weɪt",
3584
+ "waiting": "weɪt",
3585
+ "wake": "weɪk",
3586
+ "waked": "weɪk",
3587
+ "waking": "ˈweɪ.kɪŋ",
3588
+ "walk": "wɔːk",
3589
+ "walked": "wɔːk",
3590
+ "walking": "ˈwɔː.kɪŋ",
3591
+ "walkway": "ˈwɔː.kweɪ",
3592
+ "wall": "wɔːl",
3593
+ "wallet": "ˈwɒl.ɪt",
3594
+ "wam": "",
3595
+ "wamp": "",
3596
+ "wanna": "ˈwɒn.ə",
3597
+ "want": "wɒnt",
3598
+ "wanted": "ˈwɒn.tɪd",
3599
+ "wanting": "ˈwɒn.tɪŋ",
3600
+ "warmer": "wɔːm",
3601
+ "warned": "wɔːn",
3602
+ "warning": "ˈwɔː.nɪŋ",
3603
+ "washing": "ˈwɒʃ.ɪŋ",
3604
+ "washroom": "ˈwɒʃ.ruːm",
3605
+ "wasn't": "ˈwɒz.ənt",
3606
+ "watch": "wɒtʃ",
3607
+ "watche": "",
3608
+ "watched": "wɒtʃ",
3609
+ "watcher": "ˈwɒtʃ.ər",
3610
+ "watching": "wɒtʃ",
3611
+ "water": "ˈwɔː.tər",
3612
+ "watering": "ˈwɔː.tər",
3613
+ "watermelon": "ˈwɔː.təˌmel.ən",
3614
+ "wave": "weɪv",
3615
+ "waved": "weɪv",
3616
+ "waving": "weɪv",
3617
+ "way": "weɪ",
3618
+ "we": "wiː",
3619
+ "we'll": "wiːl",
3620
+ "we're": "wɪər",
3621
+ "we've": "ˈwiːv",
3622
+ "wearing": "ˈweə.rɪŋ",
3623
+ "weary": "ˈwɪə.ri",
3624
+ "weat": "",
3625
+ "weated": "",
3626
+ "weather": "ˈweð.ər",
3627
+ "weating": "",
3628
+ "wedding": "ˈwed.ɪŋ",
3629
+ "week": "wiːk",
3630
+ "weeped": "",
3631
+ "weeping": "ˈwiː.pɪŋ",
3632
+ "weetie": "",
3633
+ "weigh": "weɪ",
3634
+ "weird": "wɪəd",
3635
+ "welcome": "ˈwel.kəm",
3636
+ "well": "wel",
3637
+ "went": "went",
3638
+ "were": "wɜːr",
3639
+ "weren't": "wɜːnt",
3640
+ "wet": "wet",
3641
+ "wetting": "wet",
3642
+ "wha": "",
3643
+ "what": "wɒt",
3644
+ "whatever": "wɒtˈev.ər",
3645
+ "wheel": "wiːl",
3646
+ "wheelbarrow": "ˈwiːlˌbær.əʊ",
3647
+ "wheelchair": "ˈwiːl.tʃeər",
3648
+ "wheeler": "ˈwiː.lər",
3649
+ "wheeling": "ˈwiː.lɪŋ",
3650
+ "wheezing": "wiːz",
3651
+ "wheezy": "ˈwiː.zi",
3652
+ "when": "wen",
3653
+ "where": "weər",
3654
+ "where'd": "",
3655
+ "wherever": "weəˈrev.ər",
3656
+ "which": "wɪtʃ",
3657
+ "while": "waɪl",
3658
+ "whine": "waɪn",
3659
+ "whirl": "wɜːl",
3660
+ "whistle": "ˈwɪs.əl",
3661
+ "whistled": "ˈwɪs.əl",
3662
+ "white": "waɪt",
3663
+ "who": "huː",
3664
+ "whoa": "wəʊ",
3665
+ "whole": "həʊl",
3666
+ "whoo": "tuˌwɪt tuˈwuː",
3667
+ "whoop": "wuːp",
3668
+ "whoopsie": "",
3669
+ "whose": "huːz",
3670
+ "why": "waɪ",
3671
+ "wibbly": "",
3672
+ "wide": "waɪd",
3673
+ "wife": "waɪf",
3674
+ "wift": "",
3675
+ "wig": "wɪɡ",
3676
+ "wiggly": "ˈwɪɡ.əl.i",
3677
+ "wild": "waɪld",
3678
+ "will": "wɪl",
3679
+ "wim": "",
3680
+ "wimmer": "",
3681
+ "wimming": "",
3682
+ "wimsuit": "",
3683
+ "win": "wɪn",
3684
+ "wind": "wɪnd",
3685
+ "window": "ˈwɪn.dəʊ",
3686
+ "windowed": "",
3687
+ "windy": "ˈwɪn.di",
3688
+ "wine": "waɪn",
3689
+ "wing": "wɪŋ",
3690
+ "winging": "",
3691
+ "winner": "ˈwɪn.ər",
3692
+ "winning": "ˈwɪn.ɪŋ",
3693
+ "wipe": "waɪp",
3694
+ "wiped": "waɪp",
3695
+ "wiping": "waɪp",
3696
+ "wire": "waɪər",
3697
+ "wirl": "",
3698
+ "wirled": "",
3699
+ "wish": "wɪʃ",
3700
+ "wished": "wɪʃ",
3701
+ "wishing": "wɪʃ",
3702
+ "witch": "wɪtʃ",
3703
+ "with": "wɪð",
3704
+ "within": "wɪˈðɪn",
3705
+ "without": "wɪˈðaʊt",
3706
+ "wobbly": "ˈwɒb.əl.i",
3707
+ "woke": "wəʊk",
3708
+ "wolf": "wʊlf",
3709
+ "woman": "ˈwʊm.ən",
3710
+ "won": "wʌn",
3711
+ "won't": "wəʊnt",
3712
+ "wonder": "ˈwʌn.dər",
3713
+ "wondered": "ˈwʌn.dər",
