File size: 14,333 Bytes
67d6834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import os
import json
import re
from collections import Counter

def target_speaker(segments):
    speakers = [seg.get("speaker", "UNKNOWN") for seg in segments]
    most_common = Counter(speakers).most_common(1)
    return most_common[0][0] if most_common else "UNKNOWN"

def pause_feature(session_id, base_dir="session_data"):

    json_file = os.path.join(base_dir, session_id, f"{session_id}_transcriptionCW.json")
    feature_file = os.path.join(base_dir, session_id, f"{session_id}_feature.json")

    if not os.path.exists(json_file):
        print(f"[Error] transcriptionCW file not found: {json_file}")
        return

    with open(json_file, "r", encoding="utf-8") as f:
        data = json.load(f)

    segments = data.get("segments", [])
    tgt_speaker = target_speaker(segments)
    tgt_segments = [seg for seg in segments if seg.get("speaker") == tgt_speaker]

    total_words = 0
    total_duration = 0.0
    all_pauses = []

    for seg in tgt_segments:
        words = seg.get("words", [])
        total_words += len(words)
        duration = seg.get("end", 0) - seg.get("start", 0)
        total_duration += duration
        pauses = seg.get("pauses", [])
        all_pauses.extend(pauses)

    total_pauses = len(all_pauses)
    pause_durations = [p["duration"] for p in all_pauses]
    pause_total_duration = sum(pause_durations)
    avg_pause_duration = sum(pause_durations) / total_pauses if total_pauses > 0 else 0
    longest_pause = max(pause_durations) if pause_durations else 0

    pause_density_1 = (total_pauses / total_words * 100) if total_words > 0 else 0
    pause_density_2 = (total_pauses / total_duration * 60) if total_duration > 0 else 0
    pause_proportion = (pause_total_duration / total_duration) * 100 if total_duration > 0 else 0

    pause_feat = {
        "Pause Density I": round(pause_density_1, 3),
        "Pause Density II": round(pause_density_2, 3),
        "Pause Proportion": round(pause_proportion, 3),
        "Average Pause Duration": round(avg_pause_duration, 3),
        "Longest Pause Duration": round(longest_pause, 3)
    }

    if os.path.exists(feature_file):
        with open(feature_file, "r", encoding="utf-8") as f:
            feature_data = json.load(f)
    else:
        feature_data = {}

    feature_data.setdefault("pause", []).append(pause_feat)

    with open(feature_file, "w", encoding="utf-8") as f:
        json.dump(feature_data, f, indent=4, ensure_ascii=False)

    print(f"[Done] Pause features written to {feature_file}")



def get_syllable_weight(cv_pattern):
    weight1_patterns = {'CV', 'CVC', 'VC', 'V'}
    weight2_patterns = {'VCC', 'CVCC', 'CCV', 'CCVC'}
    if cv_pattern in weight1_patterns:
        return 1
    elif cv_pattern in weight2_patterns:
        return 10
    else:
        return 100
        

def syllable_feature(session_id, base_dir="session_data"):
    json_file = os.path.join(base_dir, session_id, f"{session_id}_transcriptionCW.json")
    feature_file = os.path.join(base_dir, session_id, f"{session_id}_feature.json")

    if not os.path.exists(json_file):
        print(f"[Error] transcriptionCW file not found: {json_file}")
        return

    with open(json_file, "r", encoding="utf-8") as f:
        data = json.load(f)

    segments = data.get("segments", [])
    tgt_speaker = target_speaker(segments)
    tgt_segments = [seg for seg in segments if seg.get("speaker") == tgt_speaker]

    total_duration = sum(seg["end"] - seg["start"] for seg in tgt_segments)
    syllable_types = set()
    total_syllables = 0
    total_weight = 0
    max_syllable_len = 0
    word_syllable_count = {}
    word_counter = 0 

    for seg in tgt_segments:
        syllables = seg.get("syllables", [])
        for syl in syllables:
            cv = syl.get("CV_pattern", "")
            phonemes = syl.get("phonemes", [])
            syllable_types.add(cv)
            total_syllables += 1
            total_weight += get_syllable_weight(cv)
            max_syllable_len = max(max_syllable_len, len(phonemes))
            
            local_idx = syl.get("word_index")
            global_idx = word_counter + local_idx
            word_syllable_count[global_idx] = word_syllable_count.get(global_idx, 0) + 1
        word_counter += len(seg.get("words", []))

    all_words = []
    for seg in tgt_segments:
        all_words.extend(seg.get("words", []))
    total_words = len(all_words)

    multi_syll_2 = sum(1 for c in word_syllable_count.values() if c >= 2)
    multi_syll_3 = sum(1 for c in word_syllable_count.values() if c >= 3)

