Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
import json | |
from pathlib import Path | |
from sentence_transformers import CrossEncoder | |
import numpy as np | |
from time import perf_counter | |
from pydantic import BaseModel, Field | |
from phi.agent import Agent | |
from phi.model.groq import Groq | |
from tempfile import NamedTemporaryFile | |
import os | |
import logging | |
# Set up logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# API Key setup | |
api_key = os.getenv("GROQ_API_KEY") | |
if not api_key: | |
gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.") | |
logger.error("GROQ_API_KEY not found.") | |
else: | |
os.environ["GROQ_API_KEY"] = api_key | |
# Pydantic Model for Quiz Structure | |
class QuizItem(BaseModel): | |
question: str = Field(..., description="The quiz question") | |
choices: list[str] = Field(..., description="List of 4 multiple-choice options") | |
correct_answer: str = Field(..., description="The correct choice (e.g., 'C1')") | |
class QuizOutput(BaseModel): | |
items: list[QuizItem] = Field(..., description="List of 10 quiz items") | |
# Initialize Agents | |
groq_agent = Agent(model=Groq(model="llama3-70b-8192", api_key=api_key), markdown=True) | |
quiz_generator = Agent( | |
name="Quiz Generator", | |
role="Generates structured quiz questions and answers", | |
instructions=[ | |
"Create 10 questions with 4 choices each based on the provided topic and documents.", | |
"Use the specified difficulty level (easy, average, hard) to adjust question complexity.", | |
"Ensure questions are derived only from the provided documents.", | |
"Return the output in a structured format using the QuizOutput Pydantic model.", | |
"Each question should have a unique correct answer from the choices (labeled C1, C2, C3, C4)." | |
], | |
model=Groq(id="llama3-70b-8192", api_key=api_key), | |
response_model=QuizOutput, | |
markdown=True | |
) | |
VECTOR_COLUMN_NAME = "vector" | |
TEXT_COLUMN_NAME = "text" | |
proj_dir = Path.cwd() | |
# Calling functions from backend (assuming they exist) | |
from backend.semantic_search import table, retriever | |
def generate_quiz_data(question_difficulty, topic, documents_str): | |
prompt = f"""Generate a quiz with {question_difficulty} difficulty on topic '{topic}' using only the following documents:\n{documents_str}""" | |
try: | |
response = quiz_generator.run(prompt) | |
return response.content | |
except Exception as e: | |
logger.error(f"Failed to generate quiz: {e}") | |
return None | |
def quiz_to_excel(quiz_data): | |
"""Convert quiz data to Excel format""" | |
if not quiz_data or not quiz_data.items: | |
return None | |
gr.Warning('Generating Excel file...', duration=10) | |
data = [] | |
for i, item in enumerate(quiz_data.items, 1): | |
# Get correct answer index | |
correct_answer_index = int(item.correct_answer[1]) - 1 # 'C3' -> index 2 | |
# Prepare row data | |
row = [ | |
item.question, # Question Text | |
"Multiple Choice", # Question Type | |
item.choices[0] if len(item.choices) > 0 else '', # Option 1 | |
item.choices[1] if len(item.choices) > 1 else '', # Option 2 | |
item.choices[2] if len(item.choices) > 2 else '', # Option 3 | |
item.choices[3] if len(item.choices) > 3 else '', # Option 4 | |
'', # Option 5 (empty) | |
str(correct_answer_index + 1), # Correct Answer (1-4) | |
30, # Time in seconds | |
'' # Image Link | |
] | |
data.append(row) | |
# Create DataFrame | |
df = pd.DataFrame(data, columns=[ | |
"Question Text", | |
"Question Type", | |
"Option 1", | |
"Option 2", | |
"Option 3", | |
"Option 4", | |
"Option 5", | |
"Correct Answer", | |
"Time in seconds", | |
"Image Link" | |
]) | |
# Save to temporary file | |
temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx") | |
df.to_excel(temp_file.name, index=False) | |
return temp_file.name | |
def retrieve_and_generate_quiz(question_difficulty, topic): | |
gr.Warning('Generating quiz may take 1-2 minutes. Please wait.', duration=60) | |
top_k_rank = 10 | |
documents = [] | |
document_start = perf_counter() | |
query_vec = retriever.encode(topic) | |
documents = [doc[TEXT_COLUMN_NAME] for doc in table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()] | |
