Version_weird_ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold0
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5513
- Qwk: 0.6473
- Mse: 0.5513
- Rmse: 0.7425
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 3 | 8.2875 | 0.0 | 8.2875 | 2.8788 |
No log | 2.0 | 6 | 6.8879 | 0.0 | 6.8879 | 2.6245 |
No log | 3.0 | 9 | 5.9340 | -0.0072 | 5.9340 | 2.4360 |
No log | 4.0 | 12 | 4.5993 | 0.0077 | 4.5993 | 2.1446 |
No log | 5.0 | 15 | 3.7118 | 0.0039 | 3.7118 | 1.9266 |
No log | 6.0 | 18 | 2.6688 | 0.0 | 2.6688 | 1.6337 |
No log | 7.0 | 21 | 1.8539 | 0.0382 | 1.8539 | 1.3616 |
No log | 8.0 | 24 | 1.3065 | 0.0316 | 1.3065 | 1.1430 |
No log | 9.0 | 27 | 0.9796 | 0.0106 | 0.9796 | 0.9898 |
No log | 10.0 | 30 | 0.9040 | 0.0877 | 0.9040 | 0.9508 |
No log | 11.0 | 33 | 0.7362 | 0.2206 | 0.7362 | 0.8580 |
No log | 12.0 | 36 | 0.6894 | 0.1927 | 0.6894 | 0.8303 |
No log | 13.0 | 39 | 0.6046 | 0.2739 | 0.6046 | 0.7776 |
No log | 14.0 | 42 | 0.7324 | 0.2051 | 0.7324 | 0.8558 |
No log | 15.0 | 45 | 0.8916 | 0.3889 | 0.8916 | 0.9443 |
No log | 16.0 | 48 | 0.5338 | 0.3701 | 0.5338 | 0.7306 |
No log | 17.0 | 51 | 0.5827 | 0.4515 | 0.5827 | 0.7633 |
No log | 18.0 | 54 | 0.4980 | 0.5539 | 0.4980 | 0.7057 |
No log | 19.0 | 57 | 0.7041 | 0.4755 | 0.7041 | 0.8391 |
No log | 20.0 | 60 | 0.5295 | 0.6394 | 0.5295 | 0.7277 |
No log | 21.0 | 63 | 0.6271 | 0.5941 | 0.6271 | 0.7919 |
No log | 22.0 | 66 | 0.6143 | 0.6504 | 0.6143 | 0.7838 |
No log | 23.0 | 69 | 0.7125 | 0.5701 | 0.7125 | 0.8441 |
No log | 24.0 | 72 | 0.7605 | 0.5795 | 0.7605 | 0.8720 |
No log | 25.0 | 75 | 0.6445 | 0.6149 | 0.6445 | 0.8028 |
No log | 26.0 | 78 | 0.6498 | 0.5646 | 0.6498 | 0.8061 |
No log | 27.0 | 81 | 0.8290 | 0.5526 | 0.8290 | 0.9105 |
No log | 28.0 | 84 | 0.6493 | 0.5570 | 0.6493 | 0.8058 |
No log | 29.0 | 87 | 0.5835 | 0.5850 | 0.5835 | 0.7639 |
No log | 30.0 | 90 | 1.5530 | 0.4281 | 1.5530 | 1.2462 |
No log | 31.0 | 93 | 1.8735 | 0.3682 | 1.8735 | 1.3687 |
No log | 32.0 | 96 | 0.4996 | 0.6546 | 0.4996 | 0.7068 |
No log | 33.0 | 99 | 0.6016 | 0.5979 | 0.6016 | 0.7757 |
No log | 34.0 | 102 | 0.5630 | 0.6441 | 0.5630 | 0.7503 |
No log | 35.0 | 105 | 0.5398 | 0.6289 | 0.5398 | 0.7347 |
No log | 36.0 | 108 | 0.6251 | 0.5999 | 0.6251 | 0.7906 |
No log | 37.0 | 111 | 0.4987 | 0.6472 | 0.4987 | 0.7062 |
No log | 38.0 | 114 | 0.6891 | 0.5930 | 0.6891 | 0.8301 |
No log | 39.0 | 117 | 0.5167 | 0.6225 | 0.5167 | 0.7188 |