    feat = {
        "Number of Syllable Types": len(syllable_types),
        "Syllable Complexity Index": round(total_weight / total_syllables, 3) if total_syllables > 0 else 0,
        "Average Syllable Rate": round(total_syllables / total_duration, 3) if total_duration > 0 else 0,
        "Longest Syllable Length": max_syllable_len,
        "Proportion of Multisyllabic Words I": round((multi_syll_2 / total_words) * 100, 3) if total_words > 0 else 0,
        "Proportion of Multisyllabic Words II": round((multi_syll_3 / total_words) * 100, 3) if total_words > 0 else 0
    }

    if os.path.exists(feature_file):
        with open(feature_file, "r", encoding="utf-8") as f:
            feature_data = json.load(f)
    else:
        feature_data = {}

    feature_data.setdefault("syllable", []).append(feat)

    with open(feature_file, "w", encoding="utf-8") as f:
        json.dump(feature_data, f, indent=4, ensure_ascii=False)

    print(f"[Done] Syllable features written to {feature_file}")



def get_rep_weight(length):
    if length == 1:
        return 1
    elif length == 2:
        return 5
    elif length == 3:
        return 10
    elif length == 4:
        return 20
    else:
        return 40


def repetition_feature(session_id, base_dir="session_data"):
    json_file = os.path.join(base_dir, session_id, f"{session_id}_transcriptionCW.json")
    feature_file = os.path.join(base_dir, session_id, f"{session_id}_feature.json")

    if not os.path.exists(json_file):
        print(f"[Error] transcriptionCW file not found: {json_file}")
        return

    with open(json_file, "r", encoding="utf-8") as f:
        data = json.load(f)

    segments = data.get("segments", [])
    tgt_speaker = target_speaker(segments)
    tgt_segments = [seg for seg in segments if seg.get("speaker") == tgt_speaker]

    total_duration = sum(seg["end"] - seg["start"] for seg in tgt_segments)
    total_words = sum(len(seg.get("words", [])) for seg in tgt_segments)

    rep_count = 0
    rep_weights = 0
    rep_lengths = []
    rep_durations = []

    for seg in tgt_segments:
        words = seg.get("words", [])
        repetitions = seg.get("repetitions", [])
        for rep in repetitions:
            indices = rep.get("words", [])
            if not indices:
                continue
            length = len(indices)
            rep_lengths.append(length)
            rep_weights += get_rep_weight(length)
            rep_count += 1

            # compute duration based on word timestamps
            start_idx = indices[0]
            end_idx = indices[-1]
            if 0 <= start_idx < len(words) and 0 <= end_idx < len(words):
                start_time = words[start_idx]["start"]
                end_time = words[end_idx]["end"]
                rep_durations.append(end_time - start_time)

    total_rep_time = sum(rep_durations)
    longest_rep = max(rep_lengths) if rep_lengths else 0
    avg_rep_len = sum(rep_lengths) / len(rep_lengths) if rep_lengths else 0

    rep_feat = {
        "Word Repetition Index": round(rep_weights / rep_count, 3) if rep_count > 0 else 0,
        "Repetition Density I": round(rep_count / total_words * 100, 3) if total_words > 0 else 0,
        "Repetition Density II": round(rep_count / total_duration * 60, 3) if total_duration > 0 else 0,
        "Repetition Proportion": round((total_rep_time / total_duration) * 100, 3) if total_duration > 0 else 0,
        "Longest Repetition Length": longest_rep,
        "Average Repetition Length": round(avg_rep_len, 3)
    }

    if os.path.exists(feature_file):
        with open(feature_file, "r", encoding="utf-8") as f:
            feature_data = json.load(f)
    else:
        feature_data = {}

    feature_data.setdefault("repetition", []).append(rep_feat)

    with open(feature_file, "w", encoding="utf-8") as f:
        json.dump(feature_data, f, indent=4, ensure_ascii=False)

    print(f"[Done] Repetition features written to {feature_file}")



def fillerword_feature(session_id, base_dir="session_data"):
    json_file = os.path.join(base_dir, session_id, f"{session_id}_transcriptionCW.json")
    feature_file = os.path.join(base_dir, session_id, f"{session_id}_feature.json")

    if not os.path.exists(json_file):
        print(f"[Error] transcriptionCW file not found: {json_file}")
        return

    with open(json_file, "r", encoding="utf-8") as f:
        data = json.load(f)

    segments = data.get("segments", [])
    tgt_speaker = target_speaker(segments)
    tgt_segments = [seg for seg in segments if seg.get("speaker") == tgt_speaker]

    total_duration = sum(seg["end"] - seg["start"] for seg in tgt_segments)
    total_words = sum(len(seg.get("words", [])) for seg in tgt_segments)

    filler_total = 0
    filler_durations = []
    filler_intervals = []

    for seg in tgt_segments:
        fillers = seg.get("fillerwords", [])
        words = seg.get("words", [])

        filler_total += len(fillers)
        filler_durations += [fw["duration"] for fw in fillers]

