Dolphin-Mistral-24B-Venice-Edition-GGUF / scores /Dolphin-Mistral-24B-Venice-Edition-IQ4_NL.md
eaddario's picture
Add GGUF internal file structure
b78fdd0 verified

Dolphin-Mistral-24B-Venice-Edition-IQ4_NL.gguf - GGUF Internal File Dump

  • Endian: LITTLE endian

Key Value Metadata Store

There are 46 key-value pairs in this file

POS TYPE Count Key Value
1 UINT32 1 GGUF.version 3
2 UINT64 1 GGUF.tensor_count 363
3 UINT64 1 GGUF.kv_count 43
4 STRING 1 general.architecture llama
5 STRING 1 general.type model
6 STRING 1 general.name Dolphin Mistral 24B Venice Edition
7 STRING 1 general.finetune Venice-Edition
8 STRING 1 general.basename Dolphin-Mistral
9 STRING 1 general.size_label 24B
10 STRING 1 general.license apache-2.0
11 UINT32 1 general.base_model.count 1
12 STRING 1 general.base_model.0.name Mistral Small 24B Instruct 2501
13 STRING 1 general.base_model.0.version 2501
14 STRING 1 general.base_model.0.organization Mistralai
15 STRING 1 general.base_model.0.repo_url https://huggingface.co/mistral...istral-Small-24B-Instruct-2501
16 UINT32 1 llama.block_count 40
17 UINT32 1 llama.context_length 32768
18 UINT32 1 llama.embedding_length 5120
19 UINT32 1 llama.feed_forward_length 32768
20 UINT32 1 llama.attention.head_count 32
21 UINT32 1 llama.attention.head_count_kv 8
22 FLOAT32 1 llama.rope.freq_base 100000000.0
23 FLOAT32 1 llama.attention.layer_norm_rms_epsilon 1e-05
24 UINT32 1 llama.attention.key_length 128
25 UINT32 1 llama.attention.value_length 128
26 UINT32 1 llama.vocab_size 131072
27 UINT32 1 llama.rope.dimension_count 128
28 STRING 1 tokenizer.ggml.model gpt2
29 STRING 1 tokenizer.ggml.pre tekken
30 [STRING] 131072 tokenizer.ggml.tokens [ <unk>, <s>, </s>, [INST], [/INST], ... ]
31 [INT32] 131072 tokenizer.ggml.token_type [ 3, 3, 3, 3, 3, 3, 3, ... ]
32 [STRING] 269443 tokenizer.ggml.merges [ Ġ Ġ, Ġ t, e r, i n, Ġ ĠĠĠ, ... ]
33 UINT32 1 tokenizer.ggml.bos_token_id 1
34 UINT32 1 tokenizer.ggml.eos_token_id 2
35 UINT32 1 tokenizer.ggml.unknown_token_id 0
36 UINT32 1 tokenizer.ggml.padding_token_id 11
37 BOOL 1 tokenizer.ggml.add_bos_token True
38 BOOL 1 tokenizer.ggml.add_eos_token False
39 STRING 1 tokenizer.chat_template {%- set today = strftime_now("... {%- endif %}{%- endfor %}
40 BOOL 1 tokenizer.ggml.add_space_prefix False
41 UINT32 1 general.quantization_version 2
42 UINT32 1 general.file_type 25
43 STRING 1 quantize.imatrix.file ./imatrix/imatrix-Dolphin-Mist...l-24B-Venice-Edition-small.dat
44 STRING 1 quantize.imatrix.dataset ../../datasets/imatrix/combined_eur_small.txt
45 INT32 1 quantize.imatrix.entries_count 281
46 INT32 1 quantize.imatrix.chunks_count 3192

Tensors Overview ~24B Elements

Total number of elements in all tensors: 23572403200 Elements

Tensor Data Offset

This table contains the offset and data segment relative to start of file

T_ID Tensor Layer Name Data Offset (B) Data Size (B)
0 output.weight 0x784920 0x16800000
1 output_norm.weight 0x16f84920 0x5000
2 token_embd.weight 0x16f89920 0x11300000
3 blk.0.attn_k.weight 0x28289920 0x226000
4 blk.0.attn_norm.weight 0x284af920 0x5000
5 blk.0.attn_output.weight 0x284b4920 0xb40000
6 blk.0.attn_q.weight 0x28ff4920 0x898000
7 blk.0.attn_v.weight 0x2988c920 0x2a8000
8 blk.0.ffn_down.weight 0x29b34920 0x5a00000
9 blk.0.ffn_gate.weight 0x2f534920 0x44c0000
10 blk.0.ffn_norm.weight 0x339f4920 0x5000
11 blk.0.ffn_up.weight 0x339f9920 0x44c0000
12 blk.1.attn_k.weight 0x37eb9920 0x226000
13 blk.1.attn_norm.weight 0x380df920 0x5000
14 blk.1.attn_output.weight 0x380e4920 0xb40000
15 blk.1.attn_q.weight 0x38c24920 0x898000
16 blk.1.attn_v.weight 0x394bc920 0x2a8000
17 blk.1.ffn_down.weight 0x39764920 0x5a00000
18 blk.1.ffn_gate.weight 0x3f164920 0x44c0000
19 blk.1.ffn_norm.weight 0x43624920 0x5000
20 blk.1.ffn_up.weight 0x43629920 0x44c0000
21 blk.2.attn_k.weight 0x47ae9920 0x226000
22 blk.2.attn_norm.weight 0x47d0f920 0x5000
23 blk.2.attn_output.weight 0x47d14920 0xb40000
24 blk.2.attn_q.weight 0x48854920 0x898000
25 blk.2.attn_v.weight 0x490ec920 0x2a8000
26 blk.2.ffn_down.weight 0x49394920 0x5a00000
27 blk.2.ffn_gate.weight 0x4ed94920 0x44c0000
28 blk.2.ffn_norm.weight 0x53254920 0x5000
29 blk.2.ffn_up.weight 0x53259920 0x44c0000
30 blk.3.attn_k.weight 0x57719920 0x226000
31 blk.3.attn_norm.weight 0x5793f920 0x5000
32 blk.3.attn_output.weight 0x57944920 0xb40000
33 blk.3.attn_q.weight 0x58484920 0x898000
34 blk.3.attn_v.weight 0x58d1c920 0x2a8000
35 blk.3.ffn_down.weight 0x58fc4920 0x5a00000
36 blk.3.ffn_gate.weight 0x5e9c4920 0x44c0000
37 blk.3.ffn_norm.weight 0x62e84920 0x5000
38 blk.3.ffn_up.weight 0x62e89920 0x44c0000
39 blk.4.attn_k.weight 0x67349920 0x226000
40 blk.4.attn_norm.weight 0x6756f920 0x5000
41 blk.4.attn_output.weight 0x67574920 0xb40000
42 blk.4.attn_q.weight 0x680b4920 0x898000
43 blk.4.attn_v.weight 0x6894c920 0x2a8000
44 blk.4.ffn_down.weight 0x68bf4920 0x5a00000
45 blk.4.ffn_gate.weight 0x6e5f4920 0x44c0000
46 blk.4.ffn_norm.weight 0x72ab4920 0x5000
47 blk.4.ffn_up.weight 0x72ab9920 0x44c0000
48 blk.5.attn_k.weight 0x76f79920 0x226000
49 blk.5.attn_norm.weight 0x7719f920 0x5000
50 blk.5.attn_output.weight 0x771a4920 0xb40000
51 blk.5.attn_q.weight 0x77ce4920 0x898000
52 blk.5.attn_v.weight 0x7857c920 0x2a8000
53 blk.5.ffn_down.weight 0x78824920 0x5a00000
54 blk.5.ffn_gate.weight 0x7e224920 0x44c0000
55 blk.5.ffn_norm.weight 0x826e4920 0x5000
56 blk.5.ffn_up.weight 0x826e9920 0x44c0000
57 blk.6.attn_k.weight 0x86ba9920 0x226000
58 blk.6.attn_norm.weight 0x86dcf920 0x5000
59 blk.6.attn_output.weight 0x86dd4920 0xb40000
60 blk.6.attn_q.weight 0x87914920 0x898000
61 blk.6.attn_v.weight 0x881ac920 0x2a8000
62 blk.6.ffn_down.weight 0x88454920 0x5a00000
63 blk.6.ffn_gate.weight 0x8de54920 0x44c0000
64 blk.6.ffn_norm.weight 0x92314920 0x5000
65 blk.6.ffn_up.weight 0x92319920 0x44c0000
66 blk.7.attn_k.weight 0x967d9920 0x226000
67 blk.7.attn_norm.weight 0x969ff920 0x5000
68 blk.7.attn_output.weight 0x96a04920 0xb40000
69 blk.7.attn_q.weight 0x97544920 0x898000
70 blk.7.attn_v.weight 0x97ddc920 0x2a8000
71 blk.7.ffn_down.weight 0x98084920 0x5a00000
72 blk.7.ffn_gate.weight 0x9da84920 0x44c0000
73 blk.7.ffn_norm.weight 0xa1f44920 0x5000
74 blk.7.ffn_up.weight 0xa1f49920 0x44c0000
75 blk.8.attn_k.weight 0xa6409920 0x226000
76 blk.8.attn_norm.weight 0xa662f920 0x5000
77 blk.8.attn_output.weight 0xa6634920 0xb40000
78 blk.8.attn_q.weight 0xa7174920 0x898000
79 blk.8.attn_v.weight 0xa7a0c920 0x2a8000
80 blk.8.ffn_down.weight 0xa7cb4920 0x5a00000
81 blk.8.ffn_gate.weight 0xad6b4920 0x44c0000
82 blk.8.ffn_norm.weight 0xb1b74920 0x5000
83 blk.8.ffn_up.weight 0xb1b79920 0x44c0000
84 blk.9.attn_k.weight 0xb6039920 0x226000
85 blk.9.attn_norm.weight 0xb625f920 0x5000
86 blk.9.attn_output.weight 0xb6264920 0xb40000
87 blk.9.attn_q.weight 0xb6da4920 0x898000
88 blk.9.attn_v.weight 0xb763c920 0x2a8000
89 blk.9.ffn_down.weight 0xb78e4920 0x5a00000
90 blk.9.ffn_gate.weight 0xbd2e4920 0x44c0000
91 blk.9.ffn_norm.weight 0xc17a4920 0x5000
92 blk.9.ffn_up.weight 0xc17a9920 0x44c0000
93 blk.10.attn_k.weight 0xc5c69920 0x226000
94 blk.10.attn_norm.weight 0xc5e8f920 0x5000
95 blk.10.attn_output.weight 0xc5e94920 0xb40000
96 blk.10.attn_q.weight 0xc69d4920 0x898000
97 blk.10.attn_v.weight 0xc726c920 0x2a8000
98 blk.10.ffn_down.weight 0xc7514920 0x5a00000
