Version_weird_ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold1

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6475
  • Qwk: 0.6652
  • Mse: 0.6475
  • Rmse: 0.8047

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 3 9.6083 -0.0002 9.6058 3.0993
No log 2.0 6 8.0111 0.0 8.0085 2.8299
No log 3.0 9 5.4888 0.0809 5.4863 2.3423
No log 4.0 12 4.1409 0.0079 4.1391 2.0345
No log 5.0 15 2.8160 0.0039 2.8144 1.6776
No log 6.0 18 2.2988 0.0615 2.2974 1.5157
No log 7.0 21 1.3564 0.0379 1.3547 1.1639
No log 8.0 24 0.9580 0.0211 0.9568 0.9781
No log 9.0 27 0.8299 0.2991 0.8287 0.9103
No log 10.0 30 0.8182 0.2004 0.8170 0.9039
No log 11.0 33 0.9664 0.0518 0.9656 0.9826
No log 12.0 36 1.1885 0.0518 1.1878 1.0899
No log 13.0 39 1.1777 0.2136 1.1770 1.0849
No log 14.0 42 1.4462 0.2041 1.4456 1.2023
No log 15.0 45 1.6508 0.1842 1.6504 1.2847
No log 16.0 48 1.3021 0.2878 1.3017 1.1409
No log 17.0 51 0.5746 0.5210 0.5740 0.7576
No log 18.0 54 0.5238 0.6246 0.5234 0.7235
No log 19.0 57 0.5707 0.6328 0.5701 0.7550
No log 20.0 60 0.5307 0.6832 0.5303 0.7282
No log 21.0 63 0.8465 0.5857 0.8466 0.9201
No log 22.0 66 0.5977 0.6546 0.5975 0.7730
No log 23.0 69 1.1312 0.5423 1.1316 1.0638
No log 24.0 72 0.4941 0.6694 0.4935 0.7025
No log 25.0 75 1.1737 0.5348 1.1741 1.0836
No log 26.0 78 0.7234 0.6185 0.7233 0.8505
No log 27.0 81 0.4611 0.6385 0.4606 0.6787
No log 28.0 84 1.2329 0.4690 1.2330 1.1104
No log 29.0 87 1.0975 0.4722 1.0974 1.0476
No log 30.0 90 0.5840 0.6440 0.5836 0.7639
No log 31.0 93 1.0243 0.5290 1.0243 1.0121
No log 32.0 96 1.0641 0.5304 1.0642 1.0316
No log 33.0 99 0.5146 0.6898 0.5145 0.7173
No log 34.0 102 0.8386 0.6015 0.8386 0.9158
No log 35.0 105 0.8392 0.5672 0.8391 0.9160
No log 36.0 108 0.9739 0.5580 0.9740 0.9869
No log 37.0 111 0.5356 0.6860 0.5355 0.7318
No log 38.0 114 0.5371 0.6770 0.5370 0.7328
No log 39.0 117 0.7163 0.6179 0.7162 0.8463
No log 40.0 120 0.7616 0.6122 0.7616 0.8727
No log 41.0 123 0.7926 0.5995 0.7925 0.8902
No log 42.0 126 0.9804 0.5385 0.9802 0.9901
No log 43.0 129 0.5345 0.6661 0.5343 0.7310
No log 44.0 132 0.5595 0.6769 0.5594 0.7479
No log 45.0 135 1.2601 0.4849 1.2600 1.1225
No log 46.0 138 1.0409 0.5092 1.0407 1.0201
No log 47.0 141 0.8094 0.5863 0.8093 0.8996
No log 48.0 144 0.8497 0.5943 0.8497 0.9218
No log 49.0 147 0.7667 0.6032 0.7667 0.8756
No log 50.0 150 0.9751 0.5092 0.9749 0.9873
No log 51.0 153 0.9236 0.5337 0.9235 0.9610
No log 52.0 156 0.7785 0.6075 0.7784 0.8823
No log 53.0 159 0.6475 0.6652 0.6475 0.8047

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
5
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold1

Finetuned
(5601)
this model