Speaker-Disentangled HuBERT
Collection
9 items
•
Updated
Use the code below to get started with the model.
git clone https://github.com/ryota-komatsu/speaker_disentangled_hubert.git
cd speaker_disentangled_hubert
sudo apt install git-lfs # for UTMOS
conda create -y -n py310 -c pytorch -c nvidia -c conda-forge python=3.10.18 pip=24.0 faiss-gpu=1.11.0
conda activate py310
pip install -r requirements/requirements.txt
sh scripts/setup.sh
import torchaudio
from src.flow_matching import FlowMatchingWithBigVGan
from src.s5hubert import S5HubertForSyllableDiscovery
wav_path = "/path/to/wav"
# download pretrained models from hugging face hub
encoder = S5HubertForSyllableDiscovery.from_pretrained("ryota-komatsu/s5-hubert", device_map="cuda")
decoder = FlowMatchingWithBigVGan.from_pretrained("ryota-komatsu/s5-hubert-decoder", device_map="cuda")
# load a waveform
waveform, sr = torchaudio.load(wav_path)
waveform = torchaudio.functional.resample(waveform, sr, 16000)
# encode a waveform into syllabic units
outputs = encoder(waveform.cuda())
# syllabic units
units = outputs[0]["units"] # [3950, 67, ..., 503]
units = units.unsqueeze(0)
# unit-to-speech synthesis
audio_values = decoder(units)
1 x NVIDIA RTX A6000
BibTeX:
@inproceedings{Komatsu_Self-Supervised_Syllable_Discovery_2024,
author = {Komatsu, Ryota and Shinozaki, Takahiro},
title = {Self-Supervised Syllable Discovery Based on Speaker-Disentangled HuBERT},
year = {2024},
month = {Dec.},
booktitle = {IEEE Spoken Language Technology Workshop},
pages = {1131--1136},
doi = {10.1109/SLT61566.2024.10832325},
}
Ryota Komatsu
Base model
facebook/hubert-base-ls960