Spaces:
Running
Running
File size: 24,240 Bytes
a59c14d 0aecf54 91fad79 0aecf54 8febad9 a59c14d 783b169 a59c14d 8febad9 91fad79 f72c98d 05d3040 783b169 a59c14d 2470393 a59c14d 783b169 a59c14d 783b169 a59c14d 783b169 481dbe6 a59c14d 783b169 2470393 a59c14d 783b169 a59c14d 05d3040 a59c14d 05d3040 a59c14d 05d3040 783b169 a59c14d 0aecf54 05d3040 a59c14d 0aecf54 a59c14d 0aecf54 a59c14d 0aecf54 a59c14d f601cce 783b169 a59c14d 05d3040 a59c14d 05d3040 a59c14d 2470393 a59c14d 2470393 a59c14d 05d3040 a59c14d 05d3040 2470393 a59c14d 05d3040 2470393 a59c14d 2470393 05d3040 a59c14d 2470393 05d3040 2470393 a59c14d 2470393 05d3040 a59c14d 05d3040 a59c14d 2470393 a59c14d 05d3040 2470393 a59c14d 2470393 a59c14d 05d3040 2470393 a59c14d 2470393 a59c14d 2470393 a59c14d 2470393 a59c14d 2470393 a59c14d 2470393 05d3040 2470393 05d3040 2470393 783b169 2470393 a59c14d 2470393 0322ea5 a59c14d 0322ea5 54efd71 a59c14d 54efd71 0322ea5 a59c14d 2e855f8 a59c14d 2470393 a59c14d 05d3040 2470393 a59c14d 2470393 a59c14d 2470393 a59c14d 2470393 a59c14d 2470393 a59c14d 2470393 a59c14d 05d3040 a59c14d 2470393 a59c14d 2470393 a59c14d 2470393 a59c14d 05d3040 2470393 783b169 8febad9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 |
import gradio as gr
import pandas as pd
import json
from pathlib import Path
from sentence_transformers import CrossEncoder
import numpy as np
from time import perf_counter
from pydantic import BaseModel, Field
from phi.agent import Agent
from phi.model.groq import Groq
from tempfile import NamedTemporaryFile
import os
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# API Key setup
api_key = os.getenv("GROQ_API_KEY")
if not api_key:
gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.")
logger.error("GROQ_API_KEY not found.")
else:
os.environ["GROQ_API_KEY"] = api_key
# Pydantic Model for Quiz Structure
class QuizItem(BaseModel):
question: str = Field(..., description="The quiz question")
choices: list[str] = Field(..., description="List of 4 multiple-choice options")
correct_answer: str = Field(..., description="The correct choice (e.g., 'C1')")
class QuizOutput(BaseModel):
items: list[QuizItem] = Field(..., description="List of 10 quiz items")
# Initialize Agents
groq_agent = Agent(model=Groq(model="llama3-70b-8192", api_key=api_key), markdown=True)
quiz_generator = Agent(
name="Quiz Generator",
role="Generates structured quiz questions and answers",
instructions=[
"Create 10 questions with 4 choices each based on the provided topic and documents.",
"Use the specified difficulty level (easy, average, hard) to adjust question complexity.",
"Ensure questions are derived only from the provided documents.",
"Return the output in a structured format using the QuizOutput Pydantic model.",
"Each question should have a unique correct answer from the choices (labeled C1, C2, C3, C4)."