# Apply BGE reranker | |
cross_encoder = CrossEncoder('BAAI/bge-reranker-base') | |
query_doc_pair = [[topic, doc] for doc in documents] | |
cross_scores = cross_encoder.predict(query_doc_pair) | |
sim_scores_argsort = list(reversed(np.argsort(cross_scores))) | |
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]] | |
documents_str = '\n'.join(documents) | |
quiz_data = generate_quiz_data(question_difficulty, topic, documents_str) | |
return quiz_data | |
def update_quiz_components(quiz_data): | |
if not quiz_data or not quiz_data.items: | |
return [gr.update(visible=False) for _ in range(10)] + [gr.update(value="Error: Failed to generate quiz.", visible=True), None] | |
radio_updates = [] | |
for i, item in enumerate(quiz_data.items[:10]): | |
choices = item.choices | |
radio_update = gr.update(visible=True, choices=choices, label=item.question, value=None) | |
radio_updates.append(radio_update) | |
# Generate Excel file after successful quiz generation | |
excel_file = quiz_to_excel(quiz_data) | |
return radio_updates + [gr.update(value="Please select answers and click 'Check Score'.", visible=True), excel_file] | |
# FIXED FUNCTION: Changed parameter signature to accept all arguments positionally | |
def collect_answers_and_calculate(*all_inputs): | |
print(f"Total inputs received: {len(all_inputs)}") # Debug print | |
# The last input is quiz_data, the first 10 are radio values | |
radio_values = all_inputs[:10] # First 10 inputs are radio button values | |
quiz_data = all_inputs[10] # Last input is quiz_data | |
print(f"Received radio_values: {radio_values}") # Debug print | |
print(f"Received quiz_data: {quiz_data}") # Debug print | |
# Calculate score by comparing user answers with correct answers | |
score = 0 | |
answered_questions = 0 | |
for i, (user_answer, quiz_item) in enumerate(zip(radio_values, quiz_data.items[:10])): | |
if user_answer is not None: # Only count if user answered | |
answered_questions += 1 | |
# Convert correct answer code (e.g., 'C3') to actual choice text | |
correct_answer_index = int(quiz_item.correct_answer[1]) - 1 # 'C3' -> index 2 | |
correct_answer_text = quiz_item.choices[correct_answer_index] | |
print(f"Q{i+1}: User='{user_answer}' vs Correct='{correct_answer_text}'") # Debug | |
if user_answer == correct_answer_text: | |
score += 1 | |
print(f"Calculated score: {score}/{answered_questions}") # Debug print | |
# Create colorful HTML message | |
if answered_questions == 0: | |
html_message = """ | |
<div style="text-align: center; padding: 20px; border-radius: 10px; background: linear-gradient(135deg, #ff6b6b, #ee5a24);"> | |
<h2 style="color: white; margin: 0;">⚠️ Please answer at least one question!</h2> | |
</div> | |
""" | |
elif score == answered_questions: | |
html_message = f""" | |
<div style="text-align: center; padding: 20px; border-radius: 10px; background: linear-gradient(135deg, #00d2d3, #54a0ff); box-shadow: 0 4px 15px rgba(0,0,0,0.2);"> | |
<h1 style="color: white; margin: 0; text-shadow: 2px 2px 4px rgba(0,0,0,0.3);">🏆 PERFECT SCORE! 🏆</h1> | |
<h2 style="color: #fff3cd; margin: 10px 0;">You got {score} out of {answered_questions} correct!</h2> | |
<p style="color: white; font-size: 18px; margin: 0;">Outstanding performance! 🌟</p> | |
</div> | |
""" | |
elif score > answered_questions * 0.7: | |
html_message = f""" | |
<div style="text-align: center; padding: 20px; border-radius: 10px; background: linear-gradient(135deg, #2ed573, #7bed9f); box-shadow: 0 4px 15px rgba(0,0,0,0.2);"> | |
<h1 style="color: white; margin: 0; text-shadow: 2px 2px 4px rgba(0,0,0,0.3);">🎉 EXCELLENT! 🎉</h1> | |
<h2 style="color: #fff3cd; margin: 10px 0;">You got {score} out of {answered_questions} correct!</h2> | |
<p style="color: white; font-size: 18px; margin: 0;">Great job! Keep it up! 💪</p> | |
</div> | |
""" | |
elif score > answered_questions * 0.5: | |
html_message = f""" | |
<div style="text-align: center; padding: 20px; border-radius: 10px; background: linear-gradient(135deg, #ffa726, #ffcc02); box-shadow: 0 4px 15px rgba(0,0,0,0.2);"> | |
<h1 style="color: white; margin: 0; text-shadow: 2px 2px 4px rgba(0,0,0,0.3);">👍 GOOD JOB! 👍</h1> | |
<h2 style="color: #fff3cd; margin: 10px 0;">You got {score} out of {answered_questions} correct!</h2> | |
