Generated with:
import torch
from diffusers import AutoencoderKL, FluxTransformer2DModel, FlowMatchEulerDiscreteScheduler, FluxPipeline
from transformers import (
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
T5Config,
T5EncoderModel,
AutoTokenizer,
)
def get_dummy_components(num_layers: int = 1, num_single_layers: int = 1):
torch.manual_seed(0)
transformer = FluxTransformer2DModel(
patch_size=1,
in_channels=4,
num_layers=num_layers,
num_single_layers=num_single_layers,
attention_head_dim=16,
num_attention_heads=2,
joint_attention_dim=32,
pooled_projection_dim=32,
axes_dims_rope=[4, 4, 8],
)
clip_text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
hidden_act="gelu",
projection_dim=32,
)
torch.manual_seed(0)
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
# Create tiny dummy t5 with gated silu
config = T5Config(
vocab_size=1103,
d_model=32,
d_ff=38,
d_kv=8,
num_layers=2,
num_heads=4,
relative_attention_num_buckets=8,
dropout_rate=0.1,
initializer_factor=0.002,
eos_token_id=1,
bos_token_id=0,
pad_token_id=0,
is_encoder_decoder=True,
feed_forward_proj="gated-silu",
is_gated_act=True,
dense_act_fn="gelu_new",
tie_word_embeddings=False,
)
text_encoder_2 = T5EncoderModel(config=config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
vae = AutoencoderKL(
sample_size=32,
in_channels=3,
out_channels=3,
block_out_channels=(4,),
layers_per_block=1,
latent_channels=1,
norm_num_groups=1,
use_quant_conv=False,
use_post_quant_conv=False,
shift_factor=0.0609,
scaling_factor=1.5035,
)
scheduler = FlowMatchEulerDiscreteScheduler()
return {
"scheduler": scheduler,
"text_encoder": text_encoder,
"text_encoder_2": text_encoder_2,
"tokenizer": tokenizer,
"tokenizer_2": tokenizer_2,
"transformer": transformer,
"vae": vae,
"image_encoder": None,
"feature_extractor": None,
}
if __name__ == "__main__":
components = get_dummy_components()
pipeline = FluxPipeline(**components)
pipeline.push_to_hub("hf-internal-testing/tiny-flux-pipe-gated-silu")
from huggingface_hub import hf_hub_download, upload_file
import os
REPO_SRC = "hf-internal-testing/tiny-flux-sharded"
REPO_DST = "hf-internal-testing/tiny-flux-pipe-gated-silu"
DST_FOLDER = "transformer"
filenames = [
"transformer/config.json",
"transformer/diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer/diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer/diffusion_pytorch_model.safetensors",
"transformer/diffusion_pytorch_model.safetensors.index.json"
]
for file in filenames:
local_path = hf_hub_download(repo_id=REPO_SRC, filename=file)
upload_file(
path_or_fileobj=local_path,
path_in_repo=os.path.join(DST_FOLDER, os.path.basename(file)),
repo_id=REPO_DST,
repo_type="model",
commit_message=f"Copied {file} from {REPO_SRC}"
)
- Downloads last month
- 858
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support