IQ2_KS quant of DeepSeek-R1 I made for my 192GB DDR5 + 3090/4090. Done according to:
IQ2_KS
183.004 GiB (2.339 BPW)
👈 Secret Recipe
#!/usr/bin/env bash
custom="
# First 3 dense layers (0-3) (GPU)
# Except blk.*.attn_k_b.weight is not divisible by 256 so only supports qN_0
blk\.[0-2]\.attn_k_b.*=q8_0
blk\.[0-2]\.attn_.*=iq5_ks
blk\.[0-2]\.ffn_down.*=iq5_ks
blk\.[0-2]\.ffn_(gate|up).*=iq5_ks
blk\.[0-2]\..*=iq5_ks
# All attention, norm weights, and bias tensors for MoE layers (3-60) (GPU)
# Except blk.*.attn_k_b.weight is not divisible by 256 so only supports qN_0
blk\.[3-9]\.attn_k_b.*=q8_0
blk\.[1-5][0-9]\.attn_k_b.*=q8_0
blk\.60\.attn_k_b.*=q8_0
blk\.[3-9]\.attn_.*=iq5_ks
blk\.[1-5][0-9]\.attn_.*=iq5_ks
blk\.60\.attn_.*=iq5_ks
# Shared Expert (3-60) (GPU)
blk\.[3-9]\.ffn_down_shexp\.weight=iq4_ks
blk\.[1-5][0-9]\.ffn_down_shexp\.weight=iq4_ks
blk\.60\.ffn_down_shexp\.weight=iq4_ks
blk\.[3-9]\.ffn_(gate|up)_shexp\.weight=iq4_ks
blk\.[1-5][0-9]\.ffn_(gate|up)_shexp\.weight=iq4_ks
blk\.60\.ffn_(gate|up)_shexp\.weight=iq4_ks
# Routed Experts (3-60) (CPU)
blk\.[3-9]\.ffn_down_exps\.weight=iq2_k
blk\.[1-5][0-9]\.ffn_down_exps\.weight=iq2_k
blk\.60\.ffn_down_exps\.weight=iq2_k
blk\.[3-9]\.ffn_(gate|up)_exps\.weight=iq2_ks
blk\.[1-5][0-9]\.ffn_(gate|up)_exps\.weight=iq2_ks
blk\.60\.ffn_(gate|up)_exps\.weight=iq2_ks
# Token embedding and output tensors (GPU)
token_embd\.weight=iq4_k
output\.weight=Q8_0
Prompt format
<|begin▁of▁sentence|>{system_prompt}<|User|>{prompt}<|Assistant|><|end▁of▁sentence|><|Assistant|>
Example run command
llama-server --model <Path>\DeepSeek-R1-IQ2_KS-00001-of-00005.gguf -fa -rtr -mla 3 --ctx-size 40000 -ctk q8_0 -b 4092 -ub 4092 -amb 512 --n-gpu-layers 99 -ot "blk\.(3)\.ffn_.*=CUDA0" --override-tensor exps=CPU --threads 8 --host 127.0.0.1 --port 8080
ik_llama.cpp
quantizations of DeepSeek-R1
NOTE: These quants MUST be run using the llama.cpp
fork, ik_llama.cpp
Credits to @ubergarm for his DeepSeek quant recipes for which these quants were based on.
Credits to @ggfhez for his bf16 upload.
Credits to @bartowski for his imatrix
- Downloads last month
- 45
Hardware compatibility
Log In
to view the estimation
2-bit
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for lmganon123/DeepSeek-R1_IK_GGUF_Q2
Base model
deepseek-ai/DeepSeek-R1