metadata
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
This expenditure has financed projects in road works, energy, agriculture
and water. Madam Speaker, priority allocations are being made to power
generation, road networks, irrigation schemes, schools and improvement of
health infrastructure. Addressing constraints in transport, energy and
health and education and improving service delivery, will accord Ugandans
a better quality of life.
- text: >-
interoperability, acceptance) that are not exclusively related to G2P
programs and that need to be addressed to realize digital payments’
benefits. Unemployment benefits Social security contributions Labor
Markets Activation measures Labor market regulations Reduced work time
Wage subsidies 418 (back to the top) Sudan Social Assistance Cash-based
transfers Cash transfers (conditional and unconditional) One-off cash
transfers Childcare support Social pensions In-kind transfers Food,
vouchers, others • The ministry of labor and social development will
provide in kind support to poor households, informal workers, teachers,
and casual workers (total 2,050,000 households). A total of 100,000
Bahraini will benefit from the measure (cost of BD 215 million)54 55
Social security contributions Labor Markets Activation measures Labor
market regulations Reduced work time Wage subsidies 54
https://www.moh.gov.bh/COVID19/Details/3969 55
https://www.moh.gov.bh/COVID19/Details/3982 70 (back to the top)
Bangladesh Social Assistance Cash-based transfers Cash transfers
(conditional and unconditional) • Benefit under key safety net programs
will be increased (amount not determined yet).
- text: >-
National Food and Nutrition Strategic Plan 2011-2015 55 7) Promote
practices that enhance sustainable availability, accessibility and
consumption of a variety of foods at household level. National Food and
Nutrition Strategic Plan 2011-2015 54 5.11 Strategic Direction 11
Expanding and Developing Communication and Advocacy Support for Food and
Nutrition Interventions at Various Levels. National Food and Nutrition
Strategic Plan 2011-2015 18 3.
- text: >-
13 (Deroga delle norme in materia di riconoscimento delle qualifiche
professionali sanitarie) 1. 93 (Disposizioni in materia di autoservizi
pubblici non di linea) 1. 4 (Disciplina delle aree sanitarie temporanee)
1.
- text: >-
Furthermore, there is a need for improvements in forecasting, distribution
and funding of micronutrient commodities, as well as the provision of
adequate resources to ensure universal coverage. The National Nutrition
Program is also responsible for estimating the demand of nutrition
