t2_25k_v2_tag5_processed
This model is a fine-tuned version of Qwen/Qwen2.5-Coder-3B-Instruct on the t2_25k_v2_tag5_processed dataset. It achieves the following results on the evaluation set:
- Loss: 0.2197
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.5549 | 0.0634 | 100 | 0.3669 |
0.3389 | 0.1268 | 200 | 0.2919 |
0.3116 | 0.1902 | 300 | 0.2736 |
0.3141 | 0.2536 | 400 | 0.2597 |
0.2972 | 0.3171 | 500 | 0.2492 |
0.3075 | 0.3805 | 600 | 0.2427 |
0.234 | 0.4439 | 700 | 0.2384 |
0.3061 | 0.5073 | 800 | 0.2332 |
0.3022 | 0.5707 | 900 | 0.2293 |
0.2999 | 0.6341 | 1000 | 0.2274 |
0.3069 | 0.6975 | 1100 | 0.2262 |
0.287 | 0.7609 | 1200 | 0.2220 |
0.2456 | 0.8244 | 1300 | 0.2204 |
0.2238 | 0.8878 | 1400 | 0.2200 |
0.2854 | 0.9512 | 1500 | 0.2198 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.6.0+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 3