File size: 24,240 Bytes
a59c14d
0aecf54
91fad79
0aecf54
8febad9
 
 
a59c14d
783b169
 
a59c14d
 
 
8febad9
 
91fad79
 
f72c98d
05d3040
783b169
 
 
 
 
 
 
a59c14d
 
 
 
 
 
 
 
 
2470393
 
 
a59c14d
 
 
783b169
a59c14d
 
 
 
 
783b169
 
a59c14d
 
783b169
481dbe6
a59c14d
 
 
783b169
2470393
a59c14d
783b169
a59c14d
 
05d3040
a59c14d
 
05d3040
a59c14d
05d3040
783b169
a59c14d
 
 
 
 
 
0aecf54
05d3040
a59c14d
 
 
0aecf54
a59c14d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aecf54
 
a59c14d
 
 
 
 
 
 
 
 
 
0aecf54
a59c14d
 
f601cce
 
 
783b169
a59c14d
 
 
 
05d3040
a59c14d
 
 
05d3040
a59c14d
 
 
 
 
 
 
 
 
2470393
a59c14d
2470393
a59c14d
 
05d3040
a59c14d
 
 
 
 
05d3040
2470393
 
 
a59c14d
05d3040
2470393
a59c14d
2470393
05d3040
a59c14d
2470393
 
05d3040
2470393
 
a59c14d
2470393
05d3040
a59c14d
05d3040
a59c14d
2470393
a59c14d
05d3040
2470393
 
a59c14d
 
2470393
a59c14d
 
 
05d3040
2470393
a59c14d
2470393
a59c14d
2470393
 
 
 
 
a59c14d
2470393
 
 
 
 
 
 
a59c14d
2470393
 
 
 
 
 
 
a59c14d
2470393
 
 
 
 
 
 
05d3040
2470393
 
 
 
 
 
 
05d3040
2470393
783b169
2470393
a59c14d
 
 
2470393
0322ea5
 
a59c14d
0322ea5
54efd71
 
a59c14d
 
 
54efd71
0322ea5
a59c14d
 
 
2e855f8
a59c14d
 
 
 
 
 
2470393
a59c14d
 
05d3040
2470393
 
 
a59c14d
2470393
 
 
a59c14d
2470393
a59c14d
 
 
2470393
a59c14d
 
2470393
a59c14d
 
2470393
a59c14d
 
05d3040
a59c14d
2470393
a59c14d
 
2470393
a59c14d
 
 
2470393
a59c14d
 
05d3040
 
 
2470393
783b169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8febad9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import gradio as gr
import pandas as pd
import json
from pathlib import Path
from sentence_transformers import CrossEncoder
import numpy as np
from time import perf_counter
from pydantic import BaseModel, Field
from phi.agent import Agent
from phi.model.groq import Groq
from tempfile import NamedTemporaryFile
import os
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# API Key setup
api_key = os.getenv("GROQ_API_KEY")
if not api_key:
    gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.")
    logger.error("GROQ_API_KEY not found.")
else:
    os.environ["GROQ_API_KEY"] = api_key

# Pydantic Model for Quiz Structure
class QuizItem(BaseModel):
    question: str = Field(..., description="The quiz question")
    choices: list[str] = Field(..., description="List of 4 multiple-choice options")
    correct_answer: str = Field(..., description="The correct choice (e.g., 'C1')")

class QuizOutput(BaseModel):
    items: list[QuizItem] = Field(..., description="List of 10 quiz items")

# Initialize Agents
groq_agent = Agent(model=Groq(model="llama3-70b-8192", api_key=api_key), markdown=True)

quiz_generator = Agent(
    name="Quiz Generator",
    role="Generates structured quiz questions and answers",
    instructions=[
        "Create 10 questions with 4 choices each based on the provided topic and documents.",
        "Use the specified difficulty level (easy, average, hard) to adjust question complexity.",
        "Ensure questions are derived only from the provided documents.",
        "Return the output in a structured format using the QuizOutput Pydantic model.",
        "Each question should have a unique correct answer from the choices (labeled C1, C2, C3, C4)."
    ],
    model=Groq(id="llama3-70b-8192", api_key=api_key),
    response_model=QuizOutput,
    markdown=True
)

VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
proj_dir = Path.cwd()

# Calling functions from backend (assuming they exist)
from backend.semantic_search import table, retriever

def generate_quiz_data(question_difficulty, topic, documents_str):
    prompt = f"""Generate a quiz with {question_difficulty} difficulty on topic '{topic}' using only the following documents:\n{documents_str}"""
    try:
        response = quiz_generator.run(prompt)
        return response.content
    except Exception as e:
        logger.error(f"Failed to generate quiz: {e}")
        return None

def quiz_to_excel(quiz_data):
    """Convert quiz data to Excel format"""
    if not quiz_data or not quiz_data.items:
        return None
    
    gr.Warning('Generating Excel file...', duration=10)
    data = []
    
    for i, item in enumerate(quiz_data.items, 1):
        # Get correct answer index
        correct_answer_index = int(item.correct_answer[1]) - 1  # 'C3' -> index 2
        
        # Prepare row data
        row = [
            item.question,                      # Question Text
            "Multiple Choice",                  # Question Type
            item.choices[0] if len(item.choices) > 0 else '',  # Option 1
            item.choices[1] if len(item.choices) > 1 else '',  # Option 2
            item.choices[2] if len(item.choices) > 2 else '',  # Option 3
            item.choices[3] if len(item.choices) > 3 else '',  # Option 4
            '',                                 # Option 5 (empty)
            str(correct_answer_index + 1),      # Correct Answer (1-4)
            30,                                 # Time in seconds
            ''                                  # Image Link
        ]
        data.append(row)
    
    # Create DataFrame
    df = pd.DataFrame(data, columns=[
        "Question Text",
        "Question Type", 
        "Option 1",
        "Option 2",
        "Option 3",
        "Option 4",
        "Option 5",
        "Correct Answer",
        "Time in seconds",
        "Image Link"
    ])
    
    # Save to temporary file
    temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx")
    df.to_excel(temp_file.name, index=False)
    return temp_file.name

def retrieve_and_generate_quiz(question_difficulty, topic):
    gr.Warning('Generating quiz may take 1-2 minutes. Please wait.', duration=60)
    top_k_rank = 10
    documents = []

    document_start = perf_counter()
    query_vec = retriever.encode(topic)
    documents = [doc[TEXT_COLUMN_NAME] for doc in table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()]
    
    # Apply BGE reranker
    cross_encoder = CrossEncoder('BAAI/bge-reranker-base')
    query_doc_pair = [[topic, doc] for doc in documents]
    cross_scores = cross_encoder.predict(query_doc_pair)
    sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
    documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]

    documents_str = '\n'.join(documents)
    quiz_data = generate_quiz_data(question_difficulty, topic, documents_str)
    return quiz_data

def update_quiz_components(quiz_data):
    if not quiz_data or not quiz_data.items:
        return [gr.update(visible=False) for _ in range(10)] + [gr.update(value="Error: Failed to generate quiz.", visible=True), None]
    
    radio_updates = []
    for i, item in enumerate(quiz_data.items[:10]):
        choices = item.choices
        radio_update = gr.update(visible=True, choices=choices, label=item.question, value=None)
        radio_updates.append(radio_update)
    
    # Generate Excel file after successful quiz generation
    excel_file = quiz_to_excel(quiz_data)
    
    return radio_updates + [gr.update(value="Please select answers and click 'Check Score'.", visible=True), excel_file]

# FIXED FUNCTION: Changed parameter signature to accept all arguments positionally
def collect_answers_and_calculate(*all_inputs):
    print(f"Total inputs received: {len(all_inputs)}")  # Debug print
    