commodities, such as vitamin A capsules, iron/folic acid tablets, and
Mebedazole for deworming. It is therefore limited in scope to address the
full spectrum of causes of undernutrition, which requires a broad
coalition of multisectoral interventions.
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: false
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 128 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("faodl/model_g20_multilabel_MiniLM-L12-v2_15_sample")
# Run inference
preds = model("13 (Deroga delle norme in materia di riconoscimento delle qualifiche professionali sanitarie) 1. 93 (Disposizioni in materia di autoservizi pubblici non di linea) 1. 4 (Disciplina delle aree sanitarie temporanee) 1.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 93.9143 | 1651 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0001 | 1 | 0.2185 | - |
0.0068 | 50 | 0.1579 | - |
0.0136 | 100 | 0.1625 | - |
0.0204 | 150 | 0.1649 | - |
0.0272 | 200 | 0.1511 | - |
0.0340 | 250 | 0.1263 | - |
0.0408 | 300 | 0.1335 | - |
0.0476 | 350 | 0.1276 | - |
0.0544 | 400 | 0.1143 | - |
0.0612 | 450 | 0.1095 | - |
0.0680 | 500 | 0.1029 | - |
0.0748 | 550 | 0.1161 | - |
0.0816 | 600 | 0.114 | - |
0.0884 | 650 | 0.0945 | - |
0.0952 | 700 | 0.0903 | - |
0.1020 | 750 | 0.0793 | - |
0.1088 | 800 | 0.0848 | - |
0.1156 | 850 | 0.0802 | - |
0.1224 | 900 | 0.0819 | - |
0.1293 | 950 | 0.0802 | - |
0.1361 | 1000 | 0.0879 | - |
0.1429 | 1050 | 0.0738 | - |
0.1497 | 1100 | 0.0737 | - |
0.1565 | 1150 | 0.0761 | - |
0.1633 | 1200 | 0.0715 | - |
0.1701 | 1250 | 0.0633 | - |
0.1769 | 1300 | 0.06 | - |
0.1837 | 1350 | 0.06 | - |
0.1905 | 1400 | 0.0641 | - |
0.1973 | 1450 | 0.057 | - |
0.2041 | 1500 | 0.0554 | - |
0.2109 | 1550 | 0.0552 | - |
0.2177 | 1600 | 0.0447 | - |
0.2245 | 1650 | 0.0442 | - |
0.2313 | 1700 | 0.0547 | - |
0.2381 | 1750 | 0.0358 | - |
0.2449 | 1800 | 0.0503 | - |
0.2517 | 1850 | 0.0366 | - |
0.2585 | 1900 | 0.0421 | - |
0.2653 | 1950 | 0.0332 | - |
0.2721 | 2000 | 0.0429 | - |
0.2789 | 2050 | 0.0316 | - |
0.2857 | 2100 | 0.0382 | - |
0.2925 | 2150 | 0.0456 | - |
0.2993 | 2200 | 0.0327 | - |
0.3061 | 2250 | 0.0286 | - |
0.3129 | 2300 | 0.0295 | - |
0.3197 | 2350 | 0.0305 | - |
0.3265 | 2400 | 0.0223 | - |
0.3333 | 2450 | 0.0228 | - |
0.3401 | 2500 | 0.0305 | - |
0.3469 | 2550 | 0.0294 | - |
0.3537 | 2600 | 0.0342 | - |
0.3605 | 2650 | 0.0275 | - |
0.3673 | 2700 | 0.0181 | - |
0.3741 | 2750 | 0.0267 | - |
0.3810 | 2800 | 0.0229 | - |
0.3878 | 2850 | 0.0213 | - |
0.3946 | 2900 | 0.0203 | - |
0.4014 | 2950 | 0.0281 | - |
0.4082 | 3000 | 0.025 | - |
0.4150 | 3050 | 0.0233 | - |
0.4218 | 3100 | 0.0306 | - |
