hkivancoral's picture
End of training
527fc74
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_small_sgd_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.3333333333333333

hushem_1x_deit_small_sgd_001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3002
  • Accuracy: 0.3333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.4504 0.2857
1.4996 2.0 12 1.4256 0.2619
1.4996 3.0 18 1.4065 0.3095
1.4661 4.0 24 1.3909 0.3333
1.4137 5.0 30 1.3815 0.3333
1.4137 6.0 36 1.3736 0.3810
1.3923 7.0 42 1.3662 0.3571
1.3923 8.0 48 1.3602 0.3095
1.3511 9.0 54 1.3552 0.3333
1.3471 10.0 60 1.3505 0.3333
1.3471 11.0 66 1.3464 0.3333
1.3212 12.0 72 1.3425 0.3333
1.3212 13.0 78 1.3391 0.3333
1.3151 14.0 84 1.3358 0.3333
1.2949 15.0 90 1.3328 0.3333
1.2949 16.0 96 1.3296 0.3333
1.282 17.0 102 1.3270 0.3333
1.282 18.0 108 1.3243 0.3333
1.2637 19.0 114 1.3223 0.3333
1.2828 20.0 120 1.3203 0.3333
1.2828 21.0 126 1.3182 0.3333
1.2384 22.0 132 1.3165 0.3333
1.2384 23.0 138 1.3149 0.3333
1.2419 24.0 144 1.3133 0.3333
1.2404 25.0 150 1.3117 0.3571
1.2404 26.0 156 1.3102 0.3571
1.2294 27.0 162 1.3091 0.3571
1.2294 28.0 168 1.3080 0.3571
1.2327 29.0 174 1.3070 0.3571
1.2115 30.0 180 1.3061 0.3571
1.2115 31.0 186 1.3052 0.3333
1.2091 32.0 192 1.3043 0.3333
1.2091 33.0 198 1.3036 0.3333
1.2111 34.0 204 1.3028 0.3333
1.2001 35.0 210 1.3022 0.3333
1.2001 36.0 216 1.3016 0.3333
1.2048 37.0 222 1.3012 0.3333
1.2048 38.0 228 1.3009 0.3333
1.1981 39.0 234 1.3006 0.3333
1.1973 40.0 240 1.3004 0.3333
1.1973 41.0 246 1.3003 0.3333
1.2009 42.0 252 1.3002 0.3333
1.2009 43.0 258 1.3002 0.3333
1.1848 44.0 264 1.3002 0.3333
1.2 45.0 270 1.3002 0.3333
1.2 46.0 276 1.3002 0.3333
1.2026 47.0 282 1.3002 0.3333
1.2026 48.0 288 1.3002 0.3333
1.1883 49.0 294 1.3002 0.3333
1.2097 50.0 300 1.3002 0.3333

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1