    # The last input is quiz_data, the first 10 are radio values
    radio_values = all_inputs[:10]  # First 10 inputs are radio button values
    quiz_data = all_inputs[10]      # Last input is quiz_data
    
    print(f"Received radio_values: {radio_values}")  # Debug print
    print(f"Received quiz_data: {quiz_data}")       # Debug print
    
    # Calculate score by comparing user answers with correct answers
    score = 0
    answered_questions = 0
    
    for i, (user_answer, quiz_item) in enumerate(zip(radio_values, quiz_data.items[:10])):
        if user_answer is not None:  # Only count if user answered
            answered_questions += 1
            
            # Convert correct answer code (e.g., 'C3') to actual choice text
            correct_answer_index = int(quiz_item.correct_answer[1]) - 1  # 'C3' -> index 2
            correct_answer_text = quiz_item.choices[correct_answer_index]
            
            print(f"Q{i+1}: User='{user_answer}' vs Correct='{correct_answer_text}'")  # Debug
            
            if user_answer == correct_answer_text:
                score += 1
    
    print(f"Calculated score: {score}/{answered_questions}")  # Debug print
    
    # Create colorful HTML message
    if answered_questions == 0:
        html_message = """
        <div style="text-align: center; padding: 20px; border-radius: 10px; background: linear-gradient(135deg, #ff6b6b, #ee5a24);">
            <h2 style="color: white; margin: 0;">⚠️ Please answer at least one question!</h2>
        </div>
        """
    elif score == answered_questions:
        html_message = f"""
        <div style="text-align: center; padding: 20px; border-radius: 10px; background: linear-gradient(135deg, #00d2d3, #54a0ff); box-shadow: 0 4px 15px rgba(0,0,0,0.2);">
            <h1 style="color: white; margin: 0; text-shadow: 2px 2px 4px rgba(0,0,0,0.3);">πŸ† PERFECT SCORE! πŸ†</h1>
            <h2 style="color: #fff3cd; margin: 10px 0;">You got {score} out of {answered_questions} correct!</h2>
            <p style="color: white; font-size: 18px; margin: 0;">Outstanding performance! 🌟</p>
        </div>
        """
    elif score > answered_questions * 0.7:
        html_message = f"""
        <div style="text-align: center; padding: 20px; border-radius: 10px; background: linear-gradient(135deg, #2ed573, #7bed9f); box-shadow: 0 4px 15px rgba(0,0,0,0.2);">
            <h1 style="color: white; margin: 0; text-shadow: 2px 2px 4px rgba(0,0,0,0.3);">πŸŽ‰ EXCELLENT! πŸŽ‰</h1>
            <h2 style="color: #fff3cd; margin: 10px 0;">You got {score} out of {answered_questions} correct!</h2>
            <p style="color: white; font-size: 18px; margin: 0;">Great job! Keep it up! πŸ’ͺ</p>
        </div>
        """
    elif score > answered_questions * 0.5:
        html_message = f"""
        <div style="text-align: center; padding: 20px; border-radius: 10px; background: linear-gradient(135deg, #ffa726, #ffcc02); box-shadow: 0 4px 15px rgba(0,0,0,0.2);">
            <h1 style="color: white; margin: 0; text-shadow: 2px 2px 4px rgba(0,0,0,0.3);">πŸ‘ GOOD JOB! πŸ‘</h1>
            <h2 style="color: #fff3cd; margin: 10px 0;">You got {score} out of {answered_questions} correct!</h2>
            <p style="color: white; font-size: 18px; margin: 0;">Well done! Room for improvement! πŸ“š</p>
        </div>
        """
    else:
        html_message = f"""
        <div style="text-align: center; padding: 20px; border-radius: 10px; background: linear-gradient(135deg, #ff7675, #fd79a8); box-shadow: 0 4px 15px rgba(0,0,0,0.2);">
            <h1 style="color: white; margin: 0; text-shadow: 2px 2px 4px rgba(0,0,0,0.3);">πŸ’ͺ KEEP TRYING! πŸ’ͺ</h1>
            <h2 style="color: #fff3cd; margin: 10px 0;">You got {score} out of {answered_questions} correct!</h2>
            <p style="color: white; font-size: 18px; margin: 0;">Don't worry! Practice makes perfect! πŸ“–βœ¨</p>
        </div>
        """
    