0.4286 | 3150 | 0.0159 | - |
0.4354 | 3200 | 0.0246 | - |
0.4422 | 3250 | 0.0266 | - |
0.4490 | 3300 | 0.0242 | - |
0.4558 | 3350 | 0.0103 | - |
0.4626 | 3400 | 0.0191 | - |
0.4694 | 3450 | 0.0237 | - |
0.4762 | 3500 | 0.0216 | - |
0.4830 | 3550 | 0.0103 | - |
0.4898 | 3600 | 0.0097 | - |
0.4966 | 3650 | 0.0158 | - |
0.5034 | 3700 | 0.0156 | - |
0.5102 | 3750 | 0.0152 | - |
0.5170 | 3800 | 0.0187 | - |
0.5238 | 3850 | 0.0129 | - |
0.5306 | 3900 | 0.0157 | - |
0.5374 | 3950 | 0.0161 | - |
0.5442 | 4000 | 0.0131 | - |
0.5510 | 4050 | 0.0119 | - |
0.5578 | 4100 | 0.0213 | - |
0.5646 | 4150 | 0.0086 | - |
0.5714 | 4200 | 0.0086 | - |
0.5782 | 4250 | 0.0121 | - |
0.5850 | 4300 | 0.0168 | - |
0.5918 | 4350 | 0.0147 | - |
0.5986 | 4400 | 0.019 | - |
0.6054 | 4450 | 0.0151 | - |
0.6122 | 4500 | 0.0298 | - |
0.6190 | 4550 | 0.0187 | - |
0.6259 | 4600 | 0.013 | - |
0.6327 | 4650 | 0.0184 | - |
0.6395 | 4700 | 0.0249 | - |
0.6463 | 4750 | 0.0157 | - |
0.6531 | 4800 | 0.0081 | - |
0.6599 | 4850 | 0.0229 | - |
0.6667 | 4900 | 0.0227 | - |
0.6735 | 4950 | 0.0166 | - |
0.6803 | 5000 | 0.0222 | - |
0.6871 | 5050 | 0.0066 | - |
0.6939 | 5100 | 0.0135 | - |
0.7007 | 5150 | 0.0134 | - |
0.7075 | 5200 | 0.0134 | - |
0.7143 | 5250 | 0.0077 | - |
0.7211 | 5300 | 0.0106 | - |
0.7279 | 5350 | 0.0086 | - |
0.7347 | 5400 | 0.0169 | - |
0.7415 | 5450 | 0.0123 | - |
0.7483 | 5500 | 0.0085 | - |
0.7551 | 5550 | 0.0087 | - |
0.7619 | 5600 | 0.0143 | - |
0.7687 | 5650 | 0.0112 | - |
0.7755 | 5700 | 0.0185 | - |
0.7823 | 5750 | 0.0064 | - |
0.7891 | 5800 | 0.0077 | - |
0.7959 | 5850 | 0.0116 | - |
0.8027 | 5900 | 0.0063 | - |
0.8095 | 5950 | 0.0166 | - |
0.8163 | 6000 | 0.01 | - |
0.8231 | 6050 | 0.0088 | - |
0.8299 | 6100 | 0.0121 | - |
0.8367 | 6150 | 0.0214 | - |
0.8435 | 6200 | 0.009 | - |
0.8503 | 6250 | 0.0133 | - |
0.8571 | 6300 | 0.0062 | - |
0.8639 | 6350 | 0.0077 | - |
0.8707 | 6400 | 0.0201 | - |
0.8776 | 6450 | 0.0163 | - |
0.8844 | 6500 | 0.0071 | - |
0.8912 | 6550 | 0.0138 | - |
0.8980 | 6600 | 0.0131 | - |
0.9048 | 6650 | 0.0126 | - |
0.9116 | 6700 | 0.0042 | - |
0.9184 | 6750 | 0.0152 | - |
0.9252 | 6800 | 0.0194 | - |
0.9320 | 6850 | 0.0068 | - |
0.9388 | 6900 | 0.0154 | - |
0.9456 | 6950 | 0.0077 | - |
0.9524 | 7000 | 0.009 | - |
0.9592 | 7050 | 0.0053 | - |
0.9660 | 7100 | 0.0128 | - |
0.9728 | 7150 | 0.011 | - |
0.9796 | 7200 | 0.0039 | - |
0.9864 | 7250 | 0.0076 | - |
0.9932 | 7300 | 0.018 | - |
1.0 | 7350 | 0.0215 | - |
1.0068 | 7400 | 0.0022 | - |
1.0136 | 7450 | 0.01 | - |
1.0204 | 7500 | 0.0061 | - |
1.0272 | 7550 | 0.0039 | - |
1.0340 | 7600 | 0.0052 | - |
1.0408 | 7650 | 0.0053 | - |
