Version_weird_ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold0

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5513
  • Qwk: 0.6473
  • Mse: 0.5513
  • Rmse: 0.7425

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 3 8.2875 0.0 8.2875 2.8788
No log 2.0 6 6.8879 0.0 6.8879 2.6245
No log 3.0 9 5.9340 -0.0072 5.9340 2.4360
No log 4.0 12 4.5993 0.0077 4.5993 2.1446
No log 5.0 15 3.7118 0.0039 3.7118 1.9266
No log 6.0 18 2.6688 0.0 2.6688 1.6337
No log 7.0 21 1.8539 0.0382 1.8539 1.3616
No log 8.0 24 1.3065 0.0316 1.3065 1.1430
No log 9.0 27 0.9796 0.0106 0.9796 0.9898
No log 10.0 30 0.9040 0.0877 0.9040 0.9508
No log 11.0 33 0.7362 0.2206 0.7362 0.8580
No log 12.0 36 0.6894 0.1927 0.6894 0.8303
No log 13.0 39 0.6046 0.2739 0.6046 0.7776
No log 14.0 42 0.7324 0.2051 0.7324 0.8558
No log 15.0 45 0.8916 0.3889 0.8916 0.9443
No log 16.0 48 0.5338 0.3701 0.5338 0.7306
No log 17.0 51 0.5827 0.4515 0.5827 0.7633
No log 18.0 54 0.4980 0.5539 0.4980 0.7057
No log 19.0 57 0.7041 0.4755 0.7041 0.8391
No log 20.0 60 0.5295 0.6394 0.5295 0.7277
No log 21.0 63 0.6271 0.5941 0.6271 0.7919
No log 22.0 66 0.6143 0.6504 0.6143 0.7838
No log 23.0 69 0.7125 0.5701 0.7125 0.8441
No log 24.0 72 0.7605 0.5795 0.7605 0.8720
No log 25.0 75 0.6445 0.6149 0.6445 0.8028
No log 26.0 78 0.6498 0.5646 0.6498 0.8061
No log 27.0 81 0.8290 0.5526 0.8290 0.9105
No log 28.0 84 0.6493 0.5570 0.6493 0.8058
No log 29.0 87 0.5835 0.5850 0.5835 0.7639
No log 30.0 90 1.5530 0.4281 1.5530 1.2462
No log 31.0 93 1.8735 0.3682 1.8735 1.3687
No log 32.0 96 0.4996 0.6546 0.4996 0.7068
No log 33.0 99 0.6016 0.5979 0.6016 0.7757
No log 34.0 102 0.5630 0.6441 0.5630 0.7503
No log 35.0 105 0.5398 0.6289 0.5398 0.7347
No log 36.0 108 0.6251 0.5999 0.6251 0.7906
No log 37.0 111 0.4987 0.6472 0.4987 0.7062
No log 38.0 114 0.6891 0.5930 0.6891 0.8301
No log 39.0 117 0.5167 0.6225 0.5167 0.7188
No log 40.0 120 0.5475 0.6275 0.5475 0.7399
No log 41.0 123 0.6440 0.6200 0.6440 0.8025
No log 42.0 126 0.5500 0.6462 0.5500 0.7416
No log 43.0 129 0.5335 0.6448 0.5335 0.7304
No log 44.0 132 0.5434 0.6425 0.5434 0.7371
No log 45.0 135 0.6629 0.6258 0.6629 0.8142
No log 46.0 138 0.6554 0.6344 0.6554 0.8096
No log 47.0 141 0.6171 0.6328 0.6171 0.7856
No log 48.0 144 0.5426 0.6558 0.5426 0.7366
No log 49.0 147 0.7407 0.5876 0.7407 0.8606
No log 50.0 150 0.5936 0.6223 0.5936 0.7704
No log 51.0 153 0.5463 0.6463 0.5463 0.7392
No log 52.0 156 0.5558 0.6422 0.5558 0.7455
No log 53.0 159 0.6002 0.6409 0.6002 0.7748
No log 54.0 162 0.5889 0.6559 0.5889 0.7674
No log 55.0 165 0.5462 0.6438 0.5462 0.7391
No log 56.0 168 0.6099 0.6454 0.6099 0.7809
No log 57.0 171 0.5953 0.6443 0.5953 0.7715
No log 58.0 174 0.5372 0.6587 0.5372 0.7329
No log 59.0 177 0.6421 0.6247 0.6421 0.8013
No log 60.0 180 0.5899 0.6339 0.5899 0.7680
No log 61.0 183 0.5296 0.6402 0.5296 0.7278
No log 62.0 186 0.5654 0.6523 0.5654 0.7519
No log 63.0 189 0.6177 0.6275 0.6177 0.7860
No log 64.0 192 0.5536 0.6381 0.5536 0.7440
No log 65.0 195 0.5894 0.6267 0.5894 0.7677
No log 66.0 198 0.6442 0.6226 0.6442 0.8026
No log 67.0 201 0.5299 0.6341 0.5299 0.7279
No log 68.0 204 0.5615 0.6163 0.5615 0.7494
No log 69.0 207 0.5531 0.6237 0.5531 0.7437
No log 70.0 210 0.6036 0.6395 0.6036 0.7769
No log 71.0 213 0.6000 0.6364 0.6000 0.7746
No log 72.0 216 0.5330 0.6481 0.5330 0.7301
No log 73.0 219 0.5289 0.6393 0.5289 0.7272
No log 74.0 222 0.5677 0.6474 0.5677 0.7535
No log 75.0 225 0.6284 0.6242 0.6284 0.7927
No log 76.0 228 0.5750 0.6426 0.5750 0.7583
No log 77.0 231 0.5536 0.6448 0.5536 0.7441
No log 78.0 234 0.5513 0.6473 0.5513 0.7425

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold0

Finetuned
(5686)
this model