Model Card for phytoViT_558k_Aug2025

Model Details

Model Description

UCSCPhytoViT83 is a Vision Transformer (ViT) model fine-tuned for image classification of phytoplankton species using labeled images collected from the Imaging FlowCytobot (IFCB) at UCSC. The model is fine-tuned from the pre-trained google/vit-base-patch16-224-in21k base model. The model was trained on images that are aggregated from IFCB104, IFCB161, and IFCB116

  • Developed by: Patrick Daniel
  • Model type: Vision Transformer for image classification
  • License: Apache 2.0
  • Finetuned from model: google/vit-base-patch16-224-in21k

Model Sources

  • Repository: [More Information Needed]

Uses

Direct Use

This model can be used directly for classifying phytoplankton images captured by Imaging FlowCytobots instruments. Focus has been on capturing the variability of the phytoplankton community in Monterey Bay, CA, USA. It is intended for researchers.

Images should be transformed before inference:

    transforms.Compose([
    transforms.Resize((224, 224)),  # match ViT input size
    transforms.Normalize(mean=(0.485, 0.456, 0.406),
                         std=(0.229, 0.224, 0.225))
])

Out-of-Scope Use

This model is not intended for classifying non-phytoplankton images or images from different microscopy systems without proper retraining or adaptation. For the IFCB, the model was trained for instruments that are triggering on PMT-B, so particles and cells with no or limited chlorophyll may not be well represented here.

Bias, Risks, and Limitations

The model was trained on IFCB images collected at UCSC/MBARI and mostly in Monterey Bay, CA, USA or San Francisco Bay, CA, USA and may not generalize well to images from other instruments or regions. Users should validate model predictions with domain experts when possible.

How to Get Started with the Model

Install the transformers library and load the model as shown in the example above. For best results, use images preprocessed similarly to the IFCB dataset (see above).

Training Details

Training Data

The model was trained on approximately 558,000 labeled IFCB images representing 83 classes.

Training Procedure

  • Preprocessing: Images were resized and normalized consistent with ViT base requirements.

Evaluation

Testing Data, Factors & Metrics

  • The model was evaluated on a held-out test set of IFCB images.
  • Metrics include accuracy, precision, recall, and F1-score across phytoplankton classes.