1.0476 | 7700 | 0.0093 | - |
1.0544 | 7750 | 0.0099 | - |
1.0612 | 7800 | 0.0076 | - |
1.0680 | 7850 | 0.0094 | - |
1.0748 | 7900 | 0.0065 | - |
1.0816 | 7950 | 0.0083 | - |
1.0884 | 8000 | 0.007 | - |
1.0952 | 8050 | 0.0056 | - |
1.1020 | 8100 | 0.0112 | - |
1.1088 | 8150 | 0.0087 | - |
1.1156 | 8200 | 0.0055 | - |
1.1224 | 8250 | 0.0051 | - |
1.1293 | 8300 | 0.0096 | - |
1.1361 | 8350 | 0.0038 | - |
1.1429 | 8400 | 0.0055 | - |
1.1497 | 8450 | 0.0051 | - |
1.1565 | 8500 | 0.01 | - |
1.1633 | 8550 | 0.0058 | - |
1.1701 | 8600 | 0.0112 | - |
1.1769 | 8650 | 0.003 | - |
1.1837 | 8700 | 0.0094 | - |
1.1905 | 8750 | 0.0069 | - |
1.1973 | 8800 | 0.0131 | - |
1.2041 | 8850 | 0.0089 | - |
1.2109 | 8900 | 0.0061 | - |
1.2177 | 8950 | 0.0109 | - |
1.2245 | 9000 | 0.008 | - |
1.2313 | 9050 | 0.0122 | - |
1.2381 | 9100 | 0.0081 | - |
1.2449 | 9150 | 0.0014 | - |
1.2517 | 9200 | 0.0046 | - |
1.2585 | 9250 | 0.0049 | - |
1.2653 | 9300 | 0.0147 | - |
1.2721 | 9350 | 0.0105 | - |
1.2789 | 9400 | 0.0126 | - |
1.2857 | 9450 | 0.0031 | - |
1.2925 | 9500 | 0.0039 | - |
1.2993 | 9550 | 0.0038 | - |
1.3061 | 9600 | 0.0047 | - |
1.3129 | 9650 | 0.0037 | - |
1.3197 | 9700 | 0.0103 | - |
1.3265 | 9750 | 0.0007 | - |
1.3333 | 9800 | 0.0053 | - |
1.3401 | 9850 | 0.0018 | - |
1.3469 | 9900 | 0.0057 | - |
1.3537 | 9950 | 0.0044 | - |
1.3605 | 10000 | 0.0109 | - |
1.3673 | 10050 | 0.0056 | - |
1.3741 | 10100 | 0.0081 | - |
1.3810 | 10150 | 0.008 | - |
1.3878 | 10200 | 0.0081 | - |
1.3946 | 10250 | 0.0033 | - |
1.4014 | 10300 | 0.0055 | - |
1.4082 | 10350 | 0.0019 | - |
1.4150 | 10400 | 0.0033 | - |
1.4218 | 10450 | 0.0033 | - |
1.4286 | 10500 | 0.0058 | - |
1.4354 | 10550 | 0.0047 | - |
1.4422 | 10600 | 0.0068 | - |
1.4490 | 10650 | 0.0052 | - |
1.4558 | 10700 | 0.0033 | - |
1.4626 | 10750 | 0.001 | - |
1.4694 | 10800 | 0.0101 | - |
1.4762 | 10850 | 0.0011 | - |
1.4830 | 10900 | 0.008 | - |
1.4898 | 10950 | 0.0038 | - |
1.4966 | 11000 | 0.0033 | - |
1.5034 | 11050 | 0.0031 | - |
1.5102 | 11100 | 0.0107 | - |
1.5170 | 11150 | 0.004 | - |
1.5238 | 11200 | 0.0009 | - |
1.5306 | 11250 | 0.0034 | - |
1.5374 | 11300 | 0.0033 | - |
1.5442 | 11350 | 0.0011 | - |
1.5510 | 11400 | 0.0081 | - |
1.5578 | 11450 | 0.0025 | - |
1.5646 | 11500 | 0.0065 | - |
1.5714 | 11550 | 0.0069 | - |
1.5782 | 11600 | 0.0053 | - |
1.5850 | 11650 | 0.0031 | - |
1.5918 | 11700 | 0.0059 | - |
1.5986 | 11750 | 0.006 | - |
1.6054 | 11800 | 0.0007 | - |
1.6122 | 11850 | 0.0027 | - |
1.6190 | 11900 | 0.003 | - |
1.6259 | 11950 | 0.0052 | - |
1.6327 | 12000 | 0.0065 | - |
1.6395 | 12050 | 0.0032 | - |
1.6463 | 12100 | 0.0054 | - |
1.6531 | 12150 | 0.0063 | - |
