model_id
stringlengths 9
102
| model_card
stringlengths 4
343k
| model_labels
listlengths 2
50.8k
|
---|---|---|
machinelearningzuu/queue_detection
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# queue_detection
This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1249
- Map: 0.9571
- Map 50: 0.9901
- Map 75: 0.9844
- Map Small: -1.0
- Map Medium: 0.3322
- Map Large: 0.9614
- Mar 1: 0.5052
- Mar 10: 0.9726
- Mar 100: 0.9733
- Mar Small: -1.0
- Mar Medium: 0.3654
- Mar Large: 0.9759
- Map Cashier: 0.9657
- Mar 100 Cashier: 0.9777
- Map Cx: 0.9486
- Mar 100 Cx: 0.969
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Cashier | Mar 100 Cashier | Map Cx | Mar 100 Cx |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:-----------:|:---------------:|:------:|:----------:|
| No log | 1.0 | 218 | 1.6511 | 0.1028 | 0.2445 | 0.079 | -1.0 | 0.0 | 0.1036 | 0.105 | 0.4632 | 0.6421 | -1.0 | 0.0 | 0.6464 | 0.1151 | 0.6993 | 0.0905 | 0.5848 |
| No log | 2.0 | 436 | 1.2010 | 0.3717 | 0.5667 | 0.4222 | -1.0 | 0.0003 | 0.3749 | 0.3095 | 0.6671 | 0.7472 | -1.0 | 0.0071 | 0.754 | 0.4302 | 0.8025 | 0.3132 | 0.6919 |
| 2.8665 | 3.0 | 654 | 0.9101 | 0.5265 | 0.7814 | 0.6068 | -1.0 | 0.0 | 0.5298 | 0.3399 | 0.7167 | 0.7588 | -1.0 | 0.0 | 0.7642 | 0.6719 | 0.8041 | 0.3811 | 0.7136 |
| 2.8665 | 4.0 | 872 | 0.7512 | 0.6528 | 0.9101 | 0.7828 | -1.0 | 0.0453 | 0.6571 | 0.3744 | 0.7556 | 0.78 | -1.0 | 0.0577 | 0.7856 | 0.7274 | 0.8003 | 0.5782 | 0.7597 |
| 0.8677 | 5.0 | 1090 | 0.7338 | 0.6431 | 0.9366 | 0.7893 | -1.0 | 0.0381 | 0.6472 | 0.3563 | 0.7437 | 0.7641 | -1.0 | 0.1773 | 0.7672 | 0.6835 | 0.7876 | 0.6026 | 0.7406 |
| 0.8677 | 6.0 | 1308 | 0.6059 | 0.7148 | 0.9548 | 0.8683 | 0.0 | 0.0207 | 0.7205 | 0.3998 | 0.783 | 0.7947 | 0.0 | 0.1038 | 0.8001 | 0.7552 | 0.8218 | 0.6744 | 0.7677 |
| 0.6584 | 7.0 | 1526 | 0.5631 | 0.7425 | 0.9666 | 0.8883 | -1.0 | 0.0418 | 0.7475 | 0.4104 | 0.809 | 0.8218 | -1.0 | 0.1227 | 0.8266 | 0.7871 | 0.8501 | 0.698 | 0.7935 |
| 0.6584 | 8.0 | 1744 | 0.5143 | 0.7573 | 0.9724 | 0.9071 | -1.0 | 0.084 | 0.7621 | 0.4178 | 0.8205 | 0.8286 | -1.0 | 0.1643 | 0.8332 | 0.782 | 0.8544 | 0.7326 | 0.8028 |
| 0.6584 | 9.0 | 1962 | 0.5286 | 0.7525 | 0.9715 | 0.9094 | -1.0 | 0.0377 | 0.7577 | 0.4114 | 0.8123 | 0.8209 | -1.0 | 0.0962 | 0.8261 | 0.809 | 0.8672 | 0.696 | 0.7747 |
| 0.5455 | 10.0 | 2180 | 0.4969 | 0.7716 | 0.9762 | 0.9247 | 0.0 | 0.0586 | 0.7759 | 0.4247 | 0.8186 | 0.8268 | 0.0 | 0.1444 | 0.8306 | 0.8082 | 0.8532 | 0.735 | 0.8005 |
| 0.5455 | 11.0 | 2398 | 0.4934 | 0.7701 | 0.97 | 0.9216 | 0.0 | 0.0231 | 0.779 | 0.4245 | 0.8256 | 0.8403 | 0.0 | 0.0676 | 0.8499 | 0.8059 | 0.8694 | 0.7343 | 0.8112 |
| 0.5034 | 12.0 | 2616 | 0.4560 | 0.7917 | 0.9764 | 0.9315 | 0.0 | 0.0278 | 0.7974 | 0.4331 | 0.8416 | 0.8521 | 0.0 | 0.1542 | 0.8568 | 0.8305 | 0.8874 | 0.753 | 0.8168 |
| 0.5034 | 13.0 | 2834 | 0.4293 | 0.8 | 0.9814 | 0.9299 | -1.0 | 0.0552 | 0.8042 | 0.4353 | 0.8556 | 0.8627 | -1.0 | 0.15 | 0.8664 | 0.85 | 0.8956 | 0.7499 | 0.8297 |
| 0.4705 | 14.0 | 3052 | 0.3860 | 0.8269 | 0.9848 | 0.9404 | -1.0 | 0.0996 | 0.8328 | 0.4497 | 0.8701 | 0.876 | -1.0 | 0.1969 | 0.881 | 0.8573 | 0.9017 | 0.7965 | 0.8502 |
| 0.4705 | 15.0 | 3270 | 0.4005 | 0.8193 | 0.9764 | 0.9476 | 0.0 | 0.0535 | 0.8277 | 0.4467 | 0.8643 | 0.8703 | 0.0 | 0.1806 | 0.8771 | 0.8521 | 0.9021 | 0.7864 | 0.8384 |
| 0.4705 | 16.0 | 3488 | 0.3911 | 0.813 | 0.9827 | 0.9434 | -1.0 | 0.1665 | 0.8177 | 0.4442 | 0.8633 | 0.8712 | -1.0 | 0.3929 | 0.875 | 0.8513 | 0.9011 | 0.7748 | 0.8413 |
| 0.4375 | 17.0 | 3706 | 0.3538 | 0.8352 | 0.9871 | 0.9687 | -1.0 | 0.1586 | 0.8391 | 0.4533 | 0.8801 | 0.8832 | -1.0 | 0.2423 | 0.8867 | 0.8697 | 0.9096 | 0.8006 | 0.8569 |
| 0.4375 | 18.0 | 3924 | 0.3740 | 0.8233 | 0.9867 | 0.9561 | -1.0 | 0.1498 | 0.827 | 0.4492 | 0.8731 | 0.8774 | -1.0 | 0.2333 | 0.8801 | 0.8532 | 0.9028 | 0.7935 | 0.852 |
| 0.4093 | 19.0 | 4142 | 0.3847 | 0.8151 | 0.9831 | 0.9572 | -1.0 | 0.2685 | 0.8213 | 0.4446 | 0.8628 | 0.8662 | -1.0 | 0.3286 | 0.8717 | 0.863 | 0.907 | 0.7672 | 0.8254 |
| 0.4093 | 20.0 | 4360 | 0.3744 | 0.8148 | 0.9869 | 0.9585 | -1.0 | 0.109 | 0.8196 | 0.4464 | 0.8659 | 0.8716 | -1.0 | 0.1458 | 0.8762 | 0.8403 | 0.8967 | 0.7894 | 0.8466 |
| 0.4047 | 21.0 | 4578 | 0.3521 | 0.8355 | 0.9879 | 0.9669 | -1.0 | 0.1021 | 0.8414 | 0.4537 | 0.8797 | 0.8847 | -1.0 | 0.1773 | 0.8887 | 0.8627 | 0.9097 | 0.8083 | 0.8597 |
| 0.4047 | 22.0 | 4796 | 0.3752 | 0.8357 | 0.9798 | 0.9508 | 0.0 | 0.1229 | 0.8447 | 0.4572 | 0.8752 | 0.8787 | 0.0 | 0.1676 | 0.8874 | 0.866 | 0.9047 | 0.8054 | 0.8527 |
| 0.3804 | 23.0 | 5014 | 0.3472 | 0.8435 | 0.9865 | 0.9601 | -1.0 | 0.1067 | 0.848 | 0.4574 | 0.8844 | 0.8893 | -1.0 | 0.2214 | 0.8934 | 0.8729 | 0.9158 | 0.8142 | 0.8627 |
| 0.3804 | 24.0 | 5232 | 0.3095 | 0.8554 | 0.9881 | 0.9711 | -1.0 | 0.0987 | 0.8604 | 0.4696 | 0.8963 | 0.9001 | -1.0 | 0.1727 | 0.9042 | 0.8888 | 0.9297 | 0.8221 | 0.8706 |
| 0.3804 | 25.0 | 5450 | 0.3470 | 0.8389 | 0.9882 | 0.9602 | -1.0 | 0.1231 | 0.843 | 0.4527 | 0.8786 | 0.881 | -1.0 | 0.175 | 0.8858 | 0.8827 | 0.9194 | 0.7952 | 0.8426 |
| 0.3534 | 26.0 | 5668 | 0.3446 | 0.8281 | 0.9889 | 0.9618 | 0.0 | 0.1064 | 0.8336 | 0.4528 | 0.8751 | 0.8784 | 0.0 | 0.22 | 0.8828 | 0.8574 | 0.9055 | 0.7988 | 0.8512 |
| 0.3534 | 27.0 | 5886 | 0.3234 | 0.844 | 0.9881 | 0.9593 | -1.0 | 0.1256 | 0.8493 | 0.4591 | 0.8856 | 0.8881 | -1.0 | 0.18 | 0.8933 | 0.8751 | 0.9161 | 0.8129 | 0.8601 |
| 0.3461 | 28.0 | 6104 | 0.2976 | 0.862 | 0.9881 | 0.9588 | -1.0 | 0.1683 | 0.8664 | 0.47 | 0.8979 | 0.9015 | -1.0 | 0.2083 | 0.9054 | 0.8989 | 0.9344 | 0.825 | 0.8685 |
| 0.3461 | 29.0 | 6322 | 0.2960 | 0.8607 | 0.9891 | 0.9744 | -1.0 | 0.1628 | 0.8649 | 0.4662 | 0.9 | 0.9031 | -1.0 | 0.26 | 0.9058 | 0.891 | 0.9311 | 0.8304 | 0.875 |
| 0.344 | 30.0 | 6540 | 0.3070 | 0.8599 | 0.9881 | 0.9694 | -1.0 | 0.1578 | 0.8648 | 0.4628 | 0.8975 | 0.8992 | -1.0 | 0.2 | 0.9035 | 0.8877 | 0.9233 | 0.832 | 0.8751 |
| 0.344 | 31.0 | 6758 | 0.3176 | 0.852 | 0.9864 | 0.97 | 0.0 | 0.0895 | 0.859 | 0.462 | 0.8915 | 0.8934 | 0.0 | 0.1538 | 0.8996 | 0.8791 | 0.9194 | 0.8249 | 0.8675 |
| 0.344 | 32.0 | 6976 | 0.3198 | 0.8478 | 0.9881 | 0.963 | -1.0 | 0.1354 | 0.8527 | 0.4637 | 0.8891 | 0.8919 | -1.0 | 0.2143 | 0.8967 | 0.8859 | 0.925 | 0.8097 | 0.8588 |
| 0.3308 | 33.0 | 7194 | 0.3002 | 0.8564 | 0.989 | 0.9708 | -1.0 | 0.1237 | 0.8609 | 0.463 | 0.8954 | 0.8969 | -1.0 | 0.1636 | 0.9011 | 0.8887 | 0.9251 | 0.8241 | 0.8688 |
| 0.3308 | 34.0 | 7412 | 0.2953 | 0.8659 | 0.9891 | 0.9737 | -1.0 | 0.1593 | 0.8716 | 0.471 | 0.9014 | 0.9033 | -1.0 | 0.2393 | 0.9073 | 0.8934 | 0.9261 | 0.8385 | 0.8805 |
| 0.321 | 35.0 | 7630 | 0.2858 | 0.8733 | 0.9873 | 0.9703 | -1.0 | 0.1392 | 0.8801 | 0.4696 | 0.9071 | 0.9098 | -1.0 | 0.1861 | 0.916 | 0.8998 | 0.9346 | 0.8468 | 0.8849 |
| 0.321 | 36.0 | 7848 | 0.2604 | 0.8845 | 0.9889 | 0.9716 | -1.0 | 0.1392 | 0.8895 | 0.4769 | 0.9175 | 0.9195 | -1.0 | 0.1818 | 0.9237 | 0.9109 | 0.9427 | 0.858 | 0.8963 |
| 0.3074 | 37.0 | 8066 | 0.3035 | 0.8609 | 0.987 | 0.9704 | 0.0 | 0.096 | 0.8695 | 0.4672 | 0.8995 | 0.9005 | 0.0 | 0.1733 | 0.9077 | 0.8853 | 0.9234 | 0.8365 | 0.8777 |