3714
+ "wonderful": "ˈwʌn.də.fəl",
3715
+ "wondering": "ˈwʌn.dər",
3716
+ "woo-hoo": "",
3717
+ "wood": "wʊd",
3718
+ "wooden": "ˈwʊd.ən",
3719
+ "woofing": "wʊf",
3720
+ "wool": "wʊl",
3721
+ "wooped": "",
3722
+ "woozy": "ˈwuː.zi",
3723
+ "word": "wɜːd",
3724
+ "work": "wɜːk",
3725
+ "worked": "wɜːk",
3726
+ "worker": "ˈwɜː.kər",
3727
+ "working": "ˈwɜː.kɪŋ",
3728
+ "workshop": "ˈwɜːk.ʃɒp",
3729
+ "world": "wɜːld",
3730
+ "worried": "ˈwʌr.id",
3731
+ "worry": "ˈwʌr.i",
3732
+ "worrying": "ˈwʌr.i.ɪŋ",
3733
+ "worse": "wɜːs",
3734
+ "worsen": "ˈwɜː.sən",
3735
+ "worth": "wɜːθ",
3736
+ "would": "wʊd",
3737
+ "wouldn't": "ˈwʊd.ənt",
3738
+ "wound": "wuːnd",
3739
+ "wow": "waʊ",
3740
+ "wrap": "ræp",
3741
+ "wrapped": "ræpt",
3742
+ "wrapper": "ˈræp.ər",
3743
+ "wreck": "rek",
3744
+ "wrecked": "rekt",
3745
+ "wrecking": "rek",
3746
+ "wrist": "rɪst",
3747
+ "write": "raɪt",
3748
+ "writing": "ˈraɪ.tɪŋ",
3749
+ "wrong": "rɒŋ",
3750
+ "wrote": "rəʊt",
3751
+ "wung": "",
3752
+ "y'all": "jɔːl",
3753
+ "ya": "jə",
3754
+ "yanked": "jæŋk",
3755
+ "yawn": "jɔːn",
3756
+ "yay": "jeɪ",
3757
+ "ye": "jiː",
3758
+ "yeah": "jeə",
3759
+ "year": "jɪər",
3760
+ "yeek": "",
3761
+ "yell": "jel",
3762
+ "yelled": "jel",
3763
+ "yelling": "jel",
3764
+ "yellow": "ˈjel.əʊ",
3765
+ "yellowish": "ˈjel.əʊ.ɪʃ",
3766
+ "yen": "jen",
3767
+ "yep": "jep",
3768
+ "yesterday": "ˈjes.tə.deɪ",
3769
+ "yet": "jet",
3770
+ "yike": "",
3771
+ "you": "juː",
3772
+ "you'd": "juːd",
3773
+ "you'll": "juːl",
3774
+ "you're": "jɔːr",
3775
+ "you've": "juːv",
3776
+ "you.\"": "juː",
3777
+ "young": "jʌŋ",
3778
+ "younger": "",
3779
+ "your": "jɔːr",
3780
+ "yourself": "jɔːˈself",
3781
+ "ystem": "",
3782
+ "yuck": "jʌk",
3783
+ "yucky": "ˈjʌk.i",
3784
+ "yum": "jʌm",
3785
+ "yummy": "ˈjʌm.i",
3786
+ "zebra": "ˈzeb.rə",
3787
+ "zip": "zɪp",
3788
+ "zoo": "zuː",
3789
+ "zoom": "zuːm",
3790
+ "zoomed": "zuːm",
3791
+ "zooming": "zuːm",
3792
+ "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz": ""
3793
+ }
test.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from preprocess import process_audio_file
3
+ from pause import annotate_pauses
4
+ from repetition import annotate_repetitions
5
+ from syllable import annotate_syllables
6
+ from fillerword import annotate_fillerwords
7
+ from mispronunciation import annotate_mispronunciation
8
+
9
+ from feature_extraction import feature_extraction
10
+
11
+
12
+ from annotation import annotate_transcript
13
+
14
+ def main():
15
+
16
+ input_audio_file = "/home/easgrad/shuweiho/workspace/volen/SATE_docker_test/input/454.mp3"
17
+ device = "cuda"
18
+ pause_threshold = 0.3
19
+
20
+ print("Start init...")
21
+
22
+ session_id = process_audio_file(input_audio_file, num_speakers=2, device=device)
23
+
24
+ # annotation
25
+ annotate_pauses(session_id, pause_threshold)
26
+ annotate_repetitions(session_id)
27
+ annotate_syllables(session_id)
28
+ annotate_fillerwords(session_id)
29
+ # annotate_mispronunciation(session_id, api_url="http://localhost:8080")
30
+
31
+ # feature extraction
32
+ # feature_extraction(session_id)
33
+
34
+ # transcription generation
35
+ output_annotation = annotate_transcript(session_id)
36
+ print(f"Done: {output_annotation}")
37
+
38
+ if __name__ == "__main__":
39
+ main()