fine_tune_of_wav2vec2
This model is a fine-tuned version of facebook/wav2vec2-base on the minds14 dataset. It achieves the following results on the evaluation set:
- Loss: 2.6833
- Accuracy: 0.0708
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 4 | 2.6492 | 0.0442 |
No log | 2.0 | 8 | 2.6566 | 0.0531 |
2.5025 | 3.0 | 12 | 2.6635 | 0.0885 |
2.5025 | 4.0 | 16 | 2.6666 | 0.0885 |
2.4252 | 5.0 | 20 | 2.6681 | 0.1062 |
2.4252 | 6.0 | 24 | 2.6634 | 0.0796 |
2.4252 | 7.0 | 28 | 2.6762 | 0.0708 |
2.4851 | 8.0 | 32 | 2.6821 | 0.0442 |
2.4851 | 9.0 | 36 | 2.6826 | 0.0708 |
2.4125 | 10.0 | 40 | 2.6833 | 0.0708 |
Framework versions
- Transformers 4.54.1
- Pytorch 2.7.1+cu128
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 11
Model tree for ltenny/fine_tune_of_wav2vec2
Base model
facebook/wav2vec2-base