File size: 5,539 Bytes
67d6834 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import argparse
import io
from typing import Any, Dict, List, Tuple, Union
import moviepy.editor as mp
import numpy as np
import streamlit as st
import torch
import torchaudio
import torchaudio.transforms as T
from scipy.io import wavfile
from streamlit_mic_recorder import mic_recorder
from transformers import (
AutomaticSpeechRecognitionPipeline,
AutoModelForSpeechSeq2Seq,
AutoProcessor,
pipeline,
)
def parse_arguments() -> argparse.Namespace:
"""Parse command-line arguments."""
parser = argparse.ArgumentParser(
description="Streamlit app for speech transcription."
)
parser.add_argument(
"--model_id", type=str, required=True, help="Path to the model directory"
)
return parser.parse_args()
# Load model and processor from the specified path
@st.cache_resource # type: ignore
def load_model_and_processor(
model_id: str,
) -> Tuple[AutoModelForSpeechSeq2Seq, AutoProcessor]:
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
model.generation_config.median_filter_width = 3
processor = AutoProcessor.from_pretrained(model_id)
return model, processor
# Setup the pipeline
@st.cache_resource # type: ignore
def setup_pipeline(
_model: AutoModelForSpeechSeq2Seq, _processor: AutoProcessor
) -> AutomaticSpeechRecognitionPipeline:
return pipeline(
"automatic-speech-recognition",
model=_model,
tokenizer=_processor.tokenizer,
feature_extractor=_processor.feature_extractor,
chunk_length_s=30,
batch_size=1,
return_timestamps=True,
torch_dtype=torch_dtype,
device=device,
)
def wav_to_black_mp4(wav_path: str, output_path: str, fps: int = 25) -> None:
"""Convert WAV file to a black-screen MP4 with the same audio."""
waveform, sample_rate = torchaudio.load(wav_path)
duration: float = waveform.shape[1] / sample_rate
audio = mp.AudioFileClip(wav_path)
black_clip = mp.ColorClip((256, 250), color=(0, 0, 0), duration=duration)
final_clip = black_clip.set_audio(audio)
final_clip.write_videofile(output_path, fps=fps)
def timestamps_to_vtt(timestamps: List[Dict[str, Union[str, Any]]]) -> str:
"""Convert timestamps to VTT format."""
vtt_content: str = "WEBVTT\n\n"
for word in timestamps:
start_time, end_time = word["timestamp"]
start_time_str = f"{int(start_time // 3600)}:{int(start_time // 60 % 60):02d}:{start_time % 60:06.3f}"
end_time_str = f"{int(end_time // 3600)}:{int(end_time // 60 % 60):02d}:{end_time % 60:06.3f}"
vtt_content += f"{start_time_str} --> {end_time_str}\n{word['text']}\n\n"
return vtt_content
def process_audio_bytes(audio_bytes: bytes) -> torch.Tensor:
"""Process audio bytes to the required format."""
audio_stream = io.BytesIO(audio_bytes)
sr, y = wavfile.read(audio_stream)
y = y.astype(np.float32)
y_mean = np.mean(y)
y_std = np.std(y)
y_normalized = (y - y_mean) / y_std
transform = T.Resample(sr, 16000)
waveform = transform(torch.unsqueeze(torch.tensor(y_normalized / 8), 0))
torchaudio.save("sample.wav", waveform, sample_rate=16000)
return waveform
def transcribe(audio_bytes: bytes) -> Dict[str, Any]:
"""Transcribe the given audio bytes."""
waveform = process_audio_bytes(audio_bytes)
transcription = pipe(waveform[0, :].numpy(), return_timestamps="word")
return transcription
args = parse_arguments()
model_id = args.model_id
# Set up device and data type for processing
device: str = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype: torch.dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model, processor = load_model_and_processor(model_id)
pipe = setup_pipeline(model, processor)
# Streamlit app interface
st.title("CrisperWhisper++ 🦻")
st.subheader("Caution when using. Make sure you can handle the crispness. ⚠️")
st.write("🎙️ Record an audio to transcribe or 📁 upload an audio file.")
# Audio recorder component
audio = mic_recorder(
start_prompt="Start recording",
stop_prompt="Stop recording",
just_once=False,
use_container_width=False,
format="wav",
callback=None,
args=(),
kwargs={},
key=None,
)
audio_bytes: Union[bytes, None] = audio["bytes"] if audio else None
# Audio file upload handling
audio_file = st.file_uploader("Or upload an audio file", type=["wav", "mp3", "ogg"])
if audio_file is not None:
audio_bytes = audio_file.getvalue()
if audio_bytes:
try:
transcription = transcribe(audio_bytes)
vtt = timestamps_to_vtt(transcription["chunks"])
with open("subtitles.vtt", "w") as file:
file.write(vtt)
wav_to_black_mp4("sample.wav", "video.mp4")
st.video("video.mp4", subtitles="subtitles.vtt")
st.subheader("Transcription:")
st.markdown(
f"""
<div style="background-color: #f0f0f0; padding: 10px; border-radius: 5px;">
<p style="font-size: 16px; color: #333;">{transcription['text']}</p>
</div>
""",
unsafe_allow_html=True,
)
except Exception as e:
st.error(f"An error occurred during transcription: {e}")
# Footer
st.markdown(
"""
<hr>
<footer>
<p style="text-align: center;">© 2024 nyra health GmbH</p>
</footer>
""",
unsafe_allow_html=True,
)
|