99 blk.10.ffn_gate.weight 0xccf14920 0x44c0000
100 blk.10.ffn_norm.weight 0xd13d4920 0x5000
101 blk.10.ffn_up.weight 0xd13d9920 0x44c0000
102 blk.11.attn_k.weight 0xd5899920 0x226000
103 blk.11.attn_norm.weight 0xd5abf920 0x5000
104 blk.11.attn_output.weight 0xd5ac4920 0xb40000
105 blk.11.attn_q.weight 0xd6604920 0x898000
106 blk.11.attn_v.weight 0xd6e9c920 0x2a8000
107 blk.11.ffn_down.weight 0xd7144920 0x5a00000
108 blk.11.ffn_gate.weight 0xdcb44920 0x44c0000
109 blk.11.ffn_norm.weight 0xe1004920 0x5000
110 blk.11.ffn_up.weight 0xe1009920 0x44c0000
111 blk.12.attn_k.weight 0xe54c9920 0x226000
112 blk.12.attn_norm.weight 0xe56ef920 0x5000
113 blk.12.attn_output.weight 0xe56f4920 0xb40000
114 blk.12.attn_q.weight 0xe6234920 0x898000
115 blk.12.attn_v.weight 0xe6acc920 0x2a8000
116 blk.12.ffn_down.weight 0xe6d74920 0x5a00000
117 blk.12.ffn_gate.weight 0xec774920 0x44c0000
118 blk.12.ffn_norm.weight 0xf0c34920 0x5000
119 blk.12.ffn_up.weight 0xf0c39920 0x44c0000
120 blk.13.attn_k.weight 0xf50f9920 0x226000
121 blk.13.attn_norm.weight 0xf531f920 0x5000
122 blk.13.attn_output.weight 0xf5324920 0xb40000
123 blk.13.attn_q.weight 0xf5e64920 0x898000
124 blk.13.attn_v.weight 0xf66fc920 0x2a8000
125 blk.13.ffn_down.weight 0xf69a4920 0x5a00000
126 blk.13.ffn_gate.weight 0xfc3a4920 0x44c0000
127 blk.13.ffn_norm.weight 0x100864920 0x5000
128 blk.13.ffn_up.weight 0x100869920 0x44c0000
129 blk.14.attn_k.weight 0x104d29920 0x226000
130 blk.14.attn_norm.weight 0x104f4f920 0x5000
131 blk.14.attn_output.weight 0x104f54920 0xb40000
132 blk.14.attn_q.weight 0x105a94920 0x898000
133 blk.14.attn_v.weight 0x10632c920 0x2a8000
134 blk.14.ffn_down.weight 0x1065d4920 0x5a00000
135 blk.14.ffn_gate.weight 0x10bfd4920 0x44c0000
136 blk.14.ffn_norm.weight 0x110494920 0x5000
137 blk.14.ffn_up.weight 0x110499920 0x44c0000
138 blk.15.attn_k.weight 0x114959920 0x226000
139 blk.15.attn_norm.weight 0x114b7f920 0x5000
140 blk.15.attn_output.weight 0x114b84920 0xb40000
141 blk.15.attn_q.weight 0x1156c4920 0x898000
142 blk.15.attn_v.weight 0x115f5c920 0x2a8000
143 blk.15.ffn_down.weight 0x116204920 0x5a00000
144 blk.15.ffn_gate.weight 0x11bc04920 0x44c0000
145 blk.15.ffn_norm.weight 0x1200c4920 0x5000
146 blk.15.ffn_up.weight 0x1200c9920 0x44c0000
147 blk.16.attn_k.weight 0x124589920 0x226000
148 blk.16.attn_norm.weight 0x1247af920 0x5000
149 blk.16.attn_output.weight 0x1247b4920 0xb40000
150 blk.16.attn_q.weight 0x1252f4920 0x898000
151 blk.16.attn_v.weight 0x125b8c920 0x2a8000
152 blk.16.ffn_down.weight 0x125e34920 0x5a00000
153 blk.16.ffn_gate.weight 0x12b834920 0x44c0000
154 blk.16.ffn_norm.weight 0x12fcf4920 0x5000
155 blk.16.ffn_up.weight 0x12fcf9920 0x44c0000
156 blk.17.attn_k.weight 0x1341b9920 0x2d0000
157 blk.17.attn_norm.weight 0x134489920 0x5000
158 blk.17.attn_output.weight 0x13448e920 0xb40000
159 blk.17.attn_q.weight 0x134fce920 0xb40000
160 blk.17.attn_v.weight 0x135b0e920 0x2d0000
161 blk.17.ffn_down.weight 0x135dde920 0x5a00000
162 blk.17.ffn_gate.weight 0x13b7de920 0x44c0000
163 blk.17.ffn_norm.weight 0x13fc9e920 0x5000
164 blk.17.ffn_up.weight 0x13fca3920 0x44c0000
165 blk.18.attn_k.weight 0x144163920 0x2d0000
166 blk.18.attn_norm.weight 0x144433920 0x5000
167 blk.18.attn_output.weight 0x144438920 0xb40000
168 blk.18.attn_q.weight 0x144f78920 0xb40000
169 blk.18.attn_v.weight 0x145ab8920 0x2d0000
170 blk.18.ffn_down.weight 0x145d88920 0x5a00000
171 blk.18.ffn_gate.weight 0x14b788920 0x44c0000
172 blk.18.ffn_norm.weight 0x14fc48920 0x5000
173 blk.18.ffn_up.weight 0x14fc4d920 0x44c0000
174 blk.19.attn_k.weight 0x15410d920 0x226000
175 blk.19.attn_norm.weight 0x154333920 0x5000
176 blk.19.attn_output.weight 0x154338920 0xb40000
177 blk.19.attn_q.weight 0x154e78920 0x898000
178 blk.19.attn_v.weight 0x155710920 0x2a8000
179 blk.19.ffn_down.weight 0x1559b8920 0x5a00000
180 blk.19.ffn_gate.weight 0x15b3b8920 0x44c0000
181 blk.19.ffn_norm.weight 0x15f878920 0x5000
182 blk.19.ffn_up.weight 0x15f87d920 0x44c0000
183 blk.20.attn_k.weight 0x163d3d920 0x2d0000
184 blk.20.attn_norm.weight 0x16400d920 0x5000
185 blk.20.attn_output.weight 0x164012920 0xb40000
186 blk.20.attn_q.weight 0x164b52920 0xb40000
187 blk.20.attn_v.weight 0x165692920 0x2d0000
188 blk.20.ffn_down.weight 0x165962920 0x5a00000
189 blk.20.ffn_gate.weight 0x16b362920 0x5a00000
190 blk.20.ffn_norm.weight 0x170d62920 0x5000
191 blk.20.ffn_up.weight 0x170d67920 0x5a00000
192 blk.21.attn_k.weight 0x176767920 0x226000
193 blk.21.attn_norm.weight 0x17698d920 0x5000
194 blk.21.attn_output.weight 0x176992920 0xb40000
195 blk.21.attn_q.weight 0x1774d2920 0x898000
196 blk.21.attn_v.weight 0x177d6a920 0x2a8000
197 blk.21.ffn_down.weight 0x178012920 0x5a00000
198 blk.21.ffn_gate.weight 0x17da12920 0x5a00000
199 blk.21.ffn_norm.weight 0x183412920 0x5000
200 blk.21.ffn_up.weight 0x183417920 0x5a00000
201 blk.22.attn_k.weight 0x188e17920 0x2d0000
202 blk.22.attn_norm.weight 0x1890e7920 0x5000
203 blk.22.attn_output.weight 0x1890ec920 0xb40000
204 blk.22.attn_q.weight 0x189c2c920 0xb40000
205 blk.22.attn_v.weight 0x18a76c920 0x2d0000
206 blk.22.ffn_down.weight 0x18aa3c920 0x5a00000
207 blk.22.ffn_gate.weight 0x19043c920 0x5a00000
208 blk.22.ffn_norm.weight 0x195e3c920 0x5000
209 blk.22.ffn_up.weight 0x195e41920 0x5a00000
210 blk.23.attn_k.weight 0x19b841920 0x2d0000
211 blk.23.attn_norm.weight 0x19bb11920 0x5000
212 blk.23.attn_output.weight 0x19bb16920 0xb40000
213 blk.23.attn_q.weight 0x19c656920 0xb40000
214 blk.23.attn_v.weight 0x19d196920 0x2d0000
215 blk.23.ffn_down.weight 0x19d466920 0x5a00000
216 blk.23.ffn_gate.weight 0x1a2e66920 0x5a00000
217 blk.23.ffn_norm.weight 0x1a8866920 0x5000
218 blk.23.ffn_up.weight 0x1a886b920 0x5a00000
219 blk.24.attn_k.weight 0x1ae26b920 0x2d0000
220 blk.24.attn_norm.weight 0x1ae53b920 0x5000
221 blk.24.attn_output.weight 0x1ae540920 0xb40000
222 blk.24.attn_q.weight 0x1af080920 0xb40000
223 blk.24.attn_v.weight 0x1afbc0920 0x2d0000
224 blk.24.ffn_down.weight 0x1afe90920 0x5a00000
225 blk.24.ffn_gate.weight 0x1b5890920 0x5a00000
226 blk.24.ffn_norm.weight 0x1bb290920 0x5000
227 blk.24.ffn_up.weight 0x1bb295920 0x5a00000
228 blk.25.attn_k.weight 0x1c0c95920 0x2d0000
229 blk.25.attn_norm.weight 0x1c0f65920 0x5000
230 blk.25.attn_output.weight 0x1c0f6a920 0xb40000
231 blk.25.attn_q.weight 0x1c1aaa920 0xb40000
232 blk.25.attn_v.weight 0x1c25ea920 0x2d0000
233 blk.25.ffn_down.weight 0x1c28ba920 0x5a00000
234 blk.25.ffn_gate.weight 0x1c82ba920 0x5a00000
235 blk.25.ffn_norm.weight 0x1cdcba920 0x5000
236 blk.25.ffn_up.weight 0x1cdcbf920 0x5a00000
237 blk.26.attn_k.weight 0x1d36bf920 0x2d0000
238 blk.26.attn_norm.weight 0x1d398f920 0x5000
239 blk.26.attn_output.weight 0x1d3994920 0xb40000
240 blk.26.attn_q.weight 0x1d44d4920 0xb40000
241 blk.26.attn_v.weight 0x1d5014920 0x2d0000
242 blk.26.ffn_down.weight 0x1d52e4920 0x5a00000
243 blk.26.ffn_gate.weight 0x1dace4920 0x5a00000
244 blk.26.ffn_norm.weight 0x1e06e4920 0x5000
245 blk.26.ffn_up.weight 0x1e06e9920 0x5a00000
246 blk.27.attn_k.weight 0x1e60e9920 0x226000
247 blk.27.attn_norm.weight 0x1e630f920 0x5000
248 blk.27.attn_output.weight 0x1e6314920 0xb40000
249 blk.27.attn_q.weight 0x1e6e54920 0x898000
250 blk.27.attn_v.weight 0x1e76ec920 0x2a8000
251 blk.27.ffn_down.weight 0x1e7994920 0x5a00000
252 blk.27.ffn_gate.weight 0x1ed394920 0x5a00000