1.6599 | 12200 | 0.0155 | - |
1.6667 | 12250 | 0.0105 | - |
1.6735 | 12300 | 0.0067 | - |
1.6803 | 12350 | 0.0034 | - |
1.6871 | 12400 | 0.0076 | - |
1.6939 | 12450 | 0.0042 | - |
1.7007 | 12500 | 0.003 | - |
1.7075 | 12550 | 0.0096 | - |
1.7143 | 12600 | 0.0054 | - |
1.7211 | 12650 | 0.005 | - |
1.7279 | 12700 | 0.0039 | - |
1.7347 | 12750 | 0.0061 | - |
1.7415 | 12800 | 0.0027 | - |
1.7483 | 12850 | 0.0033 | - |
1.7551 | 12900 | 0.0028 | - |
1.7619 | 12950 | 0.0038 | - |
1.7687 | 13000 | 0.0083 | - |
1.7755 | 13050 | 0.0074 | - |
1.7823 | 13100 | 0.0015 | - |
1.7891 | 13150 | 0.0037 | - |
1.7959 | 13200 | 0.0041 | - |
1.8027 | 13250 | 0.0007 | - |
1.8095 | 13300 | 0.0046 | - |
1.8163 | 13350 | 0.0007 | - |
1.8231 | 13400 | 0.0019 | - |
1.8299 | 13450 | 0.0051 | - |
1.8367 | 13500 | 0.0007 | - |
1.8435 | 13550 | 0.0013 | - |
1.8503 | 13600 | 0.0045 | - |
1.8571 | 13650 | 0.0006 | - |
1.8639 | 13700 | 0.0028 | - |
1.8707 | 13750 | 0.0028 | - |
1.8776 | 13800 | 0.001 | - |
1.8844 | 13850 | 0.001 | - |
1.8912 | 13900 | 0.0075 | - |
1.8980 | 13950 | 0.0041 | - |
1.9048 | 14000 | 0.0115 | - |
1.9116 | 14050 | 0.0007 | - |
1.9184 | 14100 | 0.0069 | - |
1.9252 | 14150 | 0.0017 | - |
1.9320 | 14200 | 0.005 | - |
1.9388 | 14250 | 0.0028 | - |
1.9456 | 14300 | 0.0029 | - |
1.9524 | 14350 | 0.0052 | - |
1.9592 | 14400 | 0.0023 | - |
1.9660 | 14450 | 0.0046 | - |
1.9728 | 14500 | 0.001 | - |
1.9796 | 14550 | 0.0009 | - |
1.9864 | 14600 | 0.0059 | - |
1.9932 | 14650 | 0.0075 | - |
2.0 | 14700 | 0.003 | - |
2.0068 | 14750 | 0.0088 | - |
2.0136 | 14800 | 0.0073 | - |
2.0204 | 14850 | 0.0023 | - |
2.0272 | 14900 | 0.0104 | - |
2.0340 | 14950 | 0.0024 | - |
2.0408 | 15000 | 0.0059 | - |
2.0476 | 15050 | 0.0041 | - |
2.0544 | 15100 | 0.0079 | - |
2.0612 | 15150 | 0.0011 | - |
2.0680 | 15200 | 0.0038 | - |
2.0748 | 15250 | 0.0009 | - |
2.0816 | 15300 | 0.0057 | - |
2.0884 | 15350 | 0.0025 | - |
2.0952 | 15400 | 0.0033 | - |
2.1020 | 15450 | 0.0093 | - |
2.1088 | 15500 | 0.0006 | - |
2.1156 | 15550 | 0.0024 | - |
2.1224 | 15600 | 0.0044 | - |
2.1293 | 15650 | 0.0069 | - |
2.1361 | 15700 | 0.0051 | - |
2.1429 | 15750 | 0.008 | - |
2.1497 | 15800 | 0.0047 | - |
2.1565 | 15850 | 0.0012 | - |
2.1633 | 15900 | 0.001 | - |
2.1701 | 15950 | 0.0019 | - |
2.1769 | 16000 | 0.0024 | - |
2.1837 | 16050 | 0.0066 | - |
2.1905 | 16100 | 0.0025 | - |
2.1973 | 16150 | 0.0037 | - |
2.2041 | 16200 | 0.0033 | - |
2.2109 | 16250 | 0.0023 | - |
2.2177 | 16300 | 0.0013 | - |
2.2245 | 16350 | 0.0033 | - |
2.2313 | 16400 | 0.0029 | - |
2.2381 | 16450 | 0.0038 | - |
2.2449 | 16500 | 0.0015 | - |
2.2517 | 16550 | 0.0007 | - |
