Configuration Parsing
Warning:
In adapter_config.json: "peft.task_type" must be a string
vit-base-patch16-224-in21k-bloodmnist-fold-9
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the medmnist-v2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0736
- Accuracy: 0.9763
- Precision: 0.9748
- Recall: 0.9748
- F1: 0.9747
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.35 | 1.0 | 196 | 0.2676 | 0.9025 | 0.8918 | 0.8966 | 0.8874 |
0.3088 | 2.0 | 392 | 0.2031 | 0.9377 | 0.9369 | 0.9170 | 0.9248 |
0.3107 | 3.0 | 588 | 0.1335 | 0.9543 | 0.9522 | 0.9443 | 0.9479 |
0.2954 | 4.0 | 784 | 0.1378 | 0.9561 | 0.9551 | 0.9449 | 0.9487 |
0.2954 | 5.0 | 980 | 0.1638 | 0.9447 | 0.9471 | 0.9376 | 0.9399 |
0.2719 | 6.0 | 1176 | 0.1334 | 0.9517 | 0.9583 | 0.9355 | 0.9427 |
0.1759 | 7.0 | 1372 | 0.1117 | 0.9622 | 0.9578 | 0.9579 | 0.9570 |
0.1783 | 8.0 | 1568 | 0.0894 | 0.9666 | 0.9614 | 0.9661 | 0.9636 |
0.1542 | 9.0 | 1764 | 0.0736 | 0.9763 | 0.9748 | 0.9748 | 0.9747 |
0.1113 | 10.0 | 1960 | 0.0701 | 0.9754 | 0.9736 | 0.9752 | 0.9744 |
Framework versions
- PEFT 0.15.2
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for selmamalak/vit-base-patch16-224-in21k-bloodmnist-fold-9
Base model
google/vit-base-patch16-224-in21k