| 0.3074 | 38.0 | 8284 | 0.2746 | 0.8641 | 0.9894 | 0.977 | -1.0 | 0.0994 | 0.8686 | 0.4711 | 0.9035 | 0.9053 | -1.0 | 0.2167 | 0.9083 | 0.8866 | 0.9246 | 0.8416 | 0.886 |
| 0.2989 | 39.0 | 8502 | 0.2851 | 0.864 | 0.9894 | 0.9684 | -1.0 | 0.1414 | 0.8703 | 0.4702 | 0.9033 | 0.904 | -1.0 | 0.24 | 0.9083 | 0.8873 | 0.9265 | 0.8407 | 0.8815 |
| 0.2989 | 40.0 | 8720 | 0.2456 | 0.8843 | 0.9896 | 0.9771 | -1.0 | 0.1205 | 0.8897 | 0.4798 | 0.9172 | 0.9178 | -1.0 | 0.2062 | 0.923 | 0.9189 | 0.946 | 0.8496 | 0.8895 |
| 0.2989 | 41.0 | 8938 | 0.2567 | 0.8777 | 0.9897 | 0.9742 | -1.0 | 0.162 | 0.8843 | 0.4771 | 0.9134 | 0.9136 | -1.0 | 0.2094 | 0.9188 | 0.8967 | 0.9335 | 0.8586 | 0.8936 |
| 0.2782 | 42.0 | 9156 | 0.2444 | 0.8858 | 0.9897 | 0.9779 | -1.0 | 0.2728 | 0.8918 | 0.4768 | 0.9187 | 0.9189 | -1.0 | 0.3885 | 0.923 | 0.9172 | 0.9496 | 0.8544 | 0.8882 |
| 0.2782 | 43.0 | 9374 | 0.2389 | 0.8879 | 0.9899 | 0.9793 | -1.0 | 0.1582 | 0.8934 | 0.4798 | 0.9199 | 0.9204 | -1.0 | 0.2 | 0.9249 | 0.9142 | 0.9448 | 0.8617 | 0.896 |
| 0.2694 | 44.0 | 9592 | 0.2401 | 0.8962 | 0.9896 | 0.9783 | -1.0 | 0.1936 | 0.9007 | 0.481 | 0.9255 | 0.9263 | -1.0 | 0.2227 | 0.93 | 0.9183 | 0.9471 | 0.8742 | 0.9055 |
| 0.2694 | 45.0 | 9810 | 0.2550 | 0.8906 | 0.9895 | 0.9801 | 0.0 | 0.224 | 0.8969 | 0.4784 | 0.9219 | 0.923 | 0.0 | 0.2625 | 0.9284 | 0.9153 | 0.9463 | 0.8659 | 0.8996 |
| 0.2592 | 46.0 | 10028 | 0.2364 | 0.8963 | 0.9893 | 0.9776 | 0.0 | 0.1886 | 0.9016 | 0.4845 | 0.9282 | 0.9291 | 0.0 | 0.2615 | 0.9333 | 0.9224 | 0.9512 | 0.8703 | 0.9069 |
| 0.2592 | 47.0 | 10246 | 0.2435 | 0.8838 | 0.9871 | 0.9719 | 0.0 | 0.215 | 0.889 | 0.4792 | 0.92 | 0.921 | 0.0 | 0.2833 | 0.9246 | 0.9062 | 0.939 | 0.8614 | 0.903 |
| 0.2592 | 48.0 | 10464 | 0.2241 | 0.9014 | 0.9899 | 0.9836 | -1.0 | 0.2242 | 0.9065 | 0.4842 | 0.9326 | 0.9333 | -1.0 | 0.25 | 0.9366 | 0.9184 | 0.9493 | 0.8844 | 0.9172 |
| 0.25 | 49.0 | 10682 | 0.2348 | 0.8975 | 0.9899 | 0.9773 | 0.0 | 0.3675 | 0.9037 | 0.483 | 0.9308 | 0.931 | 0.0 | 0.39 | 0.9369 | 0.9166 | 0.9463 | 0.8784 | 0.9156 |
| 0.25 | 50.0 | 10900 | 0.2374 | 0.895 | 0.9896 | 0.9734 | -1.0 | 0.2121 | 0.8994 | 0.4789 | 0.9266 | 0.9274 | -1.0 | 0.3 | 0.9325 | 0.9135 | 0.943 | 0.8765 | 0.9118 |
| 0.2505 | 51.0 | 11118 | 0.1953 | 0.9169 | 0.99 | 0.9895 | -1.0 | 0.2485 | 0.9218 | 0.4934 | 0.9467 | 0.9472 | -1.0 | 0.2833 | 0.9498 | 0.9326 | 0.9596 | 0.9012 | 0.9348 |
| 0.2505 | 52.0 | 11336 | 0.2362 | 0.9006 | 0.99 | 0.9787 | -1.0 | 0.2266 | 0.9066 | 0.4818 | 0.9303 | 0.931 | -1.0 | 0.3423 | 0.9359 | 0.9319 | 0.9552 | 0.8694 | 0.9069 |
| 0.2291 | 53.0 | 11554 | 0.2253 | 0.9052 | 0.9891 | 0.9735 | -1.0 | 0.1798 | 0.9126 | 0.4885 | 0.9326 | 0.9339 | -1.0 | 0.2225 | 0.9403 | 0.9298 | 0.9528 | 0.8807 | 0.9151 |
| 0.2291 | 54.0 | 11772 | 0.2214 | 0.9093 | 0.9898 | 0.9822 | -1.0 | 0.2074 | 0.9132 | 0.4883 | 0.9365 | 0.9372 | -1.0 | 0.2192 | 0.9416 | 0.9322 | 0.9572 | 0.8864 | 0.9172 |
| 0.2291 | 55.0 | 11990 | 0.2088 | 0.9133 | 0.99 | 0.9848 | -1.0 | 0.2959 | 0.918 | 0.4882 | 0.9416 | 0.9417 | -1.0 | 0.3333 | 0.9437 | 0.934 | 0.9586 | 0.8926 | 0.9247 |
| 0.2323 | 56.0 | 12208 | 0.2029 | 0.9127 | 0.9897 | 0.9789 | 0.0 | 0.1756 | 0.9168 | 0.4915 | 0.9394 | 0.9406 | 0.0 | 0.24 | 0.9455 | 0.9382 | 0.961 | 0.8872 | 0.9201 |
| 0.2323 | 57.0 | 12426 | 0.2137 | 0.9074 | 0.99 | 0.9849 | -1.0 | 0.2304 | 0.9101 | 0.488 | 0.9359 | 0.9362 | -1.0 | 0.25 | 0.9401 | 0.9335 | 0.9573 | 0.8813 | 0.9151 |
| 0.2114 | 58.0 | 12644 | 0.1903 | 0.9231 | 0.9899 | 0.9841 | -1.0 | 0.1404 | 0.9299 | 0.4932 | 0.9463 | 0.9466 | -1.0 | 0.2077 | 0.9513 | 0.947 | 0.9664 | 0.8992 | 0.9269 |
| 0.2114 | 59.0 | 12862 | 0.1921 | 0.9211 | 0.99 | 0.9841 | 0.0 | 0.2628 | 0.9254 | 0.4942 | 0.9439 | 0.945 | 0.0 | 0.305 | 0.9487 | 0.9453 | 0.9645 | 0.8969 | 0.9255 |
| 0.2076 | 60.0 | 13080 | 0.1737 | 0.9335 | 0.99 | 0.984 | -1.0 | 0.2575 | 0.9382 | 0.4982 | 0.9559 | 0.9563 | -1.0 | 0.3 | 0.959 | 0.9592 | 0.975 | 0.9078 | 0.9376 |
| 0.2076 | 61.0 | 13298 | 0.1795 | 0.9272 | 0.99 | 0.9807 | -1.0 | 0.2635 | 0.9305 | 0.4958 | 0.9502 | 0.9513 | -1.0 | 0.31 | 0.9548 | 0.9488 | 0.9661 | 0.9057 | 0.9365 |
| 0.2086 | 62.0 | 13516 | 0.1887 | 0.9266 | 0.9901 | 0.9847 | 0.0 | 0.2762 | 0.9321 | 0.493 | 0.95 | 0.9507 | 0.0 | 0.3083 | 0.9547 | 0.9502 | 0.969 | 0.9029 | 0.9323 |
| 0.2086 | 63.0 | 13734 | 0.1734 | 0.9348 | 0.9901 | 0.9859 | -1.0 | 0.2761 | 0.9397 | 0.4978 | 0.9581 | 0.9588 | -1.0 | 0.315 | 0.9613 | 0.9517 | 0.9718 | 0.9178 | 0.9458 |
| 0.2086 | 64.0 | 13952 | 0.1788 | 0.9374 | 0.9899 | 0.9843 | 0.0 | 0.2255 | 0.9417 | 0.4992 | 0.9589 | 0.9592 | 0.0 | 0.2417 | 0.9643 | 0.9573 | 0.9759 | 0.9174 | 0.9424 |
| 0.1951 | 65.0 | 14170 | 0.1665 | 0.9374 | 0.99 | 0.985 | -1.0 | 0.2792 | 0.9424 | 0.4987 | 0.9602 | 0.9607 | -1.0 | 0.2909 | 0.9638 | 0.9537 | 0.9734 | 0.9212 | 0.948 |
| 0.1951 | 66.0 | 14388 | 0.1813 | 0.933 | 0.99 | 0.9834 | 0.0 | 0.2715 | 0.9369 | 0.4979 | 0.9549 | 0.9558 | 0.0 | 0.2944 | 0.9601 | 0.9521 | 0.9727 | 0.9138 | 0.9388 |
| 0.1904 | 67.0 | 14606 | 0.1797 | 0.9347 | 0.9894 | 0.9798 | 0.0 | 0.2227 | 0.9389 | 0.4961 | 0.9534 | 0.9547 | 0.0 | 0.2346 | 0.9602 | 0.9585 | 0.9737 | 0.9109 | 0.9357 |
| 0.1904 | 68.0 | 14824 | 0.1792 | 0.9321 | 0.9897 | 0.984 | 0.0 | 0.2146 | 0.9378 | 0.4954 | 0.9523 | 0.9532 | 0.0 | 0.2633 | 0.9582 | 0.9523 | 0.9697 | 0.9119 | 0.9368 |
| 0.186 | 69.0 | 15042 | 0.1472 | 0.9461 | 0.9901 | 0.9843 | -1.0 | 0.2637 | 0.9524 | 0.5018 | 0.9665 | 0.9673 | -1.0 | 0.3143 | 0.9708 | 0.9595 | 0.9774 | 0.9327 | 0.9573 |
| 0.186 | 70.0 | 15260 | 0.1736 | 0.931 | 0.9899 | 0.9842 | -1.0 | 0.269 | 0.9352 | 0.4961 | 0.9538 | 0.9543 | -1.0 | 0.2821 | 0.9581 | 0.9443 | 0.9654 | 0.9178 | 0.9432 |
| 0.186 | 71.0 | 15478 | 0.1550 | 0.9481 | 0.99 | 0.9835 | -1.0 | 0.2275 | 0.9532 | 0.5019 | 0.9671 | 0.9678 | -1.0 | 0.3321 | 0.9723 | 0.9601 | 0.9771 | 0.9361 | 0.9584 |
| 0.178 | 72.0 | 15696 | 0.1609 | 0.9455 | 0.99 | 0.9849 | -1.0 | 0.2252 | 0.951 | 0.5004 | 0.9642 | 0.9652 | -1.0 | 0.2731 | 0.969 | 0.9614 | 0.9768 | 0.9296 | 0.9535 |
| 0.178 | 73.0 | 15914 | 0.1482 | 0.9416 | 0.9901 | 0.9843 | 0.0 | 0.2421 | 0.947 | 0.5025 | 0.9627 | 0.9639 | 0.0 | 0.2967 | 0.9684 | 0.9554 | 0.9751 | 0.9278 | 0.9527 |
| 0.1822 | 74.0 | 16132 | 0.1403 | 0.9471 | 0.995 | 0.9832 | -1.0 | 0.6037 | 0.9486 | 0.5016 | 0.9665 | 0.9675 | -1.0 | 0.7182 | 0.969 | 0.9657 | 0.9787 | 0.9285 | 0.9562 |
| 0.1822 | 75.0 | 16350 | 0.1673 | 0.9424 | 0.9901 | 0.9845 | -1.0 | 0.2102 | 0.9452 | 0.4995 | 0.9619 | 0.9628 | -1.0 | 0.3667 | 0.9656 | 0.9615 | 0.976 | 0.9232 | 0.9496 |
| 0.1707 | 76.0 | 16568 | 0.1508 | 0.9457 | 0.9885 | 0.9816 | -1.0 | 0.1736 | 0.9543 | 0.5016 | 0.9636 | 0.9641 | -1.0 | 0.1971 | 0.9705 | 0.9577 | 0.9745 | 0.9338 | 0.9538 |
| 0.1707 | 77.0 | 16786 | 0.1395 | 0.9501 | 0.9898 | 0.9839 | -1.0 | 0.1955 | 0.9581 | 0.5034 | 0.9681 | 0.9687 | -1.0 | 0.2324 | 0.9745 | 0.9667 | 0.9809 | 0.9334 | 0.9566 |
| 0.1655 | 78.0 | 17004 | 0.1451 | 0.9502 | 0.99 | 0.9887 | 0.0 | 0.3398 | 0.9525 | 0.5042 | 0.97 | 0.9702 | 0.0 | 0.3667 | 0.9726 | 0.9611 | 0.9771 | 0.9393 | 0.9632 |
| 0.1655 | 79.0 | 17222 | 0.1654 | 0.9385 | 0.9949 | 0.9889 | -1.0 | 0.5696 | 0.9406 | 0.4997 | 0.9592 | 0.9599 | -1.0 | 0.6625 | 0.9627 | 0.9582 | 0.9724 | 0.9188 | 0.9474 |
