Version_weird_ASAP_FineTuningBERT_AugV12_k4_task1_organization_k4_k4_fold4
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9100
- Qwk: 0.6018
- Mse: 0.9100
- Rmse: 0.9539
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 2 | 9.8699 | 0.0018 | 9.8699 | 3.1416 |
No log | 2.0 | 4 | 9.2603 | 0.0018 | 9.2603 | 3.0431 |
No log | 3.0 | 6 | 8.2500 | 0.0 | 8.2500 | 2.8723 |
No log | 4.0 | 8 | 6.9629 | 0.0 | 6.9629 | 2.6387 |
No log | 5.0 | 10 | 5.5012 | 0.0539 | 5.5012 | 2.3455 |
No log | 6.0 | 12 | 4.3775 | 0.0118 | 4.3775 | 2.0923 |
No log | 7.0 | 14 | 3.5394 | 0.0079 | 3.5394 | 1.8813 |
No log | 8.0 | 16 | 3.0504 | 0.0079 | 3.0504 | 1.7465 |
No log | 9.0 | 18 | 2.4227 | 0.0695 | 2.4227 | 1.5565 |
No log | 10.0 | 20 | 1.9807 | 0.0527 | 1.9807 | 1.4074 |
No log | 11.0 | 22 | 1.4979 | 0.0420 | 1.4979 | 1.2239 |
No log | 12.0 | 24 | 1.2585 | 0.0316 | 1.2585 | 1.1218 |
No log | 13.0 | 26 | 0.9940 | 0.0213 | 0.9940 | 0.9970 |
No log | 14.0 | 28 | 0.9042 | 0.1417 | 0.9042 | 0.9509 |
No log | 15.0 | 30 | 0.8174 | 0.1279 | 0.8174 | 0.9041 |
No log | 16.0 | 32 | 0.8054 | 0.1037 | 0.8054 | 0.8974 |
No log | 17.0 | 34 | 0.8457 | 0.1037 | 0.8457 | 0.9196 |
No log | 18.0 | 36 | 0.8821 | 0.1180 | 0.8821 | 0.9392 |
No log | 19.0 | 38 | 0.8497 | 0.1697 | 0.8497 | 0.9218 |
No log | 20.0 | 40 | 0.7589 | 0.2825 | 0.7589 | 0.8712 |
No log | 21.0 | 42 | 0.7372 | 0.4484 | 0.7372 | 0.8586 |
No log | 22.0 | 44 | 0.7414 | 0.4687 | 0.7414 | 0.8611 |
No log | 23.0 | 46 | 0.6761 | 0.5488 | 0.6761 | 0.8223 |
No log | 24.0 | 48 | 0.7104 | 0.5783 | 0.7104 | 0.8428 |
No log | 25.0 | 50 | 0.6608 | 0.6065 | 0.6608 | 0.8129 |
No log | 26.0 | 52 | 0.6268 | 0.6399 | 0.6268 | 0.7917 |
No log | 27.0 | 54 | 0.7651 | 0.6318 | 0.7651 | 0.8747 |
No log | 28.0 | 56 | 0.7345 | 0.6432 | 0.7345 | 0.8570 |
No log | 29.0 | 58 | 0.6917 | 0.6688 | 0.6917 | 0.8317 |
No log | 30.0 | 60 | 0.7870 | 0.6525 | 0.7870 | 0.8871 |
No log | 31.0 | 62 | 0.8858 | 0.6258 | 0.8858 | 0.9412 |
No log | 32.0 | 64 | 0.8205 | 0.6406 | 0.8205 | 0.9058 |
No log | 33.0 | 66 | 0.9074 | 0.6004 | 0.9074 | 0.9526 |
No log | 34.0 | 68 | 0.5528 | 0.6653 | 0.5528 | 0.7435 |
No log | 35.0 | 70 | 0.7237 | 0.6335 | 0.7237 | 0.8507 |
No log | 36.0 | 72 | 1.0646 | 0.5626 | 1.0646 | 1.0318 |
No log | 37.0 | 74 | 0.7805 | 0.6131 | 0.7805 | 0.8834 |
No log | 38.0 | 76 | 0.9854 | 0.5777 | 0.9854 | 0.9927 |
No log | 39.0 | 78 | 0.7791 | 0.6156 | 0.7791 | 0.8826 |
No log | 40.0 | 80 | 0.8045 | 0.6230 | 0.8045 | 0.8969 |
No log | 41.0 | 82 | 0.8776 | 0.6056 | 0.8776 | 0.9368 |
No log | 42.0 | 84 | 0.7172 | 0.6423 | 0.7172 | 0.8469 |
No log | 43.0 | 86 | 0.8559 | 0.6082 | 0.8559 | 0.9252 |
No log | 44.0 | 88 | 0.8668 | 0.6125 | 0.8668 | 0.9310 |
No log | 45.0 | 90 | 0.6611 | 0.6768 | 0.6611 | 0.8131 |
No log | 46.0 | 92 | 0.6978 | 0.6660 | 0.6978 | 0.8353 |
No log | 47.0 | 94 | 0.8708 | 0.6268 | 0.8708 | 0.9331 |
No log | 48.0 | 96 | 0.8408 | 0.6226 | 0.8408 | 0.9169 |
No log | 49.0 | 98 | 0.6512 | 0.6590 | 0.6512 | 0.8069 |
No log | 50.0 | 100 | 0.6458 | 0.6530 | 0.6458 | 0.8036 |
No log | 51.0 | 102 | 0.8325 | 0.5998 | 0.8325 | 0.9124 |
No log | 52.0 | 104 | 0.7215 | 0.6278 | 0.7215 | 0.8494 |
No log | 53.0 | 106 | 0.6613 | 0.6510 | 0.6613 | 0.8132 |
No log | 54.0 | 108 | 0.9449 | 0.5932 | 0.9449 | 0.9721 |
No log | 55.0 | 110 | 1.0646 | 0.5841 | 1.0646 | 1.0318 |
No log | 56.0 | 112 | 0.8287 | 0.6193 | 0.8287 | 0.9103 |
No log | 57.0 | 114 | 0.8628 | 0.6048 | 0.8628 | 0.9289 |
No log | 58.0 | 116 | 0.9665 | 0.5865 | 0.9665 | 0.9831 |
No log | 59.0 | 118 | 0.8327 | 0.6197 | 0.8327 | 0.9125 |
No log | 60.0 | 120 | 0.7712 | 0.6190 | 0.7712 | 0.8782 |
No log | 61.0 | 122 | 0.7282 | 0.6376 | 0.7282 | 0.8533 |
No log | 62.0 | 124 | 0.8359 | 0.6182 | 0.8359 | 0.9143 |
No log | 63.0 | 126 | 0.8933 | 0.5997 | 0.8933 | 0.9451 |
No log | 64.0 | 128 | 0.9936 | 0.5887 | 0.9936 | 0.9968 |
No log | 65.0 | 130 | 0.9100 | 0.6018 | 0.9100 | 0.9539 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k4_task1_organization_k4_k4_fold4
Base model
google-bert/bert-base-uncased