Version_weird_ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold2

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8028
  • Qwk: 0.5731
  • Mse: 0.8018
  • Rmse: 0.8954

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 3 12.2952 0.0014 12.2952 3.5064
No log 2.0 6 9.1980 0.0 9.1982 3.0328
No log 3.0 9 7.4767 0.0 7.4767 2.7344
No log 4.0 12 4.9672 0.0227 4.9676 2.2288
No log 5.0 15 4.1565 0.0 4.1567 2.0388
No log 6.0 18 2.2339 0.1188 2.2343 1.4948
No log 7.0 21 1.4408 0.0213 1.4413 1.2005
No log 8.0 24 1.0764 0.0107 1.0768 1.0377
No log 9.0 27 0.8391 0.3043 0.8395 0.9162
No log 10.0 30 0.8339 0.0430 0.8344 0.9135
No log 11.0 33 0.9497 0.0327 0.9501 0.9748
No log 12.0 36 1.3084 0.0045 1.3089 1.1441
No log 13.0 39 1.6864 0.0596 1.6867 1.2987
No log 14.0 42 1.9860 0.0394 1.9862 1.4093
No log 15.0 45 2.2525 0.0660 2.2522 1.5007
No log 16.0 48 1.9149 0.2144 1.9140 1.3835
No log 17.0 51 0.7209 0.5306 0.7201 0.8486
No log 18.0 54 0.9702 0.5485 0.9690 0.9844
No log 19.0 57 0.9280 0.5405 0.9268 0.9627
No log 20.0 60 0.9608 0.5708 0.9594 0.9795
No log 21.0 63 0.5862 0.6151 0.5856 0.7652
No log 22.0 66 1.2980 0.4754 1.2964 1.1386
No log 23.0 69 1.2148 0.4755 1.2134 1.1015
No log 24.0 72 0.5068 0.6207 0.5062 0.7114
No log 25.0 75 0.8001 0.5837 0.7990 0.8939
No log 26.0 78 0.5592 0.6342 0.5586 0.7474
No log 27.0 81 0.8511 0.5480 0.8500 0.9220
No log 28.0 84 0.5569 0.6283 0.5563 0.7458
No log 29.0 87 1.0873 0.5054 1.0862 1.0422
No log 30.0 90 1.0732 0.5105 1.0721 1.0354
No log 31.0 93 0.6005 0.6270 0.6000 0.7746
No log 32.0 96 0.7228 0.6123 0.7220 0.8497
No log 33.0 99 1.4819 0.4786 1.4805 1.2167
No log 34.0 102 0.9616 0.5356 0.9605 0.9800
No log 35.0 105 0.5874 0.6232 0.5868 0.7660
No log 36.0 108 0.6780 0.6192 0.6772 0.8229
No log 37.0 111 0.8785 0.5894 0.8772 0.9366
No log 38.0 114 0.7288 0.5846 0.7283 0.8534
No log 39.0 117 0.6293 0.6072 0.6289 0.7930
No log 40.0 120 0.8761 0.5375 0.8750 0.9354
No log 41.0 123 0.8686 0.5431 0.8676 0.9315
No log 42.0 126 0.6751 0.6416 0.6744 0.8212
No log 43.0 129 0.7368 0.6340 0.7360 0.8579
No log 44.0 132 1.0939 0.5327 1.0925 1.0452
No log 45.0 135 1.0294 0.52 1.0282 1.0140
No log 46.0 138 0.6799 0.5976 0.6790 0.8240
No log 47.0 141 0.8283 0.5705 0.8273 0.9095
No log 48.0 144 0.7470 0.6135 0.7461 0.8638
No log 49.0 147 0.7234 0.6247 0.7226 0.8501
No log 50.0 150 0.8410 0.5769 0.8400 0.9165
No log 51.0 153 0.7409 0.5779 0.7400 0.8603
No log 52.0 156 0.9363 0.5255 0.9353 0.9671
No log 53.0 159 0.9195 0.5409 0.9184 0.9583
No log 54.0 162 0.7369 0.5935 0.7360 0.8579
No log 55.0 165 0.6877 0.6308 0.6869 0.8288
No log 56.0 168 0.7305 0.6064 0.7296 0.8542
No log 57.0 171 0.9400 0.5486 0.9389 0.9690
No log 58.0 174 0.8382 0.5510 0.8372 0.9150
No log 59.0 177 0.6619 0.6133 0.6611 0.8131
No log 60.0 180 0.7234 0.5847 0.7225 0.8500
No log 61.0 183 0.8631 0.5590 0.8621 0.9285
No log 62.0 186 0.8028 0.5731 0.8018 0.8954

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
5
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold2

Finetuned
(5606)
this model