| 0.1655 | 80.0 | 17440 | 0.1388 | 0.9536 | 0.99 | 0.9844 | -1.0 | 0.2026 | 0.9602 | 0.5051 | 0.9689 | 0.9694 | -1.0 | 0.2536 | 0.9739 | 0.9647 | 0.979 | 0.9425 | 0.9599 |
| 0.164 | 81.0 | 17658 | 0.1296 | 0.957 | 0.9901 | 0.9894 | -1.0 | 0.2818 | 0.9625 | 0.505 | 0.9723 | 0.9729 | -1.0 | 0.3042 | 0.9767 | 0.9681 | 0.9801 | 0.946 | 0.9657 |
| 0.164 | 82.0 | 17876 | 0.1309 | 0.9519 | 0.9901 | 0.9847 | -1.0 | 0.2714 | 0.9584 | 0.5047 | 0.9707 | 0.9709 | -1.0 | 0.3 | 0.9746 | 0.9635 | 0.9791 | 0.9403 | 0.9627 |
| 0.1556 | 83.0 | 18094 | 0.1295 | 0.9564 | 0.9901 | 0.9839 | -1.0 | 0.2769 | 0.9594 | 0.505 | 0.9729 | 0.9731 | -1.0 | 0.2833 | 0.9767 | 0.9644 | 0.981 | 0.9483 | 0.9653 |
| 0.1556 | 84.0 | 18312 | 0.1259 | 0.9572 | 0.9899 | 0.9846 | 0.0 | 0.2512 | 0.963 | 0.5059 | 0.973 | 0.9736 | 0.0 | 0.2786 | 0.9783 | 0.9671 | 0.9812 | 0.9473 | 0.966 |
| 0.1436 | 85.0 | 18530 | 0.1465 | 0.9517 | 0.99 | 0.9842 | -1.0 | 0.2796 | 0.9544 | 0.5025 | 0.9679 | 0.9685 | -1.0 | 0.3 | 0.972 | 0.9611 | 0.9762 | 0.9423 | 0.9608 |
| 0.1436 | 86.0 | 18748 | 0.1230 | 0.9577 | 0.9899 | 0.9847 | -1.0 | 0.3562 | 0.9618 | 0.5064 | 0.9733 | 0.9735 | -1.0 | 0.3773 | 0.9755 | 0.9689 | 0.9826 | 0.9465 | 0.9644 |
| 0.1436 | 87.0 | 18966 | 0.1319 | 0.9608 | 0.99 | 0.9823 | 0.0 | 0.3379 | 0.967 | 0.506 | 0.9741 | 0.9752 | 0.0 | 0.38 | 0.9805 | 0.9695 | 0.9814 | 0.952 | 0.969 |
| 0.1514 | 88.0 | 19184 | 0.1253 | 0.9554 | 0.9901 | 0.985 | 0.0 | 0.262 | 0.9628 | 0.5063 | 0.9725 | 0.9727 | 0.0 | 0.3231 | 0.9765 | 0.9624 | 0.9782 | 0.9484 | 0.9673 |
| 0.1514 | 89.0 | 19402 | 0.1261 | 0.9561 | 0.9901 | 0.985 | -1.0 | 0.2761 | 0.9602 | 0.5057 | 0.9719 | 0.9722 | -1.0 | 0.3125 | 0.9753 | 0.9658 | 0.9791 | 0.9464 | 0.9653 |
| 0.1481 | 90.0 | 19620 | 0.1187 | 0.9579 | 0.9901 | 0.9901 | -1.0 | 0.5624 | 0.9604 | 0.5069 | 0.9752 | 0.9754 | -1.0 | 0.5875 | 0.9769 | 0.9669 | 0.9809 | 0.9489 | 0.9699 |
| 0.1481 | 91.0 | 19838 | 0.1352 | 0.9513 | 0.9901 | 0.9836 | 0.0 | 0.3876 | 0.9532 | 0.5016 | 0.97 | 0.9704 | 0.0 | 0.515 | 0.9733 | 0.9618 | 0.9774 | 0.9408 | 0.9634 |
| 0.1443 | 92.0 | 20056 | 0.1253 | 0.9586 | 0.9901 | 0.9846 | -1.0 | 0.2831 | 0.9643 | 0.5055 | 0.9749 | 0.9753 | -1.0 | 0.3292 | 0.9782 | 0.9679 | 0.9818 | 0.9494 | 0.9688 |
| 0.1443 | 93.0 | 20274 | 0.1259 | 0.9598 | 0.99 | 0.9845 | -1.0 | 0.3228 | 0.9639 | 0.5055 | 0.9736 | 0.9745 | -1.0 | 0.3636 | 0.9768 | 0.9707 | 0.9823 | 0.9489 | 0.9667 |
| 0.1443 | 94.0 | 20492 | 0.1257 | 0.9639 | 0.99 | 0.985 | -1.0 | 0.3265 | 0.9672 | 0.5055 | 0.9766 | 0.9769 | -1.0 | 0.3625 | 0.9793 | 0.972 | 0.9831 | 0.9557 | 0.9707 |
| 0.1447 | 95.0 | 20710 | 0.1168 | 0.9606 | 0.9901 | 0.9842 | 0.0 | 0.2617 | 0.9662 | 0.5064 | 0.9759 | 0.9762 | 0.0 | 0.3 | 0.9801 | 0.9706 | 0.9836 | 0.9506 | 0.9688 |
| 0.1447 | 96.0 | 20928 | 0.1196 | 0.9625 | 0.99 | 0.9847 | 0.0 | 0.3062 | 0.9677 | 0.5078 | 0.9769 | 0.9776 | 0.0 | 0.3273 | 0.9809 | 0.9711 | 0.9844 | 0.9538 | 0.9707 |
| 0.1478 | 97.0 | 21146 | 0.1220 | 0.9558 | 0.9901 | 0.9843 | -1.0 | 0.2922 | 0.9596 | 0.5057 | 0.9729 | 0.9735 | -1.0 | 0.3071 | 0.9771 | 0.9661 | 0.981 | 0.9455 | 0.966 |
| 0.1478 | 98.0 | 21364 | 0.1339 | 0.9503 | 0.9872 | 0.9788 | 0.0 | 0.2824 | 0.9558 | 0.5034 | 0.9663 | 0.9672 | 0.0 | 0.375 | 0.9717 | 0.9655 | 0.9778 | 0.9351 | 0.9565 |
| 0.1421 | 99.0 | 21582 | 0.1183 | 0.9625 | 0.9901 | 0.9845 | -1.0 | 0.304 | 0.9682 | 0.509 | 0.9765 | 0.9771 | -1.0 | 0.3875 | 0.9807 | 0.9736 | 0.9847 | 0.9514 | 0.9695 |
| 0.1421 | 100.0 | 21800 | 0.1249 | 0.9571 | 0.9901 | 0.9844 | -1.0 | 0.3322 | 0.9614 | 0.5052 | 0.9726 | 0.9733 | -1.0 | 0.3654 | 0.9759 | 0.9657 | 0.9777 | 0.9486 | 0.969 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
[
"cashier",
"cx"
] |
ArrayDice/detr_finetuned_cppe5
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr_finetuned_cppe5
This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3461
- Map: 0.2811
- Map 50: 0.561
- Map 75: 0.239
- Map Small: 0.0945
- Map Medium: 0.2317
- Map Large: 0.419
- Mar 1: 0.2736
- Mar 10: 0.4208
- Mar 100: 0.4388
- Mar Small: 0.2191
- Mar Medium: 0.3871
- Mar Large: 0.598
- Map Coverall: 0.5394
- Mar 100 Coverall: 0.6554
- Map Face Shield: 0.2284
- Mar 100 Face Shield: 0.4405
- Map Gloves: 0.1791
- Mar 100 Gloves: 0.3598
- Map Goggles: 0.1786
- Mar 100 Goggles: 0.3354
- Map Mask: 0.2802
- Mar 100 Mask: 0.4027
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Coverall | Mar 100 Coverall | Map Face Shield | Mar 100 Face Shield | Map Gloves | Mar 100 Gloves | Map Goggles | Mar 100 Goggles | Map Mask | Mar 100 Mask |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:------------:|:----------------:|:---------------:|:-------------------:|:----------:|:--------------:|:-----------:|:---------------:|:--------:|:------------:|
| No log | 1.0 | 107 | 2.4496 | 0.0083 | 0.0289 | 0.0024 | 0.0047 | 0.01 | 0.0114 | 0.019 | 0.0813 | 0.1191 | 0.0915 | 0.1324 | 0.1166 | 0.0124 | 0.136 | 0.0099 | 0.1278 | 0.0067 | 0.1192 | 0.0 | 0.0 | 0.0124 | 0.2124 |
| No log | 2.0 | 214 | 2.2684 | 0.0299 | 0.0782 | 0.0173 | 0.0074 | 0.0189 | 0.0401 | 0.0639 | 0.1661 | 0.1995 | 0.0976 | 0.1604 | 0.2428 | 0.0954 | 0.391 | 0.0145 | 0.1772 | 0.0077 | 0.1871 | 0.0 | 0.0 | 0.0322 | 0.2422 |
| No log | 3.0 | 321 | 2.0298 | 0.0535 | 0.1159 | 0.0446 | 0.0097 | 0.0477 | 0.0618 | 0.0981 | 0.2257 | 0.268 | 0.133 | 0.2193 | 0.3214 | 0.1778 | 0.5667 | 0.0256 | 0.2215 | 0.0099 | 0.2138 | 0.0008 | 0.0323 | 0.0533 | 0.3058 |
| No log | 4.0 | 428 | 1.8945 | 0.0859 | 0.1853 | 0.0702 | 0.0334 | 0.0778 | 0.0961 | 0.1189 | 0.293 | 0.3341 | 0.1919 | 0.2761 | 0.4265 | 0.2585 | 0.6189 | 0.049 | 0.3177 | 0.0166 | 0.2567 | 0.0041 | 0.1538 | 0.1011 | 0.3231 |
| 3.4087 | 5.0 | 535 | 1.8465 | 0.0983 | 0.2227 | 0.0737 | 0.031 | 0.0773 | 0.1063 | 0.1557 | 0.308 | 0.3463 | 0.1614 | 0.2826 | 0.486 | 0.3287 | 0.6045 | 0.0574 | 0.3468 | 0.036 | 0.2786 | 0.0086 | 0.2369 | 0.061 | 0.2644 |
| 3.4087 | 6.0 | 642 | 1.7933 | 0.1135 | 0.2609 | 0.0872 | 0.029 | 0.0843 | 0.1564 | 0.1418 | 0.3147 | 0.3511 | 0.1587 | 0.2775 | 0.5219 | 0.382 | 0.6018 | 0.0429 | 0.3215 | 0.0267 | 0.2728 | 0.011 | 0.2169 | 0.1048 | 0.3427 |
| 3.4087 | 7.0 | 749 | 1.7358 | 0.128 | 0.2893 | 0.1046 | 0.0681 | 0.1009 | 0.1695 | 0.1657 | 0.3336 | 0.371 | 0.202 | 0.3124 | 0.5316 | 0.3881 | 0.5892 | 0.0586 | 0.3747 | 0.0395 | 0.3089 | 0.0332 | 0.2569 | 0.1203 | 0.3253 |
| 3.4087 | 8.0 | 856 | 1.6967 | 0.1554 | 0.346 | 0.1184 | 0.0488 | 0.1298 | 0.2155 | 0.1863 | 0.3443 | 0.372 | 0.1588 | 0.3188 | 0.5313 | 0.4219 | 0.5959 | 0.0906 | 0.3658 | 0.0653 | 0.3058 | 0.0395 | 0.2569 | 0.1595 | 0.3356 |
| 3.4087 | 9.0 | 963 | 1.6399 | 0.1636 | 0.3504 | 0.1231 | 0.0682 | 0.139 | 0.2298 | 0.1889 | 0.3603 | 0.3918 | 0.2191 | 0.3224 | 0.5498 | 0.418 | 0.5883 | 0.0996 | 0.4038 | 0.0647 | 0.3232 | 0.0303 | 0.2708 | 0.2056 | 0.3729 |
| 1.5778 | 10.0 | 1070 | 1.5569 | 0.1838 | 0.3943 | 0.143 | 0.0643 | 0.1485 | 0.2628 | 0.2179 | 0.3785 | 0.3994 | 0.2143 | 0.3385 | 0.5573 | 0.4564 | 0.6185 | 0.1166 | 0.3899 | 0.091 | 0.3165 | 0.0554 | 0.3108 | 0.1994 | 0.3613 |
| 1.5778 | 11.0 | 1177 | 1.5197 | 0.1939 | 0.4116 | 0.1664 | 0.081 | 0.1464 | 0.2871 | 0.2228 | 0.3794 | 0.4032 | 0.1872 | 0.3522 | 0.5597 | 0.4738 | 0.6203 | 0.1204 | 0.4089 | 0.0977 | 0.3058 | 0.0806 | 0.3231 | 0.197 | 0.3582 |
