hkivancoral's picture
End of training
befb434
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_small_adamax_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6888888888888889

hushem_5x_deit_small_adamax_00001_fold2

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4402
  • Accuracy: 0.6889

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2515 1.0 27 1.2615 0.5333
0.9391 2.0 54 1.2122 0.5556
0.6766 3.0 81 1.1537 0.5333
0.5382 4.0 108 1.1591 0.6
0.3747 5.0 135 1.0974 0.6444
0.2681 6.0 162 1.0815 0.6444
0.1892 7.0 189 1.1005 0.6222
0.1214 8.0 216 1.0974 0.6222
0.0863 9.0 243 1.0922 0.6444
0.0475 10.0 270 1.1018 0.6667
0.0299 11.0 297 1.1054 0.6889
0.0156 12.0 324 1.1555 0.6667
0.0095 13.0 351 1.1847 0.6667
0.0067 14.0 378 1.2033 0.6667
0.0051 15.0 405 1.2483 0.6667
0.004 16.0 432 1.2613 0.6667
0.0032 17.0 459 1.2726 0.6667
0.0028 18.0 486 1.2843 0.6667
0.0026 19.0 513 1.2998 0.6667
0.0021 20.0 540 1.3093 0.6667
0.0019 21.0 567 1.3233 0.6667
0.0018 22.0 594 1.3315 0.6667
0.0015 23.0 621 1.3379 0.6667
0.0014 24.0 648 1.3489 0.6667
0.0014 25.0 675 1.3547 0.6667
0.0013 26.0 702 1.3608 0.6889
0.0012 27.0 729 1.3706 0.6667
0.0011 28.0 756 1.3780 0.6667
0.0012 29.0 783 1.3808 0.6889
0.0011 30.0 810 1.3868 0.6889
0.001 31.0 837 1.3922 0.6889
0.001 32.0 864 1.3991 0.6889
0.0009 33.0 891 1.4019 0.6889
0.0009 34.0 918 1.4078 0.6889
0.0009 35.0 945 1.4120 0.6889
0.0008 36.0 972 1.4161 0.6889
0.0008 37.0 999 1.4179 0.6889
0.0008 38.0 1026 1.4222 0.6889
0.0007 39.0 1053 1.4264 0.6889
0.0007 40.0 1080 1.4282 0.6889
0.0007 41.0 1107 1.4320 0.6889
0.0007 42.0 1134 1.4342 0.6889
0.0007 43.0 1161 1.4365 0.6889
0.0007 44.0 1188 1.4366 0.6889
0.0007 45.0 1215 1.4383 0.6889
0.0007 46.0 1242 1.4394 0.6889
0.0007 47.0 1269 1.4399 0.6889
0.0007 48.0 1296 1.4402 0.6889
0.0007 49.0 1323 1.4402 0.6889
0.0007 50.0 1350 1.4402 0.6889

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0