wav2vec2-base-finetuned-gtzan-plus

This model is a fine-tuned version of facebook/wav2vec2-base on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6618
  • Accuracy: 0.86

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Accuracy Validation Loss
1.1816 1.0 29 0.41 2.1429
0.9004 2.0 58 0.61 1.7952
0.7342 3.0 87 0.62 1.6186
0.8389 4.0 116 0.67 1.4450
0.8045 5.0 145 0.72 1.2934
0.6668 6.0 174 0.81 1.1416
0.897 7.0 203 0.78 1.0876
0.5504 8.0 232 0.82 1.0412
0.4106 9.0 261 0.83 0.9954
0.4245 10.0 290 0.84 0.9752
0.2955 11.0 319 0.9407 0.8
0.2214 12.0 348 0.9383 0.8
0.5358 13.0 377 0.8892 0.81
0.3723 14.0 406 0.8386 0.82
0.3086 15.0 435 0.7704 0.86
0.2668 16.0 464 0.7496 0.81
0.2425 17.0 493 0.7069 0.85
0.2257 18.0 522 0.7138 0.85
0.1899 19.0 551 0.6733 0.86
0.1749 20.0 580 0.6618 0.86

Framework versions

  • Transformers 4.53.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.4-dev.0
Downloads last month
4
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for dung8204/wav2vec2-base-finetuned-gtzan

Finetuned
(825)
this model

Dataset used to train dung8204/wav2vec2-base-finetuned-gtzan

Evaluation results