Version_weird_ASAP_FineTuningBERT_AugV12_k6_task1_organization_k6_k6_fold3
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7269
- Qwk: 0.6361
- Mse: 0.7265
- Rmse: 0.8523
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 2 | 10.2786 | 0.0065 | 10.2771 | 3.2058 |
No log | 2.0 | 4 | 7.4524 | 0.0 | 7.4512 | 2.7297 |
No log | 3.0 | 6 | 5.6659 | 0.0738 | 5.6648 | 2.3801 |
No log | 4.0 | 8 | 4.8243 | 0.0185 | 4.8232 | 2.1962 |
No log | 5.0 | 10 | 3.6312 | 0.0038 | 3.6302 | 1.9053 |
No log | 6.0 | 12 | 2.8737 | 0.0 | 2.8728 | 1.6949 |
No log | 7.0 | 14 | 2.2989 | 0.1670 | 2.2980 | 1.5159 |
No log | 8.0 | 16 | 1.7499 | 0.0514 | 1.7491 | 1.3225 |
No log | 9.0 | 18 | 1.3488 | 0.0302 | 1.3481 | 1.1611 |
No log | 10.0 | 20 | 1.1426 | 0.0202 | 1.1420 | 1.0686 |
No log | 11.0 | 22 | 0.9162 | 0.2186 | 0.9157 | 0.9569 |
No log | 12.0 | 24 | 0.8461 | 0.2284 | 0.8456 | 0.9196 |
No log | 13.0 | 26 | 0.8048 | 0.1251 | 0.8044 | 0.8969 |
No log | 14.0 | 28 | 0.8191 | 0.0959 | 0.8188 | 0.9049 |
No log | 15.0 | 30 | 0.8902 | 0.0959 | 0.8898 | 0.9433 |
No log | 16.0 | 32 | 0.9261 | 0.1107 | 0.9258 | 0.9622 |
No log | 17.0 | 34 | 1.0863 | 0.2956 | 1.0861 | 1.0422 |
No log | 18.0 | 36 | 1.1436 | 0.2995 | 1.1435 | 1.0694 |
No log | 19.0 | 38 | 1.0366 | 0.3630 | 1.0366 | 1.0181 |
No log | 20.0 | 40 | 0.9710 | 0.4481 | 0.9710 | 0.9854 |
No log | 21.0 | 42 | 0.7450 | 0.5284 | 0.7449 | 0.8631 |
No log | 22.0 | 44 | 0.7377 | 0.5775 | 0.7377 | 0.8589 |
No log | 23.0 | 46 | 0.8809 | 0.5799 | 0.8807 | 0.9385 |
No log | 24.0 | 48 | 0.8469 | 0.5838 | 0.8467 | 0.9202 |
No log | 25.0 | 50 | 0.9120 | 0.6035 | 0.9117 | 0.9548 |
No log | 26.0 | 52 | 0.7645 | 0.6257 | 0.7643 | 0.8743 |
No log | 27.0 | 54 | 0.8131 | 0.6202 | 0.8128 | 0.9016 |
No log | 28.0 | 56 | 0.5947 | 0.6618 | 0.5945 | 0.7710 |
No log | 29.0 | 58 | 0.6686 | 0.6478 | 0.6684 | 0.8176 |
No log | 30.0 | 60 | 0.6757 | 0.6357 | 0.6756 | 0.8219 |
No log | 31.0 | 62 | 0.7400 | 0.6353 | 0.7398 | 0.8601 |
No log | 32.0 | 64 | 0.6424 | 0.6416 | 0.6422 | 0.8014 |
No log | 33.0 | 66 | 0.6528 | 0.6486 | 0.6525 | 0.8078 |
No log | 34.0 | 68 | 0.6985 | 0.6444 | 0.6981 | 0.8355 |
No log | 35.0 | 70 | 0.7241 | 0.6142 | 0.7238 | 0.8508 |
No log | 36.0 | 72 | 0.8833 | 0.6027 | 0.8829 | 0.9396 |
No log | 37.0 | 74 | 0.8346 | 0.6098 | 0.8343 | 0.9134 |
No log | 38.0 | 76 | 0.8322 | 0.5430 | 0.8320 | 0.9122 |
No log | 39.0 | 78 | 0.7145 | 0.6388 | 0.7142 | 0.8451 |
No log | 40.0 | 80 | 1.0969 | 0.5560 | 1.0963 | 1.0471 |
No log | 41.0 | 82 | 0.8800 | 0.5932 | 0.8796 | 0.9378 |
No log | 42.0 | 84 | 0.6000 | 0.6434 | 0.5997 | 0.7744 |
No log | 43.0 | 86 | 0.6564 | 0.6111 | 0.6562 | 0.8101 |
No log | 44.0 | 88 | 0.6927 | 0.6215 | 0.6924 | 0.8321 |
No log | 45.0 | 90 | 0.7357 | 0.6278 | 0.7353 | 0.8575 |
No log | 46.0 | 92 | 0.7175 | 0.6153 | 0.7172 | 0.8469 |
No log | 47.0 | 94 | 0.6707 | 0.6154 | 0.6705 | 0.8188 |
No log | 48.0 | 96 | 0.7269 | 0.6361 | 0.7265 | 0.8523 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 7
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k6_task1_organization_k6_k6_fold3
Base model
google-bert/bert-base-uncased