253 blk.27.ffn_norm.weight 0x1f2d94920 0x5000
254 blk.27.ffn_up.weight 0x1f2d99920 0x5a00000
255 blk.28.attn_k.weight 0x1f8799920 0x2d0000
256 blk.28.attn_norm.weight 0x1f8a69920 0x5000
257 blk.28.attn_output.weight 0x1f8a6e920 0xb40000
258 blk.28.attn_q.weight 0x1f95ae920 0xb40000
259 blk.28.attn_v.weight 0x1fa0ee920 0x2d0000
260 blk.28.ffn_down.weight 0x1fa3be920 0x5a00000
261 blk.28.ffn_gate.weight 0x1ffdbe920 0x5a00000
262 blk.28.ffn_norm.weight 0x2057be920 0x5000
263 blk.28.ffn_up.weight 0x2057c3920 0x5a00000
264 blk.29.attn_k.weight 0x20b1c3920 0x2d0000
265 blk.29.attn_norm.weight 0x20b493920 0x5000
266 blk.29.attn_output.weight 0x20b498920 0xb40000
267 blk.29.attn_q.weight 0x20bfd8920 0xb40000
268 blk.29.attn_v.weight 0x20cb18920 0x2d0000
269 blk.29.ffn_down.weight 0x20cde8920 0x5a00000
270 blk.29.ffn_gate.weight 0x2127e8920 0x5a00000
271 blk.29.ffn_norm.weight 0x2181e8920 0x5000
272 blk.29.ffn_up.weight 0x2181ed920 0x5a00000
273 blk.30.attn_k.weight 0x21dbed920 0x2d0000
274 blk.30.attn_norm.weight 0x21debd920 0x5000
275 blk.30.attn_output.weight 0x21dec2920 0xb40000
276 blk.30.attn_q.weight 0x21ea02920 0xb40000
277 blk.30.attn_v.weight 0x21f542920 0x2d0000
278 blk.30.ffn_down.weight 0x21f812920 0x5a00000
279 blk.30.ffn_gate.weight 0x225212920 0x5a00000
280 blk.30.ffn_norm.weight 0x22ac12920 0x5000
281 blk.30.ffn_up.weight 0x22ac17920 0x5a00000
282 blk.31.attn_k.weight 0x230617920 0x2d0000
283 blk.31.attn_norm.weight 0x2308e7920 0x5000
284 blk.31.attn_output.weight 0x2308ec920 0xb40000
285 blk.31.attn_q.weight 0x23142c920 0xb40000
286 blk.31.attn_v.weight 0x231f6c920 0x2d0000
287 blk.31.ffn_down.weight 0x23223c920 0x5a00000
288 blk.31.ffn_gate.weight 0x237c3c920 0x5a00000
289 blk.31.ffn_norm.weight 0x23d63c920 0x5000
290 blk.31.ffn_up.weight 0x23d641920 0x5a00000
291 blk.32.attn_k.weight 0x243041920 0x2d0000
292 blk.32.attn_norm.weight 0x243311920 0x5000
293 blk.32.attn_output.weight 0x243316920 0xb40000
294 blk.32.attn_q.weight 0x243e56920 0xb40000
295 blk.32.attn_v.weight 0x244996920 0x2d0000
296 blk.32.ffn_down.weight 0x244c66920 0x5a00000
297 blk.32.ffn_gate.weight 0x24a666920 0x5a00000
298 blk.32.ffn_norm.weight 0x250066920 0x5000
299 blk.32.ffn_up.weight 0x25006b920 0x5a00000
300 blk.33.attn_k.weight 0x255a6b920 0x2d0000
301 blk.33.attn_norm.weight 0x255d3b920 0x5000
302 blk.33.attn_output.weight 0x255d40920 0xb40000
303 blk.33.attn_q.weight 0x256880920 0xb40000
304 blk.33.attn_v.weight 0x2573c0920 0x2d0000
305 blk.33.ffn_down.weight 0x257690920 0x5a00000
306 blk.33.ffn_gate.weight 0x25d090920 0x5a00000
307 blk.33.ffn_norm.weight 0x262a90920 0x5000
308 blk.33.ffn_up.weight 0x262a95920 0x5a00000
309 blk.34.attn_k.weight 0x268495920 0x2d0000
310 blk.34.attn_norm.weight 0x268765920 0x5000
311 blk.34.attn_output.weight 0x26876a920 0xb40000
312 blk.34.attn_q.weight 0x2692aa920 0xb40000
313 blk.34.attn_v.weight 0x269dea920 0x2d0000
314 blk.34.ffn_down.weight 0x26a0ba920 0x5a00000
315 blk.34.ffn_gate.weight 0x26faba920 0x5a00000
316 blk.34.ffn_norm.weight 0x2754ba920 0x5000
317 blk.34.ffn_up.weight 0x2754bf920 0x5a00000
318 blk.35.attn_k.weight 0x27aebf920 0x2d0000
319 blk.35.attn_norm.weight 0x27b18f920 0x5000
320 blk.35.attn_output.weight 0x27b194920 0xb40000
321 blk.35.attn_q.weight 0x27bcd4920 0xb40000
322 blk.35.attn_v.weight 0x27c814920 0x2d0000
323 blk.35.ffn_down.weight 0x27cae4920 0x5a00000
324 blk.35.ffn_gate.weight 0x2824e4920 0x5a00000
325 blk.35.ffn_norm.weight 0x287ee4920 0x5000
326 blk.35.ffn_up.weight 0x287ee9920 0x5a00000
327 blk.36.attn_k.weight 0x28d8e9920 0x2d0000
328 blk.36.attn_norm.weight 0x28dbb9920 0x5000
329 blk.36.attn_output.weight 0x28dbbe920 0xb40000
330 blk.36.attn_q.weight 0x28e6fe920 0xb40000
331 blk.36.attn_v.weight 0x28f23e920 0x2d0000
332 blk.36.ffn_down.weight 0x28f50e920 0x5a00000
333 blk.36.ffn_gate.weight 0x294f0e920 0x5a00000
334 blk.36.ffn_norm.weight 0x29a90e920 0x5000
335 blk.36.ffn_up.weight 0x29a913920 0x5a00000
336 blk.37.attn_k.weight 0x2a0313920 0x2d0000
337 blk.37.attn_norm.weight 0x2a05e3920 0x5000
338 blk.37.attn_output.weight 0x2a05e8920 0xb40000
339 blk.37.attn_q.weight 0x2a1128920 0xb40000
340 blk.37.attn_v.weight 0x2a1c68920 0x2d0000
341 blk.37.ffn_down.weight 0x2a1f38920 0x5a00000
342 blk.37.ffn_gate.weight 0x2a7938920 0x5a00000
343 blk.37.ffn_norm.weight 0x2ad338920 0x5000
344 blk.37.ffn_up.weight 0x2ad33d920 0x5a00000
345 blk.38.attn_k.weight 0x2b2d3d920 0x2d0000
346 blk.38.attn_norm.weight 0x2b300d920 0x5000
347 blk.38.attn_output.weight 0x2b3012920 0xb40000
348 blk.38.attn_q.weight 0x2b3b52920 0xb40000
349 blk.38.attn_v.weight 0x2b4692920 0x2d0000
350 blk.38.ffn_down.weight 0x2b4962920 0x5a00000
351 blk.38.ffn_gate.weight 0x2ba362920 0x5a00000
352 blk.38.ffn_norm.weight 0x2bfd62920 0x5000
353 blk.38.ffn_up.weight 0x2bfd67920 0x5a00000
354 blk.39.attn_k.weight 0x2c5767920 0x2d0000
355 blk.39.attn_norm.weight 0x2c5a37920 0x5000
356 blk.39.attn_output.weight 0x2c5a3c920 0xb40000
357 blk.39.attn_q.weight 0x2c657c920 0xb40000
358 blk.39.attn_v.weight 0x2c70bc920 0x2d0000
359 blk.39.ffn_down.weight 0x2c738c920 0x5a00000
360 blk.39.ffn_gate.weight 0x2ccd8c920 0x5a00000
361 blk.39.ffn_norm.weight 0x2d278c920 0x5000
362 blk.39.ffn_up.weight 0x2d2791920 0x5a00000

Base Tensor Group : ~1B Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
0 output.weight Output (W) (~671M) 671088640 5120 x 131072 x 1 x 1 IQ4_NL
1 output_norm.weight Output Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
2 token_embd.weight Token Embedding (W) (~671M) 671088640 5120 x 131072 x 1 x 1 IQ3_S
  • Total elements in base: ( ~1B) 1342182400
  • Percentage of total elements: 5.69%

Block 0 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
3 blk.0.attn_k.weight Block 0 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ3_S
4 blk.0.attn_norm.weight Block 0 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
5 blk.0.attn_output.weight Block 0 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
6 blk.0.attn_q.weight Block 0 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ3_S
7 blk.0.attn_v.weight Block 0 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_XS
8 blk.0.ffn_down.weight Block 0 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
9 blk.0.ffn_gate.weight Block 0 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
10 blk.0.ffn_norm.weight Block 0 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
11 blk.0.ffn_up.weight Block 0 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
  • Total elements in blk.0: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 1 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
12 blk.1.attn_k.weight Block 1 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ3_S
13 blk.1.attn_norm.weight Block 1 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
14 blk.1.attn_output.weight Block 1 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
15 blk.1.attn_q.weight Block 1 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ3_S
16 blk.1.attn_v.weight Block 1 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_XS
17 blk.1.ffn_down.weight Block 1 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
18 blk.1.ffn_gate.weight Block 1 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
19 blk.1.ffn_norm.weight Block 1 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