],
model=Groq(id="llama3-70b-8192", api_key=api_key),
response_model=QuizOutput,
markdown=True
)
VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
proj_dir = Path.cwd()
# Calling functions from backend (assuming they exist)
from backend.semantic_search import table, retriever
def generate_quiz_data(question_difficulty, topic, documents_str):
prompt = f"""Generate a quiz with {question_difficulty} difficulty on topic '{topic}' using only the following documents:\n{documents_str}"""
try:
response = quiz_generator.run(prompt)
return response.content
except Exception as e:
logger.error(f"Failed to generate quiz: {e}")
return None
def quiz_to_excel(quiz_data):
"""Convert quiz data to Excel format"""
if not quiz_data or not quiz_data.items:
return None
gr.Warning('Generating Excel file...', duration=10)
data = []
for i, item in enumerate(quiz_data.items, 1):
# Get correct answer index
correct_answer_index = int(item.correct_answer[1]) - 1 # 'C3' -> index 2
# Prepare row data
row = [
item.question, # Question Text
"Multiple Choice", # Question Type
item.choices[0] if len(item.choices) > 0 else '', # Option 1
item.choices[1] if len(item.choices) > 1 else '', # Option 2
item.choices[2] if len(item.choices) > 2 else '', # Option 3
item.choices[3] if len(item.choices) > 3 else '', # Option 4
'', # Option 5 (empty)
str(correct_answer_index + 1), # Correct Answer (1-4)
30, # Time in seconds
'' # Image Link
]
data.append(row)
# Create DataFrame
df = pd.DataFrame(data, columns=[
"Question Text",
"Question Type",
"Option 1",
"Option 2",
"Option 3",
"Option 4",
"Option 5",
"Correct Answer",
"Time in seconds",
"Image Link"
])
# Save to temporary file
temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx")
df.to_excel(temp_file.name, index=False)
return temp_file.name
def retrieve_and_generate_quiz(question_difficulty, topic):
gr.Warning('Generating quiz may take 1-2 minutes. Please wait.', duration=60)
top_k_rank = 10
documents = []
document_start = perf_counter()
query_vec = retriever.encode(topic)
documents = [doc[TEXT_COLUMN_NAME] for doc in table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()]
# Apply BGE reranker
cross_encoder = CrossEncoder('BAAI/bge-reranker-base')
query_doc_pair = [[topic, doc] for doc in documents]
cross_scores = cross_encoder.predict(query_doc_pair)
sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
documents_str = '\n'.join(documents)
quiz_data = generate_quiz_data(question_difficulty, topic, documents_str)
return quiz_data
def update_quiz_components(quiz_data):
if not quiz_data or not quiz_data.items:
return [gr.update(visible=False) for _ in range(10)] + [gr.update(value="Error: Failed to generate quiz.", visible=True), None]
radio_updates = []
for i, item in enumerate(quiz_data.items[:10]):
choices = item.choices
radio_update = gr.update(visible=True, choices=choices, label=item.question, value=None)
radio_updates.append(radio_update)
# Generate Excel file after successful quiz generation
excel_file = quiz_to_excel(quiz_data)
return radio_updates + [gr.update(value="Please select answers and click 'Check Score'.", visible=True), excel_file]
# FIXED FUNCTION: Changed parameter signature to accept all arguments positionally
def collect_answers_and_calculate(*all_inputs):
print(f"Total inputs received: {len(all_inputs)}") # Debug print
# The last input is quiz_data, the first 10 are radio values
radio_values = all_inputs[:10] # First 10 inputs are radio button values
quiz_data = all_inputs[10] # Last input is quiz_data
print(f"Received radio_values: {radio_values}") # Debug print
print(f"Received quiz_data: {quiz_data}") # Debug print
# Calculate score by comparing user answers with correct answers
score = 0
answered_questions = 0
for i, (user_answer, quiz_item) in enumerate(zip(radio_values, quiz_data.items[:10])):
if user_answer is not None: # Only count if user answered
answered_questions += 1
# Convert correct answer code (e.g., 'C3') to actual choice text
correct_answer_index = int(quiz_item.correct_answer[1]) - 1 # 'C3' -> index 2
correct_answer_text = quiz_item.choices[correct_answer_index]
print(f"Q{i+1}: User='{user_answer}' vs Correct='{correct_answer_text}'") # Debug
if user_answer == correct_answer_text:
score += 1
print(f"Calculated score: {score}/{answered_questions}") # Debug print
# Create colorful HTML message
if answered_questions == 0:
html_message = """
<div style="text-align: center; padding: 20px; border-radius: 10px; background: linear-gradient(135deg, #ff6b6b, #ee5a24);">
<h2 style="color: white; margin: 0;">β οΈ Please answer at least one question!</h2>
</div>
"""
elif score == answered_questions:
html_message = f"""
<div style="text-align: center; padding: 20px; border-radius: 10px; background: linear-gradient(135deg, #00d2d3, #54a0ff); box-shadow: 0 4px 15px rgba(0,0,0,0.2);">
<h1 style="color: white; margin: 0; text-shadow: 2px 2px 4px rgba(0,0,0,0.3);">π PERFECT SCORE! π</h1>
<h2 style="color: #fff3cd; margin: 10px 0;">You got {score} out of {answered_questions} correct!</h2>
<p style="color: white; font-size: 18px; margin: 0;">Outstanding performance! π</p>
</div>
"""
elif score > answered_questions * 0.7:
html_message = f"""
<div style="text-align: center; padding: 20px; border-radius: 10px; background: linear-gradient(135deg, #2ed573, #7bed9f); box-shadow: 0 4px 15px rgba(0,0,0,0.2);">
<h1 style="color: white; margin: 0; text-shadow: 2px 2px 4px rgba(0,0,0,0.3);">π EXCELLENT! π</h1>
<h2 style="color: #fff3cd; margin: 10px 0;">You got {score} out of {answered_questions} correct!</h2>
<p style="color: white; font-size: 18px; margin: 0;">Great job! Keep it up! πͺ</p>
</div>
"""
elif score > answered_questions * 0.5:
html_message = f"""
<div style="text-align: center; padding: 20px; border-radius: 10px; background: linear-gradient(135deg, #ffa726, #ffcc02); box-shadow: 0 4px 15px rgba(0,0,0,0.2);">
<h1 style="color: white; margin: 0; text-shadow: 2px 2px 4px rgba(0,0,0,0.3);">π GOOD JOB! π</h1>
<h2 style="color: #fff3cd; margin: 10px 0;">You got {score} out of {answered_questions} correct!</h2>
<p style="color: white; font-size: 18px; margin: 0;">Well done! Room for improvement! π</p>
</div>
"""
else:
html_message = f"""
<div style="text-align: center; padding: 20px; border-radius: 10px; background: linear-gradient(135deg, #ff7675, #fd79a8); box-shadow: 0 4px 15px rgba(0,0,0,0.2);">
<h1 style="color: white; margin: 0; text-shadow: 2px 2px 4px rgba(0,0,0,0.3);">πͺ KEEP TRYING! πͺ</h1>
<h2 style="color: #fff3cd; margin: 10px 0;">You got {score} out of {answered_questions} correct!</h2>
<p style="color: white; font-size: 18px; margin: 0;">Don't worry! Practice makes perfect! πβ¨</p>
</div>
"""
return html_message
# Define a colorful theme
colorful_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="yellow", neutral_hue="purple")
with gr.Blocks(title="CBSE Gyan Quiz Bot", theme=colorful_theme) as QUIZBOT:
# Create a single row for the HTML and Image
with gr.Row():
with gr.Column(scale=2):
gr.Image(value='logo.png', height=200, width=200)
with gr.Column(scale=6):
gr.HTML("""
<center>
<h1><span style="color: purple;">CBSE GYAN</span> Quiz Bot</h1>
<h2>Generative AI-powered Learning for CBSE Students</h2>
<i>β οΈ Students can create quiz from any topic from CBSE curriculum and evaluate themselves! β οΈ</i>
</center>
""")
topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any CHAPTER NAME from CBSE curriculum")
with gr.Row():
difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
model_radio = gr.Radio(choices=['(ACCURATE) BGE reranker'], value='(ACCURATE) BGE reranker', label="Embeddings")
generate_quiz_btn = gr.Button("Generate Quiz!π")
quiz_msg = gr.Textbox(label="Status", interactive=False)
# Pre-defined radio buttons for 10 questions
question_radios = [gr.Radio(visible=False, label="", choices=[""], value=None) for _ in range(10)]
quiz_data_state = gr.State(value=None)
# Excel download file
excel_download = gr.File(label="Download Excel", visible=False)
check_score_btn = gr.Button("Check Score", variant="primary", size="lg")
# HTML output for colorful score display at bottom
score_output = gr.HTML(visible=False, label="Your Results")
# Register the click event for Generate Quiz without @ decorator
generate_quiz_btn.click(
fn=retrieve_and_generate_quiz,
inputs=[difficulty_radio, topic],
outputs=[quiz_data_state]
).then(
fn=update_quiz_components,
inputs=[quiz_data_state],
outputs=question_radios + [quiz_msg, excel_download]
).then(
fn=lambda: gr.update(visible=True), # Make Excel download visible
inputs=[],
outputs=[excel_download]
)
# FIXED: Register the click event for Check Score with correct input handling
check_score_btn.click(
fn=collect_answers_and_calculate,
inputs=question_radios + [quiz_data_state], # This creates a list of 11 inputs