2.2585 | 16600 | 0.0031 | - |
2.2653 | 16650 | 0.0061 | - |
2.2721 | 16700 | 0.0011 | - |
2.2789 | 16750 | 0.0049 | - |
2.2857 | 16800 | 0.0012 | - |
2.2925 | 16850 | 0.0036 | - |
2.2993 | 16900 | 0.004 | - |
2.3061 | 16950 | 0.0005 | - |
2.3129 | 17000 | 0.0019 | - |
2.3197 | 17050 | 0.003 | - |
2.3265 | 17100 | 0.0006 | - |
2.3333 | 17150 | 0.0009 | - |
2.3401 | 17200 | 0.0013 | - |
2.3469 | 17250 | 0.0018 | - |
2.3537 | 17300 | 0.0007 | - |
2.3605 | 17350 | 0.001 | - |
2.3673 | 17400 | 0.0054 | - |
2.3741 | 17450 | 0.0004 | - |
2.3810 | 17500 | 0.0028 | - |
2.3878 | 17550 | 0.0005 | - |
2.3946 | 17600 | 0.0003 | - |
2.4014 | 17650 | 0.0004 | - |
2.4082 | 17700 | 0.0031 | - |
2.4150 | 17750 | 0.0004 | - |
2.4218 | 17800 | 0.0013 | - |
2.4286 | 17850 | 0.0017 | - |
2.4354 | 17900 | 0.0013 | - |
2.4422 | 17950 | 0.0025 | - |
2.4490 | 18000 | 0.0004 | - |
2.4558 | 18050 | 0.0029 | - |
2.4626 | 18100 | 0.0023 | - |
2.4694 | 18150 | 0.0027 | - |
2.4762 | 18200 | 0.0015 | - |
2.4830 | 18250 | 0.0006 | - |
2.4898 | 18300 | 0.0024 | - |
2.4966 | 18350 | 0.0021 | - |
2.5034 | 18400 | 0.0005 | - |
2.5102 | 18450 | 0.0004 | - |
2.5170 | 18500 | 0.0042 | - |
2.5238 | 18550 | 0.0005 | - |
2.5306 | 18600 | 0.0012 | - |
2.5374 | 18650 | 0.005 | - |
2.5442 | 18700 | 0.0032 | - |
2.5510 | 18750 | 0.0079 | - |
2.5578 | 18800 | 0.001 | - |
2.5646 | 18850 | 0.0008 | - |
2.5714 | 18900 | 0.0042 | - |
2.5782 | 18950 | 0.001 | - |
2.5850 | 19000 | 0.001 | - |
2.5918 | 19050 | 0.0009 | - |
2.5986 | 19100 | 0.0003 | - |
2.6054 | 19150 | 0.0003 | - |
2.6122 | 19200 | 0.0003 | - |
2.6190 | 19250 | 0.0035 | - |
2.6259 | 19300 | 0.0006 | - |
2.6327 | 19350 | 0.0035 | - |
2.6395 | 19400 | 0.0003 | - |
2.6463 | 19450 | 0.0021 | - |
2.6531 | 19500 | 0.0005 | - |
2.6599 | 19550 | 0.004 | - |
2.6667 | 19600 | 0.0023 | - |
2.6735 | 19650 | 0.0006 | - |
2.6803 | 19700 | 0.004 | - |
2.6871 | 19750 | 0.0015 | - |
2.6939 | 19800 | 0.0008 | - |
2.7007 | 19850 | 0.0022 | - |
2.7075 | 19900 | 0.001 | - |
2.7143 | 19950 | 0.0007 | - |
2.7211 | 20000 | 0.0013 | - |
2.7279 | 20050 | 0.0004 | - |
2.7347 | 20100 | 0.001 | - |
2.7415 | 20150 | 0.0013 | - |
2.7483 | 20200 | 0.0004 | - |
2.7551 | 20250 | 0.0035 | - |
2.7619 | 20300 | 0.0006 | - |
2.7687 | 20350 | 0.001 | - |
2.7755 | 20400 | 0.0003 | - |
2.7823 | 20450 | 0.0006 | - |
2.7891 | 20500 | 0.0012 | - |
2.7959 | 20550 | 0.0003 | - |
2.8027 | 20600 | 0.0031 | - |
2.8095 | 20650 | 0.0005 | - |
2.8163 | 20700 | 0.0008 | - |
2.8231 | 20750 | 0.0006 | - |
2.8299 | 20800 | 0.0005 | - |
2.8367 | 20850 | 0.0004 | - |
2.8435 | 20900 | 0.0002 | - |
2.8503 | 20950 | 0.0011 | - |
