orm-big-math-digits-v1-correctness
This model is a fine-tuned version of Qwen/Qwen2.5-7B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4476
- Accuracy: 0.797
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 300
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6326 | 0.08 | 25 | 0.5653 | 0.673 |
0.5514 | 0.16 | 50 | 0.5104 | 0.747 |
0.4993 | 0.24 | 75 | 0.4841 | 0.777 |
0.4434 | 0.32 | 100 | 0.4773 | 0.774 |
0.4789 | 0.4 | 125 | 0.4701 | 0.781 |
0.5269 | 0.48 | 150 | 0.4540 | 0.791 |
0.5158 | 0.56 | 175 | 0.4545 | 0.792 |
0.4662 | 0.64 | 200 | 0.4597 | 0.792 |
0.4779 | 0.72 | 225 | 0.4464 | 0.801 |
0.4215 | 0.8 | 250 | 0.4481 | 0.793 |
0.4411 | 0.88 | 275 | 0.4464 | 0.798 |
0.4559 | 0.96 | 300 | 0.4476 | 0.797 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 1
Model tree for mehuldamani/orm-big-math-digits-v1-correctness
Base model
Qwen/Qwen2.5-7B