Version_weird_ASAP_FineTuningBERT_AugV12_k2_task1_organization_k2_k2_fold3

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6285
  • Qwk: 0.6697
  • Mse: 0.6281
  • Rmse: 0.7925

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 1 11.6290 0.0215 11.6274 3.4099
No log 2.0 2 9.9686 0.0055 9.9672 3.1571
No log 3.0 3 8.6595 0.0 8.6581 2.9425
No log 4.0 4 7.3304 0.0 7.3291 2.7072
No log 5.0 5 6.2254 0.0477 6.2242 2.4948
No log 6.0 6 5.4633 0.0506 5.4622 2.3371
No log 7.0 7 4.9088 0.0324 4.9079 2.2154
No log 8.0 8 4.5768 0.0134 4.5757 2.1391
No log 9.0 9 4.2506 0.0114 4.2495 2.0614
No log 10.0 10 3.7083 0.0 3.7073 1.9254
No log 11.0 11 3.1501 0.0 3.1492 1.7746
No log 12.0 12 2.7845 0.0 2.7836 1.6684
No log 13.0 13 2.4767 0.1539 2.4758 1.5735
No log 14.0 14 2.2204 0.1391 2.2196 1.4898
No log 15.0 15 2.0612 0.0868 2.0604 1.4354
No log 16.0 16 1.8881 0.0514 1.8874 1.3738
No log 17.0 17 1.6485 0.0488 1.6478 1.2837
No log 18.0 18 1.4074 0.0401 1.4067 1.1860
No log 19.0 19 1.2488 0.0302 1.2481 1.1172
No log 20.0 20 1.1333 0.0202 1.1328 1.0643
No log 21.0 21 1.0548 0.0202 1.0543 1.0268
No log 22.0 22 1.0044 0.0202 1.0039 1.0019
No log 23.0 23 0.9212 0.1361 0.9207 0.9595
No log 24.0 24 0.8493 0.3593 0.8488 0.9213
No log 25.0 25 0.8206 0.2655 0.8202 0.9056
No log 26.0 26 0.7858 0.2701 0.7854 0.8862
No log 27.0 27 0.7427 0.2738 0.7423 0.8616
No log 28.0 28 0.7302 0.2675 0.7298 0.8543
No log 29.0 29 0.7435 0.2339 0.7432 0.8621
No log 30.0 30 0.7289 0.2377 0.7286 0.8536
No log 31.0 31 0.7053 0.2562 0.7050 0.8397
No log 32.0 32 0.6871 0.2881 0.6868 0.8287
No log 33.0 33 0.6908 0.3097 0.6906 0.8310
No log 34.0 34 0.6544 0.3295 0.6542 0.8088
No log 35.0 35 0.6337 0.3629 0.6335 0.7959
No log 36.0 36 0.6031 0.4187 0.6029 0.7765
No log 37.0 37 0.6189 0.4784 0.6188 0.7867
No log 38.0 38 0.5612 0.5416 0.5612 0.7491
No log 39.0 39 0.5672 0.6041 0.5671 0.7531
No log 40.0 40 0.5827 0.6020 0.5826 0.7633
No log 41.0 41 0.5501 0.6451 0.5501 0.7417
No log 42.0 42 0.5527 0.6400 0.5526 0.7434
No log 43.0 43 0.5807 0.6434 0.5806 0.7620
No log 44.0 44 0.5910 0.6384 0.5909 0.7687
No log 45.0 45 0.6344 0.6415 0.6343 0.7964
No log 46.0 46 0.6234 0.6403 0.6233 0.7895
No log 47.0 47 0.6650 0.6448 0.6648 0.8154
No log 48.0 48 0.6518 0.6431 0.6516 0.8072
No log 49.0 49 0.6705 0.6336 0.6703 0.8187
No log 50.0 50 0.6845 0.6379 0.6842 0.8272
No log 51.0 51 0.6495 0.6371 0.6493 0.8058
No log 52.0 52 0.6153 0.6357 0.6151 0.7843
No log 53.0 53 0.6149 0.6335 0.6147 0.7840
No log 54.0 54 0.6997 0.6468 0.6993 0.8362
No log 55.0 55 0.7346 0.6359 0.7342 0.8568
No log 56.0 56 0.6425 0.6475 0.6421 0.8013
No log 57.0 57 0.5769 0.6467 0.5766 0.7593
No log 58.0 58 0.5732 0.6450 0.5729 0.7569
No log 59.0 59 0.6136 0.6563 0.6133 0.7831
No log 60.0 60 0.6510 0.6581 0.6506 0.8066
No log 61.0 61 0.6128 0.6586 0.6124 0.7825
No log 62.0 62 0.5946 0.6546 0.5942 0.7709
No log 63.0 63 0.6129 0.6603 0.6125 0.7826
No log 64.0 64 0.6277 0.6683 0.6273 0.7920
No log 65.0 65 0.6513 0.6672 0.6508 0.8067
No log 66.0 66 0.6180 0.6613 0.6176 0.7859
No log 67.0 67 0.6205 0.6616 0.6201 0.7875
No log 68.0 68 0.6558 0.6599 0.6554 0.8096
No log 69.0 69 0.6312 0.6672 0.6308 0.7942
No log 70.0 70 0.6038 0.6515 0.6035 0.7768
No log 71.0 71 0.6040 0.6502 0.6037 0.7770
No log 72.0 72 0.6295 0.6704 0.6291 0.7931
No log 73.0 73 0.6253 0.6692 0.6249 0.7905
No log 74.0 74 0.6124 0.6726 0.6120 0.7823
No log 75.0 75 0.6213 0.6738 0.6210 0.7880
No log 76.0 76 0.6617 0.6619 0.6612 0.8132
No log 77.0 77 0.6643 0.6616 0.6639 0.8148
No log 78.0 78 0.6264 0.6673 0.6260 0.7912
No log 79.0 79 0.6158 0.6776 0.6154 0.7845
No log 80.0 80 0.5966 0.6764 0.5962 0.7721
No log 81.0 81 0.6092 0.6791 0.6088 0.7803
No log 82.0 82 0.6546 0.6596 0.6541 0.8088
No log 83.0 83 0.6614 0.6580 0.6610 0.8130
No log 84.0 84 0.6914 0.6586 0.6909 0.8312
No log 85.0 85 0.6787 0.6594 0.6782 0.8235
No log 86.0 86 0.6383 0.6764 0.6379 0.7987
No log 87.0 87 0.6336 0.6780 0.6332 0.7958
No log 88.0 88 0.6334 0.6757 0.6330 0.7956
No log 89.0 89 0.6390 0.6681 0.6386 0.7991
No log 90.0 90 0.6598 0.6689 0.6594 0.8120
No log 91.0 91 0.6951 0.6591 0.6946 0.8335
No log 92.0 92 0.7050 0.6468 0.7045 0.8394
No log 93.0 93 0.6931 0.6591 0.6926 0.8323
No log 94.0 94 0.6695 0.6597 0.6691 0.8180
No log 95.0 95 0.6428 0.6614 0.6425 0.8015
No log 96.0 96 0.6286 0.6647 0.6282 0.7926
No log 97.0 97 0.6242 0.6652 0.6238 0.7898
No log 98.0 98 0.6249 0.6652 0.6245 0.7903
No log 99.0 99 0.6280 0.6697 0.6276 0.7922
No log 100.0 100 0.6285 0.6697 0.6281 0.7925

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k2_task1_organization_k2_k2_fold3

Finetuned
(5602)
this model