| 1.5778 | 12.0 | 1284 | 1.4805 | 0.2164 | 0.466 | 0.1818 | 0.0903 | 0.1561 | 0.3301 | 0.2355 | 0.3812 | 0.4044 | 0.1933 | 0.3425 | 0.5688 | 0.4865 | 0.6279 | 0.1528 | 0.4418 | 0.122 | 0.321 | 0.0801 | 0.28 | 0.2405 | 0.3511 |
| 1.5778 | 13.0 | 1391 | 1.4775 | 0.216 | 0.4679 | 0.1811 | 0.096 | 0.1596 | 0.3276 | 0.2327 | 0.3889 | 0.4121 | 0.2207 | 0.3467 | 0.5831 | 0.4643 | 0.6054 | 0.1596 | 0.438 | 0.1273 | 0.3299 | 0.0984 | 0.3231 | 0.2303 | 0.364 |
| 1.5778 | 14.0 | 1498 | 1.4550 | 0.2185 | 0.4864 | 0.16 | 0.0813 | 0.1483 | 0.3481 | 0.2396 | 0.3863 | 0.409 | 0.2272 | 0.3341 | 0.5899 | 0.4974 | 0.6428 | 0.1488 | 0.4203 | 0.143 | 0.325 | 0.0954 | 0.2985 | 0.2082 | 0.3587 |
| 1.3087 | 15.0 | 1605 | 1.4381 | 0.2388 | 0.4949 | 0.2116 | 0.0844 | 0.184 | 0.3583 | 0.2521 | 0.3961 | 0.4194 | 0.1964 | 0.3474 | 0.5867 | 0.5148 | 0.6432 | 0.1774 | 0.4228 | 0.1375 | 0.3152 | 0.1241 | 0.3385 | 0.2401 | 0.3773 |
| 1.3087 | 16.0 | 1712 | 1.4094 | 0.2482 | 0.5241 | 0.2015 | 0.0931 | 0.1922 | 0.3754 | 0.2535 | 0.4039 | 0.4216 | 0.2291 | 0.3709 | 0.576 | 0.5054 | 0.6419 | 0.1876 | 0.4114 | 0.1622 | 0.3393 | 0.1283 | 0.3338 | 0.2578 | 0.3818 |
| 1.3087 | 17.0 | 1819 | 1.4044 | 0.2528 | 0.5311 | 0.2088 | 0.096 | 0.2052 | 0.3609 | 0.2595 | 0.4056 | 0.4228 | 0.223 | 0.3795 | 0.5587 | 0.516 | 0.6396 | 0.2009 | 0.4177 | 0.1449 | 0.3384 | 0.143 | 0.3354 | 0.2593 | 0.3831 |
| 1.3087 | 18.0 | 1926 | 1.3968 | 0.2581 | 0.5282 | 0.2107 | 0.101 | 0.2083 | 0.3787 | 0.2659 | 0.4174 | 0.4363 | 0.2289 | 0.3908 | 0.5821 | 0.5132 | 0.6387 | 0.213 | 0.4797 | 0.1584 | 0.3371 | 0.1375 | 0.3431 | 0.2682 | 0.3827 |
| 1.1363 | 19.0 | 2033 | 1.3735 | 0.2592 | 0.5349 | 0.2235 | 0.0869 | 0.2076 | 0.3936 | 0.2661 | 0.4127 | 0.4335 | 0.2159 | 0.3829 | 0.5907 | 0.5222 | 0.6414 | 0.2115 | 0.4468 | 0.1608 | 0.3549 | 0.1408 | 0.3431 | 0.2609 | 0.3813 |
| 1.1363 | 20.0 | 2140 | 1.3686 | 0.266 | 0.5447 | 0.2204 | 0.0897 | 0.2138 | 0.3875 | 0.268 | 0.4117 | 0.4326 | 0.2102 | 0.3875 | 0.5781 | 0.5323 | 0.6446 | 0.1933 | 0.4418 | 0.1727 | 0.3558 | 0.1537 | 0.3246 | 0.278 | 0.396 |
| 1.1363 | 21.0 | 2247 | 1.3672 | 0.2659 | 0.5446 | 0.2266 | 0.0859 | 0.2198 | 0.3884 | 0.2687 | 0.4164 | 0.4339 | 0.2135 | 0.3914 | 0.5779 | 0.5341 | 0.6505 | 0.1966 | 0.419 | 0.1624 | 0.3513 | 0.1698 | 0.3554 | 0.2668 | 0.3933 |
| 1.1363 | 22.0 | 2354 | 1.3658 | 0.2731 | 0.5472 | 0.2303 | 0.095 | 0.2174 | 0.4119 | 0.27 | 0.4179 | 0.4383 | 0.202 | 0.3904 | 0.5994 | 0.5311 | 0.6473 | 0.2131 | 0.4494 | 0.179 | 0.3545 | 0.1672 | 0.3492 | 0.2754 | 0.3911 |
| 1.1363 | 23.0 | 2461 | 1.3644 | 0.2692 | 0.5458 | 0.228 | 0.0937 | 0.2188 | 0.4008 | 0.2681 | 0.4205 | 0.4394 | 0.2104 | 0.3876 | 0.6031 | 0.534 | 0.6518 | 0.2028 | 0.4418 | 0.175 | 0.3594 | 0.1635 | 0.3477 | 0.2708 | 0.3964 |
| 1.0307 | 24.0 | 2568 | 1.3586 | 0.269 | 0.5419 | 0.2327 | 0.0933 | 0.2161 | 0.4067 | 0.2699 | 0.4208 | 0.439 | 0.2168 | 0.392 | 0.5983 | 0.5384 | 0.6527 | 0.2045 | 0.443 | 0.1728 | 0.3536 | 0.1581 | 0.3508 | 0.2709 | 0.3951 |
| 1.0307 | 25.0 | 2675 | 1.3503 | 0.2788 | 0.5573 | 0.239 | 0.0992 | 0.2301 | 0.4157 | 0.273 | 0.4225 | 0.4416 | 0.2261 | 0.388 | 0.6083 | 0.5361 | 0.6581 | 0.2253 | 0.4519 | 0.1805 | 0.3634 | 0.1742 | 0.3338 | 0.2779 | 0.4009 |
| 1.0307 | 26.0 | 2782 | 1.3441 | 0.2803 | 0.5605 | 0.2394 | 0.0922 | 0.2291 | 0.4206 | 0.2702 | 0.4213 | 0.4406 | 0.2174 | 0.387 | 0.6034 | 0.5392 | 0.6604 | 0.2319 | 0.4481 | 0.1831 | 0.3634 | 0.1761 | 0.3369 | 0.2711 | 0.3942 |
| 1.0307 | 27.0 | 2889 | 1.3461 | 0.2811 | 0.5603 | 0.2465 | 0.0939 | 0.23 | 0.4185 | 0.2741 | 0.4231 | 0.4418 | 0.2217 | 0.3879 | 0.6041 | 0.537 | 0.6545 | 0.2329 | 0.4506 | 0.181 | 0.3638 | 0.1792 | 0.3385 | 0.2753 | 0.4013 |
| 1.0307 | 28.0 | 2996 | 1.3462 | 0.2799 | 0.5611 | 0.2378 | 0.0943 | 0.231 | 0.4151 | 0.2732 | 0.4211 | 0.4392 | 0.2194 | 0.3863 | 0.5988 | 0.5376 | 0.655 | 0.2291 | 0.4456 | 0.179 | 0.3616 | 0.176 | 0.3323 | 0.2775 | 0.4013 |
| 0.9602 | 29.0 | 3103 | 1.3458 | 0.2811 | 0.5599 | 0.2393 | 0.094 | 0.2311 | 0.4197 | 0.2734 | 0.4208 | 0.4385 | 0.2191 | 0.3862 | 0.5986 | 0.5393 | 0.6559 | 0.2282 | 0.4405 | 0.1785 | 0.3594 | 0.1788 | 0.3338 | 0.2806 | 0.4031 |
| 0.9602 | 30.0 | 3210 | 1.3461 | 0.2811 | 0.561 | 0.239 | 0.0945 | 0.2317 | 0.419 | 0.2736 | 0.4208 | 0.4388 | 0.2191 | 0.3871 | 0.598 | 0.5394 | 0.6554 | 0.2284 | 0.4405 | 0.1791 | 0.3598 | 0.1786 | 0.3354 | 0.2802 | 0.4027 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
[
"coverall",
"face_shield",
"gloves",
"goggles",
"mask"
] |
nsugianto/tblstructrecog_tuned_tbltransstrucrecog_noncomplex_complex_conlash_b5_1807s_lr5e5_dec1e4_bs8
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tblstructrecog_tuned_tbltransstrucrecog_noncomplex_complex_conlash_b5_1807s_lr5e5_dec1e4_bs8
This model is a fine-tuned version of [nsugianto/tblstructrecog_tuned_tbltransstrucrecog_noncomplex_complex_conlash_b5_1807s_lr1e6_dec1e5_bs4](https://huggingface.co/nsugianto/tblstructrecog_tuned_tbltransstrucrecog_noncomplex_complex_conlash_b5_1807s_lr1e6_dec1e5_bs4) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 750
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.0.1
- Datasets 2.18.0
- Tokenizers 0.19.1
|
[
"table",
"table column",
"table row",
"table column header",
"table projected row header",
"table spanning cell"
] |
schoonhovenra/20240704
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 20240704
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2392
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.4262 | 32.0 | 800 | 0.3110 |
| 0.3444 | 64.0 | 1600 | 0.2795 |
| 0.3122 | 96.0 | 2400 | 0.2704 |
| 0.2893 | 128.0 | 3200 | 0.2639 |
| 0.2823 | 160.0 | 4000 | 0.2518 |
| 0.2679 | 192.0 | 4800 | 0.2502 |
| 0.2491 | 224.0 | 5600 | 0.2444 |
| 0.2354 | 256.0 | 6400 | 0.2495 |
| 0.2284 | 288.0 | 7200 | 0.2406 |
| 0.2318 | 320.0 | 8000 | 0.2453 |
| 0.217 | 352.0 | 8800 | 0.2432 |
| 0.2124 | 384.0 | 9600 | 0.2469 |
| 0.2097 | 416.0 | 10400 | 0.2516 |
| 0.1998 | 448.0 | 11200 | 0.2428 |
| 0.1944 | 480.0 | 12000 | 0.2445 |
| 0.1909 | 512.0 | 12800 | 0.2468 |
| 0.1952 | 544.0 | 13600 | 0.2401 |
| 0.1903 | 576.0 | 14400 | 0.2408 |
| 0.1867 | 608.0 | 15200 | 0.2478 |
| 0.1845 | 640.0 | 16000 | 0.2443 |
| 0.179 | 672.0 | 16800 | 0.2432 |
| 0.1744 | 704.0 | 17600 | 0.2410 |
| 0.1747 | 736.0 | 18400 | 0.2432 |
| 0.1674 | 768.0 | 19200 | 0.2386 |
| 0.166 | 800.0 | 20000 | 0.2384 |
| 0.1686 | 832.0 | 20800 | 0.2399 |
| 0.1647 | 864.0 | 21600 | 0.2391 |
| 0.1599 | 896.0 | 22400 | 0.2398 |
| 0.1633 | 928.0 | 23200 | 0.2401 |
| 0.1654 | 960.0 | 24000 | 0.2397 |
| 0.1632 | 992.0 | 24800 | 0.2392 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.3.0
- Datasets 2.12.0
- Tokenizers 0.15.1
|
[
"back mirror",
"backseat",
"center console",
"dashboard",
"door front left",
"door front right",
"driving wheel",
"window front left",
"window front right"
] |
monica1106/detr-resnet-50
|
# DETR (End-to-End Object Detection) model with ResNet-50 backbone
DEtection TRansformer (DETR) model trained end-to-end on COCO 2017 object detection (118k annotated images). It was introduced in the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Carion et al. and first released in [this repository](https://github.com/facebookresearch/detr).
