Version_weird_ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold1

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7854
  • Qwk: 0.6119
  • Mse: 0.7849
  • Rmse: 0.8860

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 9.7366 0.0019 9.7341 3.1200
No log 2.0 4 6.7742 0.0 6.7717 2.6022
No log 3.0 6 4.9301 0.0215 4.9278 2.2199
No log 4.0 8 3.6455 0.0 3.6438 1.9089
No log 5.0 10 2.9507 0.0 2.9488 1.7172
No log 6.0 12 2.2522 0.1368 2.2504 1.5001
No log 7.0 14 1.6882 0.0211 1.6866 1.2987
No log 8.0 16 1.2445 0.0 1.2430 1.1149
No log 9.0 18 1.1161 0.0 1.1147 1.0558
No log 10.0 20 0.9311 0.2802 0.9298 0.9643
No log 11.0 22 0.8784 0.0873 0.8772 0.9366
No log 12.0 24 0.9432 0.0143 0.9422 0.9707
No log 13.0 26 1.0114 0.0 1.0103 1.0051
No log 14.0 28 1.1169 0.0 1.1160 1.0564
No log 15.0 30 1.1922 0.0143 1.1914 1.0915
No log 16.0 32 1.3580 0.2887 1.3573 1.1650
No log 17.0 34 1.1579 0.3388 1.1572 1.0757
No log 18.0 36 0.8333 0.4221 0.8326 0.9125
No log 19.0 38 1.0902 0.3982 1.0897 1.0439
No log 20.0 40 0.6886 0.5381 0.6880 0.8295
No log 21.0 42 0.4147 0.6672 0.4140 0.6434
No log 22.0 44 0.8871 0.5626 0.8867 0.9417
No log 23.0 46 0.8801 0.6008 0.8798 0.9379
No log 24.0 48 0.4773 0.7254 0.4769 0.6906
No log 25.0 50 0.4673 0.7061 0.4668 0.6833
No log 26.0 52 0.8353 0.6218 0.8350 0.9138
No log 27.0 54 0.6241 0.6775 0.6237 0.7898
No log 28.0 56 0.3975 0.7450 0.3969 0.6300
No log 29.0 58 0.6754 0.6502 0.6750 0.8216
No log 30.0 60 2.0530 0.3927 2.0527 1.4327
No log 31.0 62 1.5378 0.4564 1.5375 1.2400
No log 32.0 64 0.4413 0.6977 0.4407 0.6639
No log 33.0 66 0.3897 0.7273 0.3891 0.6238
No log 34.0 68 0.6623 0.6305 0.6618 0.8135
No log 35.0 70 1.1973 0.5186 1.1969 1.0940
No log 36.0 72 0.7535 0.6139 0.7530 0.8678
No log 37.0 74 0.4153 0.7098 0.4147 0.6440
No log 38.0 76 0.5182 0.6681 0.5177 0.7195
No log 39.0 78 1.2103 0.5328 1.2099 1.1000
No log 40.0 80 1.3066 0.5288 1.3062 1.1429
No log 41.0 82 0.6456 0.6632 0.6451 0.8032
No log 42.0 84 0.3997 0.7467 0.3991 0.6318
No log 43.0 86 0.4312 0.7078 0.4307 0.6562
No log 44.0 88 0.9140 0.5813 0.9135 0.9558
No log 45.0 90 1.2731 0.5050 1.2726 1.1281
No log 46.0 92 0.8951 0.5898 0.8946 0.9458
No log 47.0 94 0.5963 0.6754 0.5958 0.7719
No log 48.0 96 0.7580 0.6416 0.7575 0.8704
No log 49.0 98 1.1626 0.5432 1.1621 1.0780
No log 50.0 100 0.9226 0.5884 0.9221 0.9603
No log 51.0 102 0.6106 0.6686 0.6101 0.7811
No log 52.0 104 0.6670 0.6480 0.6665 0.8164
No log 53.0 106 0.9506 0.5797 0.9501 0.9747
No log 54.0 108 0.8086 0.6048 0.8081 0.8990
No log 55.0 110 0.8097 0.5970 0.8092 0.8995
No log 56.0 112 0.9118 0.5715 0.9113 0.9546
No log 57.0 114 0.9276 0.5816 0.9270 0.9628
No log 58.0 116 0.8875 0.5976 0.8870 0.9418
No log 59.0 118 0.7571 0.6236 0.7566 0.8699
No log 60.0 120 0.9790 0.5715 0.9785 0.9892
No log 61.0 122 1.0024 0.5608 1.0019 1.0010
No log 62.0 124 0.7854 0.6119 0.7849 0.8860

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold1

Finetuned
(5612)
this model