π resnet-18-gravit-s3
π This model is part of GraViT: Transfer Learning with Vision Transformers and MLP-Mixer for Strong Gravitational Lens Discovery
π GitHub Repository: https://github.com/parlange/gravit
π°οΈ Model Details
π€ Model Type: ResNet-18
π§ͺ Experiment: S3 - C21-all-blocks-ResNet18-18660
π Dataset: C21
πͺ Fine-tuning Strategy: all-blocks
π² Random Seed: 18660
π» Quick Start
import torch
import timm
# Load the model directly from the Hub
model = timm.create_model(
'hf-hub:parlange/resnet-18-gravit-s3',
pretrained=True
)
model.eval()
# Example inference
dummy_input = torch.randn(1, 3, 224, 224)
with torch.no_grad():
output = model(dummy_input)
predictions = torch.softmax(output, dim=1)
print(f"Lens probability: {predictions[0][1]:.4f}")
β‘οΈ Training Configuration
Training Dataset: C21 (CaΓ±ameras et al. 2021)
Fine-tuning Strategy: all-blocks
π§ Parameter | π Value |
---|---|
Batch Size | 192 |
Learning Rate | AdamW with ReduceLROnPlateau |
Epochs | 100 |
Patience | 10 |
Optimizer | AdamW |
Scheduler | ReduceLROnPlateau |
Image Size | 224x224 |
Fine Tune Mode | all_blocks |
Stochastic Depth Probability | 0.1 |
π Training Curves
π Final Epoch Training Metrics
Metric | Training | Validation |
---|---|---|
π Loss | 0.0298 | 0.0509 |
π― Accuracy | 0.9889 | 0.9840 |
π AUC-ROC | 0.9994 | 0.9987 |
βοΈ F1 Score | 0.9888 | 0.9840 |
βοΈ Evaluation Results
ROC Curves and Confusion Matrices
Performance across all test datasets (a through l) in the Common Test Sample (More et al. 2024):
π Performance Summary
Average performance across 12 test datasets from the Common Test Sample (More et al. 2024):
Metric | Value |
---|---|
π― Average Accuracy | 0.7471 |
π Average AUC-ROC | 0.8212 |
βοΈ Average F1-Score | 0.4789 |
π Citation
If you use this model in your research, please cite:
@misc{parlange2025gravit,
title={GraViT: Transfer Learning with Vision Transformers and MLP-Mixer for Strong Gravitational Lens Discovery},
author={RenΓ© Parlange and Juan C. Cuevas-Tello and Octavio Valenzuela and Omar de J. Cabrera-Rosas and TomΓ‘s Verdugo and Anupreeta More and Anton T. Jaelani},
year={2025},
eprint={2509.00226},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2509.00226},
}
Model Card Contact
For questions about this model, please contact the author through: https://github.com/parlange/
- Downloads last month
- 11
Collection including parlange/resnet-18-gravit-s3
Evaluation results
- Average Accuracy on Common Test Sample (More et al. 2024)self-reported0.747
- Average AUC-ROC on Common Test Sample (More et al. 2024)self-reported0.821
- Average F1-Score on Common Test Sample (More et al. 2024)self-reported0.479