Version_weird_ASAP_FineTuningBERT_AugV12_k4_task1_organization_k4_k4_fold4

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9100
  • Qwk: 0.6018
  • Mse: 0.9100
  • Rmse: 0.9539

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 9.8699 0.0018 9.8699 3.1416
No log 2.0 4 9.2603 0.0018 9.2603 3.0431
No log 3.0 6 8.2500 0.0 8.2500 2.8723
No log 4.0 8 6.9629 0.0 6.9629 2.6387
No log 5.0 10 5.5012 0.0539 5.5012 2.3455
No log 6.0 12 4.3775 0.0118 4.3775 2.0923
No log 7.0 14 3.5394 0.0079 3.5394 1.8813
No log 8.0 16 3.0504 0.0079 3.0504 1.7465
No log 9.0 18 2.4227 0.0695 2.4227 1.5565
No log 10.0 20 1.9807 0.0527 1.9807 1.4074
No log 11.0 22 1.4979 0.0420 1.4979 1.2239
No log 12.0 24 1.2585 0.0316 1.2585 1.1218
No log 13.0 26 0.9940 0.0213 0.9940 0.9970
No log 14.0 28 0.9042 0.1417 0.9042 0.9509
No log 15.0 30 0.8174 0.1279 0.8174 0.9041
No log 16.0 32 0.8054 0.1037 0.8054 0.8974
No log 17.0 34 0.8457 0.1037 0.8457 0.9196
No log 18.0 36 0.8821 0.1180 0.8821 0.9392
No log 19.0 38 0.8497 0.1697 0.8497 0.9218
No log 20.0 40 0.7589 0.2825 0.7589 0.8712
No log 21.0 42 0.7372 0.4484 0.7372 0.8586
No log 22.0 44 0.7414 0.4687 0.7414 0.8611
No log 23.0 46 0.6761 0.5488 0.6761 0.8223
No log 24.0 48 0.7104 0.5783 0.7104 0.8428
No log 25.0 50 0.6608 0.6065 0.6608 0.8129
No log 26.0 52 0.6268 0.6399 0.6268 0.7917
No log 27.0 54 0.7651 0.6318 0.7651 0.8747
No log 28.0 56 0.7345 0.6432 0.7345 0.8570
No log 29.0 58 0.6917 0.6688 0.6917 0.8317
No log 30.0 60 0.7870 0.6525 0.7870 0.8871
No log 31.0 62 0.8858 0.6258 0.8858 0.9412
No log 32.0 64 0.8205 0.6406 0.8205 0.9058
No log 33.0 66 0.9074 0.6004 0.9074 0.9526
No log 34.0 68 0.5528 0.6653 0.5528 0.7435
No log 35.0 70 0.7237 0.6335 0.7237 0.8507
No log 36.0 72 1.0646 0.5626 1.0646 1.0318
No log 37.0 74 0.7805 0.6131 0.7805 0.8834
No log 38.0 76 0.9854 0.5777 0.9854 0.9927
No log 39.0 78 0.7791 0.6156 0.7791 0.8826
No log 40.0 80 0.8045 0.6230 0.8045 0.8969
No log 41.0 82 0.8776 0.6056 0.8776 0.9368
No log 42.0 84 0.7172 0.6423 0.7172 0.8469
No log 43.0 86 0.8559 0.6082 0.8559 0.9252
No log 44.0 88 0.8668 0.6125 0.8668 0.9310
No log 45.0 90 0.6611 0.6768 0.6611 0.8131
No log 46.0 92 0.6978 0.6660 0.6978 0.8353
No log 47.0 94 0.8708 0.6268 0.8708 0.9331
No log 48.0 96 0.8408 0.6226 0.8408 0.9169
No log 49.0 98 0.6512 0.6590 0.6512 0.8069
No log 50.0 100 0.6458 0.6530 0.6458 0.8036
No log 51.0 102 0.8325 0.5998 0.8325 0.9124
No log 52.0 104 0.7215 0.6278 0.7215 0.8494
No log 53.0 106 0.6613 0.6510 0.6613 0.8132
No log 54.0 108 0.9449 0.5932 0.9449 0.9721
No log 55.0 110 1.0646 0.5841 1.0646 1.0318
No log 56.0 112 0.8287 0.6193 0.8287 0.9103
No log 57.0 114 0.8628 0.6048 0.8628 0.9289
No log 58.0 116 0.9665 0.5865 0.9665 0.9831
No log 59.0 118 0.8327 0.6197 0.8327 0.9125
No log 60.0 120 0.7712 0.6190 0.7712 0.8782
No log 61.0 122 0.7282 0.6376 0.7282 0.8533
No log 62.0 124 0.8359 0.6182 0.8359 0.9143
No log 63.0 126 0.8933 0.5997 0.8933 0.9451
No log 64.0 128 0.9936 0.5887 0.9936 0.9968
No log 65.0 130 0.9100 0.6018 0.9100 0.9539

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k4_task1_organization_k4_k4_fold4

Finetuned
(5602)
this model