Version_weird_ASAP_FineTuningBERT_AugV12_k4_task1_organization_k4_k4_fold2
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8096
- Qwk: 0.5449
- Mse: 0.8089
- Rmse: 0.8994
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 2 | 9.8119 | 0.0035 | 9.8121 | 3.1324 |
No log | 2.0 | 4 | 7.7136 | 0.0 | 7.7137 | 2.7774 |
No log | 3.0 | 6 | 7.4225 | 0.0 | 7.4227 | 2.7245 |
No log | 4.0 | 8 | 6.0393 | 0.0085 | 6.0396 | 2.4576 |
No log | 5.0 | 10 | 4.3830 | 0.0088 | 4.3833 | 2.0936 |
No log | 6.0 | 12 | 3.4275 | 0.0025 | 3.4279 | 1.8515 |
No log | 7.0 | 14 | 2.9811 | 0.0 | 2.9815 | 1.7267 |
No log | 8.0 | 16 | 2.2043 | 0.1314 | 2.2047 | 1.4848 |
No log | 9.0 | 18 | 1.7804 | 0.0992 | 1.7808 | 1.3345 |
No log | 10.0 | 20 | 1.4447 | 0.0241 | 1.4451 | 1.2021 |
No log | 11.0 | 22 | 1.1592 | 0.0068 | 1.1596 | 1.0769 |
No log | 12.0 | 24 | 0.9305 | 0.0068 | 0.9309 | 0.9648 |
No log | 13.0 | 26 | 0.8838 | 0.1865 | 0.8842 | 0.9403 |
No log | 14.0 | 28 | 0.7555 | 0.2642 | 0.7559 | 0.8694 |
No log | 15.0 | 30 | 0.7292 | 0.1856 | 0.7295 | 0.8541 |
No log | 16.0 | 32 | 0.6874 | 0.2355 | 0.6875 | 0.8291 |
No log | 17.0 | 34 | 0.7789 | 0.1404 | 0.7788 | 0.8825 |
No log | 18.0 | 36 | 0.6813 | 0.2142 | 0.6810 | 0.8252 |
No log | 19.0 | 38 | 0.6311 | 0.4258 | 0.6305 | 0.7940 |
No log | 20.0 | 40 | 0.5868 | 0.4241 | 0.5864 | 0.7658 |
No log | 21.0 | 42 | 0.6200 | 0.4964 | 0.6194 | 0.7870 |
No log | 22.0 | 44 | 0.7243 | 0.5119 | 0.7233 | 0.8505 |
No log | 23.0 | 46 | 0.6938 | 0.5108 | 0.6928 | 0.8324 |
No log | 24.0 | 48 | 0.9110 | 0.5013 | 0.9095 | 0.9537 |
No log | 25.0 | 50 | 0.8775 | 0.5228 | 0.8760 | 0.9360 |
No log | 26.0 | 52 | 0.7849 | 0.5310 | 0.7842 | 0.8855 |
No log | 27.0 | 54 | 0.9147 | 0.5291 | 0.9132 | 0.9556 |
No log | 28.0 | 56 | 1.1528 | 0.4674 | 1.1508 | 1.0727 |
No log | 29.0 | 58 | 0.9715 | 0.5304 | 0.9705 | 0.9852 |
No log | 30.0 | 60 | 1.4414 | 0.3410 | 1.4415 | 1.2006 |
No log | 31.0 | 62 | 1.0300 | 0.4138 | 1.0301 | 1.0149 |
No log | 32.0 | 64 | 1.0087 | 0.4442 | 1.0074 | 1.0037 |
No log | 33.0 | 66 | 1.3121 | 0.4235 | 1.3106 | 1.1448 |
No log | 34.0 | 68 | 0.7740 | 0.4976 | 0.7736 | 0.8795 |
No log | 35.0 | 70 | 0.7672 | 0.5308 | 0.7670 | 0.8758 |
No log | 36.0 | 72 | 0.7501 | 0.5495 | 0.7494 | 0.8657 |
No log | 37.0 | 74 | 0.8123 | 0.5208 | 0.8125 | 0.9014 |
No log | 38.0 | 76 | 0.7560 | 0.5563 | 0.7560 | 0.8695 |
No log | 39.0 | 78 | 0.8329 | 0.5534 | 0.8321 | 0.9122 |
No log | 40.0 | 80 | 0.6849 | 0.5938 | 0.6845 | 0.8274 |
No log | 41.0 | 82 | 0.6846 | 0.5887 | 0.6841 | 0.8271 |
No log | 42.0 | 84 | 0.8798 | 0.5287 | 0.8789 | 0.9375 |
No log | 43.0 | 86 | 0.6962 | 0.5836 | 0.6957 | 0.8341 |
No log | 44.0 | 88 | 0.9164 | 0.5205 | 0.9155 | 0.9568 |
No log | 45.0 | 90 | 0.8172 | 0.5433 | 0.8164 | 0.9036 |
No log | 46.0 | 92 | 0.7212 | 0.5777 | 0.7211 | 0.8492 |
No log | 47.0 | 94 | 0.7516 | 0.5786 | 0.7513 | 0.8668 |
No log | 48.0 | 96 | 0.8582 | 0.5455 | 0.8575 | 0.9260 |
No log | 49.0 | 98 | 0.8162 | 0.5689 | 0.8155 | 0.9031 |
No log | 50.0 | 100 | 0.7090 | 0.5907 | 0.7087 | 0.8418 |
No log | 51.0 | 102 | 0.6770 | 0.5797 | 0.6766 | 0.8226 |
No log | 52.0 | 104 | 0.7588 | 0.5649 | 0.7581 | 0.8707 |
No log | 53.0 | 106 | 0.7399 | 0.5748 | 0.7393 | 0.8599 |
No log | 54.0 | 108 | 0.8031 | 0.5653 | 0.8025 | 0.8958 |
No log | 55.0 | 110 | 0.7655 | 0.5637 | 0.7654 | 0.8749 |
No log | 56.0 | 112 | 0.7318 | 0.5651 | 0.7316 | 0.8553 |
No log | 57.0 | 114 | 0.8559 | 0.5230 | 0.8552 | 0.9248 |
No log | 58.0 | 116 | 0.8085 | 0.5435 | 0.8078 | 0.8988 |
No log | 59.0 | 118 | 0.7159 | 0.5758 | 0.7156 | 0.8459 |
No log | 60.0 | 120 | 0.8096 | 0.5449 | 0.8089 | 0.8994 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k4_task1_organization_k4_k4_fold2
Base model
google-bert/bert-base-uncased