library_name: transformers | |
license: apache-2.0 | |
datasets: | |
- HuggingFaceM4/the_cauldron | |
- HuggingFaceM4/Docmatix | |
- lmms-lab/LLaVA-OneVision-Data | |
- lmms-lab/M4-Instruct-Data | |
- HuggingFaceFV/finevideo | |
- MAmmoTH-VL/MAmmoTH-VL-Instruct-12M | |
- lmms-lab/LLaVA-Video-178K | |
- orrzohar/Video-STaR | |
- Mutonix/Vript | |
- TIGER-Lab/VISTA-400K | |
- Enxin/MovieChat-1K_train | |
- ShareGPT4Video/ShareGPT4Video | |
pipeline_tag: image-text-to-text | |
language: | |
- en | |
base_model: HuggingFaceTB/SmolVLM2-500M-Video-Instruct | |
tags: | |
- openvino | |
- nncf | |
- 8-bit | |
This model is a quantized version of [`HuggingFaceTB/SmolVLM2-500M-Video-Instruct`](https://huggingface.co/HuggingFaceTB/SmolVLM2-500M-Video-Instruct) and is converted to the OpenVINO format. This model was obtained via the [nncf-quantization](https://huggingface.co/spaces/echarlaix/nncf-quantization) space with [optimum-intel](https://github.com/huggingface/optimum-intel). | |
First make sure you have `optimum-intel` installed: | |
```bash | |
pip install optimum[openvino] | |
``` | |
To load your model you can do as follows: | |
```python | |
from optimum.intel import OVModelForVisualCausalLM | |
model_id = "echarlaix/SmolVLM2-500M-Video-Instruct-openvino-8bit-woq-data-free" | |
model = OVModelForVisualCausalLM.from_pretrained(model_id) | |
``` | |