Version_weird_ASAP_FineTuningBERT_AugV12_k2_task1_organization_k2_k2_fold3
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6285
- Qwk: 0.6697
- Mse: 0.6281
- Rmse: 0.7925
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 1 | 11.6290 | 0.0215 | 11.6274 | 3.4099 |
No log | 2.0 | 2 | 9.9686 | 0.0055 | 9.9672 | 3.1571 |
No log | 3.0 | 3 | 8.6595 | 0.0 | 8.6581 | 2.9425 |
No log | 4.0 | 4 | 7.3304 | 0.0 | 7.3291 | 2.7072 |
No log | 5.0 | 5 | 6.2254 | 0.0477 | 6.2242 | 2.4948 |
No log | 6.0 | 6 | 5.4633 | 0.0506 | 5.4622 | 2.3371 |
No log | 7.0 | 7 | 4.9088 | 0.0324 | 4.9079 | 2.2154 |
No log | 8.0 | 8 | 4.5768 | 0.0134 | 4.5757 | 2.1391 |
No log | 9.0 | 9 | 4.2506 | 0.0114 | 4.2495 | 2.0614 |
No log | 10.0 | 10 | 3.7083 | 0.0 | 3.7073 | 1.9254 |
No log | 11.0 | 11 | 3.1501 | 0.0 | 3.1492 | 1.7746 |
No log | 12.0 | 12 | 2.7845 | 0.0 | 2.7836 | 1.6684 |
No log | 13.0 | 13 | 2.4767 | 0.1539 | 2.4758 | 1.5735 |
No log | 14.0 | 14 | 2.2204 | 0.1391 | 2.2196 | 1.4898 |
No log | 15.0 | 15 | 2.0612 | 0.0868 | 2.0604 | 1.4354 |
No log | 16.0 | 16 | 1.8881 | 0.0514 | 1.8874 | 1.3738 |
No log | 17.0 | 17 | 1.6485 | 0.0488 | 1.6478 | 1.2837 |
No log | 18.0 | 18 | 1.4074 | 0.0401 | 1.4067 | 1.1860 |
No log | 19.0 | 19 | 1.2488 | 0.0302 | 1.2481 | 1.1172 |
No log | 20.0 | 20 | 1.1333 | 0.0202 | 1.1328 | 1.0643 |
No log | 21.0 | 21 | 1.0548 | 0.0202 | 1.0543 | 1.0268 |
No log | 22.0 | 22 | 1.0044 | 0.0202 | 1.0039 | 1.0019 |
No log | 23.0 | 23 | 0.9212 | 0.1361 | 0.9207 | 0.9595 |
No log | 24.0 | 24 | 0.8493 | 0.3593 | 0.8488 | 0.9213 |
No log | 25.0 | 25 | 0.8206 | 0.2655 | 0.8202 | 0.9056 |
No log | 26.0 | 26 | 0.7858 | 0.2701 | 0.7854 | 0.8862 |
No log | 27.0 | 27 | 0.7427 | 0.2738 | 0.7423 | 0.8616 |
No log | 28.0 | 28 | 0.7302 | 0.2675 | 0.7298 | 0.8543 |
No log | 29.0 | 29 | 0.7435 | 0.2339 | 0.7432 | 0.8621 |
No log | 30.0 | 30 | 0.7289 | 0.2377 | 0.7286 | 0.8536 |
No log | 31.0 | 31 | 0.7053 | 0.2562 | 0.7050 | 0.8397 |
No log | 32.0 | 32 | 0.6871 | 0.2881 | 0.6868 | 0.8287 |
No log | 33.0 | 33 | 0.6908 | 0.3097 | 0.6906 | 0.8310 |
No log | 34.0 | 34 | 0.6544 | 0.3295 | 0.6542 | 0.8088 |
No log | 35.0 | 35 | 0.6337 | 0.3629 | 0.6335 | 0.7959 |
No log | 36.0 | 36 | 0.6031 | 0.4187 | 0.6029 | 0.7765 |
No log | 37.0 | 37 | 0.6189 | 0.4784 | 0.6188 | 0.7867 |
No log | 38.0 | 38 | 0.5612 | 0.5416 | 0.5612 | 0.7491 |
No log | 39.0 | 39 | 0.5672 | 0.6041 | 0.5671 | 0.7531 |
No log | 40.0 | 40 | 0.5827 | 0.6020 | 0.5826 | 0.7633 |
No log | 41.0 | 41 | 0.5501 | 0.6451 | 0.5501 | 0.7417 |
No log | 42.0 | 42 | 0.5527 | 0.6400 | 0.5526 | 0.7434 |
No log | 43.0 | 43 | 0.5807 | 0.6434 | 0.5806 | 0.7620 |
No log | 44.0 | 44 | 0.5910 | 0.6384 | 0.5909 | 0.7687 |
No log | 45.0 | 45 | 0.6344 | 0.6415 | 0.6343 | 0.7964 |
No log | 46.0 | 46 | 0.6234 | 0.6403 | 0.6233 | 0.7895 |
No log | 47.0 | 47 | 0.6650 | 0.6448 | 0.6648 | 0.8154 |
No log | 48.0 | 48 | 0.6518 | 0.6431 | 0.6516 | 0.8072 |
No log | 49.0 | 49 | 0.6705 | 0.6336 | 0.6703 | 0.8187 |
