Version_weird_ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold1
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7854
- Qwk: 0.6119
- Mse: 0.7849
- Rmse: 0.8860
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 2 | 9.7366 | 0.0019 | 9.7341 | 3.1200 |
No log | 2.0 | 4 | 6.7742 | 0.0 | 6.7717 | 2.6022 |
No log | 3.0 | 6 | 4.9301 | 0.0215 | 4.9278 | 2.2199 |
No log | 4.0 | 8 | 3.6455 | 0.0 | 3.6438 | 1.9089 |
No log | 5.0 | 10 | 2.9507 | 0.0 | 2.9488 | 1.7172 |
No log | 6.0 | 12 | 2.2522 | 0.1368 | 2.2504 | 1.5001 |
No log | 7.0 | 14 | 1.6882 | 0.0211 | 1.6866 | 1.2987 |
No log | 8.0 | 16 | 1.2445 | 0.0 | 1.2430 | 1.1149 |
No log | 9.0 | 18 | 1.1161 | 0.0 | 1.1147 | 1.0558 |
No log | 10.0 | 20 | 0.9311 | 0.2802 | 0.9298 | 0.9643 |
No log | 11.0 | 22 | 0.8784 | 0.0873 | 0.8772 | 0.9366 |
No log | 12.0 | 24 | 0.9432 | 0.0143 | 0.9422 | 0.9707 |
No log | 13.0 | 26 | 1.0114 | 0.0 | 1.0103 | 1.0051 |
No log | 14.0 | 28 | 1.1169 | 0.0 | 1.1160 | 1.0564 |
No log | 15.0 | 30 | 1.1922 | 0.0143 | 1.1914 | 1.0915 |
No log | 16.0 | 32 | 1.3580 | 0.2887 | 1.3573 | 1.1650 |
No log | 17.0 | 34 | 1.1579 | 0.3388 | 1.1572 | 1.0757 |
No log | 18.0 | 36 | 0.8333 | 0.4221 | 0.8326 | 0.9125 |
No log | 19.0 | 38 | 1.0902 | 0.3982 | 1.0897 | 1.0439 |
No log | 20.0 | 40 | 0.6886 | 0.5381 | 0.6880 | 0.8295 |
No log | 21.0 | 42 | 0.4147 | 0.6672 | 0.4140 | 0.6434 |
No log | 22.0 | 44 | 0.8871 | 0.5626 | 0.8867 | 0.9417 |
No log | 23.0 | 46 | 0.8801 | 0.6008 | 0.8798 | 0.9379 |
No log | 24.0 | 48 | 0.4773 | 0.7254 | 0.4769 | 0.6906 |
No log | 25.0 | 50 | 0.4673 | 0.7061 | 0.4668 | 0.6833 |
No log | 26.0 | 52 | 0.8353 | 0.6218 | 0.8350 | 0.9138 |
No log | 27.0 | 54 | 0.6241 | 0.6775 | 0.6237 | 0.7898 |
No log | 28.0 | 56 | 0.3975 | 0.7450 | 0.3969 | 0.6300 |
No log | 29.0 | 58 | 0.6754 | 0.6502 | 0.6750 | 0.8216 |
No log | 30.0 | 60 | 2.0530 | 0.3927 | 2.0527 | 1.4327 |
No log | 31.0 | 62 | 1.5378 | 0.4564 | 1.5375 | 1.2400 |
No log | 32.0 | 64 | 0.4413 | 0.6977 | 0.4407 | 0.6639 |
No log | 33.0 | 66 | 0.3897 | 0.7273 | 0.3891 | 0.6238 |
No log | 34.0 | 68 | 0.6623 | 0.6305 | 0.6618 | 0.8135 |
No log | 35.0 | 70 | 1.1973 | 0.5186 | 1.1969 | 1.0940 |
No log | 36.0 | 72 | 0.7535 | 0.6139 | 0.7530 | 0.8678 |
No log | 37.0 | 74 | 0.4153 | 0.7098 | 0.4147 | 0.6440 |
No log | 38.0 | 76 | 0.5182 | 0.6681 | 0.5177 | 0.7195 |
No log | 39.0 | 78 | 1.2103 | 0.5328 | 1.2099 | 1.1000 |
No log | 40.0 | 80 | 1.3066 | 0.5288 | 1.3062 | 1.1429 |
No log | 41.0 | 82 | 0.6456 | 0.6632 | 0.6451 | 0.8032 |
No log | 42.0 | 84 | 0.3997 | 0.7467 | 0.3991 | 0.6318 |
No log | 43.0 | 86 | 0.4312 | 0.7078 | 0.4307 | 0.6562 |
No log | 44.0 | 88 | 0.9140 | 0.5813 | 0.9135 | 0.9558 |
No log | 45.0 | 90 | 1.2731 | 0.5050 | 1.2726 | 1.1281 |
No log | 46.0 | 92 | 0.8951 | 0.5898 | 0.8946 | 0.9458 |
No log | 47.0 | 94 | 0.5963 | 0.6754 | 0.5958 | 0.7719 |
No log | 48.0 | 96 | 0.7580 | 0.6416 | 0.7575 | 0.8704 |
No log | 49.0 | 98 | 1.1626 | 0.5432 | 1.1621 | 1.0780 |
No log | 50.0 | 100 | 0.9226 | 0.5884 | 0.9221 | 0.9603 |
No log | 51.0 | 102 | 0.6106 | 0.6686 | 0.6101 | 0.7811 |
No log | 52.0 | 104 | 0.6670 | 0.6480 | 0.6665 | 0.8164 |
No log | 53.0 | 106 | 0.9506 | 0.5797 | 0.9501 | 0.9747 |
No log | 54.0 | 108 | 0.8086 | 0.6048 | 0.8081 | 0.8990 |
No log | 55.0 | 110 | 0.8097 | 0.5970 | 0.8092 | 0.8995 |
No log | 56.0 | 112 | 0.9118 | 0.5715 | 0.9113 | 0.9546 |
No log | 57.0 | 114 | 0.9276 | 0.5816 | 0.9270 | 0.9628 |
No log | 58.0 | 116 | 0.8875 | 0.5976 | 0.8870 | 0.9418 |
No log | 59.0 | 118 | 0.7571 | 0.6236 | 0.7566 | 0.8699 |
No log | 60.0 | 120 | 0.9790 | 0.5715 | 0.9785 | 0.9892 |
No log | 61.0 | 122 | 1.0024 | 0.5608 | 1.0019 | 1.0010 |
No log | 62.0 | 124 | 0.7854 | 0.6119 | 0.7849 | 0.8860 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold1
Base model
google-bert/bert-base-uncased