Version_weird_ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold4
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7043
- Qwk: 0.6514
- Mse: 0.7043
- Rmse: 0.8392
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 2 | 7.8281 | 0.0 | 7.8281 | 2.7979 |
No log | 2.0 | 4 | 7.4864 | 0.0 | 7.4864 | 2.7361 |
No log | 3.0 | 6 | 7.0304 | 0.0 | 7.0304 | 2.6515 |
No log | 4.0 | 8 | 6.2152 | -0.0081 | 6.2152 | 2.4930 |
No log | 5.0 | 10 | 4.8503 | 0.0040 | 4.8503 | 2.2023 |
No log | 6.0 | 12 | 3.7824 | 0.0040 | 3.7824 | 1.9448 |
No log | 7.0 | 14 | 2.9749 | 0.0040 | 2.9749 | 1.7248 |
No log | 8.0 | 16 | 2.2869 | 0.1396 | 2.2869 | 1.5123 |
No log | 9.0 | 18 | 1.7725 | 0.0317 | 1.7725 | 1.3313 |
No log | 10.0 | 20 | 1.4059 | 0.0213 | 1.4059 | 1.1857 |
No log | 11.0 | 22 | 1.1507 | 0.0107 | 1.1507 | 1.0727 |
No log | 12.0 | 24 | 0.9888 | 0.0107 | 0.9888 | 0.9944 |
No log | 13.0 | 26 | 0.8605 | 0.3066 | 0.8605 | 0.9276 |
No log | 14.0 | 28 | 0.8392 | 0.1058 | 0.8392 | 0.9161 |
No log | 15.0 | 30 | 0.7959 | 0.1763 | 0.7959 | 0.8921 |
No log | 16.0 | 32 | 0.8009 | 0.1395 | 0.8009 | 0.8949 |
No log | 17.0 | 34 | 0.8958 | 0.1020 | 0.8958 | 0.9465 |
No log | 18.0 | 36 | 0.8088 | 0.1525 | 0.8088 | 0.8993 |
No log | 19.0 | 38 | 0.8837 | 0.2660 | 0.8837 | 0.9401 |
No log | 20.0 | 40 | 0.7428 | 0.3789 | 0.7428 | 0.8619 |
No log | 21.0 | 42 | 0.6486 | 0.4686 | 0.6486 | 0.8054 |
No log | 22.0 | 44 | 0.7619 | 0.5163 | 0.7619 | 0.8729 |
No log | 23.0 | 46 | 0.6691 | 0.5392 | 0.6691 | 0.8180 |
No log | 24.0 | 48 | 0.7095 | 0.5503 | 0.7095 | 0.8423 |
No log | 25.0 | 50 | 0.7315 | 0.5878 | 0.7315 | 0.8553 |
No log | 26.0 | 52 | 0.7964 | 0.6106 | 0.7964 | 0.8924 |
No log | 27.0 | 54 | 0.7203 | 0.6260 | 0.7203 | 0.8487 |
No log | 28.0 | 56 | 0.7946 | 0.6174 | 0.7946 | 0.8914 |
No log | 29.0 | 58 | 0.5887 | 0.6559 | 0.5887 | 0.7672 |
No log | 30.0 | 60 | 1.2176 | 0.5273 | 1.2176 | 1.1034 |
No log | 31.0 | 62 | 1.1290 | 0.5425 | 1.1290 | 1.0625 |
No log | 32.0 | 64 | 0.6051 | 0.6353 | 0.6051 | 0.7779 |
No log | 33.0 | 66 | 0.7445 | 0.6225 | 0.7445 | 0.8629 |
No log | 34.0 | 68 | 0.8563 | 0.6158 | 0.8563 | 0.9254 |
No log | 35.0 | 70 | 0.6580 | 0.6315 | 0.6580 | 0.8111 |
No log | 36.0 | 72 | 0.9026 | 0.5908 | 0.9026 | 0.9500 |
No log | 37.0 | 74 | 0.9584 | 0.5651 | 0.9584 | 0.9790 |
No log | 38.0 | 76 | 0.6017 | 0.6379 | 0.6017 | 0.7757 |
No log | 39.0 | 78 | 0.6475 | 0.6380 | 0.6475 | 0.8047 |
No log | 40.0 | 80 | 0.6570 | 0.6329 | 0.6570 | 0.8105 |
No log | 41.0 | 82 | 0.5912 | 0.6592 | 0.5912 | 0.7689 |
No log | 42.0 | 84 | 0.7130 | 0.6516 | 0.7130 | 0.8444 |
No log | 43.0 | 86 | 0.6370 | 0.6577 | 0.6370 | 0.7981 |
No log | 44.0 | 88 | 0.7314 | 0.6479 | 0.7314 | 0.8552 |
No log | 45.0 | 90 | 1.0826 | 0.5579 | 1.0826 | 1.0405 |
No log | 46.0 | 92 | 0.7245 | 0.6549 | 0.7245 | 0.8512 |
No log | 47.0 | 94 | 0.6979 | 0.6624 | 0.6979 | 0.8354 |
No log | 48.0 | 96 | 0.8069 | 0.6351 | 0.8069 | 0.8983 |
No log | 49.0 | 98 | 0.5772 | 0.6735 | 0.5772 | 0.7597 |
No log | 50.0 | 100 | 0.5622 | 0.6785 | 0.5622 | 0.7498 |
No log | 51.0 | 102 | 0.8310 | 0.6071 | 0.8310 | 0.9116 |
No log | 52.0 | 104 | 0.9788 | 0.5569 | 0.9788 | 0.9893 |
No log | 53.0 | 106 | 0.6793 | 0.6522 | 0.6793 | 0.8242 |
No log | 54.0 | 108 | 0.6501 | 0.6514 | 0.6501 | 0.8063 |
No log | 55.0 | 110 | 0.7040 | 0.6443 | 0.7040 | 0.8391 |
No log | 56.0 | 112 | 0.7175 | 0.6454 | 0.7175 | 0.8470 |
No log | 57.0 | 114 | 0.6276 | 0.6610 | 0.6276 | 0.7922 |
No log | 58.0 | 116 | 0.7006 | 0.6563 | 0.7006 | 0.8370 |
No log | 59.0 | 118 | 0.9054 | 0.5961 | 0.9054 | 0.9515 |
No log | 60.0 | 120 | 0.7531 | 0.6306 | 0.7531 | 0.8678 |
No log | 61.0 | 122 | 0.7148 | 0.6485 | 0.7148 | 0.8455 |
No log | 62.0 | 124 | 0.8133 | 0.6179 | 0.8133 | 0.9019 |
No log | 63.0 | 126 | 0.6847 | 0.6551 | 0.6847 | 0.8275 |
No log | 64.0 | 128 | 0.6755 | 0.6535 | 0.6755 | 0.8219 |
No log | 65.0 | 130 | 0.7460 | 0.6632 | 0.7460 | 0.8637 |
No log | 66.0 | 132 | 0.7048 | 0.6638 | 0.7048 | 0.8395 |
No log | 67.0 | 134 | 0.7443 | 0.6461 | 0.7443 | 0.8627 |
No log | 68.0 | 136 | 0.6997 | 0.6662 | 0.6997 | 0.8365 |
No log | 69.0 | 138 | 0.7318 | 0.6551 | 0.7318 | 0.8555 |
No log | 70.0 | 140 | 0.7043 | 0.6514 | 0.7043 | 0.8392 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold4
Base model
google-bert/bert-base-uncased