Version_weird_ASAP_FineTuningBERT_AugV12_k4_task1_organization_k4_k4_fold2

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8096
  • Qwk: 0.5449
  • Mse: 0.8089
  • Rmse: 0.8994

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 9.8119 0.0035 9.8121 3.1324
No log 2.0 4 7.7136 0.0 7.7137 2.7774
No log 3.0 6 7.4225 0.0 7.4227 2.7245
No log 4.0 8 6.0393 0.0085 6.0396 2.4576
No log 5.0 10 4.3830 0.0088 4.3833 2.0936
No log 6.0 12 3.4275 0.0025 3.4279 1.8515
No log 7.0 14 2.9811 0.0 2.9815 1.7267
No log 8.0 16 2.2043 0.1314 2.2047 1.4848
No log 9.0 18 1.7804 0.0992 1.7808 1.3345
No log 10.0 20 1.4447 0.0241 1.4451 1.2021
No log 11.0 22 1.1592 0.0068 1.1596 1.0769
No log 12.0 24 0.9305 0.0068 0.9309 0.9648
No log 13.0 26 0.8838 0.1865 0.8842 0.9403
No log 14.0 28 0.7555 0.2642 0.7559 0.8694
No log 15.0 30 0.7292 0.1856 0.7295 0.8541
No log 16.0 32 0.6874 0.2355 0.6875 0.8291
No log 17.0 34 0.7789 0.1404 0.7788 0.8825
No log 18.0 36 0.6813 0.2142 0.6810 0.8252
No log 19.0 38 0.6311 0.4258 0.6305 0.7940
No log 20.0 40 0.5868 0.4241 0.5864 0.7658
No log 21.0 42 0.6200 0.4964 0.6194 0.7870
No log 22.0 44 0.7243 0.5119 0.7233 0.8505
No log 23.0 46 0.6938 0.5108 0.6928 0.8324
No log 24.0 48 0.9110 0.5013 0.9095 0.9537
No log 25.0 50 0.8775 0.5228 0.8760 0.9360
No log 26.0 52 0.7849 0.5310 0.7842 0.8855
No log 27.0 54 0.9147 0.5291 0.9132 0.9556
No log 28.0 56 1.1528 0.4674 1.1508 1.0727
No log 29.0 58 0.9715 0.5304 0.9705 0.9852
No log 30.0 60 1.4414 0.3410 1.4415 1.2006
No log 31.0 62 1.0300 0.4138 1.0301 1.0149
No log 32.0 64 1.0087 0.4442 1.0074 1.0037
No log 33.0 66 1.3121 0.4235 1.3106 1.1448
No log 34.0 68 0.7740 0.4976 0.7736 0.8795
No log 35.0 70 0.7672 0.5308 0.7670 0.8758
No log 36.0 72 0.7501 0.5495 0.7494 0.8657
No log 37.0 74 0.8123 0.5208 0.8125 0.9014
No log 38.0 76 0.7560 0.5563 0.7560 0.8695
No log 39.0 78 0.8329 0.5534 0.8321 0.9122
No log 40.0 80 0.6849 0.5938 0.6845 0.8274
No log 41.0 82 0.6846 0.5887 0.6841 0.8271
No log 42.0 84 0.8798 0.5287 0.8789 0.9375
No log 43.0 86 0.6962 0.5836 0.6957 0.8341
No log 44.0 88 0.9164 0.5205 0.9155 0.9568
No log 45.0 90 0.8172 0.5433 0.8164 0.9036
No log 46.0 92 0.7212 0.5777 0.7211 0.8492
No log 47.0 94 0.7516 0.5786 0.7513 0.8668
No log 48.0 96 0.8582 0.5455 0.8575 0.9260
No log 49.0 98 0.8162 0.5689 0.8155 0.9031
No log 50.0 100 0.7090 0.5907 0.7087 0.8418
No log 51.0 102 0.6770 0.5797 0.6766 0.8226
No log 52.0 104 0.7588 0.5649 0.7581 0.8707
No log 53.0 106 0.7399 0.5748 0.7393 0.8599
No log 54.0 108 0.8031 0.5653 0.8025 0.8958
No log 55.0 110 0.7655 0.5637 0.7654 0.8749
No log 56.0 112 0.7318 0.5651 0.7316 0.8553
No log 57.0 114 0.8559 0.5230 0.8552 0.9248
No log 58.0 116 0.8085 0.5435 0.8078 0.8988
No log 59.0 118 0.7159 0.5758 0.7156 0.8459
No log 60.0 120 0.8096 0.5449 0.8089 0.8994

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k4_task1_organization_k4_k4_fold2

Finetuned
(5600)
this model