SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-multilingual-base on the all-nli-tr dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-multilingual-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: tr
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("sentence_transformers_model_id")
sentences = [
'Ve gerçekten, baba haklıydı, oğlu zaten her şeyi tecrübe etmişti, her şeyi denedi ve daha az ilgileniyordu.',
'Oğlu her şeye olan ilgisini kaybediyordu.',
'Baba oğlunun tecrübe için hala çok şey olduğunu biliyordu.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Triplet
Metric |
Value |
cosine_accuracy |
0.8966 |
Semantic Similarity
- Datasets:
sts-test
, sts22-test
, sts-dev-gte-multilingual-base
, sts-test-gte-multilingual-base
, sts-test
, sts22-test
, stsb-dev-768
, stsb-dev-512
, stsb-dev-256
, stsb-dev-128
, stsb-dev-64
, stsb-test-768
, stsb-test-512
, stsb-test-256
, stsb-test-128
and stsb-test-64
- Evaluated with
EmbeddingSimilarityEvaluator
Metric |
sts-test |
sts22-test |
sts-dev-gte-multilingual-base |
sts-test-gte-multilingual-base |
stsb-dev-768 |
stsb-dev-512 |
stsb-dev-256 |
stsb-dev-128 |
stsb-dev-64 |
stsb-test-768 |
stsb-test-512 |
stsb-test-256 |
stsb-test-128 |
stsb-test-64 |
pearson_cosine |
0.8134 |
0.6514 |
0.8387 |
0.8134 |
0.8703 |
0.8697 |
0.8645 |
0.8591 |
0.8479 |
0.8455 |
0.8465 |
0.8443 |
0.8364 |
0.8235 |
spearman_cosine |
0.82 |
0.6827 |
0.8428 |
0.82 |
0.8748 |
0.8753 |
0.8735 |
0.87 |
0.8656 |
0.8535 |
0.8554 |
0.855 |
0.8511 |
0.8461 |
Triplet
Metric |
Value |
cosine_accuracy |
0.9352 |
Training Details
Training Dataset
all-nli-tr
- Dataset: all-nli-tr at daeabfb
- Size: 482,091 training samples
- Columns:
sentence1
, sentence2
, and score
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
score |
type |
string |
string |
float |
details |
- min: 6 tokens
- mean: 10.51 tokens
- max: 27 tokens
|
- min: 6 tokens
- mean: 10.47 tokens
- max: 27 tokens
|
- min: 0.0
- mean: 2.23
- max: 5.0
|
- Samples:
sentence1 |
sentence2 |
score |
Bir uçak kalkıyor. |
Bir hava uçağı kalkıyor. |
5.0 |
Bir adam büyük bir flüt çalıyor. |
Bir adam flüt çalıyor. |
3.8 |
Bir adam pizzaya rendelenmiş peynir yayıyor. |
Bir adam pişmemiş pizzaya rendelenmiş peynir yayıyor. |
3.8 |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "CoSENTLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
all-nli-tr
- Dataset: all-nli-tr at daeabfb
- Size: 6,567 evaluation samples
- Columns:
sentence1
, sentence2
, and score
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
score |
type |
string |
string |
float |
details |
- min: 6 tokens
- mean: 15.89 tokens
- max: 39 tokens
|
- min: 6 tokens
- mean: 16.02 tokens
- max: 49 tokens
|
- min: 0.0
- mean: 2.1
- max: 5.0
|
- Samples:
sentence1 |
sentence2 |
score |
Şapkalı bir adam dans ediyor. |
Sert şapka takan bir adam dans ediyor. |
5.0 |
Küçük bir çocuk ata biniyor. |
Bir çocuk ata biniyor. |
4.75 |
Bir adam yılana fare yediriyor. |
Adam yılana fare yediriyor. |
5.0 |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "CoSENTLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