<p style="color: white; font-size: 18px; margin: 0;">Well done! Room for improvement! 📚</p> | |
</div> | |
""" | |
else: | |
html_message = f""" | |
<div style="text-align: center; padding: 20px; border-radius: 10px; background: linear-gradient(135deg, #ff7675, #fd79a8); box-shadow: 0 4px 15px rgba(0,0,0,0.2);"> | |
<h1 style="color: white; margin: 0; text-shadow: 2px 2px 4px rgba(0,0,0,0.3);">💪 KEEP TRYING! 💪</h1> | |
<h2 style="color: #fff3cd; margin: 10px 0;">You got {score} out of {answered_questions} correct!</h2> | |
<p style="color: white; font-size: 18px; margin: 0;">Don't worry! Practice makes perfect! 📖✨</p> | |
</div> | |
""" | |
return html_message | |
# Define a colorful theme | |
colorful_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="yellow", neutral_hue="purple") | |
with gr.Blocks(title="CBSE Gyan Quiz Bot", theme=colorful_theme) as QUIZBOT: | |
# Create a single row for the HTML and Image | |
with gr.Row(): | |
with gr.Column(scale=2): | |
gr.Image(value='logo.png', height=200, width=200) | |
with gr.Column(scale=6): | |
gr.HTML(""" | |
<center> | |
<h1><span style="color: purple;">CBSE GYAN</span> Quiz Bot</h1> | |
<h2>Generative AI-powered Learning for CBSE Students</h2> | |
<i>⚠️ Students can create quiz from any topic from CBSE curriculum and evaluate themselves! ⚠️</i> | |
</center> | |
""") | |
topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any CHAPTER NAME from CBSE curriculum") | |
with gr.Row(): | |
difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?") | |
model_radio = gr.Radio(choices=['(ACCURATE) BGE reranker'], value='(ACCURATE) BGE reranker', label="Embeddings") | |
generate_quiz_btn = gr.Button("Generate Quiz!🚀") | |
quiz_msg = gr.Textbox(label="Status", interactive=False) | |
# Pre-defined radio buttons for 10 questions | |
question_radios = [gr.Radio(visible=False, label="", choices=[""], value=None) for _ in range(10)] | |
quiz_data_state = gr.State(value=None) | |
# Excel download file | |
excel_download = gr.File(label="Download Excel", visible=False) | |
check_score_btn = gr.Button("Check Score", variant="primary", size="lg") | |
# HTML output for colorful score display at bottom | |
score_output = gr.HTML(visible=False, label="Your Results") | |
# Register the click event for Generate Quiz without @ decorator | |
generate_quiz_btn.click( | |
fn=retrieve_and_generate_quiz, | |
inputs=[difficulty_radio, topic], | |
outputs=[quiz_data_state] | |
).then( | |
fn=update_quiz_components, | |
inputs=[quiz_data_state], | |
outputs=question_radios + [quiz_msg, excel_download] | |
).then( | |
fn=lambda: gr.update(visible=True), # Make Excel download visible | |
inputs=[], | |
outputs=[excel_download] | |
) | |
# FIXED: Register the click event for Check Score with correct input handling | |
check_score_btn.click( | |
fn=collect_answers_and_calculate, | |
inputs=question_radios + [quiz_data_state], # This creates a list of 11 inputs | |
outputs=[score_output], | |
api_name="check_score" | |
).then( | |
fn=lambda: gr.update(visible=True), # Make score output visible after calculation | |
inputs=[], | |
outputs=[score_output] | |
) | |
if __name__ == "__main__": | |
QUIZBOT.queue().launch(server_name="0.0.0.0", server_port=7860, share=True) | |
# import pandas as pd | |
# import json | |
# import gradio as gr | |
# from pathlib import Path | |
# from ragatouille import RAGPretrainedModel | |
# from gradio_client import Client | |
# from tempfile import NamedTemporaryFile | |
# from sentence_transformers import CrossEncoder | |
# import numpy as np | |
# from time import perf_counter | |
# from sentence_transformers import CrossEncoder | |
# from backend.semantic_search import table, retriever | |
# import os | |
# VECTOR_COLUMN_NAME = "vector" | |
# TEXT_COLUMN_NAME = "text" | |
# proj_dir = Path.cwd() | |
# # Set up logging | |
# import logging | |
# logging.basicConfig(level=logging.INFO) | |
# logger = logging.getLogger(__name__) | |
# # Replace Mixtral client with Qwen Client | |
# #client = Client("Qwen/Qwen1.5-110B-Chat-demo") | |
# # Step 2: Initialize the client for the Qwen3 Demo space | |
# hf_token=os.getenv('HUGGING_FACE_HUB_TOKEN') | |
# client = Client("Qwen/Qwen3-Demo",hf_token=hf_token) | |
# settings = { | |
# "model": "qwen3-235b-a22b", | |
# "sys_prompt": "You are a helpful and harmless assistant.", | |
# "thinking_budget": 38 | |
# } | |
# def system_instructions(question_difficulty, topic, documents_str): | |
# return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". Example: 'A10':'Q10:C3' [/INST]""" | |
# # RA | |
# RAG_db = gr.State() | |
# quiz_data = None | |
# def json_to_excel(output_json): | |
# # Initialize list for DataFrame | |
# data = [] | |
# gr.Warning('Generating Shareable file link..', duration=30) | |
# for i in range(1, 11): # Assuming there are 10 questions | |
# question_key = f"Q{i}" | |
# answer_key = f"A{i}" | |
# question = output_json.get(question_key, '') | |
# correct_answer_key = output_json.get(answer_key, '') | |
# #correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else '' | |
# correct_answer = correct_answer_key.split(':')[-1].replace('C', '').strip() if correct_answer_key else '' | |
# # Extract options | |
# option_keys = [f"{question_key}:C{i}" for i in range(1, 6)] | |
# options = [output_json.get(key, '') for key in option_keys] | |
# # Add data row | |
# data.append([ | |
# question, # Question Text | |
# "Multiple Choice", # Question Type | |
# options[0], # Option 1 | |
# options[1], # Option 2 | |
# options[2] if len(options) > 2 else '', # Option 3 | |
# options[3] if len(options) > 3 else '', # Option 4 | |
# options[4] if len(options) > 4 else '', # Option 5 | |
# correct_answer, # Correct Answer | |
# 30, # Time in seconds | |
# '' # Image Link | |
# ]) | |
# # Create DataFrame | |
# df = pd.DataFrame(data, columns=[ | |
# "Question Text", | |
# "Question Type", | |
# "Option 1", | |
# "Option 2", | |
# "Option 3", | |
# "Option 4", | |
# "Option 5", | |
# "Correct Answer", | |
# "Time in seconds", | |
# "Image Link" | |
# ]) | |
# temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx") | |
# df.to_excel(temp_file.name, index=False) | |
# return temp_file.name | |
# # Define a colorful theme | |
# colorful_theme = gr.themes.Default( | |
# primary_hue="cyan", # Set a bright cyan as primary color | |
# secondary_hue="yellow", # Set a bright magenta as secondary color | |
# neutral_hue="purple" # Optionally set a neutral color | |
# ) | |
# #with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green")) as QUIZBOT: | |
# with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT: | |
# # Create a single row for the HTML and Image | |
# with gr.Row(): | |
# with gr.Column(scale=2): | |
# gr.Image(value='logo.png', height=200, width=200) | |
# with gr.Column(scale=6): | |
# gr.HTML(""" | |
# <center> | |
# <h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1> | |
# <h2>Generative AI-powered Capacity building for Training Officers</h2> | |
# <i>⚠️ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! ⚠️</i> | |
# </center> | |
# """) | |
# topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual") | |
# with gr.Row(): | |
# difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?") | |
# model_radio = gr.Radio(choices=[ '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], | |
# value='(ACCURATE) BGE reranker', label="Embeddings", | |
# info="First query to ColBERT may take a little time") | |
# generate_quiz_btn = gr.Button("Generate Quiz!🚀") | |
# quiz_msg = gr.Textbox() | |
# question_radios = [gr.Radio(visible=False) for _ in range(10)] | |
# @generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")]) | |
# def generate_quiz(question_difficulty, topic, cross_encoder): | |
# top_k_rank = 10 | |
# documents = [] | |
# gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60) | |
# if cross_encoder == '(HIGH ACCURATE) ColBERT': | |
# gr.Warning('Retrieving using ColBERT.. First-time query will take 2 minute for model to load.. please wait',duration=100) | |
# RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") | |
# RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') | |
# documents_full = RAG_db.value.search(topic, k=top_k_rank) | |
# documents = [item['content'] for item in documents_full] | |
# else: | |
# document_start = perf_counter() | |
# query_vec = retriever.encode(topic) | |
# doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank) | |
# documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list() | |
# documents = [doc[TEXT_COLUMN_NAME] for doc in documents] | |
# query_doc_pair = [[topic, doc] for doc in documents] | |
# # if cross_encoder == '(FAST) MiniLM-L6v2': | |
# # cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') | |
# if cross_encoder == '(ACCURATE) BGE reranker': | |
# cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base') | |
# cross_scores = cross_encoder1.predict(query_doc_pair) | |
# sim_scores_argsort = list(reversed(np.argsort(cross_scores))) | |
# documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]] | |
# formatted_prompt = system_instructions(question_difficulty, topic, '\n'.join(documents)) | |
# print(' Formatted Prompt : ' ,formatted_prompt) | |
# try: | |
# #response = client.predict(query=formatted_prompt, history=[], system="You are a helpful assistant.", api_name="/model_chat") | |
# # Step 3: Define the input message and model settings | |
# response = client.predict( | |
# input_value=formatted_prompt, | |
# settings_form_value=settings, | |
# api_name="/add_message" | |
# ) | |
# # Step 5: Extract the assistant's final text response from the chat history | |
# chat_history = response[1] # response[1] contains the updated chat history | |
# assistant_response = None | |
# # Loop through the messages in reverse to find the most recent assistant message | |
# for message in reversed(chat_history["value"]): | |
# if message["role"] == "assistant": | |
# # Find the text content part | |
# for content_item in message["content"]: | |
# if content_item["type"] == "text": | |
# assistant_response = content_item["content"] | |
# break | |
# if assistant_response: | |
# break | |
# # Step 6: Print only the assistant's natural language response | |
# if assistant_response: | |
# print("Assistant Response:") | |
# print(assistant_response) | |
# else: | |
# print("No assistant response found in the chat history.") | |
# #response1 = response[1][0][1] | |
# response1=assistant_response | |
# # Extract JSON | |
# start_index = response1.find('{') | |
# end_index = response1.rfind('}') | |
# cleaned_response = response1[start_index:end_index + 1] if start_index != -1 and end_index != -1 else '' | |
# print('Cleaned Response :',cleaned_response) | |
# output_json = json.loads(cleaned_response) | |
# # Assign the extracted JSON to quiz_data for use in the comparison function | |
# global quiz_data | |
# quiz_data = output_json | |
# # Generate the Excel file | |
# excel_file = json_to_excel(output_json) | |
# question_radio_list = [] | |
# for question_num in range(1, 11): | |
# question_key = f"Q{question_num}" | |
# answer_key = f"A{question_num}" | |
# question = output_json.get(question_key) | |
# answer = output_json.get(output_json.get(answer_key)) | |
# if not question or not answer: | |
# continue | |
# choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)] | |
# choice_list = [output_json.get(choice_key, "Choice not found") for choice_key in choice_keys] | |
# radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True) | |
# question_radio_list.append(radio) | |
# return ['Quiz Generated!'] + question_radio_list + [excel_file] | |
# except json.JSONDecodeError as e: | |
# print(f"Failed to decode JSON: {e}") | |
# check_button = gr.Button("Check Score") | |
# score_textbox = gr.Markdown() | |
# @check_button.click(inputs=question_radios, outputs=score_textbox) | |
# def compare_answers(*user_answers): | |
# user_answer_list = list(user_answers) | |
# answers_list = [] | |
# for question_num in range(1, 20): | |
# answer_key = f"A{question_num}" | |
# answer = quiz_data.get(quiz_data.get(answer_key)) | |
# if not answer: | |
# break | |
# answers_list.append(answer) | |
# score = sum(1 for item in user_answer_list if item in answers_list) | |
# if score > 7: | |
# message = f"### Excellent! You got {score} out of 10!" | |
# elif score > 5: | |
# message = f"### Good! You got {score} out of 10!" | |
# else: | |
# message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!" | |
# return message | |
# QUIZBOT.queue() | |
# QUIZBOT.launch(debug=True) | |