2.8571 | 21000 | 0.0002 | - |
2.8639 | 21050 | 0.0033 | - |
2.8707 | 21100 | 0.0024 | - |
2.8776 | 21150 | 0.0004 | - |
2.8844 | 21200 | 0.0002 | - |
2.8912 | 21250 | 0.0029 | - |
2.8980 | 21300 | 0.0004 | - |
2.9048 | 21350 | 0.0003 | - |
2.9116 | 21400 | 0.0024 | - |
2.9184 | 21450 | 0.0027 | - |
2.9252 | 21500 | 0.0003 | - |
2.9320 | 21550 | 0.0006 | - |
2.9388 | 21600 | 0.0002 | - |
2.9456 | 21650 | 0.0021 | - |
2.9524 | 21700 | 0.0011 | - |
2.9592 | 21750 | 0.0006 | - |
2.9660 | 21800 | 0.0002 | - |
2.9728 | 21850 | 0.0004 | - |
2.9796 | 21900 | 0.0008 | - |
2.9864 | 21950 | 0.0028 | - |
2.9932 | 22000 | 0.0004 | - |
3.0 | 22050 | 0.0002 | - |
3.0068 | 22100 | 0.0002 | - |
3.0136 | 22150 | 0.0026 | - |
3.0204 | 22200 | 0.0002 | - |
3.0272 | 22250 | 0.0004 | - |
3.0340 | 22300 | 0.0005 | - |
3.0408 | 22350 | 0.0005 | - |
3.0476 | 22400 | 0.0022 | - |
3.0544 | 22450 | 0.0006 | - |
3.0612 | 22500 | 0.0009 | - |
3.0680 | 22550 | 0.0004 | - |
3.0748 | 22600 | 0.0002 | - |
3.0816 | 22650 | 0.0003 | - |
3.0884 | 22700 | 0.0002 | - |
3.0952 | 22750 | 0.0002 | - |
3.1020 | 22800 | 0.0002 | - |
3.1088 | 22850 | 0.0041 | - |
3.1156 | 22900 | 0.0014 | - |
3.1224 | 22950 | 0.0019 | - |
3.1293 | 23000 | 0.0023 | - |
3.1361 | 23050 | 0.0003 | - |
3.1429 | 23100 | 0.0005 | - |
3.1497 | 23150 | 0.0003 | - |
3.1565 | 23200 | 0.0009 | - |
3.1633 | 23250 | 0.0023 | - |
3.1701 | 23300 | 0.0003 | - |
3.1769 | 23350 | 0.0002 | - |
3.1837 | 23400 | 0.0003 | - |
3.1905 | 23450 | 0.0003 | - |
3.1973 | 23500 | 0.0015 | - |
3.2041 | 23550 | 0.0002 | - |
3.2109 | 23600 | 0.0004 | - |
3.2177 | 23650 | 0.0004 | - |
3.2245 | 23700 | 0.0009 | - |
3.2313 | 23750 | 0.0002 | - |
3.2381 | 23800 | 0.0003 | - |
3.2449 | 23850 | 0.0002 | - |
3.2517 | 23900 | 0.0001 | - |
3.2585 | 23950 | 0.0003 | - |
3.2653 | 24000 | 0.0002 | - |
3.2721 | 24050 | 0.0019 | - |
3.2789 | 24100 | 0.0002 | - |
3.2857 | 24150 | 0.0002 | - |
3.2925 | 24200 | 0.0002 | - |
3.2993 | 24250 | 0.0002 | - |
3.3061 | 24300 | 0.0003 | - |
3.3129 | 24350 | 0.0007 | - |
3.3197 | 24400 | 0.0009 | - |
3.3265 | 24450 | 0.0006 | - |
3.3333 | 24500 | 0.0003 | - |
3.3401 | 24550 | 0.0008 | - |
3.3469 | 24600 | 0.0007 | - |
3.3537 | 24650 | 0.0003 | - |
3.3605 | 24700 | 0.0002 | - |
3.3673 | 24750 | 0.0001 | - |
3.3741 | 24800 | 0.0001 | - |
3.3810 | 24850 | 0.0002 | - |
3.3878 | 24900 | 0.0009 | - |
3.3946 | 24950 | 0.0005 | - |
3.4014 | 25000 | 0.0001 | - |
3.4082 | 25050 | 0.0003 | - |
3.4150 | 25100 | 0.0001 | - |
3.4218 | 25150 | 0.0002 | - |
3.4286 | 25200 | 0.0002 | - |
3.4354 | 25250 | 0.0003 | - |
3.4422 | 25300 | 0.0002 | - |
3.4490 | 25350 | 0.0004 | - |