Disclaimer: The team releasing DETR did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
The DETR model is an encoder-decoder transformer with a convolutional backbone. Two heads are added on top of the decoder outputs in order to perform object detection: a linear layer for the class labels and a MLP (multi-layer perceptron) for the bounding boxes. The model uses so-called object queries to detect objects in an image. Each object query looks for a particular object in the image. For COCO, the number of object queries is set to 100.
The model is trained using a "bipartite matching loss": one compares the predicted classes + bounding boxes of each of the N = 100 object queries to the ground truth annotations, padded up to the same length N (so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and "no bounding box" as bounding box). The Hungarian matching algorithm is used to create an optimal one-to-one mapping between each of the N queries and each of the N annotations. Next, standard cross-entropy (for the classes) and a linear combination of the L1 and generalized IoU loss (for the bounding boxes) are used to optimize the parameters of the model.

## Intended uses & limitations
You can use the raw model for object detection. See the [model hub](https://huggingface.co/models?search=facebook/detr) to look for all available DETR models.
### How to use
Here is how to use this model:
```python
from transformers import DetrImageProcessor, DetrForObjectDetection
import torch
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
# you can specify the revision tag if you don't want the timm dependency
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
# convert outputs (bounding boxes and class logits) to COCO API
# let's only keep detections with score > 0.9
target_sizes = torch.tensor([image.size[::-1]])
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
box = [round(i, 2) for i in box.tolist()]
print(
f"Detected {model.config.id2label[label.item()]} with confidence "
f"{round(score.item(), 3)} at location {box}"
)
```
This should output:
```
Detected remote with confidence 0.998 at location [40.16, 70.81, 175.55, 117.98]
Detected remote with confidence 0.996 at location [333.24, 72.55, 368.33, 187.66]
Detected couch with confidence 0.995 at location [-0.02, 1.15, 639.73, 473.76]
Detected cat with confidence 0.999 at location [13.24, 52.05, 314.02, 470.93]
Detected cat with confidence 0.999 at location [345.4, 23.85, 640.37, 368.72]
```
Currently, both the feature extractor and model support PyTorch.
## Training data
The DETR model was trained on [COCO 2017 object detection](https://cocodataset.org/#download), a dataset consisting of 118k/5k annotated images for training/validation respectively.
## Training procedure
### Preprocessing
The exact details of preprocessing of images during training/validation can be found [here](https://github.com/google-research/vision_transformer/blob/master/vit_jax/input_pipeline.py).
Images are resized/rescaled such that the shortest side is at least 800 pixels and the largest side at most 1333 pixels, and normalized across the RGB channels with the ImageNet mean (0.485, 0.456, 0.406) and standard deviation (0.229, 0.224, 0.225).
### Training
The model was trained for 300 epochs on 16 V100 GPUs. This takes 3 days, with 4 images per GPU (hence a total batch size of 64).
## Evaluation results
This model achieves an AP (average precision) of **42.0** on COCO 2017 validation. For more details regarding evaluation results, we refer to table 1 of the original paper.
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2005-12872,
author = {Nicolas Carion and
Francisco Massa and
Gabriel Synnaeve and
Nicolas Usunier and
Alexander Kirillov and
Sergey Zagoruyko},
title = {End-to-End Object Detection with Transformers},
journal = {CoRR},
volume = {abs/2005.12872},
year = {2020},
url = {https://arxiv.org/abs/2005.12872},
archivePrefix = {arXiv},
eprint = {2005.12872},
timestamp = {Thu, 28 May 2020 17:38:09 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2005-12872.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
|
[
"mature",
"semi_mature",
"unmature",
"clod",
"mold",
"rotten"
] |
machinelearningzuu/queue_detection_cctv
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# queue_detection_cctv
This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1291
- Map: 0.9532
- Map 50: 0.9901
- Map 75: 0.9845
- Map Small: -1.0
- Map Medium: 0.3203
- Map Large: 0.9578
- Mar 1: 0.5044
- Mar 10: 0.9715
- Mar 100: 0.972
- Mar Small: -1.0
- Mar Medium: 0.3538
- Mar Large: 0.9747
- Map Cashier: 0.9618
- Mar 100 Cashier: 0.9775
- Map Cx: 0.9447
- Mar 100 Cx: 0.9664
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Cashier | Mar 100 Cashier | Map Cx | Mar 100 Cx |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:-----------:|:---------------:|:------:|:----------:|
| No log | 1.0 | 218 | 1.3927 | 0.1975 | 0.3459 | 0.1995 | -1.0 | 0.0 | 0.1988 | 0.2409 | 0.5283 | 0.7011 | -1.0 | 0.0 | 0.7055 | 0.2115 | 0.8043 | 0.1834 | 0.5979 |
| No log | 2.0 | 436 | 0.9964 | 0.5247 | 0.8011 | 0.591 | -1.0 | 0.0079 | 0.5292 | 0.3316 | 0.6966 | 0.7387 | -1.0 | 0.0071 | 0.7453 | 0.5772 | 0.8086 | 0.4723 | 0.6688 |
| 2.7418 | 3.0 | 654 | 0.8535 | 0.6031 | 0.9058 | 0.6954 | -1.0 | 0.0349 | 0.6069 | 0.3603 | 0.7079 | 0.733 | -1.0 | 0.2 | 0.7362 | 0.6576 | 0.769 | 0.5485 | 0.6969 |
| 2.7418 | 4.0 | 872 | 0.7406 | 0.6499 | 0.9356 | 0.752 | -1.0 | 0.0479 | 0.6543 | 0.3756 | 0.7387 | 0.7586 | -1.0 | 0.0923 | 0.7634 | 0.7052 | 0.7953 | 0.5947 | 0.7219 |
| 0.8155 | 5.0 | 1090 | 0.6721 | 0.6731 | 0.9516 | 0.8113 | -1.0 | 0.0249 | 0.6773 | 0.3819 | 0.7501 | 0.7654 | -1.0 | 0.0455 | 0.7701 | 0.7451 | 0.8203 | 0.601 | 0.7105 |
| 0.8155 | 6.0 | 1308 | 0.5804 | 0.7244 | 0.9632 | 0.8738 | 0.0 | 0.0712 | 0.7288 | 0.4038 | 0.7882 | 0.8023 | 0.0 | 0.1731 | 0.8066 | 0.7818 | 0.8419 | 0.6671 | 0.7627 |
| 0.6668 | 7.0 | 1526 | 0.5430 | 0.7484 | 0.9667 | 0.9041 | -1.0 | 0.076 | 0.7527 | 0.417 | 0.8027 | 0.813 | -1.0 | 0.2205 | 0.8171 | 0.8068 | 0.8602 | 0.69 | 0.7658 |
| 0.6668 | 8.0 | 1744 | 0.5524 | 0.7361 | 0.9691 | 0.8958 | -1.0 | 0.0273 | 0.7416 | 0.4045 | 0.7839 | 0.7933 | -1.0 | 0.1286 | 0.7981 | 0.7845 | 0.8274 | 0.6877 | 0.7592 |
| 0.6668 | 9.0 | 1962 | 0.5359 | 0.7415 | 0.9737 | 0.901 | -1.0 | 0.0845 | 0.7462 | 0.4112 | 0.7999 | 0.8044 | -1.0 | 0.1462 | 0.8088 | 0.7844 | 0.8376 | 0.6986 | 0.7713 |
| 0.5735 | 10.0 | 2180 | 0.5154 | 0.7497 | 0.9744 | 0.907 | 0.0 | 0.0368 | 0.7538 | 0.414 | 0.8042 | 0.8093 | 0.0 | 0.1333 | 0.813 | 0.8085 | 0.86 | 0.6909 | 0.7586 |
| 0.5735 | 11.0 | 2398 | 0.4543 | 0.7824 | 0.9754 | 0.9337 | 0.0 | 0.0709 | 0.7908 | 0.4307 | 0.8323 | 0.8368 | 0.0 | 0.1794 | 0.8449 | 0.8312 | 0.8765 | 0.7336 | 0.7972 |
| 0.5189 | 12.0 | 2616 | 0.4802 | 0.7679 | 0.9769 | 0.9274 | 0.0 | 0.1201 | 0.7724 | 0.426 | 0.8197 | 0.825 | 0.0 | 0.1917 | 0.8291 | 0.7985 | 0.85 | 0.7374 | 0.8 |
| 0.5189 | 13.0 | 2834 | 0.4306 | 0.7906 | 0.9825 | 0.9332 | -1.0 | 0.0708 | 0.7941 | 0.435 | 0.8394 | 0.8448 | -1.0 | 0.23 | 0.8474 | 0.8474 | 0.889 | 0.7339 | 0.8006 |
| 0.4874 | 14.0 | 3052 | 0.4660 | 0.7649 | 0.9818 | 0.9264 | -1.0 | 0.0504 | 0.7713 | 0.4219 | 0.8155 | 0.8222 | -1.0 | 0.0875 | 0.8288 | 0.805 | 0.8527 | 0.7248 | 0.7917 |
| 0.4874 | 15.0 | 3270 | 0.4392 | 0.7867 | 0.9773 | 0.9278 | 0.0 | 0.0256 | 0.7961 | 0.4372 | 0.8336 | 0.8385 | 0.0 | 0.1028 | 0.8466 | 0.8243 | 0.8725 | 0.7492 | 0.8045 |