20 blk.1.ffn_up.weight Block 1 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
  • Total elements in blk.1: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 2 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
21 blk.2.attn_k.weight Block 2 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ3_S
22 blk.2.attn_norm.weight Block 2 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
23 blk.2.attn_output.weight Block 2 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
24 blk.2.attn_q.weight Block 2 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ3_S
25 blk.2.attn_v.weight Block 2 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_XS
26 blk.2.ffn_down.weight Block 2 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
27 blk.2.ffn_gate.weight Block 2 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
28 blk.2.ffn_norm.weight Block 2 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
29 blk.2.ffn_up.weight Block 2 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
  • Total elements in blk.2: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 3 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
30 blk.3.attn_k.weight Block 3 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ3_S
31 blk.3.attn_norm.weight Block 3 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
32 blk.3.attn_output.weight Block 3 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
33 blk.3.attn_q.weight Block 3 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ3_S
34 blk.3.attn_v.weight Block 3 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_XS
35 blk.3.ffn_down.weight Block 3 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
36 blk.3.ffn_gate.weight Block 3 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
37 blk.3.ffn_norm.weight Block 3 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
38 blk.3.ffn_up.weight Block 3 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
  • Total elements in blk.3: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 4 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
39 blk.4.attn_k.weight Block 4 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ3_S
40 blk.4.attn_norm.weight Block 4 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
41 blk.4.attn_output.weight Block 4 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
42 blk.4.attn_q.weight Block 4 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ3_S
43 blk.4.attn_v.weight Block 4 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_XS
44 blk.4.ffn_down.weight Block 4 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
45 blk.4.ffn_gate.weight Block 4 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
46 blk.4.ffn_norm.weight Block 4 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
47 blk.4.ffn_up.weight Block 4 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
  • Total elements in blk.4: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 5 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
48 blk.5.attn_k.weight Block 5 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ3_S
49 blk.5.attn_norm.weight Block 5 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
50 blk.5.attn_output.weight Block 5 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
51 blk.5.attn_q.weight Block 5 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ3_S
52 blk.5.attn_v.weight Block 5 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_XS
53 blk.5.ffn_down.weight Block 5 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
54 blk.5.ffn_gate.weight Block 5 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
55 blk.5.ffn_norm.weight Block 5 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
56 blk.5.ffn_up.weight Block 5 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
  • Total elements in blk.5: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 6 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
57 blk.6.attn_k.weight Block 6 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ3_S
58 blk.6.attn_norm.weight Block 6 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
59 blk.6.attn_output.weight Block 6 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
60 blk.6.attn_q.weight Block 6 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ3_S
61 blk.6.attn_v.weight Block 6 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_XS
62 blk.6.ffn_down.weight Block 6 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
63 blk.6.ffn_gate.weight Block 6 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
64 blk.6.ffn_norm.weight Block 6 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
65 blk.6.ffn_up.weight Block 6 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
  • Total elements in blk.6: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 7 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
66 blk.7.attn_k.weight Block 7 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ3_S
67 blk.7.attn_norm.weight Block 7 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
68 blk.7.attn_output.weight Block 7 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
69 blk.7.attn_q.weight Block 7 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ3_S
70 blk.7.attn_v.weight Block 7 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_XS
71 blk.7.ffn_down.weight Block 7 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
72 blk.7.ffn_gate.weight Block 7 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
73 blk.7.ffn_norm.weight Block 7 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
74 blk.7.ffn_up.weight Block 7 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
  • Total elements in blk.7: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 8 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
75 blk.8.attn_k.weight Block 8 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ3_S
76 blk.8.attn_norm.weight Block 8 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
77 blk.8.attn_output.weight Block 8 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
78 blk.8.attn_q.weight Block 8 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ3_S
79 blk.8.attn_v.weight Block 8 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_XS
80 blk.8.ffn_down.weight Block 8 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
81 blk.8.ffn_gate.weight Block 8 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
82 blk.8.ffn_norm.weight Block 8 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
83 blk.8.ffn_up.weight Block 8 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
  • Total elements in blk.8: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 9 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
84 blk.9.attn_k.weight Block 9 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ3_S
85 blk.9.attn_norm.weight Block 9 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
86 blk.9.attn_output.weight Block 9 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
87 blk.9.attn_q.weight Block 9 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ3_S
88 blk.9.attn_v.weight Block 9 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_XS
89 blk.9.ffn_down.weight Block 9 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
