Update README.md
#3
by
AntonV
HF Staff
- opened
README.md
CHANGED
@@ -84,6 +84,64 @@ sf.write("simple.mp3", output, 44100)
|
|
84 |
|
85 |
A pypi package and a working CLI tool will be available soon.
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
## 💻 Hardware and Inference Speed
|
88 |
|
89 |
Dia has been tested on only GPUs (pytorch 2.0+, CUDA 12.6). CPU support is to be added soon.
|
|
|
84 |
|
85 |
A pypi package and a working CLI tool will be available soon.
|
86 |
|
87 |
+
### As part of transformers
|
88 |
+
|
89 |
+
Install `transformers`:
|
90 |
+
```bash
|
91 |
+
# pip
|
92 |
+
pip install "transformers[torch]"
|
93 |
+
|
94 |
+
# uv
|
95 |
+
uv pip install "transformers[torch]"
|
96 |
+
```
|
97 |
+
|
98 |
+
#### Generation with Text
|
99 |
+
|
100 |
+
```python
|
101 |
+
from transformers import AutoProcessor, DiaForConditionalGeneration
|
102 |
+
|
103 |
+
torch_device = "cuda"
|
104 |
+
model_checkpoint = "nari-labs/Dia-1.6B-0626"
|
105 |
+
|
106 |
+
text = ["[S1] Dia is an open weights text to dialogue model."]
|
107 |
+
processor = AutoProcessor.from_pretrained(model_checkpoint)
|
108 |
+
inputs = processor(text=text, padding=True, return_tensors="pt").to(torch_device)
|
109 |
+
|
110 |
+
model = DiaForConditionalGeneration.from_pretrained(model_checkpoint).to(torch_device)
|
111 |
+
outputs = model.generate(**inputs, max_new_tokens=256) # corresponds to around ~2s
|
112 |
+
|
113 |
+
# save audio to a file
|
114 |
+
outputs = processor.batch_decode(outputs)
|
115 |
+
processor.save_audio(outputs, "example.wav")
|
116 |
+
```
|
117 |
+
|
118 |
+
#### Generation with Text and Audio (Voice Cloning)
|
119 |
+
|
120 |
+
```python
|
121 |
+
from datasets import load_dataset, Audio
|
122 |
+
from transformers import AutoProcessor, DiaForConditionalGeneration
|
123 |
+
|
124 |
+
torch_device = "cuda"
|
125 |
+
model_checkpoint = "nari-labs/Dia-1.6B-0626"
|
126 |
+
|
127 |
+
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
|
128 |
+
ds = ds.cast_column("audio", Audio(sampling_rate=44100))
|
129 |
+
audio = ds[-1]["audio"]["array"]
|
130 |
+
# text is a transcript of the audio + additional text you want as new audio
|
131 |
+
text = ["[S1] I know. It's going to save me a lot of money, I hope. [S2] I sure hope so for you."]
|
132 |
+
|
133 |
+
processor = AutoProcessor.from_pretrained(model_checkpoint)
|
134 |
+
inputs = processor(text=text, audio=audio, padding=True, return_tensors="pt").to(torch_device)
|
135 |
+
prompt_len = processor.get_audio_prompt_len(inputs["decoder_attention_mask"])
|
136 |
+
|
137 |
+
model = DiaForConditionalGeneration.from_pretrained(model_checkpoint).to(torch_device)
|
138 |
+
outputs = model.generate(**inputs, max_new_tokens=256) # corresponds to around ~2s
|
139 |
+
|
140 |
+
# retrieve actually generated audio and save to a file
|
141 |
+
outputs = processor.batch_decode(outputs, audio_prompt_len=prompt_len)
|
142 |
+
processor.save_audio(outputs, "example_with_audio.wav")
|
143 |
+
```
|
144 |
+
|
145 |
## 💻 Hardware and Inference Speed
|
146 |
|
147 |
Dia has been tested on only GPUs (pytorch 2.0+, CUDA 12.6). CPU support is to be added soon.
|