outputs=[score_output],
api_name="check_score"
).then(
fn=lambda: gr.update(visible=True), # Make score output visible after calculation
inputs=[],
outputs=[score_output]
)
if __name__ == "__main__":
QUIZBOT.queue().launch(server_name="0.0.0.0", server_port=7860, share=True)
# import pandas as pd
# import json
# import gradio as gr
# from pathlib import Path
# from ragatouille import RAGPretrainedModel
# from gradio_client import Client
# from tempfile import NamedTemporaryFile
# from sentence_transformers import CrossEncoder
# import numpy as np
# from time import perf_counter
# from sentence_transformers import CrossEncoder
# from backend.semantic_search import table, retriever
# import os
# VECTOR_COLUMN_NAME = "vector"
# TEXT_COLUMN_NAME = "text"
# proj_dir = Path.cwd()
# # Set up logging
# import logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# # Replace Mixtral client with Qwen Client
# #client = Client("Qwen/Qwen1.5-110B-Chat-demo")
# # Step 2: Initialize the client for the Qwen3 Demo space
# hf_token=os.getenv('HUGGING_FACE_HUB_TOKEN')
# client = Client("Qwen/Qwen3-Demo",hf_token=hf_token)
# settings = {
# "model": "qwen3-235b-a22b",
# "sys_prompt": "You are a helpful and harmless assistant.",
# "thinking_budget": 38
# }
# def system_instructions(question_difficulty, topic, documents_str):
# return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". Example: 'A10':'Q10:C3' [/INST]"""
# # RA
# RAG_db = gr.State()
# quiz_data = None
# def json_to_excel(output_json):
# # Initialize list for DataFrame
# data = []
# gr.Warning('Generating Shareable file link..', duration=30)
# for i in range(1, 11): # Assuming there are 10 questions
# question_key = f"Q{i}"
# answer_key = f"A{i}"
# question = output_json.get(question_key, '')
# correct_answer_key = output_json.get(answer_key, '')
# #correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else ''
# correct_answer = correct_answer_key.split(':')[-1].replace('C', '').strip() if correct_answer_key else ''
# # Extract options
# option_keys = [f"{question_key}:C{i}" for i in range(1, 6)]
# options = [output_json.get(key, '') for key in option_keys]
# # Add data row
# data.append([
# question, # Question Text
# "Multiple Choice", # Question Type
# options[0], # Option 1
# options[1], # Option 2
# options[2] if len(options) > 2 else '', # Option 3
# options[3] if len(options) > 3 else '', # Option 4
# options[4] if len(options) > 4 else '', # Option 5
# correct_answer, # Correct Answer
# 30, # Time in seconds
# '' # Image Link
# ])
# # Create DataFrame
# df = pd.DataFrame(data, columns=[
# "Question Text",
# "Question Type",
# "Option 1",
# "Option 2",
# "Option 3",
# "Option 4",
# "Option 5",
# "Correct Answer",
# "Time in seconds",
# "Image Link"
# ])
# temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx")
# df.to_excel(temp_file.name, index=False)
# return temp_file.name
# # Define a colorful theme
# colorful_theme = gr.themes.Default(
# primary_hue="cyan", # Set a bright cyan as primary color
# secondary_hue="yellow", # Set a bright magenta as secondary color
# neutral_hue="purple" # Optionally set a neutral color
# )
# #with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green")) as QUIZBOT:
# with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT:
# # Create a single row for the HTML and Image
# with gr.Row():
# with gr.Column(scale=2):
# gr.Image(value='logo.png', height=200, width=200)
# with gr.Column(scale=6):
# gr.HTML("""
# <center>
# <h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1>
# <h2>Generative AI-powered Capacity building for Training Officers</h2>
# <i>β οΈ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! β οΈ</i>
# </center>
# """)
# topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")
# with gr.Row():
# difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
# model_radio = gr.Radio(choices=[ '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'],
# value='(ACCURATE) BGE reranker', label="Embeddings",
# info="First query to ColBERT may take a little time")
# generate_quiz_btn = gr.Button("Generate Quiz!