| 0.4874 | 16.0 | 3488 | 0.4178 | 0.8018 | 0.9847 | 0.9355 | -1.0 | 0.2037 | 0.8061 | 0.4387 | 0.8493 | 0.8551 | -1.0 | 0.3714 | 0.8589 | 0.8394 | 0.8881 | 0.7641 | 0.822 |
| 0.4646 | 17.0 | 3706 | 0.3859 | 0.8138 | 0.9838 | 0.9502 | -1.0 | 0.1217 | 0.8189 | 0.4459 | 0.8584 | 0.863 | -1.0 | 0.2038 | 0.8669 | 0.8508 | 0.8956 | 0.7769 | 0.8303 |
| 0.4646 | 18.0 | 3924 | 0.4041 | 0.7987 | 0.9822 | 0.9457 | -1.0 | 0.097 | 0.8032 | 0.4378 | 0.8486 | 0.8518 | -1.0 | 0.1611 | 0.8551 | 0.8323 | 0.881 | 0.7652 | 0.8226 |
| 0.4317 | 19.0 | 4142 | 0.4013 | 0.8086 | 0.9838 | 0.9442 | -1.0 | 0.1816 | 0.814 | 0.4412 | 0.8513 | 0.8557 | -1.0 | 0.2571 | 0.8605 | 0.8522 | 0.8919 | 0.765 | 0.8195 |
| 0.4317 | 20.0 | 4360 | 0.3869 | 0.8123 | 0.9823 | 0.9388 | -1.0 | 0.1597 | 0.8163 | 0.4475 | 0.8579 | 0.8617 | -1.0 | 0.2042 | 0.8653 | 0.8542 | 0.896 | 0.7705 | 0.8274 |
| 0.4215 | 21.0 | 4578 | 0.3721 | 0.816 | 0.9864 | 0.9536 | -1.0 | 0.1206 | 0.8198 | 0.4478 | 0.8598 | 0.863 | -1.0 | 0.2727 | 0.8655 | 0.8607 | 0.9003 | 0.7713 | 0.8258 |
| 0.4215 | 22.0 | 4796 | 0.3777 | 0.8245 | 0.9806 | 0.9507 | 0.0 | 0.1034 | 0.8324 | 0.4537 | 0.8621 | 0.8649 | 0.0 | 0.2118 | 0.8724 | 0.8651 | 0.9012 | 0.7839 | 0.8287 |
| 0.3925 | 23.0 | 5014 | 0.3387 | 0.8411 | 0.9872 | 0.9577 | -1.0 | 0.1184 | 0.845 | 0.4593 | 0.8775 | 0.8799 | -1.0 | 0.2429 | 0.8835 | 0.8813 | 0.9153 | 0.8008 | 0.8444 |
| 0.3925 | 24.0 | 5232 | 0.3234 | 0.842 | 0.9887 | 0.9671 | -1.0 | 0.1229 | 0.8463 | 0.4604 | 0.8794 | 0.8812 | -1.0 | 0.1864 | 0.885 | 0.8736 | 0.909 | 0.8104 | 0.8534 |
| 0.3925 | 25.0 | 5450 | 0.3463 | 0.8356 | 0.9869 | 0.9556 | -1.0 | 0.0775 | 0.8411 | 0.4552 | 0.8769 | 0.8793 | -1.0 | 0.1929 | 0.8838 | 0.8788 | 0.913 | 0.7925 | 0.8456 |
| 0.3676 | 26.0 | 5668 | 0.3170 | 0.846 | 0.988 | 0.9666 | 0.0 | 0.1172 | 0.8515 | 0.4603 | 0.886 | 0.8872 | 0.0 | 0.285 | 0.8907 | 0.8831 | 0.9182 | 0.8089 | 0.8562 |
| 0.3676 | 27.0 | 5886 | 0.3552 | 0.8246 | 0.9832 | 0.9545 | -1.0 | 0.13 | 0.8285 | 0.4535 | 0.8704 | 0.8745 | -1.0 | 0.2367 | 0.8785 | 0.8559 | 0.9005 | 0.7932 | 0.8484 |
| 0.3669 | 28.0 | 6104 | 0.3342 | 0.8427 | 0.9876 | 0.9665 | -1.0 | 0.1369 | 0.8468 | 0.4585 | 0.8813 | 0.8843 | -1.0 | 0.2625 | 0.8874 | 0.8587 | 0.898 | 0.8267 | 0.8707 |
| 0.3669 | 29.0 | 6322 | 0.3033 | 0.854 | 0.9892 | 0.9687 | -1.0 | 0.1795 | 0.8572 | 0.4663 | 0.8954 | 0.8968 | -1.0 | 0.3 | 0.8991 | 0.8813 | 0.9193 | 0.8268 | 0.8744 |
| 0.349 | 30.0 | 6540 | 0.3099 | 0.8515 | 0.9863 | 0.9676 | -1.0 | 0.1251 | 0.8571 | 0.4666 | 0.8917 | 0.8936 | -1.0 | 0.2 | 0.8978 | 0.8868 | 0.9261 | 0.8162 | 0.8611 |
| 0.349 | 31.0 | 6758 | 0.3247 | 0.842 | 0.9884 | 0.963 | 0.0 | 0.1145 | 0.8491 | 0.4607 | 0.8828 | 0.8854 | 0.0 | 0.1462 | 0.8916 | 0.8704 | 0.9104 | 0.8137 | 0.8605 |
| 0.349 | 32.0 | 6976 | 0.2943 | 0.8529 | 0.9887 | 0.9651 | -1.0 | 0.1639 | 0.8587 | 0.4683 | 0.8916 | 0.8949 | -1.0 | 0.225 | 0.8997 | 0.89 | 0.9246 | 0.8158 | 0.8653 |
| 0.3378 | 33.0 | 7194 | 0.2923 | 0.8605 | 0.989 | 0.9695 | -1.0 | 0.1212 | 0.8657 | 0.4687 | 0.8985 | 0.9006 | -1.0 | 0.2136 | 0.9042 | 0.8893 | 0.9257 | 0.8317 | 0.8756 |
| 0.3378 | 34.0 | 7412 | 0.2878 | 0.8616 | 0.9895 | 0.9673 | -1.0 | 0.1464 | 0.8665 | 0.4712 | 0.897 | 0.899 | -1.0 | 0.2 | 0.9036 | 0.8907 | 0.9246 | 0.8325 | 0.8734 |
| 0.3206 | 35.0 | 7630 | 0.3342 | 0.837 | 0.9866 | 0.9674 | -1.0 | 0.1634 | 0.8423 | 0.4584 | 0.8772 | 0.8802 | -1.0 | 0.2611 | 0.8844 | 0.8684 | 0.906 | 0.8057 | 0.8544 |
| 0.3206 | 36.0 | 7848 | 0.2796 | 0.8713 | 0.989 | 0.9716 | -1.0 | 0.1054 | 0.8759 | 0.4699 | 0.9066 | 0.9084 | -1.0 | 0.15 | 0.9128 | 0.9052 | 0.9373 | 0.8373 | 0.8795 |
| 0.3152 | 37.0 | 8066 | 0.2894 | 0.8667 | 0.987 | 0.9746 | 0.0 | 0.1359 | 0.8743 | 0.4716 | 0.9022 | 0.9037 | 0.0 | 0.1667 | 0.9109 | 0.8966 | 0.9309 | 0.8367 | 0.8765 |
| 0.3152 | 38.0 | 8284 | 0.2641 | 0.8744 | 0.9894 | 0.9722 | -1.0 | 0.1413 | 0.8793 | 0.4727 | 0.9132 | 0.9148 | -1.0 | 0.2333 | 0.9178 | 0.8909 | 0.9305 | 0.858 | 0.8992 |
| 0.3082 | 39.0 | 8502 | 0.2834 | 0.8703 | 0.9873 | 0.9702 | -1.0 | 0.132 | 0.8764 | 0.473 | 0.9082 | 0.9128 | -1.0 | 0.2633 | 0.9168 | 0.8988 | 0.9347 | 0.8417 | 0.891 |
| 0.3082 | 40.0 | 8720 | 0.2774 | 0.8655 | 0.9897 | 0.9738 | -1.0 | 0.2021 | 0.8711 | 0.4694 | 0.9025 | 0.9043 | -1.0 | 0.275 | 0.9081 | 0.8971 | 0.9314 | 0.8339 | 0.8772 |
| 0.3082 | 41.0 | 8938 | 0.2935 | 0.8598 | 0.988 | 0.9699 | -1.0 | 0.0999 | 0.8666 | 0.4688 | 0.8961 | 0.8976 | -1.0 | 0.15 | 0.9037 | 0.8889 | 0.9255 | 0.8308 | 0.8697 |
| 0.3078 | 42.0 | 9156 | 0.2746 | 0.868 | 0.9895 | 0.9777 | -1.0 | 0.2159 | 0.8738 | 0.4712 | 0.9021 | 0.9032 | -1.0 | 0.275 | 0.9079 | 0.9016 | 0.933 | 0.8343 | 0.8734 |
| 0.3078 | 43.0 | 9374 | 0.2662 | 0.8731 | 0.9897 | 0.9798 | -1.0 | 0.1849 | 0.8794 | 0.4752 | 0.9083 | 0.9091 | -1.0 | 0.2 | 0.9136 | 0.888 | 0.9206 | 0.8582 | 0.8975 |
| 0.2898 | 44.0 | 9592 | 0.2564 | 0.8824 | 0.9868 | 0.9732 | -1.0 | 0.1263 | 0.8871 | 0.4775 | 0.9148 | 0.9165 | -1.0 | 0.15 | 0.9211 | 0.9076 | 0.9377 | 0.8571 | 0.8954 |
| 0.2898 | 45.0 | 9810 | 0.2813 | 0.8753 | 0.9876 | 0.977 | 0.0 | 0.1325 | 0.8817 | 0.4714 | 0.911 | 0.9123 | 0.0 | 0.2167 | 0.9179 | 0.9042 | 0.9381 | 0.8464 | 0.8865 |
| 0.2758 | 46.0 | 10028 | 0.2633 | 0.8786 | 0.9872 | 0.9719 | 0.0 | 0.1841 | 0.8854 | 0.4758 | 0.9164 | 0.9177 | 0.0 | 0.2615 | 0.9218 | 0.9012 | 0.9374 | 0.856 | 0.898 |
| 0.2758 | 47.0 | 10246 | 0.2479 | 0.8795 | 0.9895 | 0.9765 | 0.0 | 0.2066 | 0.8849 | 0.4765 | 0.9146 | 0.9171 | 0.0 | 0.275 | 0.9207 | 0.9114 | 0.9448 | 0.8476 | 0.8893 |
| 0.2758 | 48.0 | 10464 | 0.2373 | 0.8894 | 0.9897 | 0.9799 | -1.0 | 0.1994 | 0.8939 | 0.4795 | 0.9253 | 0.926 | -1.0 | 0.2545 | 0.9293 | 0.9076 | 0.9431 | 0.8713 | 0.909 |
| 0.2708 | 49.0 | 10682 | 0.2538 | 0.8846 | 0.9893 | 0.9793 | 0.0 | 0.2669 | 0.8903 | 0.4799 | 0.9213 | 0.9224 | 0.0 | 0.315 | 0.9284 | 0.9052 | 0.9383 | 0.8641 | 0.9065 |
| 0.2708 | 50.0 | 10900 | 0.2445 | 0.8919 | 0.9896 | 0.9745 | -1.0 | 0.2193 | 0.8972 | 0.4765 | 0.9228 | 0.925 | -1.0 | 0.3969 | 0.9294 | 0.9239 | 0.9511 | 0.8599 | 0.8989 |
| 0.2595 | 51.0 | 11118 | 0.2110 | 0.9037 | 0.99 | 0.9845 | -1.0 | 0.2267 | 0.9093 | 0.4882 | 0.9339 | 0.9346 | -1.0 | 0.25 | 0.9374 | 0.9299 | 0.9574 | 0.8776 | 0.9117 |
| 0.2595 | 52.0 | 11336 | 0.2374 | 0.897 | 0.99 | 0.9792 | -1.0 | 0.2066 | 0.9029 | 0.48 | 0.9267 | 0.9285 | -1.0 | 0.3179 | 0.9335 | 0.9257 | 0.9531 | 0.8684 | 0.9039 |
| 0.2378 | 53.0 | 11554 | 0.2517 | 0.8826 | 0.9894 | 0.9716 | -1.0 | 0.1494 | 0.8901 | 0.4782 | 0.9162 | 0.9188 | -1.0 | 0.2475 | 0.9242 | 0.9152 | 0.9455 | 0.8501 | 0.892 |
| 0.2378 | 54.0 | 11772 | 0.2260 | 0.8971 | 0.9899 | 0.9771 | -1.0 | 0.1848 | 0.9029 | 0.4825 | 0.9304 | 0.9315 | -1.0 | 0.2077 | 0.936 | 0.9255 | 0.9544 | 0.8687 | 0.9087 |
| 0.2378 | 55.0 | 11990 | 0.2144 | 0.9118 | 0.9899 | 0.9844 | -1.0 | 0.2843 | 0.9158 | 0.4875 | 0.9417 | 0.9435 | -1.0 | 0.3333 | 0.9456 | 0.9351 | 0.9608 | 0.8885 | 0.9263 |
| 0.2494 | 56.0 | 12208 | 0.2028 | 0.9107 | 0.9897 | 0.9814 | 0.0 | 0.1831 | 0.9168 | 0.4906 | 0.9395 | 0.9414 | 0.0 | 0.22 | 0.9466 | 0.935 | 0.9585 | 0.8864 | 0.9243 |
| 0.2494 | 57.0 | 12426 | 0.2341 | 0.8897 | 0.9897 | 0.9812 | -1.0 | 0.1783 | 0.8932 | 0.4822 | 0.9242 | 0.926 | -1.0 | 0.2154 | 0.9303 | 0.9168 | 0.948 | 0.8625 | 0.9039 |
| 0.2228 | 58.0 | 12644 | 0.2075 | 0.9084 | 0.9899 | 0.9792 | -1.0 | 0.1741 | 0.9142 | 0.4899 | 0.9375 | 0.9379 | -1.0 | 0.2308 | 0.9421 | 0.932 | 0.9581 | 0.8849 | 0.9177 |
| 0.2228 | 59.0 | 12862 | 0.2059 | 0.9096 | 0.9896 | 0.9803 | 0.0 | 0.2969 | 0.9138 | 0.4893 | 0.9375 | 0.9395 | 0.0 | 0.31 | 0.9431 | 0.9311 | 0.957 | 0.8881 | 0.9219 |
