kanishka's picture
End of training
0210f34 verified
metadata
library_name: transformers
tags:
  - generated_from_trainer
datasets:
  - kanishka/babylm2-rewritten-clean-spacy_no-num-adj-eval-ablation
metrics:
  - accuracy
model-index:
  - name: opt-babylm2-rewritten-clean-spacy_no-num-adj-earlystop-bpe_seed-1024_1e-3
    results:
      - task:
          name: Causal Language Modeling
          type: text-generation
        dataset:
          name: kanishka/babylm2-rewritten-clean-spacy_no-num-adj-eval-ablation
          type: kanishka/babylm2-rewritten-clean-spacy_no-num-adj-eval-ablation
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.48229742655137203

opt-babylm2-rewritten-clean-spacy_no-num-adj-earlystop-bpe_seed-1024_1e-3

This model was trained from scratch on the kanishka/babylm2-rewritten-clean-spacy_no-num-adj-eval-ablation dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6427
  • Accuracy: 0.4823

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 1024
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 32000
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.1046 1.0 17787 3.1574 0.4223
2.9659 2.0 35574 3.0541 0.4326
2.9018 3.0 53361 2.9921 0.4386
2.858 4.0 71148 2.9562 0.4425
2.8303 5.0 88935 2.9372 0.4447
2.8174 6.0 106722 2.9199 0.4469
2.7932 7.0 124509 2.9019 0.4488
2.776 8.0 142296 2.8863 0.4503
2.7565 9.0 160083 2.8733 0.4519
2.7316 10.0 177870 2.8549 0.4541
2.7164 11.0 195657 2.8356 0.4565
2.7009 12.0 213444 2.8189 0.4583
2.6774 13.0 231231 2.8008 0.4607
2.6515 14.0 249018 2.7832 0.4627
2.6173 15.0 266805 2.7613 0.4654
2.5889 16.0 284592 2.7395 0.4682
2.5406 17.0 302379 2.7126 0.4714
2.4929 18.0 320166 2.6857 0.4753
2.4224 19.0 337953 2.6585 0.4793
2.3296 20.0 355740 2.6427 0.4823

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.1