Version_weird_ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold4

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7043
  • Qwk: 0.6514
  • Mse: 0.7043
  • Rmse: 0.8392

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 7.8281 0.0 7.8281 2.7979
No log 2.0 4 7.4864 0.0 7.4864 2.7361
No log 3.0 6 7.0304 0.0 7.0304 2.6515
No log 4.0 8 6.2152 -0.0081 6.2152 2.4930
No log 5.0 10 4.8503 0.0040 4.8503 2.2023
No log 6.0 12 3.7824 0.0040 3.7824 1.9448
No log 7.0 14 2.9749 0.0040 2.9749 1.7248
No log 8.0 16 2.2869 0.1396 2.2869 1.5123
No log 9.0 18 1.7725 0.0317 1.7725 1.3313
No log 10.0 20 1.4059 0.0213 1.4059 1.1857
No log 11.0 22 1.1507 0.0107 1.1507 1.0727
No log 12.0 24 0.9888 0.0107 0.9888 0.9944
No log 13.0 26 0.8605 0.3066 0.8605 0.9276
No log 14.0 28 0.8392 0.1058 0.8392 0.9161
No log 15.0 30 0.7959 0.1763 0.7959 0.8921
No log 16.0 32 0.8009 0.1395 0.8009 0.8949
No log 17.0 34 0.8958 0.1020 0.8958 0.9465
No log 18.0 36 0.8088 0.1525 0.8088 0.8993
No log 19.0 38 0.8837 0.2660 0.8837 0.9401
No log 20.0 40 0.7428 0.3789 0.7428 0.8619
No log 21.0 42 0.6486 0.4686 0.6486 0.8054
No log 22.0 44 0.7619 0.5163 0.7619 0.8729
No log 23.0 46 0.6691 0.5392 0.6691 0.8180
No log 24.0 48 0.7095 0.5503 0.7095 0.8423
No log 25.0 50 0.7315 0.5878 0.7315 0.8553
No log 26.0 52 0.7964 0.6106 0.7964 0.8924
No log 27.0 54 0.7203 0.6260 0.7203 0.8487
No log 28.0 56 0.7946 0.6174 0.7946 0.8914
No log 29.0 58 0.5887 0.6559 0.5887 0.7672
No log 30.0 60 1.2176 0.5273 1.2176 1.1034
No log 31.0 62 1.1290 0.5425 1.1290 1.0625
No log 32.0 64 0.6051 0.6353 0.6051 0.7779
No log 33.0 66 0.7445 0.6225 0.7445 0.8629
No log 34.0 68 0.8563 0.6158 0.8563 0.9254
No log 35.0 70 0.6580 0.6315 0.6580 0.8111
No log 36.0 72 0.9026 0.5908 0.9026 0.9500
No log 37.0 74 0.9584 0.5651 0.9584 0.9790
No log 38.0 76 0.6017 0.6379 0.6017 0.7757
No log 39.0 78 0.6475 0.6380 0.6475 0.8047
No log 40.0 80 0.6570 0.6329 0.6570 0.8105
No log 41.0 82 0.5912 0.6592 0.5912 0.7689
No log 42.0 84 0.7130 0.6516 0.7130 0.8444
No log 43.0 86 0.6370 0.6577 0.6370 0.7981
No log 44.0 88 0.7314 0.6479 0.7314 0.8552
No log 45.0 90 1.0826 0.5579 1.0826 1.0405
No log 46.0 92 0.7245 0.6549 0.7245 0.8512
No log 47.0 94 0.6979 0.6624 0.6979 0.8354
No log 48.0 96 0.8069 0.6351 0.8069 0.8983
No log 49.0 98 0.5772 0.6735 0.5772 0.7597
No log 50.0 100 0.5622 0.6785 0.5622 0.7498
No log 51.0 102 0.8310 0.6071 0.8310 0.9116
No log 52.0 104 0.9788 0.5569 0.9788 0.9893
No log 53.0 106 0.6793 0.6522 0.6793 0.8242
No log 54.0 108 0.6501 0.6514 0.6501 0.8063
No log 55.0 110 0.7040 0.6443 0.7040 0.8391
No log 56.0 112 0.7175 0.6454 0.7175 0.8470
No log 57.0 114 0.6276 0.6610 0.6276 0.7922
No log 58.0 116 0.7006 0.6563 0.7006 0.8370
No log 59.0 118 0.9054 0.5961 0.9054 0.9515
No log 60.0 120 0.7531 0.6306 0.7531 0.8678
No log 61.0 122 0.7148 0.6485 0.7148 0.8455
No log 62.0 124 0.8133 0.6179 0.8133 0.9019
No log 63.0 126 0.6847 0.6551 0.6847 0.8275
No log 64.0 128 0.6755 0.6535 0.6755 0.8219
No log 65.0 130 0.7460 0.6632 0.7460 0.8637
No log 66.0 132 0.7048 0.6638 0.7048 0.8395
No log 67.0 134 0.7443 0.6461 0.7443 0.8627
No log 68.0 136 0.6997 0.6662 0.6997 0.8365
No log 69.0 138 0.7318 0.6551 0.7318 0.8555
No log 70.0 140 0.7043 0.6514 0.7043 0.8392

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold4

Finetuned
(5598)
this model