Results

Label Name precision recall f1-score Eval #
Akashiwo 0.980405 0.984656 0.982526 2998
Alexandrium 0.972328 0.968642 0.970482 2902
Amylax_Gonyaulax_Protoceratium 0.987234 0.983051 0.985138 236
Asterionellopsis 0.982877 0.979522 0.981197 586
Asteromphalus 0.990488 0.988138 0.989311 843
Bad_setae 0.981581 0.969674 0.975591 1319
Centric 0.886133 0.848779 0.867054 2989
Ceratium_divaricatum 0.994825 0.97096 0.982748 792
Ceratium_furca 0.962202 0.966172 0.964183 1212
Ceratium_lineatum 0.975992 0.986287 0.981112 1896
Chaetoceros 0.944537 0.948 0.946265 3000
Ciliate_large 0.958333 0.974576 0.966387 118
Ciliate_large_2 0.959091 0.96789 0.96347 218
Ciliate_other_morpho_1 0.915578 0.918347 0.91696 992
Clusterflagellate_morpho_1 0.994539 0.982468 0.988467 1483
Clusterflagellate_morpho_2 0.992734 0.996354 0.99454 1097
Corethron 0.998889 0.99778 0.998334 901
Cryptophyte 0.951977 0.968391 0.960114 1740
Cylindrotheca 0.925259 0.969143 0.946693 1750
Detonula_Cerataulina_Lauderia 0.840866 0.880667 0.860306 3000
Detritus 0.971975 0.987915 0.97988 2317
Detritus_infection 0.996717 0.996308 0.996513 2438
Dictyocha 0.997705 0.995421 0.996562 2184
Dinoflagellate_cyst 1 1 1 17
Dinoflagellate_morpho_1 0.95098 0.984772 0.967581 394
Dinoflagellate_morpho_2 0.93253 0.940081 0.93629 2470
Dinophysis 0.986971 0.988581 0.987775 1226
Ditylum 0.994619 0.996406 0.995512 1113
Entomoneis 0.972626 0.978485 0.975547 1162
Eucampia 0.977153 0.926667 0.95124 3000
Euglenoid 0.972408 0.965145 0.968763 2410
Flagellate_morpho_1 0.966153 0.96132 0.963731 2999
Flagellate_morpho_2 0.942211 0.974026 0.957854 385
Flagellate_morpho_3 0.951259 0.969333 0.960211 3000
Flagellate_nano_1 0.956818 0.981352 0.96893 429
Flagellate_nano_2 0.988124 0.978824 0.983452 425
Fragilariopsis 0.900064 0.939667 0.919439 3000
Guinardia_Dactyliosolen 0.806818 0.913603 0.856897 544
Gymnodinium 0.830748 0.867452 0.848703 679
Gyrodinium 0.988604 0.991429 0.990014 1050
Gyrosigma 0.946237 0.946237 0.946237 93
Haptophyte_prymnesium 0.622642 0.673469 0.647059 49
Hemiaulus 0.903226 0.903226 0.903226 155
Hemiselmis 0.950862 0.974 0.962292 3000
Heterocapsa_long 0.958763 0.894231 0.925373 104
Heterocapsa_rotundata 0.964509 0.884211 0.922616 1045
Heterocapsa_triquetra 0.803571 0.656934 0.722892 137
Heterosigma_akashiwo 1 0.998477 0.999238 1313
Laboea 0.990521 0.987402 0.988959 635
Leptocylindrus 0.965558 0.949766 0.957597 856
Margalefidinium 0.973141 0.975378 0.974258 3046
Mesodinium 0.9583 0.962933 0.960611 2482
Nano_cluster 0.982955 0.997118 0.989986 347
Nano_p_white 0.982298 0.975951 0.979114 2786
Noctiluca 1 0.965517 0.982456 29
Odontella 1 1 1 30
Pennate 0.909332 0.864695 0.886452 3178
Pennate_Tropidoneis 0.837209 0.742268 0.786885 97
Pennate_Unknown 0.84127 0.828125 0.834646 64
Pennate_small 0.843373 0.864198 0.853659 405
Peridinium 0.968435 0.969086 0.96876 1488
Phaeocystis 0.994502 0.997931 0.996213 1450
Pleurosigma 0.991379 0.963149 0.97706 597
Polykrikos 0.997099 0.995174 0.996135 1036
Proboscia 0.992593 0.985294 0.98893 136
Prorocentrum_narrow 0.981952 0.981952 0.981952 2992
Prorocentrum_wide 0.988893 0.991463 0.990176 2694
Pseudo-nitzschia 0.956324 0.977674 0.966881 1075
Pyramimonas 1 0.982379 0.991111 227
Rhizosolenia 0.996008 0.984221 0.990079 507
Scrippsiella 0.960588 0.931015 0.94557 1754
Skeletonema 0.98632 0.993113 0.989705 1452
Spiky_pacman 0.961072 0.958908 0.959989 3553
Stombidinium_morpho_1 0.919847 0.909434 0.914611 265
Strombidinum_morpho_2 0.966399 0.940633 0.953342 2813
Thalassionema 0.989882 0.991554 0.990717 592
Thalassiosira 0.924272 0.931667 0.927955 3000
Tiarina 0.997843 0.996767 0.997305 928
Tontonia 0.954167 0.938525 0.946281 244
Torodinium 0.994792 0.990493 0.992638 1157
Tropidoneis 1 0.993569 0.996774 311
Vicicitus 0.943284 0.954683 0.948949 331
haptophyte_ucynA_host 1 0.998532 0.999265 2043
accuracy 0.958662 0.958662 0.958662 0.958662
macro avg 0.953973 0.951658 0.952527 111810
weighted avg 0.958948 0.958662 0.958652 111810

Confusion Matrix

Technical Specifications

Model Architecture and Objective

Citation

If you use this model in your research, please cite:

APA:

Daniel, P. (2025). phytoViT_558k_Aug2025: Vision Transformer model for phytoplankton image classification. Retrieved from https://huggingface.co/phytoViT_558k_Aug2025

BibTeX:

@misc{daniel2025phytoViT,
  author = {Patrick Daniel},
  title = {phytoViT_558k_Aug2025: Vision Transformer model for phytoplankton image classification},
  year = {2025},
  howpublished = {\url{https://huggingface.co/phytoViT_558k_Aug2025}},
}

Model Card Authors

Patrick Daniel

Model Card Contact

pcdaniel@ucsc.edu

Downloads last month
3
Safetensors
Model size
85.9M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for patcdaniel/UCSCPhytoViT83

Quantized
(10)
this model

Dataset used to train patcdaniel/UCSCPhytoViT83

Space using patcdaniel/UCSCPhytoViT83 1