    return html_message

# Define a colorful theme
colorful_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="yellow", neutral_hue="purple")

with gr.Blocks(title="CBSE Gyan Quiz Bot", theme=colorful_theme) as QUIZBOT:
    # Create a single row for the HTML and Image
    with gr.Row():
        with gr.Column(scale=2):
            gr.Image(value='logo.png', height=200, width=200)
        with gr.Column(scale=6):
            gr.HTML("""
            <center>
                <h1><span style="color: purple;">CBSE GYAN</span> Quiz Bot</h1>
                <h2>Generative AI-powered Learning for CBSE Students</h2>
                <i>⚠️ Students can create quiz from any topic from CBSE curriculum and evaluate themselves! ⚠️</i>
            </center>
            """)

    topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any CHAPTER NAME from CBSE curriculum")

    with gr.Row():
        difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
        model_radio = gr.Radio(choices=['(ACCURATE) BGE reranker'], value='(ACCURATE) BGE reranker', label="Embeddings")

    generate_quiz_btn = gr.Button("Generate Quiz!πŸš€")
    quiz_msg = gr.Textbox(label="Status", interactive=False)

    # Pre-defined radio buttons for 10 questions
    question_radios = [gr.Radio(visible=False, label="", choices=[""], value=None) for _ in range(10)]
    quiz_data_state = gr.State(value=None)
    
    # Excel download file
    excel_download = gr.File(label="Download Excel", visible=False)
    
    check_score_btn = gr.Button("Check Score", variant="primary", size="lg")
    
    # HTML output for colorful score display at bottom
    score_output = gr.HTML(visible=False, label="Your Results")

    # Register the click event for Generate Quiz without @ decorator
    generate_quiz_btn.click(
        fn=retrieve_and_generate_quiz,
        inputs=[difficulty_radio, topic],
        outputs=[quiz_data_state]
    ).then(
        fn=update_quiz_components,
        inputs=[quiz_data_state],
        outputs=question_radios + [quiz_msg, excel_download]
    ).then(
        fn=lambda: gr.update(visible=True),  # Make Excel download visible
        inputs=[],
        outputs=[excel_download]
    )

    # FIXED: Register the click event for Check Score with correct input handling
    check_score_btn.click(
        fn=collect_answers_and_calculate,
        inputs=question_radios + [quiz_data_state],  # This creates a list of 11 inputs
        outputs=[score_output],
        api_name="check_score"
    ).then(
        fn=lambda: gr.update(visible=True),  # Make score output visible after calculation
        inputs=[],
        outputs=[score_output]
    )

if __name__ == "__main__":
    QUIZBOT.queue().launch(server_name="0.0.0.0", server_port=7860, share=True)
# import pandas as pd
# import json
# import gradio as gr
# from pathlib import Path
# from ragatouille import RAGPretrainedModel
# from gradio_client import Client
# from tempfile import NamedTemporaryFile
# from sentence_transformers import CrossEncoder
# import numpy as np
# from time import perf_counter
# from sentence_transformers import CrossEncoder
# from backend.semantic_search import table, retriever
# import os
# VECTOR_COLUMN_NAME = "vector"
# TEXT_COLUMN_NAME = "text"
# proj_dir = Path.cwd()