90 blk.9.ffn_gate.weight Block 9 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
91 blk.9.ffn_norm.weight Block 9 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
92 blk.9.ffn_up.weight Block 9 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
  • Total elements in blk.9: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 10 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
93 blk.10.attn_k.weight Block 10 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ3_S
94 blk.10.attn_norm.weight Block 10 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
95 blk.10.attn_output.weight Block 10 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
96 blk.10.attn_q.weight Block 10 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ3_S
97 blk.10.attn_v.weight Block 10 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_XS
98 blk.10.ffn_down.weight Block 10 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
99 blk.10.ffn_gate.weight Block 10 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
100 blk.10.ffn_norm.weight Block 10 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
101 blk.10.ffn_up.weight Block 10 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
  • Total elements in blk.10: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 11 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
102 blk.11.attn_k.weight Block 11 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ3_S
103 blk.11.attn_norm.weight Block 11 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
104 blk.11.attn_output.weight Block 11 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
105 blk.11.attn_q.weight Block 11 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ3_S
106 blk.11.attn_v.weight Block 11 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_XS
107 blk.11.ffn_down.weight Block 11 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
108 blk.11.ffn_gate.weight Block 11 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
109 blk.11.ffn_norm.weight Block 11 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
110 blk.11.ffn_up.weight Block 11 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
  • Total elements in blk.11: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 12 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
111 blk.12.attn_k.weight Block 12 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ3_S
112 blk.12.attn_norm.weight Block 12 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
113 blk.12.attn_output.weight Block 12 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
114 blk.12.attn_q.weight Block 12 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ3_S
115 blk.12.attn_v.weight Block 12 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_XS
116 blk.12.ffn_down.weight Block 12 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
117 blk.12.ffn_gate.weight Block 12 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
118 blk.12.ffn_norm.weight Block 12 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
119 blk.12.ffn_up.weight Block 12 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
  • Total elements in blk.12: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 13 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
120 blk.13.attn_k.weight Block 13 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ3_S
121 blk.13.attn_norm.weight Block 13 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
122 blk.13.attn_output.weight Block 13 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
123 blk.13.attn_q.weight Block 13 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ3_S
124 blk.13.attn_v.weight Block 13 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_XS
125 blk.13.ffn_down.weight Block 13 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
126 blk.13.ffn_gate.weight Block 13 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
127 blk.13.ffn_norm.weight Block 13 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
128 blk.13.ffn_up.weight Block 13 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
  • Total elements in blk.13: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 14 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
129 blk.14.attn_k.weight Block 14 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ3_S
130 blk.14.attn_norm.weight Block 14 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
131 blk.14.attn_output.weight Block 14 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
132 blk.14.attn_q.weight Block 14 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ3_S
133 blk.14.attn_v.weight Block 14 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_XS
134 blk.14.ffn_down.weight Block 14 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
135 blk.14.ffn_gate.weight Block 14 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
136 blk.14.ffn_norm.weight Block 14 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
137 blk.14.ffn_up.weight Block 14 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
  • Total elements in blk.14: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 15 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
138 blk.15.attn_k.weight Block 15 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ3_S
139 blk.15.attn_norm.weight Block 15 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
140 blk.15.attn_output.weight Block 15 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
141 blk.15.attn_q.weight Block 15 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ3_S
142 blk.15.attn_v.weight Block 15 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_XS
143 blk.15.ffn_down.weight Block 15 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
144 blk.15.ffn_gate.weight Block 15 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
145 blk.15.ffn_norm.weight Block 15 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
146 blk.15.ffn_up.weight Block 15 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
  • Total elements in blk.15: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 16 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
147 blk.16.attn_k.weight Block 16 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ3_S
148 blk.16.attn_norm.weight Block 16 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
149 blk.16.attn_output.weight Block 16 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
150 blk.16.attn_q.weight Block 16 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ3_S
151 blk.16.attn_v.weight Block 16 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_XS
152 blk.16.ffn_down.weight Block 16 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
153 blk.16.ffn_gate.weight Block 16 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
154 blk.16.ffn_norm.weight Block 16 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
155 blk.16.ffn_up.weight Block 16 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
  • Total elements in blk.16: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 17 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
156 blk.17.attn_k.weight Block 17 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
157 blk.17.attn_norm.weight Block 17 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