3.4558 | 25400 | 0.0005 | - |
3.4626 | 25450 | 0.0005 | - |
3.4694 | 25500 | 0.0002 | - |
3.4762 | 25550 | 0.0003 | - |
3.4830 | 25600 | 0.0001 | - |
3.4898 | 25650 | 0.0003 | - |
3.4966 | 25700 | 0.0006 | - |
3.5034 | 25750 | 0.0002 | - |
3.5102 | 25800 | 0.0003 | - |
3.5170 | 25850 | 0.0005 | - |
3.5238 | 25900 | 0.0002 | - |
3.5306 | 25950 | 0.0003 | - |
3.5374 | 26000 | 0.0002 | - |
3.5442 | 26050 | 0.0004 | - |
3.5510 | 26100 | 0.0001 | - |
3.5578 | 26150 | 0.0001 | - |
3.5646 | 26200 | 0.0002 | - |
3.5714 | 26250 | 0.0001 | - |
3.5782 | 26300 | 0.0005 | - |
3.5850 | 26350 | 0.0002 | - |
3.5918 | 26400 | 0.0001 | - |
3.5986 | 26450 | 0.0001 | - |
3.6054 | 26500 | 0.0003 | - |
3.6122 | 26550 | 0.0002 | - |
3.6190 | 26600 | 0.0002 | - |
3.6259 | 26650 | 0.0001 | - |
3.6327 | 26700 | 0.0001 | - |
3.6395 | 26750 | 0.0001 | - |
3.6463 | 26800 | 0.0005 | - |
3.6531 | 26850 | 0.0001 | - |
3.6599 | 26900 | 0.0002 | - |
3.6667 | 26950 | 0.0001 | - |
3.6735 | 27000 | 0.0001 | - |
3.6803 | 27050 | 0.0002 | - |
3.6871 | 27100 | 0.0002 | - |
3.6939 | 27150 | 0.0001 | - |
3.7007 | 27200 | 0.0001 | - |
3.7075 | 27250 | 0.0002 | - |
3.7143 | 27300 | 0.0002 | - |
3.7211 | 27350 | 0.0001 | - |
3.7279 | 27400 | 0.0008 | - |
3.7347 | 27450 | 0.0002 | - |
3.7415 | 27500 | 0.0008 | - |
3.7483 | 27550 | 0.0005 | - |
3.7551 | 27600 | 0.0002 | - |
3.7619 | 27650 | 0.0003 | - |
3.7687 | 27700 | 0.0002 | - |
3.7755 | 27750 | 0.0007 | - |
3.7823 | 27800 | 0.0003 | - |
3.7891 | 27850 | 0.0001 | - |
3.7959 | 27900 | 0.0006 | - |
3.8027 | 27950 | 0.0002 | - |
3.8095 | 28000 | 0.0001 | - |
3.8163 | 28050 | 0.0001 | - |
3.8231 | 28100 | 0.0002 | - |
3.8299 | 28150 | 0.0001 | - |
3.8367 | 28200 | 0.0001 | - |
3.8435 | 28250 | 0.0004 | - |
3.8503 | 28300 | 0.0001 | - |
3.8571 | 28350 | 0.0001 | - |
3.8639 | 28400 | 0.0001 | - |
3.8707 | 28450 | 0.0005 | - |
3.8776 | 28500 | 0.0004 | - |
3.8844 | 28550 | 0.0001 | - |
3.8912 | 28600 | 0.0002 | - |
3.8980 | 28650 | 0.0002 | - |
3.9048 | 28700 | 0.0003 | - |
3.9116 | 28750 | 0.0001 | - |
3.9184 | 28800 | 0.0002 | - |
3.9252 | 28850 | 0.0001 | - |
3.9320 | 28900 | 0.0001 | - |
3.9388 | 28950 | 0.0002 | - |
3.9456 | 29000 | 0.0002 | - |
3.9524 | 29050 | 0.0001 | - |
3.9592 | 29100 | 0.0001 | - |
3.9660 | 29150 | 0.0002 | - |
3.9728 | 29200 | 0.0002 | - |
3.9796 | 29250 | 0.0003 | - |
3.9864 | 29300 | 0.0001 | - |
3.9932 | 29350 | 0.0007 | - |
4.0 | 29400 | 0.0007 | - |
Framework Versions
- Python: 3.11.13
- SetFit: 1.1.2
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Datasets: 3.6.0
- Tokenizers: 0.21.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}