Version_weird_ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold2
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8028
- Qwk: 0.5731
- Mse: 0.8018
- Rmse: 0.8954
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 3 | 12.2952 | 0.0014 | 12.2952 | 3.5064 |
No log | 2.0 | 6 | 9.1980 | 0.0 | 9.1982 | 3.0328 |
No log | 3.0 | 9 | 7.4767 | 0.0 | 7.4767 | 2.7344 |
No log | 4.0 | 12 | 4.9672 | 0.0227 | 4.9676 | 2.2288 |
No log | 5.0 | 15 | 4.1565 | 0.0 | 4.1567 | 2.0388 |
No log | 6.0 | 18 | 2.2339 | 0.1188 | 2.2343 | 1.4948 |
No log | 7.0 | 21 | 1.4408 | 0.0213 | 1.4413 | 1.2005 |
No log | 8.0 | 24 | 1.0764 | 0.0107 | 1.0768 | 1.0377 |
No log | 9.0 | 27 | 0.8391 | 0.3043 | 0.8395 | 0.9162 |
No log | 10.0 | 30 | 0.8339 | 0.0430 | 0.8344 | 0.9135 |
No log | 11.0 | 33 | 0.9497 | 0.0327 | 0.9501 | 0.9748 |
No log | 12.0 | 36 | 1.3084 | 0.0045 | 1.3089 | 1.1441 |
No log | 13.0 | 39 | 1.6864 | 0.0596 | 1.6867 | 1.2987 |
No log | 14.0 | 42 | 1.9860 | 0.0394 | 1.9862 | 1.4093 |
No log | 15.0 | 45 | 2.2525 | 0.0660 | 2.2522 | 1.5007 |
No log | 16.0 | 48 | 1.9149 | 0.2144 | 1.9140 | 1.3835 |
No log | 17.0 | 51 | 0.7209 | 0.5306 | 0.7201 | 0.8486 |
No log | 18.0 | 54 | 0.9702 | 0.5485 | 0.9690 | 0.9844 |
No log | 19.0 | 57 | 0.9280 | 0.5405 | 0.9268 | 0.9627 |
No log | 20.0 | 60 | 0.9608 | 0.5708 | 0.9594 | 0.9795 |
No log | 21.0 | 63 | 0.5862 | 0.6151 | 0.5856 | 0.7652 |
No log | 22.0 | 66 | 1.2980 | 0.4754 | 1.2964 | 1.1386 |
No log | 23.0 | 69 | 1.2148 | 0.4755 | 1.2134 | 1.1015 |
No log | 24.0 | 72 | 0.5068 | 0.6207 | 0.5062 | 0.7114 |
No log | 25.0 | 75 | 0.8001 | 0.5837 | 0.7990 | 0.8939 |
No log | 26.0 | 78 | 0.5592 | 0.6342 | 0.5586 | 0.7474 |
No log | 27.0 | 81 | 0.8511 | 0.5480 | 0.8500 | 0.9220 |
No log | 28.0 | 84 | 0.5569 | 0.6283 | 0.5563 | 0.7458 |
No log | 29.0 | 87 | 1.0873 | 0.5054 | 1.0862 | 1.0422 |
No log | 30.0 | 90 | 1.0732 | 0.5105 | 1.0721 | 1.0354 |
No log | 31.0 | 93 | 0.6005 | 0.6270 | 0.6000 | 0.7746 |
No log | 32.0 | 96 | 0.7228 | 0.6123 | 0.7220 | 0.8497 |
No log | 33.0 | 99 | 1.4819 | 0.4786 | 1.4805 | 1.2167 |
No log | 34.0 | 102 | 0.9616 | 0.5356 | 0.9605 | 0.9800 |
No log | 35.0 | 105 | 0.5874 | 0.6232 | 0.5868 | 0.7660 |
No log | 36.0 | 108 | 0.6780 | 0.6192 | 0.6772 | 0.8229 |
No log | 37.0 | 111 | 0.8785 | 0.5894 | 0.8772 | 0.9366 |
No log | 38.0 | 114 | 0.7288 | 0.5846 | 0.7283 | 0.8534 |
No log | 39.0 | 117 | 0.6293 | 0.6072 | 0.6289 | 0.7930 |
No log | 40.0 | 120 | 0.8761 | 0.5375 | 0.8750 | 0.9354 |
No log | 41.0 | 123 | 0.8686 | 0.5431 | 0.8676 | 0.9315 |
No log | 42.0 | 126 | 0.6751 | 0.6416 | 0.6744 | 0.8212 |
No log | 43.0 | 129 | 0.7368 | 0.6340 | 0.7360 | 0.8579 |
No log | 44.0 | 132 | 1.0939 | 0.5327 | 1.0925 | 1.0452 |
No log | 45.0 | 135 | 1.0294 | 0.52 | 1.0282 | 1.0140 |
No log | 46.0 | 138 | 0.6799 | 0.5976 | 0.6790 | 0.8240 |
No log | 47.0 | 141 | 0.8283 | 0.5705 | 0.8273 | 0.9095 |
No log | 48.0 | 144 | 0.7470 | 0.6135 | 0.7461 | 0.8638 |
No log | 49.0 | 147 | 0.7234 | 0.6247 | 0.7226 | 0.8501 |
No log | 50.0 | 150 | 0.8410 | 0.5769 | 0.8400 | 0.9165 |
No log | 51.0 | 153 | 0.7409 | 0.5779 | 0.7400 | 0.8603 |
No log | 52.0 | 156 | 0.9363 | 0.5255 | 0.9353 | 0.9671 |
No log | 53.0 | 159 | 0.9195 | 0.5409 | 0.9184 | 0.9583 |
No log | 54.0 | 162 | 0.7369 | 0.5935 | 0.7360 | 0.8579 |
No log | 55.0 | 165 | 0.6877 | 0.6308 | 0.6869 | 0.8288 |
No log | 56.0 | 168 | 0.7305 | 0.6064 | 0.7296 | 0.8542 |
No log | 57.0 | 171 | 0.9400 | 0.5486 | 0.9389 | 0.9690 |
No log | 58.0 | 174 | 0.8382 | 0.5510 | 0.8372 | 0.9150 |
No log | 59.0 | 177 | 0.6619 | 0.6133 | 0.6611 | 0.8131 |
No log | 60.0 | 180 | 0.7234 | 0.5847 | 0.7225 | 0.8500 |
No log | 61.0 | 183 | 0.8631 | 0.5590 | 0.8621 | 0.9285 |
No log | 62.0 | 186 | 0.8028 | 0.5731 | 0.8018 | 0.8954 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold2
Base model
google-bert/bert-base-uncased