# # Set up logging
# import logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)

# # Replace Mixtral client with Qwen Client
# #client = Client("Qwen/Qwen1.5-110B-Chat-demo")
# # Step 2: Initialize the client for the Qwen3 Demo space
# hf_token=os.getenv('HUGGING_FACE_HUB_TOKEN')
# client = Client("Qwen/Qwen3-Demo",hf_token=hf_token)


# settings = {
#     "model": "qwen3-235b-a22b",
#     "sys_prompt": "You are a helpful and harmless assistant.",
#     "thinking_budget": 38
# }
# def system_instructions(question_difficulty, topic, documents_str):
#     return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". Example: 'A10':'Q10:C3' [/INST]"""

# # RA
# RAG_db = gr.State()
# quiz_data = None
# def json_to_excel(output_json):
#     # Initialize list for DataFrame
#     data = []
#     gr.Warning('Generating Shareable file link..', duration=30)
#     for i in range(1, 11):  # Assuming there are 10 questions
#         question_key = f"Q{i}"
#         answer_key = f"A{i}"

#         question = output_json.get(question_key, '')
#         correct_answer_key = output_json.get(answer_key, '')
#         #correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else ''
#         correct_answer = correct_answer_key.split(':')[-1].replace('C', '').strip() if correct_answer_key else ''

#         # Extract options
#         option_keys = [f"{question_key}:C{i}" for i in range(1, 6)]
#         options = [output_json.get(key, '') for key in option_keys]
        
#         # Add data row
#         data.append([
#             question,                     # Question Text
#             "Multiple Choice",            # Question Type
#             options[0],                   # Option 1
#             options[1],                   # Option 2
#             options[2] if len(options) > 2 else '',  # Option 3
#             options[3] if len(options) > 3 else '',  # Option 4
#             options[4] if len(options) > 4 else '',  # Option 5
#             correct_answer,               # Correct Answer
#             30,                           # Time in seconds
#             ''                            # Image Link
#         ])

#     # Create DataFrame
#     df = pd.DataFrame(data, columns=[
#         "Question Text",
#         "Question Type",
#         "Option 1",
#         "Option 2",
#         "Option 3",
#         "Option 4",
#         "Option 5",
#         "Correct Answer",
#         "Time in seconds",
#         "Image Link"
#     ])

#     temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx")
#     df.to_excel(temp_file.name, index=False)
#     return temp_file.name
# # Define a colorful theme
# colorful_theme = gr.themes.Default(
#     primary_hue="cyan",      # Set a bright cyan as primary color
#     secondary_hue="yellow", # Set a bright magenta as secondary color
#     neutral_hue="purple"  # Optionally set a neutral color
        
# )
# #with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green")) as QUIZBOT:
# with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT:
    
    
#     # Create a single row for the HTML and Image
#     with gr.Row():
#         with gr.Column(scale=2):
#             gr.Image(value='logo.png', height=200, width=200)
#         with gr.Column(scale=6):
#             gr.HTML("""
#             <center>
#                 <h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1>
#                 <h2>Generative AI-powered Capacity building for Training Officers</h2>
#                 <i>⚠️ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! ⚠️</i>
#             </center>
#             """)
        


    
#     topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")

#     with gr.Row():
#         difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
#         model_radio = gr.Radio(choices=[ '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], 
#                                value='(ACCURATE) BGE reranker', label="Embeddings", 
#                                info="First query to ColBERT may take a little time")

#     generate_quiz_btn = gr.Button("Generate Quiz!πŸš€")
#     quiz_msg = gr.Textbox()

#     question_radios = [gr.Radio(visible=False) for _ in range(10)]

#     @generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")])
#     def generate_quiz(question_difficulty, topic, cross_encoder):
#         top_k_rank = 10
#         documents = []
#         gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60)

#         if cross_encoder == '(HIGH ACCURATE) ColBERT':
#             gr.Warning('Retrieving using ColBERT.. First-time query will take 2 minute for model to load.. please wait',duration=100)
#             RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
#             RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
#             documents_full = RAG_db.value.search(topic, k=top_k_rank)
#             documents = [item['content'] for item in documents_full]
        
