OCR UV Scripts
Part of uv-scripts - ready-to-run ML tools powered by UV
Ready-to-run OCR scripts that work with uv run
- no setup required!
π Quick Start with HuggingFace Jobs
Run OCR on any dataset without needing your own GPU:
# Quick test with 10 samples
hf jobs uv run --flavor l4x1 \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
your-input-dataset your-output-dataset \
--max-samples 10
That's it! The script will:
- β Process first 10 images from your dataset
- β
Add OCR results as a new
markdown
column - β Push the results to a new dataset
- π View results at:
https://huggingface.co/datasets/[your-output-dataset]
π Available Scripts
RolmOCR (rolm-ocr.py
)
Fast general-purpose OCR using reducto/RolmOCR based on Qwen2.5-VL-7B:
- π Fast extraction - Optimized for speed and efficiency
- π Plain text output - Clean, natural text representation
- πͺ General-purpose - Works well on various document types
- π₯ Large context - Handles up to 16K tokens
- β‘ Batch optimized - Efficient processing with vLLM
Nanonets OCR (nanonets-ocr.py
)
State-of-the-art document OCR using nanonets/Nanonets-OCR-s that handles:
- π LaTeX equations - Mathematical formulas preserved
- π Tables - Extracted as HTML format
- π Document structure - Headers, lists, formatting maintained
- πΌοΈ Images - Captions and descriptions included
- βοΈ Forms - Checkboxes rendered as β/β
π New Features
Multi-Model Comparison Support
All scripts now include inference_info
tracking for comparing multiple OCR models:
# First model
uv run rolm-ocr.py my-dataset my-dataset --max-samples 100
# Second model (appends to same dataset)
uv run nanonets-ocr.py my-dataset my-dataset --max-samples 100
# View all models used
python -c "import json; from datasets import load_dataset; ds = load_dataset('my-dataset'); print(json.loads(ds[0]['inference_info']))"
Random Sampling
Get representative samples with the new --shuffle
flag:
# Random 50 samples instead of first 50
uv run rolm-ocr.py ordered-dataset output --max-samples 50 --shuffle
# Reproducible random sampling
uv run nanonets-ocr.py dataset output --max-samples 100 --shuffle --seed 42
Automatic Dataset Cards
Every OCR run now generates comprehensive dataset documentation including:
- Model configuration and parameters
- Processing statistics
- Column descriptions
- Reproduction instructions
π» Usage Examples
Run on HuggingFace Jobs (Recommended)
No GPU? No problem! Run on HF infrastructure:
# Basic OCR job
hf jobs uv run --flavor l4x1 \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
your-input-dataset your-output-dataset
# Real example with UFO dataset πΈ
hf jobs uv run \
--flavor a10g-large \
--image vllm/vllm-openai:latest \
-s HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
davanstrien/ufo-ColPali \
your-username/ufo-ocr \
--image-column image \
--max-model-len 16384 \
--batch-size 128
# Private dataset with custom settings
hf jobs uv run --flavor l40sx1 \
-s HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
private-input private-output \
--private \
--batch-size 32
Python API
from huggingface_hub import run_uv_job
job = run_uv_job(
"https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py",
args=["input-dataset", "output-dataset", "--batch-size", "16"],
flavor="l4x1"
)
Run Locally (Requires GPU)
# Clone and run
git clone https://huggingface.co/datasets/uv-scripts/ocr
cd ocr
uv run nanonets-ocr.py input-dataset output-dataset
# Or run directly from URL
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
input-dataset output-dataset
# RolmOCR for fast text extraction
uv run rolm-ocr.py documents extracted-text
uv run rolm-ocr.py images texts --shuffle --max-samples 100 # Random sample
π Works With
Any HuggingFace dataset containing images - documents, forms, receipts, books, handwriting.
ποΈ Configuration Options
Common Options (All Scripts)
Option | Default | Description |
---|---|---|
--image-column |
image |
Column containing images |
--batch-size |
32 /16 * |
Images processed together |
--max-model-len |
8192 /16384 ** |
Max context length |
--max-tokens |
4096 /8192 ** |
Max output tokens |
--gpu-memory-utilization |
0.8 |
GPU memory usage (0.0-1.0) |
--split |
train |
Dataset split to process |
--max-samples |
None | Limit samples (for testing) |
--private |
False | Make output dataset private |
--shuffle |
False | Shuffle dataset before processing |
--seed |
42 |
Random seed for shuffling |
*RolmOCR uses batch size 16 **RolmOCR uses 16384/8192
RolmOCR Specific
- Output column is auto-generated from model name (e.g.,
rolmocr_text
) - Use
--output-column
to override the default name
π‘ Performance tip: Increase batch size for faster processing (e.g., --batch-size 128
for A10G GPUs)
More OCR VLM Scripts coming soon! Stay tuned for updates!
- Downloads last month
- 109