| 0.2218 | 60.0 | 13080 | 0.2028 | 0.9136 | 0.9899 | 0.984 | -1.0 | 0.2316 | 0.9164 | 0.4875 | 0.9408 | 0.9416 | -1.0 | 0.295 | 0.9442 | 0.9433 | 0.9654 | 0.884 | 0.9177 |
| 0.2218 | 61.0 | 13298 | 0.2013 | 0.911 | 0.99 | 0.9786 | -1.0 | 0.253 | 0.9158 | 0.4904 | 0.9388 | 0.94 | -1.0 | 0.3 | 0.9435 | 0.9325 | 0.9572 | 0.8895 | 0.9228 |
| 0.2238 | 62.0 | 13516 | 0.2033 | 0.9134 | 0.9899 | 0.9825 | 0.0 | 0.2228 | 0.9199 | 0.4896 | 0.9426 | 0.9438 | 0.0 | 0.2667 | 0.9484 | 0.9367 | 0.9624 | 0.8902 | 0.9252 |
| 0.2238 | 63.0 | 13734 | 0.1893 | 0.9216 | 0.99 | 0.9836 | -1.0 | 0.1905 | 0.9271 | 0.4942 | 0.9509 | 0.9512 | -1.0 | 0.235 | 0.9546 | 0.9403 | 0.9664 | 0.9029 | 0.9361 |
| 0.2238 | 64.0 | 13952 | 0.1893 | 0.9267 | 0.9898 | 0.9835 | 0.0 | 0.2342 | 0.9317 | 0.4957 | 0.9524 | 0.9536 | 0.0 | 0.2583 | 0.9585 | 0.9491 | 0.971 | 0.9043 | 0.9363 |
| 0.2131 | 65.0 | 14170 | 0.1769 | 0.9322 | 0.9901 | 0.9847 | -1.0 | 0.2413 | 0.9349 | 0.4982 | 0.9554 | 0.9559 | -1.0 | 0.2864 | 0.959 | 0.9463 | 0.9673 | 0.9181 | 0.9445 |
| 0.2131 | 66.0 | 14388 | 0.1848 | 0.9312 | 0.9898 | 0.9842 | 0.0 | 0.2901 | 0.9358 | 0.4973 | 0.9545 | 0.9551 | 0.0 | 0.425 | 0.9591 | 0.9517 | 0.9709 | 0.9107 | 0.9394 |
| 0.2038 | 67.0 | 14606 | 0.1809 | 0.9277 | 0.9899 | 0.9815 | 0.0 | 0.2354 | 0.9329 | 0.4951 | 0.9524 | 0.9539 | 0.0 | 0.2846 | 0.9586 | 0.9441 | 0.9668 | 0.9112 | 0.9411 |
| 0.2038 | 68.0 | 14824 | 0.1831 | 0.9178 | 0.9899 | 0.98 | 0.0 | 0.1728 | 0.9256 | 0.4922 | 0.9472 | 0.9483 | 0.0 | 0.23 | 0.9538 | 0.9396 | 0.9646 | 0.896 | 0.9319 |
| 0.1995 | 69.0 | 15042 | 0.1631 | 0.934 | 0.9901 | 0.9861 | -1.0 | 0.2804 | 0.9405 | 0.4982 | 0.9574 | 0.9583 | -1.0 | 0.325 | 0.9615 | 0.954 | 0.9729 | 0.914 | 0.9438 |
| 0.1995 | 70.0 | 15260 | 0.1685 | 0.9293 | 0.9899 | 0.9846 | -1.0 | 0.2397 | 0.935 | 0.4964 | 0.9546 | 0.9553 | -1.0 | 0.2714 | 0.9593 | 0.948 | 0.9698 | 0.9105 | 0.9408 |
| 0.1995 | 71.0 | 15478 | 0.1629 | 0.9371 | 0.9901 | 0.9842 | -1.0 | 0.2541 | 0.942 | 0.498 | 0.9603 | 0.9609 | -1.0 | 0.4964 | 0.965 | 0.954 | 0.9741 | 0.9202 | 0.9477 |
| 0.1877 | 72.0 | 15696 | 0.1606 | 0.944 | 0.9901 | 0.9846 | -1.0 | 0.277 | 0.9469 | 0.4988 | 0.9636 | 0.9642 | -1.0 | 0.3038 | 0.9676 | 0.96 | 0.9758 | 0.9281 | 0.9527 |
| 0.1877 | 73.0 | 15914 | 0.1532 | 0.9389 | 0.99 | 0.9806 | 0.0 | 0.2592 | 0.9446 | 0.5009 | 0.961 | 0.962 | 0.0 | 0.3133 | 0.9662 | 0.9564 | 0.9749 | 0.9214 | 0.9492 |
| 0.1912 | 74.0 | 16132 | 0.1434 | 0.9488 | 0.995 | 0.9934 | -1.0 | 0.5552 | 0.9507 | 0.5033 | 0.9673 | 0.9675 | -1.0 | 0.7182 | 0.969 | 0.9639 | 0.9786 | 0.9336 | 0.9563 |
| 0.1912 | 75.0 | 16350 | 0.1726 | 0.9309 | 0.9901 | 0.9832 | -1.0 | 0.216 | 0.9344 | 0.4964 | 0.9568 | 0.9578 | -1.0 | 0.2611 | 0.9607 | 0.9539 | 0.9747 | 0.9079 | 0.941 |
| 0.1859 | 76.0 | 16568 | 0.1587 | 0.9378 | 0.9901 | 0.9847 | -1.0 | 0.1684 | 0.944 | 0.4994 | 0.9601 | 0.9607 | -1.0 | 0.2382 | 0.9662 | 0.952 | 0.9715 | 0.9237 | 0.9499 |
| 0.1859 | 77.0 | 16786 | 0.1378 | 0.9509 | 0.9901 | 0.9845 | -1.0 | 0.2089 | 0.959 | 0.5047 | 0.9688 | 0.9691 | -1.0 | 0.2353 | 0.9748 | 0.9666 | 0.9823 | 0.9352 | 0.9559 |
| 0.1747 | 78.0 | 17004 | 0.1416 | 0.9478 | 0.9901 | 0.985 | 0.0 | 0.3334 | 0.9521 | 0.5039 | 0.9685 | 0.9692 | 0.0 | 0.35 | 0.9719 | 0.9617 | 0.9799 | 0.9338 | 0.9586 |
| 0.1747 | 79.0 | 17222 | 0.1615 | 0.9376 | 0.9949 | 0.9873 | -1.0 | 0.5057 | 0.9406 | 0.5003 | 0.9599 | 0.9607 | -1.0 | 0.5688 | 0.9644 | 0.9583 | 0.9746 | 0.917 | 0.9469 |
| 0.1747 | 80.0 | 17440 | 0.1482 | 0.9427 | 0.99 | 0.9823 | -1.0 | 0.1933 | 0.9499 | 0.5025 | 0.9639 | 0.9642 | -1.0 | 0.2321 | 0.9689 | 0.9566 | 0.9762 | 0.9289 | 0.9521 |
| 0.1707 | 81.0 | 17658 | 0.1379 | 0.9518 | 0.9901 | 0.9894 | -1.0 | 0.2838 | 0.956 | 0.504 | 0.97 | 0.9702 | -1.0 | 0.3 | 0.9742 | 0.965 | 0.9787 | 0.9386 | 0.9618 |
| 0.1707 | 82.0 | 17876 | 0.1384 | 0.9478 | 0.9901 | 0.9846 | -1.0 | 0.2518 | 0.9545 | 0.504 | 0.9687 | 0.9691 | -1.0 | 0.2643 | 0.9734 | 0.9612 | 0.9787 | 0.9344 | 0.9595 |
| 0.1658 | 83.0 | 18094 | 0.1379 | 0.9532 | 0.9901 | 0.9845 | -1.0 | 0.2543 | 0.9567 | 0.5043 | 0.9707 | 0.9714 | -1.0 | 0.2708 | 0.975 | 0.9655 | 0.981 | 0.9408 | 0.9617 |
| 0.1658 | 84.0 | 18312 | 0.1325 | 0.9544 | 0.9901 | 0.9845 | 0.0 | 0.256 | 0.9597 | 0.5047 | 0.9712 | 0.972 | 0.0 | 0.3036 | 0.9762 | 0.9672 | 0.9811 | 0.9417 | 0.9628 |
| 0.1532 | 85.0 | 18530 | 0.1558 | 0.9452 | 0.99 | 0.9845 | -1.0 | 0.2469 | 0.9495 | 0.5009 | 0.9648 | 0.9657 | -1.0 | 0.2769 | 0.9695 | 0.9584 | 0.9749 | 0.932 | 0.9565 |
| 0.1532 | 86.0 | 18748 | 0.1228 | 0.9538 | 0.9901 | 0.9841 | -1.0 | 0.3437 | 0.9585 | 0.5056 | 0.972 | 0.9726 | -1.0 | 0.3727 | 0.9747 | 0.9642 | 0.9806 | 0.9434 | 0.9646 |
| 0.1532 | 87.0 | 18966 | 0.1317 | 0.9587 | 0.9901 | 0.9844 | 0.0 | 0.4141 | 0.965 | 0.5064 | 0.9738 | 0.974 | 0.0 | 0.4517 | 0.9791 | 0.9676 | 0.9815 | 0.9498 | 0.9664 |
| 0.1574 | 88.0 | 19184 | 0.1318 | 0.9508 | 0.9901 | 0.9845 | 0.0 | 0.2545 | 0.9581 | 0.5059 | 0.9705 | 0.9706 | 0.0 | 0.2962 | 0.9747 | 0.9594 | 0.9778 | 0.9422 | 0.9633 |
| 0.1574 | 89.0 | 19402 | 0.1424 | 0.9513 | 0.9899 | 0.984 | -1.0 | 0.2362 | 0.9547 | 0.5034 | 0.9691 | 0.9695 | -1.0 | 0.2875 | 0.9729 | 0.9636 | 0.9786 | 0.939 | 0.9603 |
| 0.1537 | 90.0 | 19620 | 0.1240 | 0.9565 | 0.9901 | 0.9896 | -1.0 | 0.5053 | 0.9592 | 0.5066 | 0.9747 | 0.9752 | -1.0 | 0.55 | 0.9771 | 0.9669 | 0.9823 | 0.9461 | 0.9681 |
| 0.1537 | 91.0 | 19838 | 0.1382 | 0.947 | 0.9901 | 0.9835 | 0.0 | 0.5316 | 0.9504 | 0.5018 | 0.9681 | 0.9683 | 0.0 | 0.555 | 0.9712 | 0.9622 | 0.9775 | 0.9319 | 0.9592 |
| 0.1547 | 92.0 | 20056 | 0.1276 | 0.9565 | 0.9901 | 0.983 | -1.0 | 0.3161 | 0.9618 | 0.5058 | 0.9742 | 0.9743 | -1.0 | 0.3458 | 0.977 | 0.9668 | 0.9818 | 0.9462 | 0.9669 |
| 0.1547 | 93.0 | 20274 | 0.1329 | 0.9539 | 0.99 | 0.9836 | -1.0 | 0.2997 | 0.9593 | 0.5053 | 0.9718 | 0.9728 | -1.0 | 0.3318 | 0.9754 | 0.9679 | 0.982 | 0.9398 | 0.9635 |
| 0.1547 | 94.0 | 20492 | 0.1348 | 0.9571 | 0.99 | 0.9846 | -1.0 | 0.3267 | 0.9615 | 0.5039 | 0.9732 | 0.9737 | -1.0 | 0.3625 | 0.9761 | 0.9678 | 0.9823 | 0.9463 | 0.9652 |
| 0.1513 | 95.0 | 20710 | 0.1251 | 0.9546 | 0.9901 | 0.9844 | 0.0 | 0.2549 | 0.9626 | 0.5049 | 0.9728 | 0.9731 | 0.0 | 0.2625 | 0.9775 | 0.965 | 0.981 | 0.9442 | 0.9652 |
| 0.1513 | 96.0 | 20928 | 0.1264 | 0.9594 | 0.9901 | 0.9899 | 0.0 | 0.327 | 0.9631 | 0.5068 | 0.9755 | 0.9763 | 0.0 | 0.3409 | 0.9794 | 0.9696 | 0.9842 | 0.9492 | 0.9683 |
| 0.1635 | 97.0 | 21146 | 0.1306 | 0.9515 | 0.9901 | 0.9843 | -1.0 | 0.2685 | 0.9561 | 0.5041 | 0.9696 | 0.9703 | -1.0 | 0.2857 | 0.9742 | 0.9626 | 0.9795 | 0.9404 | 0.9611 |
| 0.1635 | 98.0 | 21364 | 0.1410 | 0.9481 | 0.9899 | 0.9788 | 0.0 | 0.4025 | 0.9542 | 0.5031 | 0.9662 | 0.9678 | 0.0 | 0.4458 | 0.9722 | 0.9621 | 0.9789 | 0.9341 | 0.9567 |
| 0.1505 | 99.0 | 21582 | 0.1253 | 0.9571 | 0.9901 | 0.984 | -1.0 | 0.3105 | 0.962 | 0.5066 | 0.9737 | 0.974 | -1.0 | 0.3375 | 0.9777 | 0.9702 | 0.9832 | 0.944 | 0.9648 |
| 0.1505 | 100.0 | 21800 | 0.1291 | 0.9532 | 0.9901 | 0.9845 | -1.0 | 0.3203 | 0.9578 | 0.5044 | 0.9715 | 0.972 | -1.0 | 0.3538 | 0.9747 | 0.9618 | 0.9775 | 0.9447 | 0.9664 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
[
"cashier",
"cx"
] |
Husseinhaidar6/detr-finetuned-LP-v2
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"iraq"
] |
leon-cvetkovski/deta-equipment-10-epochs
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7",
"label_8",
"label_9",
"label_10",
"label_11",
"label_12",
"label_13",
"label_14",
"label_15",
"label_16",
"label_17",
"label_18",
"label_19",
"label_20",