158 blk.17.attn_output.weight Block 17 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
159 blk.17.attn_q.weight Block 17 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ4_NL
160 blk.17.attn_v.weight Block 17 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
161 blk.17.ffn_down.weight Block 17 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
162 blk.17.ffn_gate.weight Block 17 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
163 blk.17.ffn_norm.weight Block 17 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
164 blk.17.ffn_up.weight Block 17 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
  • Total elements in blk.17: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 18 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
165 blk.18.attn_k.weight Block 18 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
166 blk.18.attn_norm.weight Block 18 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
167 blk.18.attn_output.weight Block 18 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
168 blk.18.attn_q.weight Block 18 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ4_NL
169 blk.18.attn_v.weight Block 18 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
170 blk.18.ffn_down.weight Block 18 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
171 blk.18.ffn_gate.weight Block 18 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
172 blk.18.ffn_norm.weight Block 18 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
173 blk.18.ffn_up.weight Block 18 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
  • Total elements in blk.18: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 19 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
174 blk.19.attn_k.weight Block 19 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ3_S
175 blk.19.attn_norm.weight Block 19 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
176 blk.19.attn_output.weight Block 19 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
177 blk.19.attn_q.weight Block 19 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ3_S
178 blk.19.attn_v.weight Block 19 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_XS
179 blk.19.ffn_down.weight Block 19 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
180 blk.19.ffn_gate.weight Block 19 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
181 blk.19.ffn_norm.weight Block 19 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
182 blk.19.ffn_up.weight Block 19 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ3_S
  • Total elements in blk.19: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 20 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
183 blk.20.attn_k.weight Block 20 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
184 blk.20.attn_norm.weight Block 20 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
185 blk.20.attn_output.weight Block 20 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
186 blk.20.attn_q.weight Block 20 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ4_NL
187 blk.20.attn_v.weight Block 20 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
188 blk.20.ffn_down.weight Block 20 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
189 blk.20.ffn_gate.weight Block 20 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
190 blk.20.ffn_norm.weight Block 20 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
191 blk.20.ffn_up.weight Block 20 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
  • Total elements in blk.20: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 21 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
192 blk.21.attn_k.weight Block 21 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ3_S
193 blk.21.attn_norm.weight Block 21 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
194 blk.21.attn_output.weight Block 21 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
195 blk.21.attn_q.weight Block 21 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ3_S
196 blk.21.attn_v.weight Block 21 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_XS
197 blk.21.ffn_down.weight Block 21 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
198 blk.21.ffn_gate.weight Block 21 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
199 blk.21.ffn_norm.weight Block 21 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
200 blk.21.ffn_up.weight Block 21 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
  • Total elements in blk.21: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 22 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
201 blk.22.attn_k.weight Block 22 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
202 blk.22.attn_norm.weight Block 22 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
203 blk.22.attn_output.weight Block 22 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
204 blk.22.attn_q.weight Block 22 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ4_NL
205 blk.22.attn_v.weight Block 22 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
206 blk.22.ffn_down.weight Block 22 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
207 blk.22.ffn_gate.weight Block 22 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
208 blk.22.ffn_norm.weight Block 22 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
209 blk.22.ffn_up.weight Block 22 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
  • Total elements in blk.22: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 23 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
210 blk.23.attn_k.weight Block 23 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
211 blk.23.attn_norm.weight Block 23 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
212 blk.23.attn_output.weight Block 23 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
213 blk.23.attn_q.weight Block 23 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ4_NL
214 blk.23.attn_v.weight Block 23 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
215 blk.23.ffn_down.weight Block 23 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
216 blk.23.ffn_gate.weight Block 23 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
217 blk.23.ffn_norm.weight Block 23 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
218 blk.23.ffn_up.weight Block 23 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
  • Total elements in blk.23: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 24 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
219 blk.24.attn_k.weight Block 24 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
220 blk.24.attn_norm.weight Block 24 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
221 blk.24.attn_output.weight Block 24 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
222 blk.24.attn_q.weight Block 24 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ4_NL
223 blk.24.attn_v.weight Block 24 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
224 blk.24.ffn_down.weight Block 24 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
225 blk.24.ffn_gate.weight Block 24 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
226 blk.24.ffn_norm.weight Block 24 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
227 blk.24.ffn_up.weight Block 24 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