learning_rate
: 1e-05
weight_decay
: 0.01
num_train_epochs
: 10
warmup_ratio
: 0.1
warmup_steps
: 144
bf16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 1e-05
weight_decay
: 0.01
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 10
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 144
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: batch_sampler
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
Validation Loss |
all-nli-tr-test_cosine_accuracy |
sts-test_spearman_cosine |
sts22-test_spearman_cosine |
sts-dev-gte-multilingual-base_spearman_cosine |
sts-test-gte-multilingual-base_spearman_cosine |
stsb-dev-768_spearman_cosine |
stsb-dev-512_spearman_cosine |
stsb-dev-256_spearman_cosine |
stsb-dev-128_spearman_cosine |
stsb-dev-64_spearman_cosine |
stsb-test-768_spearman_cosine |
stsb-test-512_spearman_cosine |
stsb-test-256_spearman_cosine |
stsb-test-128_spearman_cosine |
stsb-test-64_spearman_cosine |
0 |
0 |
- |
- |
0.8966 |
0.8041 |
0.6694 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
0.1327 |
1000 |
2.5299 |
3.3893 |
- |
- |
- |
0.8318 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
0.2655 |
2000 |
2.1132 |
3.3050 |
- |
- |
- |
0.8345 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
0.3982 |
3000 |
5.1488 |
2.7752 |
- |
- |
- |
0.8481 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
0.5310 |
4000 |
5.4103 |
2.7242 |
- |
- |
- |
0.8445 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
0.6637 |
5000 |
5.1896 |
2.6701 |
- |
- |
- |
0.8451 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
0.7965 |
6000 |
5.0105 |
2.6489 |
- |
- |
- |
0.8431 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
0.9292 |
7000 |
5.1059 |
2.6114 |
- |
- |
- |
0.8428 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
1.0 |
7533 |
- |
- |
0.9352 |
0.8200 |
0.6827 |
- |
0.8200 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
1.1111 |
200 |
34.2828 |
29.8737 |
- |
- |
- |
- |
- |
0.8671 |
0.8671 |
0.8639 |
0.8606 |
0.8546 |
- |
- |
- |
- |
- |
2.2222 |
400 |
28.038 |
28.8915 |
- |
- |
- |
- |
- |
0.8740 |
0.8742 |
0.8720 |
0.8691 |
0.8648 |
- |
- |
- |
- |
- |
3.3333 |
600 |
27.3829 |
29.3391 |
- |
- |
- |
- |
- |
0.8747 |
0.8751 |
0.8728 |
0.8699 |
0.8653 |
- |
- |
- |
- |
- |
4.4444 |
800 |
26.807 |
30.0090 |
- |
- |
- |
- |
- |
0.8756 |
0.8761 |
0.8741 |
0.8710 |
0.8665 |
- |
- |
- |
- |
- |
5.5556 |
1000 |
26.4543 |
30.5886 |
- |
- |
- |
- |
- |
0.8753 |
0.8757 |
0.8739 |
0.8705 |
0.8662 |
- |
- |
- |
- |
- |
6.6667 |
1200 |
26.0413 |
31.3750 |
- |
- |
- |
- |
- |
0.8744 |
0.8751 |
0.8730 |
0.8698 |
0.8655 |
- |
- |
- |
- |
- |
7.7778 |
1400 |
25.8221 |
31.6515 |
- |
- |
- |
- |
- |
0.8752 |
0.8758 |
0.8739 |
0.8706 |
0.8661 |
- |
- |
- |
- |
- |
8.8889 |
1600 |
25.6656 |
31.9805 |
- |
- |
- |
- |
- |
0.8746 |
0.8752 |
0.8733 |
0.8700 |
0.8655 |
- |
- |
- |
- |
- |
10.0 |
1800 |
25.5355 |
32.0454 |
- |
- |
- |
- |
- |
0.8748 |
0.8753 |
0.8735 |
0.8700 |
0.8656 |
0.8535 |
0.8554 |
0.8550 |
0.8511 |
0.8461 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.49.0.dev0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}