#         else:
#             document_start = perf_counter()
#             query_vec = retriever.encode(topic)
#             doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)

#             documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()
#             documents = [doc[TEXT_COLUMN_NAME] for doc in documents]

#             query_doc_pair = [[topic, doc] for doc in documents]

#             # if cross_encoder == '(FAST) MiniLM-L6v2':
#             #     cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
#             if cross_encoder == '(ACCURATE) BGE reranker':
#                 cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
            
#             cross_scores = cross_encoder1.predict(query_doc_pair)
#             sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
#             documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
        
#         formatted_prompt = system_instructions(question_difficulty, topic, '\n'.join(documents))
#         print('                      Formatted Prompt : ' ,formatted_prompt)
#         try:
#             #response = client.predict(query=formatted_prompt, history=[], system="You are a helpful assistant.", api_name="/model_chat")
#             # Step 3: Define the input message and model settings
#             response = client.predict(
#                 input_value=formatted_prompt,
#                 settings_form_value=settings,
#                 api_name="/add_message"
#             )
            
#             # Step 5: Extract the assistant's final text response from the chat history
#             chat_history = response[1]  # response[1] contains the updated chat history
#             assistant_response = None
            
#             # Loop through the messages in reverse to find the most recent assistant message
#             for message in reversed(chat_history["value"]):
#                 if message["role"] == "assistant":
#                     # Find the text content part
#                     for content_item in message["content"]:
#                         if content_item["type"] == "text":
#                             assistant_response = content_item["content"]
#                             break
#                     if assistant_response:
#                         break
            
#             # Step 6: Print only the assistant's natural language response
#             if assistant_response:
#                 print("Assistant Response:")
#                 print(assistant_response)
#             else:
#                 print("No assistant response found in the chat history.")
#             #response1 = response[1][0][1]
#             response1=assistant_response
#             # Extract JSON
#             start_index = response1.find('{')
#             end_index = response1.rfind('}')
#             cleaned_response = response1[start_index:end_index + 1] if start_index != -1 and end_index != -1 else ''
#             print('Cleaned Response :',cleaned_response)
#             output_json = json.loads(cleaned_response)
#             # Assign the extracted JSON to quiz_data for use in the comparison function
#             global quiz_data
#             quiz_data = output_json
#             # Generate the Excel file
#             excel_file = json_to_excel(output_json)

#             question_radio_list = []
#             for question_num in range(1, 11):
#                 question_key = f"Q{question_num}"
#                 answer_key = f"A{question_num}"

#                 question = output_json.get(question_key)
#                 answer = output_json.get(output_json.get(answer_key))

#                 if not question or not answer:
#                     continue

#                 choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
#                 choice_list = [output_json.get(choice_key, "Choice not found") for choice_key in choice_keys]

#                 radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
#                 question_radio_list.append(radio)

#             return ['Quiz Generated!'] + question_radio_list + [excel_file]

#         except json.JSONDecodeError as e:
#             print(f"Failed to decode JSON: {e}")

#     check_button = gr.Button("Check Score")
#     score_textbox = gr.Markdown()

#     @check_button.click(inputs=question_radios, outputs=score_textbox)
#     def compare_answers(*user_answers):
#         user_answer_list = list(user_answers)
#         answers_list = []

#         for question_num in range(1, 20):
#             answer_key = f"A{question_num}"
#             answer = quiz_data.get(quiz_data.get(answer_key))
#             if not answer:
#                 break
#             answers_list.append(answer)

#         score = sum(1 for item in user_answer_list if item in answers_list)

#         if score > 7:
#             message = f"### Excellent! You got {score} out of 10!"
#         elif score > 5:
#             message = f"### Good! You got {score} out of 10!"
#         else:
#             message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"

#         return message

# QUIZBOT.queue()
# QUIZBOT.launch(debug=True)