  • Total elements in blk.24: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 25 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
228 blk.25.attn_k.weight Block 25 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
229 blk.25.attn_norm.weight Block 25 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
230 blk.25.attn_output.weight Block 25 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
231 blk.25.attn_q.weight Block 25 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ4_NL
232 blk.25.attn_v.weight Block 25 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
233 blk.25.ffn_down.weight Block 25 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
234 blk.25.ffn_gate.weight Block 25 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
235 blk.25.ffn_norm.weight Block 25 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
236 blk.25.ffn_up.weight Block 25 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
  • Total elements in blk.25: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 26 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
237 blk.26.attn_k.weight Block 26 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
238 blk.26.attn_norm.weight Block 26 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
239 blk.26.attn_output.weight Block 26 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
240 blk.26.attn_q.weight Block 26 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ4_NL
241 blk.26.attn_v.weight Block 26 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
242 blk.26.ffn_down.weight Block 26 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
243 blk.26.ffn_gate.weight Block 26 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
244 blk.26.ffn_norm.weight Block 26 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
245 blk.26.ffn_up.weight Block 26 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
  • Total elements in blk.26: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 27 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
246 blk.27.attn_k.weight Block 27 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ3_S
247 blk.27.attn_norm.weight Block 27 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
248 blk.27.attn_output.weight Block 27 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
249 blk.27.attn_q.weight Block 27 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ3_S
250 blk.27.attn_v.weight Block 27 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_XS
251 blk.27.ffn_down.weight Block 27 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
252 blk.27.ffn_gate.weight Block 27 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
253 blk.27.ffn_norm.weight Block 27 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
254 blk.27.ffn_up.weight Block 27 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
  • Total elements in blk.27: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 28 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
255 blk.28.attn_k.weight Block 28 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
256 blk.28.attn_norm.weight Block 28 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
257 blk.28.attn_output.weight Block 28 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
258 blk.28.attn_q.weight Block 28 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ4_NL
259 blk.28.attn_v.weight Block 28 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
260 blk.28.ffn_down.weight Block 28 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
261 blk.28.ffn_gate.weight Block 28 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
262 blk.28.ffn_norm.weight Block 28 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
263 blk.28.ffn_up.weight Block 28 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
  • Total elements in blk.28: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 29 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
264 blk.29.attn_k.weight Block 29 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
265 blk.29.attn_norm.weight Block 29 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
266 blk.29.attn_output.weight Block 29 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
267 blk.29.attn_q.weight Block 29 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ4_NL
268 blk.29.attn_v.weight Block 29 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
269 blk.29.ffn_down.weight Block 29 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
270 blk.29.ffn_gate.weight Block 29 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
271 blk.29.ffn_norm.weight Block 29 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
272 blk.29.ffn_up.weight Block 29 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
  • Total elements in blk.29: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 30 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
273 blk.30.attn_k.weight Block 30 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
274 blk.30.attn_norm.weight Block 30 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
275 blk.30.attn_output.weight Block 30 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
276 blk.30.attn_q.weight Block 30 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ4_NL
277 blk.30.attn_v.weight Block 30 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
278 blk.30.ffn_down.weight Block 30 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
279 blk.30.ffn_gate.weight Block 30 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
280 blk.30.ffn_norm.weight Block 30 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
281 blk.30.ffn_up.weight Block 30 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
  • Total elements in blk.30: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 31 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
282 blk.31.attn_k.weight Block 31 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
283 blk.31.attn_norm.weight Block 31 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
284 blk.31.attn_output.weight Block 31 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
285 blk.31.attn_q.weight Block 31 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ4_NL
286 blk.31.attn_v.weight Block 31 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
287 blk.31.ffn_down.weight Block 31 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
288 blk.31.ffn_gate.weight Block 31 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
289 blk.31.ffn_norm.weight Block 31 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
290 blk.31.ffn_up.weight Block 31 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
  • Total elements in blk.31: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 32 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
291 blk.32.attn_k.weight Block 32 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
292 blk.32.attn_norm.weight Block 32 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
293 blk.32.attn_output.weight Block 32 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
294 blk.32.attn_q.weight Block 32 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ4_NL
295 blk.32.attn_v.weight Block 32 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