        if len(fillers) >= 2:
            indices = []
            for fw in fillers:
                for i, w in enumerate(words):
                    if abs(w.get("start", 0) - fw["start"]) < 0.01:
                        indices.append(i)
                        break
            indices.sort()
            intervals = [indices[i+1] - indices[i] - 1 for i in range(len(indices)-1)]
            if intervals:
                filler_intervals.append(sum(intervals) / len(intervals))

    avg_duration = sum(filler_durations) / len(filler_durations) if filler_durations else 0
    longest_duration = max(filler_durations) if filler_durations else 0
    avg_interval = sum(filler_intervals) / len(filler_intervals) if filler_intervals else 0

    feat = {
        "Filler Word Density I": round(filler_total / total_words * 100, 3) if total_words > 0 else 0,
        "Filler Word Density II": round(filler_total / total_duration * 60, 3) if total_duration > 0 else 0,
        "Filler Word Proportion": round((sum(filler_durations) / total_duration) * 100, 3) if total_duration > 0 else 0,
        "Average Filler Word Duration": round(avg_duration, 3),
        "Longest Filler Word Duration": round(longest_duration, 3),
        "Average Filler Word Interval": round(avg_interval, 3)
    }

    if os.path.exists(feature_file):
        with open(feature_file, "r", encoding="utf-8") as f:
            feature_data = json.load(f)
    else:
        feature_data = {}

    feature_data.setdefault("fillerword", []).append(feat)

    with open(feature_file, "w", encoding="utf-8") as f:
        json.dump(feature_data, f, indent=4, ensure_ascii=False)

    print(f"[Done] Filler word features written to {feature_file}")


def plm_feature(session_id, base_dir="session_data"):


    json_file = os.path.join(base_dir, session_id, f"{session_id}_transcriptionCW.json")
    feature_file = os.path.join(base_dir, session_id, f"{session_id}_feature.json")

    if not os.path.exists(json_file):
        print(f"[Error] transcriptionCW file not found: {json_file}")
        return

    with open(json_file, "r", encoding="utf-8") as f:
        data = json.load(f)

    segments = data.get("segments", [])
    tgt_speaker = target_speaker(segments)
    tgt_segments = [seg for seg in segments if seg.get("speaker") == tgt_speaker]

    sequence = ''.join(seg.get("mispronunciation", "") for seg in tgt_segments)
    sequence = re.sub(r"[^CE]", "", sequence.upper())

    n = len(sequence)
    if n == 0:
        feat = {
            "Mispronunciation Density": 0,
            "Normalized Transition Count": 0,
            "Average Common Correct": 0,
            "Average Common Error": 0,
            "Longest Common Correct": 0,
            "Longest Common Error": 0
        }
    else:
        transitions = sum(1 for i in range(1, n) if sequence[i] != sequence[i - 1])
        MPD = sum(1 for ch in sequence if ch == 'E') / n
        NTC = transitions / n

        def run_lengths(s, ch):
            return [len(g) for g in re.findall(f"{ch}+", s)]

        c_runs = run_lengths(sequence, 'C')
        e_runs = run_lengths(sequence, 'E')

        ACC = sum(c_runs) / len(c_runs) if c_runs else 0
        ACE = sum(e_runs) / len(e_runs) if e_runs else 0
        LCC = max(c_runs) if c_runs else 0
        LCE = max(e_runs) if e_runs else 0

        feat = {
            "Mispronunciation Density": round(MPD, 3),
            "Normalized Transition Count": round(NTC, 3),
            "Average Common Correct": round(ACC, 3),
            "Average Common Error": round(ACE, 3),
            "Longest Common Correct": LCC,
            "Longest Common Error": LCE
        }

    if os.path.exists(feature_file):
        with open(feature_file, "r", encoding="utf-8") as f:
            feature_data = json.load(f)
    else:
        feature_data = {}

    feature_data.setdefault("plm", []).append(feat)

    with open(feature_file, "w", encoding="utf-8") as f:
        json.dump(feature_data, f, indent=4, ensure_ascii=False)

    print(f"[Done] PLM features written to {feature_file}")



def feature_extraction(session_id, base_dir="session_data"):

    feature_file = os.path.join(base_dir, session_id, f"{session_id}_feature.json")

    if not os.path.exists(feature_file):
        with open(feature_file, "w", encoding="utf-8") as f:
            json.dump({}, f, indent=4)

    pause_feature(session_id, base_dir=base_dir)
    syllable_feature(session_id, base_dir=base_dir)
    repetition_feature(session_id, base_dir=base_dir)
    fillerword_feature(session_id, base_dir=base_dir)
    plm_feature(session_id, base_dir=base_dir)

    print(f"[All Analysis Done] Feature extraction complete for session {session_id}")


if __name__ == "__main__":
    feature_extraction("000030")