Version_weird_ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold1
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6475
- Qwk: 0.6652
- Mse: 0.6475
- Rmse: 0.8047
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 3 | 9.6083 | -0.0002 | 9.6058 | 3.0993 |
No log | 2.0 | 6 | 8.0111 | 0.0 | 8.0085 | 2.8299 |
No log | 3.0 | 9 | 5.4888 | 0.0809 | 5.4863 | 2.3423 |
No log | 4.0 | 12 | 4.1409 | 0.0079 | 4.1391 | 2.0345 |
No log | 5.0 | 15 | 2.8160 | 0.0039 | 2.8144 | 1.6776 |
No log | 6.0 | 18 | 2.2988 | 0.0615 | 2.2974 | 1.5157 |
No log | 7.0 | 21 | 1.3564 | 0.0379 | 1.3547 | 1.1639 |
No log | 8.0 | 24 | 0.9580 | 0.0211 | 0.9568 | 0.9781 |
No log | 9.0 | 27 | 0.8299 | 0.2991 | 0.8287 | 0.9103 |
No log | 10.0 | 30 | 0.8182 | 0.2004 | 0.8170 | 0.9039 |
No log | 11.0 | 33 | 0.9664 | 0.0518 | 0.9656 | 0.9826 |
No log | 12.0 | 36 | 1.1885 | 0.0518 | 1.1878 | 1.0899 |
No log | 13.0 | 39 | 1.1777 | 0.2136 | 1.1770 | 1.0849 |
No log | 14.0 | 42 | 1.4462 | 0.2041 | 1.4456 | 1.2023 |
No log | 15.0 | 45 | 1.6508 | 0.1842 | 1.6504 | 1.2847 |
No log | 16.0 | 48 | 1.3021 | 0.2878 | 1.3017 | 1.1409 |
No log | 17.0 | 51 | 0.5746 | 0.5210 | 0.5740 | 0.7576 |
No log | 18.0 | 54 | 0.5238 | 0.6246 | 0.5234 | 0.7235 |
No log | 19.0 | 57 | 0.5707 | 0.6328 | 0.5701 | 0.7550 |
No log | 20.0 | 60 | 0.5307 | 0.6832 | 0.5303 | 0.7282 |
No log | 21.0 | 63 | 0.8465 | 0.5857 | 0.8466 | 0.9201 |
No log | 22.0 | 66 | 0.5977 | 0.6546 | 0.5975 | 0.7730 |
No log | 23.0 | 69 | 1.1312 | 0.5423 | 1.1316 | 1.0638 |
No log | 24.0 | 72 | 0.4941 | 0.6694 | 0.4935 | 0.7025 |
No log | 25.0 | 75 | 1.1737 | 0.5348 | 1.1741 | 1.0836 |
No log | 26.0 | 78 | 0.7234 | 0.6185 | 0.7233 | 0.8505 |
No log | 27.0 | 81 | 0.4611 | 0.6385 | 0.4606 | 0.6787 |
No log | 28.0 | 84 | 1.2329 | 0.4690 | 1.2330 | 1.1104 |
No log | 29.0 | 87 | 1.0975 | 0.4722 | 1.0974 | 1.0476 |
No log | 30.0 | 90 | 0.5840 | 0.6440 | 0.5836 | 0.7639 |
No log | 31.0 | 93 | 1.0243 | 0.5290 | 1.0243 | 1.0121 |
No log | 32.0 | 96 | 1.0641 | 0.5304 | 1.0642 | 1.0316 |
No log | 33.0 | 99 | 0.5146 | 0.6898 | 0.5145 | 0.7173 |
No log | 34.0 | 102 | 0.8386 | 0.6015 | 0.8386 | 0.9158 |
No log | 35.0 | 105 | 0.8392 | 0.5672 | 0.8391 | 0.9160 |
No log | 36.0 | 108 | 0.9739 | 0.5580 | 0.9740 | 0.9869 |
No log | 37.0 | 111 | 0.5356 | 0.6860 | 0.5355 | 0.7318 |
No log | 38.0 | 114 | 0.5371 | 0.6770 | 0.5370 | 0.7328 |
No log | 39.0 | 117 | 0.7163 | 0.6179 | 0.7162 | 0.8463 |
No log | 40.0 | 120 | 0.7616 | 0.6122 | 0.7616 | 0.8727 |
No log | 41.0 | 123 | 0.7926 | 0.5995 | 0.7925 | 0.8902 |
No log | 42.0 | 126 | 0.9804 | 0.5385 | 0.9802 | 0.9901 |
No log | 43.0 | 129 | 0.5345 | 0.6661 | 0.5343 | 0.7310 |
No log | 44.0 | 132 | 0.5595 | 0.6769 | 0.5594 | 0.7479 |
No log | 45.0 | 135 | 1.2601 | 0.4849 | 1.2600 | 1.1225 |
No log | 46.0 | 138 | 1.0409 | 0.5092 | 1.0407 | 1.0201 |
No log | 47.0 | 141 | 0.8094 | 0.5863 | 0.8093 | 0.8996 |
No log | 48.0 | 144 | 0.8497 | 0.5943 | 0.8497 | 0.9218 |
No log | 49.0 | 147 | 0.7667 | 0.6032 | 0.7667 | 0.8756 |
No log | 50.0 | 150 | 0.9751 | 0.5092 | 0.9749 | 0.9873 |
No log | 51.0 | 153 | 0.9236 | 0.5337 | 0.9235 | 0.9610 |
No log | 52.0 | 156 | 0.7785 | 0.6075 | 0.7784 | 0.8823 |
No log | 53.0 | 159 | 0.6475 | 0.6652 | 0.6475 | 0.8047 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold1
Base model
google-bert/bert-base-uncased