296 blk.32.ffn_down.weight Block 32 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
297 blk.32.ffn_gate.weight Block 32 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
298 blk.32.ffn_norm.weight Block 32 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
299 blk.32.ffn_up.weight Block 32 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
  • Total elements in blk.32: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 33 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
300 blk.33.attn_k.weight Block 33 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
301 blk.33.attn_norm.weight Block 33 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
302 blk.33.attn_output.weight Block 33 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
303 blk.33.attn_q.weight Block 33 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ4_NL
304 blk.33.attn_v.weight Block 33 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
305 blk.33.ffn_down.weight Block 33 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
306 blk.33.ffn_gate.weight Block 33 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
307 blk.33.ffn_norm.weight Block 33 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
308 blk.33.ffn_up.weight Block 33 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
  • Total elements in blk.33: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 34 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
309 blk.34.attn_k.weight Block 34 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
310 blk.34.attn_norm.weight Block 34 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
311 blk.34.attn_output.weight Block 34 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
312 blk.34.attn_q.weight Block 34 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ4_NL
313 blk.34.attn_v.weight Block 34 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
314 blk.34.ffn_down.weight Block 34 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
315 blk.34.ffn_gate.weight Block 34 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
316 blk.34.ffn_norm.weight Block 34 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
317 blk.34.ffn_up.weight Block 34 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
  • Total elements in blk.34: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 35 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
318 blk.35.attn_k.weight Block 35 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
319 blk.35.attn_norm.weight Block 35 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
320 blk.35.attn_output.weight Block 35 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
321 blk.35.attn_q.weight Block 35 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ4_NL
322 blk.35.attn_v.weight Block 35 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
323 blk.35.ffn_down.weight Block 35 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
324 blk.35.ffn_gate.weight Block 35 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
325 blk.35.ffn_norm.weight Block 35 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
326 blk.35.ffn_up.weight Block 35 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
  • Total elements in blk.35: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 36 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
327 blk.36.attn_k.weight Block 36 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
328 blk.36.attn_norm.weight Block 36 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
329 blk.36.attn_output.weight Block 36 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
330 blk.36.attn_q.weight Block 36 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ4_NL
331 blk.36.attn_v.weight Block 36 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
332 blk.36.ffn_down.weight Block 36 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
333 blk.36.ffn_gate.weight Block 36 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
334 blk.36.ffn_norm.weight Block 36 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
335 blk.36.ffn_up.weight Block 36 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
  • Total elements in blk.36: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 37 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
336 blk.37.attn_k.weight Block 37 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
337 blk.37.attn_norm.weight Block 37 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
338 blk.37.attn_output.weight Block 37 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
339 blk.37.attn_q.weight Block 37 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ4_NL
340 blk.37.attn_v.weight Block 37 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
341 blk.37.ffn_down.weight Block 37 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
342 blk.37.ffn_gate.weight Block 37 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
343 blk.37.ffn_norm.weight Block 37 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
344 blk.37.ffn_up.weight Block 37 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
  • Total elements in blk.37: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 38 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
345 blk.38.attn_k.weight Block 38 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
346 blk.38.attn_norm.weight Block 38 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
347 blk.38.attn_output.weight Block 38 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
348 blk.38.attn_q.weight Block 38 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ4_NL
349 blk.38.attn_v.weight Block 38 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
350 blk.38.ffn_down.weight Block 38 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
351 blk.38.ffn_gate.weight Block 38 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
352 blk.38.ffn_norm.weight Block 38 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
353 blk.38.ffn_up.weight Block 38 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
  • Total elements in blk.38: (~556M) 555755520
  • Percentage of total elements: 2.36%

Block 39 Tensor Group : ~556M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
354 blk.39.attn_k.weight Block 39 Attention Key (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
355 blk.39.attn_norm.weight Block 39 Attention Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
356 blk.39.attn_output.weight Block 39 Attention Output (W) ( ~21M) 20971520 4096 x 5120 x 1 x 1 IQ4_NL
357 blk.39.attn_q.weight Block 39 Attention Query (W) ( ~21M) 20971520 5120 x 4096 x 1 x 1 IQ4_NL
358 blk.39.attn_v.weight Block 39 Attention Value (W) ( ~5M) 5242880 5120 x 1024 x 1 x 1 IQ4_NL
359 blk.39.ffn_down.weight Block 39 Feed-Forward Network "Down" (W) (~168M) 167772160 32768 x 5120 x 1 x 1 IQ4_NL
360 blk.39.ffn_gate.weight Block 39 Feed-Forward Network "Gate" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
361 blk.39.ffn_norm.weight Block 39 Feed-Forward Network Normalization (W) ( ~5K) 5120 5120 x 1 x 1 x 1 F32
362 blk.39.ffn_up.weight Block 39 Feed-Forward Network "Up" (W) (~168M) 167772160 5120 x 32768 x 1 x 1 IQ4_NL
  • Total elements in blk.39: (~556M) 555755520
  • Percentage of total elements: 2.36%