No log | 40.0 | 120 | 0.5475 | 0.6275 | 0.5475 | 0.7399 |
No log | 41.0 | 123 | 0.6440 | 0.6200 | 0.6440 | 0.8025 |
No log | 42.0 | 126 | 0.5500 | 0.6462 | 0.5500 | 0.7416 |
No log | 43.0 | 129 | 0.5335 | 0.6448 | 0.5335 | 0.7304 |
No log | 44.0 | 132 | 0.5434 | 0.6425 | 0.5434 | 0.7371 |
No log | 45.0 | 135 | 0.6629 | 0.6258 | 0.6629 | 0.8142 |
No log | 46.0 | 138 | 0.6554 | 0.6344 | 0.6554 | 0.8096 |
No log | 47.0 | 141 | 0.6171 | 0.6328 | 0.6171 | 0.7856 |
No log | 48.0 | 144 | 0.5426 | 0.6558 | 0.5426 | 0.7366 |
No log | 49.0 | 147 | 0.7407 | 0.5876 | 0.7407 | 0.8606 |
No log | 50.0 | 150 | 0.5936 | 0.6223 | 0.5936 | 0.7704 |
No log | 51.0 | 153 | 0.5463 | 0.6463 | 0.5463 | 0.7392 |
No log | 52.0 | 156 | 0.5558 | 0.6422 | 0.5558 | 0.7455 |
No log | 53.0 | 159 | 0.6002 | 0.6409 | 0.6002 | 0.7748 |
No log | 54.0 | 162 | 0.5889 | 0.6559 | 0.5889 | 0.7674 |
No log | 55.0 | 165 | 0.5462 | 0.6438 | 0.5462 | 0.7391 |
No log | 56.0 | 168 | 0.6099 | 0.6454 | 0.6099 | 0.7809 |
No log | 57.0 | 171 | 0.5953 | 0.6443 | 0.5953 | 0.7715 |
No log | 58.0 | 174 | 0.5372 | 0.6587 | 0.5372 | 0.7329 |
No log | 59.0 | 177 | 0.6421 | 0.6247 | 0.6421 | 0.8013 |
No log | 60.0 | 180 | 0.5899 | 0.6339 | 0.5899 | 0.7680 |
No log | 61.0 | 183 | 0.5296 | 0.6402 | 0.5296 | 0.7278 |
No log | 62.0 | 186 | 0.5654 | 0.6523 | 0.5654 | 0.7519 |
No log | 63.0 | 189 | 0.6177 | 0.6275 | 0.6177 | 0.7860 |
No log | 64.0 | 192 | 0.5536 | 0.6381 | 0.5536 | 0.7440 |
No log | 65.0 | 195 | 0.5894 | 0.6267 | 0.5894 | 0.7677 |
No log | 66.0 | 198 | 0.6442 | 0.6226 | 0.6442 | 0.8026 |
No log | 67.0 | 201 | 0.5299 | 0.6341 | 0.5299 | 0.7279 |
No log | 68.0 | 204 | 0.5615 | 0.6163 | 0.5615 | 0.7494 |
No log | 69.0 | 207 | 0.5531 | 0.6237 | 0.5531 | 0.7437 |
No log | 70.0 | 210 | 0.6036 | 0.6395 | 0.6036 | 0.7769 |
No log | 71.0 | 213 | 0.6000 | 0.6364 | 0.6000 | 0.7746 |
No log | 72.0 | 216 | 0.5330 | 0.6481 | 0.5330 | 0.7301 |
No log | 73.0 | 219 | 0.5289 | 0.6393 | 0.5289 | 0.7272 |
No log | 74.0 | 222 | 0.5677 | 0.6474 | 0.5677 | 0.7535 |
No log | 75.0 | 225 | 0.6284 | 0.6242 | 0.6284 | 0.7927 |
No log | 76.0 | 228 | 0.5750 | 0.6426 | 0.5750 | 0.7583 |
No log | 77.0 | 231 | 0.5536 | 0.6448 | 0.5536 | 0.7441 |
No log | 78.0 | 234 | 0.5513 | 0.6473 | 0.5513 | 0.7425 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 6
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold0
Base model
google-bert/bert-base-uncased