Version_weird_ASAP_FineTuningBERT_AugV12_k6_task1_organization_k6_k6_fold3

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7269
  • Qwk: 0.6361
  • Mse: 0.7265
  • Rmse: 0.8523

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 10.2786 0.0065 10.2771 3.2058
No log 2.0 4 7.4524 0.0 7.4512 2.7297
No log 3.0 6 5.6659 0.0738 5.6648 2.3801
No log 4.0 8 4.8243 0.0185 4.8232 2.1962
No log 5.0 10 3.6312 0.0038 3.6302 1.9053
No log 6.0 12 2.8737 0.0 2.8728 1.6949
No log 7.0 14 2.2989 0.1670 2.2980 1.5159
No log 8.0 16 1.7499 0.0514 1.7491 1.3225
No log 9.0 18 1.3488 0.0302 1.3481 1.1611
No log 10.0 20 1.1426 0.0202 1.1420 1.0686
No log 11.0 22 0.9162 0.2186 0.9157 0.9569
No log 12.0 24 0.8461 0.2284 0.8456 0.9196
No log 13.0 26 0.8048 0.1251 0.8044 0.8969
No log 14.0 28 0.8191 0.0959 0.8188 0.9049
No log 15.0 30 0.8902 0.0959 0.8898 0.9433
No log 16.0 32 0.9261 0.1107 0.9258 0.9622
No log 17.0 34 1.0863 0.2956 1.0861 1.0422
No log 18.0 36 1.1436 0.2995 1.1435 1.0694
No log 19.0 38 1.0366 0.3630 1.0366 1.0181
No log 20.0 40 0.9710 0.4481 0.9710 0.9854
No log 21.0 42 0.7450 0.5284 0.7449 0.8631
No log 22.0 44 0.7377 0.5775 0.7377 0.8589
No log 23.0 46 0.8809 0.5799 0.8807 0.9385
No log 24.0 48 0.8469 0.5838 0.8467 0.9202
No log 25.0 50 0.9120 0.6035 0.9117 0.9548
No log 26.0 52 0.7645 0.6257 0.7643 0.8743
No log 27.0 54 0.8131 0.6202 0.8128 0.9016
No log 28.0 56 0.5947 0.6618 0.5945 0.7710
No log 29.0 58 0.6686 0.6478 0.6684 0.8176
No log 30.0 60 0.6757 0.6357 0.6756 0.8219
No log 31.0 62 0.7400 0.6353 0.7398 0.8601
No log 32.0 64 0.6424 0.6416 0.6422 0.8014
No log 33.0 66 0.6528 0.6486 0.6525 0.8078
No log 34.0 68 0.6985 0.6444 0.6981 0.8355
No log 35.0 70 0.7241 0.6142 0.7238 0.8508
No log 36.0 72 0.8833 0.6027 0.8829 0.9396
No log 37.0 74 0.8346 0.6098 0.8343 0.9134
No log 38.0 76 0.8322 0.5430 0.8320 0.9122
No log 39.0 78 0.7145 0.6388 0.7142 0.8451
No log 40.0 80 1.0969 0.5560 1.0963 1.0471
No log 41.0 82 0.8800 0.5932 0.8796 0.9378
No log 42.0 84 0.6000 0.6434 0.5997 0.7744
No log 43.0 86 0.6564 0.6111 0.6562 0.8101
No log 44.0 88 0.6927 0.6215 0.6924 0.8321
No log 45.0 90 0.7357 0.6278 0.7353 0.8575
No log 46.0 92 0.7175 0.6153 0.7172 0.8469
No log 47.0 94 0.6707 0.6154 0.6705 0.8188
No log 48.0 96 0.7269 0.6361 0.7265 0.8523

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
7
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k6_task1_organization_k6_k6_fold3

Finetuned
(5690)
this model