π")
# quiz_msg = gr.Textbox()
# question_radios = [gr.Radio(visible=False) for _ in range(10)]
# @generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")])
# def generate_quiz(question_difficulty, topic, cross_encoder):
# top_k_rank = 10
# documents = []
# gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60)
# if cross_encoder == '(HIGH ACCURATE) ColBERT':
# gr.Warning('Retrieving using ColBERT.. First-time query will take 2 minute for model to load.. please wait',duration=100)
# RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
# RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
# documents_full = RAG_db.value.search(topic, k=top_k_rank)
# documents = [item['content'] for item in documents_full]
# else:
# document_start = perf_counter()
# query_vec = retriever.encode(topic)
# doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
# documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()
# documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
# query_doc_pair = [[topic, doc] for doc in documents]
# # if cross_encoder == '(FAST) MiniLM-L6v2':
# # cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
# if cross_encoder == '(ACCURATE) BGE reranker':
# cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
# cross_scores = cross_encoder1.predict(query_doc_pair)
# sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
# documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
# formatted_prompt = system_instructions(question_difficulty, topic, '\n'.join(documents))
# print(' Formatted Prompt : ' ,formatted_prompt)
# try:
# #response = client.predict(query=formatted_prompt, history=[], system="You are a helpful assistant.", api_name="/model_chat")
# # Step 3: Define the input message and model settings
# response = client.predict(
# input_value=formatted_prompt,
# settings_form_value=settings,
# api_name="/add_message"
# )
# # Step 5: Extract the assistant's final text response from the chat history
# chat_history = response[1] # response[1] contains the updated chat history
# assistant_response = None
# # Loop through the messages in reverse to find the most recent assistant message
# for message in reversed(chat_history["value"]):
# if message["role"] == "assistant":
# # Find the text content part
# for content_item in message["content"]:
# if content_item["type"] == "text":
# assistant_response = content_item["content"]
# break
# if assistant_response:
# break
# # Step 6: Print only the assistant's natural language response
# if assistant_response:
# print("Assistant Response:")
# print(assistant_response)
# else:
# print("No assistant response found in the chat history.")
# #response1 = response[1][0][1]
# response1=assistant_response
# # Extract JSON
# start_index = response1.find('{')
# end_index = response1.rfind('}')
# cleaned_response = response1[start_index:end_index + 1] if start_index != -1 and end_index != -1 else ''
# print('Cleaned Response :',cleaned_response)
# output_json = json.loads(cleaned_response)
# # Assign the extracted JSON to quiz_data for use in the comparison function
# global quiz_data
# quiz_data = output_json
# # Generate the Excel file
# excel_file = json_to_excel(output_json)
# question_radio_list = []
# for question_num in range(1, 11):
# question_key = f"Q{question_num}"
# answer_key = f"A{question_num}"
# question = output_json.get(question_key)
# answer = output_json.get(output_json.get(answer_key))
# if not question or not answer:
# continue
# choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
# choice_list = [output_json.get(choice_key, "Choice not found") for choice_key in choice_keys]
# radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
# question_radio_list.append(radio)
# return ['Quiz Generated!'] + question_radio_list + [excel_file]
# except json.JSONDecodeError as e:
# print(f"Failed to decode JSON: {e}")
# check_button = gr.Button("Check Score")
# score_textbox = gr.Markdown()
# @check_button.click(inputs=question_radios, outputs=score_textbox)
# def compare_answers(*user_answers):
# user_answer_list = list(user_answers)
# answers_list = []
# for question_num in range(1, 20):
# answer_key = f"A{question_num}"
# answer = quiz_data.get(quiz_data.get(answer_key))
# if not answer:
# break
# answers_list.append(answer)
# score = sum(1 for item in user_answer_list if item in answers_list)
# if score > 7:
# message = f"### Excellent! You got {score} out of 10!"
# elif score > 5:
# message = f"### Good! You got {score} out of 10!"
# else:
# message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"
# return message
# QUIZBOT.queue()
# QUIZBOT.launch(debug=True)
|