No log | 50.0 | 50 | 0.6845 | 0.6379 | 0.6842 | 0.8272 |
No log | 51.0 | 51 | 0.6495 | 0.6371 | 0.6493 | 0.8058 |
No log | 52.0 | 52 | 0.6153 | 0.6357 | 0.6151 | 0.7843 |
No log | 53.0 | 53 | 0.6149 | 0.6335 | 0.6147 | 0.7840 |
No log | 54.0 | 54 | 0.6997 | 0.6468 | 0.6993 | 0.8362 |
No log | 55.0 | 55 | 0.7346 | 0.6359 | 0.7342 | 0.8568 |
No log | 56.0 | 56 | 0.6425 | 0.6475 | 0.6421 | 0.8013 |
No log | 57.0 | 57 | 0.5769 | 0.6467 | 0.5766 | 0.7593 |
No log | 58.0 | 58 | 0.5732 | 0.6450 | 0.5729 | 0.7569 |
No log | 59.0 | 59 | 0.6136 | 0.6563 | 0.6133 | 0.7831 |
No log | 60.0 | 60 | 0.6510 | 0.6581 | 0.6506 | 0.8066 |
No log | 61.0 | 61 | 0.6128 | 0.6586 | 0.6124 | 0.7825 |
No log | 62.0 | 62 | 0.5946 | 0.6546 | 0.5942 | 0.7709 |
No log | 63.0 | 63 | 0.6129 | 0.6603 | 0.6125 | 0.7826 |
No log | 64.0 | 64 | 0.6277 | 0.6683 | 0.6273 | 0.7920 |
No log | 65.0 | 65 | 0.6513 | 0.6672 | 0.6508 | 0.8067 |
No log | 66.0 | 66 | 0.6180 | 0.6613 | 0.6176 | 0.7859 |
No log | 67.0 | 67 | 0.6205 | 0.6616 | 0.6201 | 0.7875 |
No log | 68.0 | 68 | 0.6558 | 0.6599 | 0.6554 | 0.8096 |
No log | 69.0 | 69 | 0.6312 | 0.6672 | 0.6308 | 0.7942 |
No log | 70.0 | 70 | 0.6038 | 0.6515 | 0.6035 | 0.7768 |
No log | 71.0 | 71 | 0.6040 | 0.6502 | 0.6037 | 0.7770 |
No log | 72.0 | 72 | 0.6295 | 0.6704 | 0.6291 | 0.7931 |
No log | 73.0 | 73 | 0.6253 | 0.6692 | 0.6249 | 0.7905 |
No log | 74.0 | 74 | 0.6124 | 0.6726 | 0.6120 | 0.7823 |
No log | 75.0 | 75 | 0.6213 | 0.6738 | 0.6210 | 0.7880 |
No log | 76.0 | 76 | 0.6617 | 0.6619 | 0.6612 | 0.8132 |
No log | 77.0 | 77 | 0.6643 | 0.6616 | 0.6639 | 0.8148 |
No log | 78.0 | 78 | 0.6264 | 0.6673 | 0.6260 | 0.7912 |
No log | 79.0 | 79 | 0.6158 | 0.6776 | 0.6154 | 0.7845 |
No log | 80.0 | 80 | 0.5966 | 0.6764 | 0.5962 | 0.7721 |
No log | 81.0 | 81 | 0.6092 | 0.6791 | 0.6088 | 0.7803 |
No log | 82.0 | 82 | 0.6546 | 0.6596 | 0.6541 | 0.8088 |
No log | 83.0 | 83 | 0.6614 | 0.6580 | 0.6610 | 0.8130 |
No log | 84.0 | 84 | 0.6914 | 0.6586 | 0.6909 | 0.8312 |
No log | 85.0 | 85 | 0.6787 | 0.6594 | 0.6782 | 0.8235 |
No log | 86.0 | 86 | 0.6383 | 0.6764 | 0.6379 | 0.7987 |
No log | 87.0 | 87 | 0.6336 | 0.6780 | 0.6332 | 0.7958 |
No log | 88.0 | 88 | 0.6334 | 0.6757 | 0.6330 | 0.7956 |
No log | 89.0 | 89 | 0.6390 | 0.6681 | 0.6386 | 0.7991 |
No log | 90.0 | 90 | 0.6598 | 0.6689 | 0.6594 | 0.8120 |
No log | 91.0 | 91 | 0.6951 | 0.6591 | 0.6946 | 0.8335 |
No log | 92.0 | 92 | 0.7050 | 0.6468 | 0.7045 | 0.8394 |
No log | 93.0 | 93 | 0.6931 | 0.6591 | 0.6926 | 0.8323 |
No log | 94.0 | 94 | 0.6695 | 0.6597 | 0.6691 | 0.8180 |
No log | 95.0 | 95 | 0.6428 | 0.6614 | 0.6425 | 0.8015 |
No log | 96.0 | 96 | 0.6286 | 0.6647 | 0.6282 | 0.7926 |
No log | 97.0 | 97 | 0.6242 | 0.6652 | 0.6238 | 0.7898 |
No log | 98.0 | 98 | 0.6249 | 0.6652 | 0.6245 | 0.7903 |
No log | 99.0 | 99 | 0.6280 | 0.6697 | 0.6276 | 0.7922 |
No log | 100.0 | 100 | 0.6285 | 0.6697 | 0.6281 | 0.7925 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k2_task1_organization_k2_k2_fold3
Base model
google-bert/bert-base-uncased