"label_21"
] |
Husseinhaidar6/detr-finetuned-LP-v3
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3"
] |
Husseinhaidar6/detr-finetuned-LP-v4
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3"
] |
Husseinhaidar6/detr-finetuned-LP-v5
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2"
] |
lk66/fashion-rec
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7",
"label_8",
"label_9",
"label_10",
"label_11",
"label_12",
"label_13",
"label_14",
"label_15",
"label_16",
"label_17",
"label_18",
"label_19",
"label_20",
"label_21",
"label_22",
"label_23",
"label_24",
"label_25",
"label_26",
"label_27",
"label_28",
"label_29",
"label_30",
"label_31",
"label_32",
"label_33",
"label_34",
"label_35",
"label_36",
"label_37",
"label_38",
"label_39",
"label_40",
"label_41",
"label_42",
"label_43",
"label_44",
"label_45"
] |
lk6/fashion-rec
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7",
"label_8",
"label_9",
"label_10",
"label_11",
"label_12",
"label_13",
"label_14",
"label_15",
"label_16",
"label_17",
"label_18",
"label_19",
"label_20",
"label_21",
"label_22",
"label_23",
"label_24",
"label_25",
"label_26",
"label_27",
"label_28",
"label_29",
"label_30",
"label_31",
"label_32",
"label_33",
"label_34",
"label_35",
"label_36",
"label_37",
"label_38",
"label_39",
"label_40",
"label_41",
"label_42",
"label_43",
"label_44",
"label_45"
] |
leon-cvetkovski/deta-equipment-17.5-epochs
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7",
"label_8",
"label_9",
"label_10",
"label_11",
"label_12",
"label_13",
"label_14",
"label_15",
"label_16",
"label_17",
"label_18",
"label_19",
"label_20",
"label_21"
] |
ArrayDice/facebook_detr_finetuned_cppe5
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# facebook_detr_finetuned_cppe5
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5232
- Map: 0.2143
- Map 50: 0.4481
- Map 75: 0.1932
- Map Small: 0.0595
- Map Medium: 0.1238
- Map Large: 0.3317
- Mar 1: 0.2418
- Mar 10: 0.4177
- Mar 100: 0.4387
- Mar Small: 0.1234
- Mar Medium: 0.3182
- Mar Large: 0.5933
- Map Coverall: 0.4858
- Mar 100 Coverall: 0.6766
- Map Face Shield: 0.1639
- Mar 100 Face Shield: 0.4278
- Map Gloves: 0.1388
- Mar 100 Gloves: 0.3763
- Map Goggles: 0.0716
- Mar 100 Goggles: 0.3538
- Map Mask: 0.2112
- Mar 100 Mask: 0.3587
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Coverall | Mar 100 Coverall | Map Face Shield | Mar 100 Face Shield | Map Gloves | Mar 100 Gloves | Map Goggles | Mar 100 Goggles | Map Mask | Mar 100 Mask |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:------------:|:----------------:|:---------------:|:-------------------:|:----------:|:--------------:|:-----------:|:---------------:|:--------:|:------------:|
| No log | 1.0 | 107 | 2.6056 | 0.02 | 0.0483 | 0.0156 | 0.0017 | 0.0019 | 0.0219 | 0.0344 | 0.1171 | 0.1547 | 0.0387 | 0.0674 | 0.2003 | 0.092 | 0.4671 | 0.0 | 0.0 | 0.0046 | 0.1647 | 0.0 | 0.0 | 0.0034 | 0.1418 |
| No log | 2.0 | 214 | 2.3184 | 0.036 | 0.0808 | 0.0265 | 0.0098 | 0.0135 | 0.0403 | 0.0512 | 0.1513 | 0.1976 | 0.1004 | 0.1414 | 0.2133 | 0.1389 | 0.518 | 0.0 | 0.0 | 0.0319 | 0.2384 | 0.0 | 0.0 | 0.0091 | 0.2316 |
| No log | 3.0 | 321 | 2.2718 | 0.0351 | 0.0849 | 0.0248 | 0.0082 | 0.0168 | 0.0345 | 0.0589 | 0.1499 | 0.1965 | 0.0592 | 0.112 | 0.2353 | 0.1366 | 0.5689 | 0.0 | 0.0 | 0.0195 | 0.2018 | 0.0 | 0.0 | 0.0193 | 0.2116 |
| No log | 4.0 | 428 | 2.2070 | 0.0665 | 0.1472 | 0.053 | 0.0093 | 0.0147 | 0.0715 | 0.0796 | 0.1709 | 0.199 | 0.077 | 0.1116 | 0.2313 | 0.2774 | 0.541 | 0.0 | 0.0 | 0.0167 | 0.2232 | 0.0 | 0.0 | 0.0384 | 0.2307 |
| 2.2509 | 5.0 | 535 | 2.0817 | 0.0753 | 0.1631 | 0.0643 | 0.0205 | 0.0263 | 0.0774 | 0.0833 | 0.184 | 0.2081 | 0.0762 | 0.1151 | 0.2439 | 0.3053 | 0.5653 | 0.0007 | 0.0152 | 0.0296 | 0.2576 | 0.0 | 0.0 | 0.0407 | 0.2022 |
| 2.2509 | 6.0 | 642 | 2.1124 | 0.0897 | 0.1778 | 0.0786 | 0.0128 | 0.0293 | 0.0976 | 0.0862 | 0.1932 | 0.2194 | 0.0752 | 0.1139 | 0.2658 | 0.3802 | 0.6324 | 0.007 | 0.0215 | 0.028 | 0.2277 | 0.0 | 0.0 | 0.0331 | 0.2156 |
| 2.2509 | 7.0 | 749 | 1.9497 | 0.1018 | 0.2201 | 0.0729 | 0.0331 | 0.0416 | 0.1097 | 0.1105 | 0.2187 | 0.2405 | 0.076 | 0.1336 | 0.2967 | 0.3631 | 0.627 | 0.0265 | 0.0873 | 0.0394 | 0.2518 | 0.0 | 0.0 | 0.0801 | 0.2364 |
| 2.2509 | 8.0 | 856 | 2.0218 | 0.1065 | 0.2185 | 0.0902 | 0.02 | 0.0531 | 0.1221 | 0.1329 | 0.244 | 0.2662 | 0.0686 | 0.1606 | 0.3382 | 0.3752 | 0.6221 | 0.0345 | 0.1658 | 0.0367 | 0.2442 | 0.0129 | 0.02 | 0.0734 | 0.2791 |
| 2.2509 | 9.0 | 963 | 1.9220 | 0.1125 | 0.2452 | 0.0979 | 0.0353 | 0.057 | 0.1411 | 0.132 | 0.2557 | 0.2703 | 0.078 | 0.1537 | 0.3563 | 0.3765 | 0.5878 | 0.0368 | 0.2063 | 0.0474 | 0.2487 | 0.0018 | 0.02 | 0.0997 | 0.2884 |
| 1.734 | 10.0 | 1070 | 1.8888 | 0.1342 | 0.284 | 0.1133 | 0.0278 | 0.0755 | 0.1591 | 0.1551 | 0.2793 | 0.2984 | 0.0525 | 0.1895 | 0.3834 | 0.447 | 0.6649 | 0.0624 | 0.2241 | 0.0505 | 0.2629 | 0.0101 | 0.0723 | 0.1011 | 0.268 |
| 1.734 | 11.0 | 1177 | 1.8868 | 0.1016 | 0.2399 | 0.0731 | 0.0231 | 0.0587 | 0.1282 | 0.1332 | 0.2687 | 0.2891 | 0.0759 | 0.2153 | 0.3802 | 0.3322 | 0.5811 | 0.0331 | 0.2405 | 0.047 | 0.2518 | 0.0102 | 0.1292 | 0.0856 | 0.2427 |
| 1.734 | 12.0 | 1284 | 1.7685 | 0.1412 | 0.3049 | 0.1177 | 0.0469 | 0.0695 | 0.183 | 0.1704 | 0.3233 | 0.3389 | 0.0818 | 0.2284 | 0.4528 | 0.4338 | 0.6293 | 0.0626 | 0.3051 | 0.0604 | 0.2839 | 0.0246 | 0.18 | 0.1244 | 0.2964 |
| 1.734 | 13.0 | 1391 | 1.7098 | 0.1508 | 0.3145 | 0.1249 | 0.039 | 0.0923 | 0.2026 | 0.1742 | 0.3351 | 0.3524 | 0.0892 | 0.2417 | 0.4757 | 0.4381 | 0.6559 | 0.0799 | 0.3076 | 0.083 | 0.3085 | 0.0079 | 0.1738 | 0.1452 | 0.3164 |
| 1.734 | 14.0 | 1498 | 1.6927 | 0.1617 | 0.3458 | 0.1351 | 0.0405 | 0.0958 | 0.2241 | 0.1852 | 0.3496 | 0.366 | 0.1014 | 0.2475 | 0.4904 | 0.4484 | 0.6581 | 0.1058 | 0.3329 | 0.0674 | 0.2906 | 0.0361 | 0.2323 | 0.1507 | 0.316 |
| 1.5105 | 15.0 | 1605 | 1.6452 | 0.1748 | 0.3717 | 0.145 | 0.0578 | 0.11 | 0.2376 | 0.2036 | 0.3582 | 0.376 | 0.1233 | 0.2797 | 0.4991 | 0.4443 | 0.6432 | 0.1282 | 0.3241 | 0.0984 | 0.3259 | 0.0301 | 0.26 | 0.1727 | 0.3267 |
| 1.5105 | 16.0 | 1712 | 1.6752 | 0.1706 | 0.3672 | 0.1338 | 0.0475 | 0.1048 | 0.2499 | 0.1987 | 0.3623 | 0.3886 | 0.1158 | 0.2733 | 0.5125 | 0.4261 | 0.6392 | 0.1294 | 0.3367 | 0.0981 | 0.3562 | 0.0378 | 0.2708 | 0.1616 | 0.34 |
| 1.5105 | 17.0 | 1819 | 1.6004 | 0.1867 | 0.3897 | 0.1547 | 0.045 | 0.1158 | 0.2696 | 0.2178 | 0.38 | 0.4003 | 0.1071 | 0.2849 | 0.5289 | 0.4534 | 0.6586 | 0.125 | 0.3557 | 0.1058 | 0.3598 | 0.0683 | 0.2892 | 0.1812 | 0.3382 |
| 1.5105 | 18.0 | 1926 | 1.5693 | 0.1823 | 0.3801 | 0.1584 | 0.0578 | 0.1034 | 0.2637 | 0.2152 | 0.3791 | 0.4006 | 0.1198 | 0.2829 | 0.5342 | 0.4645 | 0.6676 | 0.1157 | 0.3557 | 0.1143 | 0.3683 | 0.0421 | 0.2754 | 0.1748 | 0.336 |
| 1.3533 | 19.0 | 2033 | 1.5891 | 0.1895 | 0.4061 | 0.1638 | 0.0519 | 0.1144 | 0.2796 | 0.2145 | 0.3878 | 0.406 | 0.1355 | 0.2999 | 0.5346 | 0.4632 | 0.655 | 0.1435 | 0.357 | 0.1196 | 0.3647 | 0.0407 | 0.32 | 0.1808 | 0.3333 |
| 1.3533 | 20.0 | 2140 | 1.5850 | 0.1969 | 0.3947 | 0.1688 | 0.0549 | 0.1237 | 0.2798 | 0.2333 | 0.3976 | 0.4146 | 0.1077 | 0.3041 | 0.544 | 0.4706 | 0.6486 | 0.1459 | 0.3987 | 0.1287 | 0.3496 | 0.0448 | 0.3323 | 0.1945 | 0.344 |
| 1.3533 | 21.0 | 2247 | 1.5667 | 0.1971 | 0.3975 | 0.1752 | 0.0607 | 0.1162 | 0.2984 | 0.23 | 0.3969 | 0.4131 | 0.1131 | 0.3001 | 0.5511 | 0.4826 | 0.6626 | 0.1445 | 0.3937 | 0.1247 | 0.3536 | 0.0408 | 0.3123 | 0.1927 | 0.3436 |
| 1.3533 | 22.0 | 2354 | 1.5281 | 0.2048 | 0.4147 | 0.1843 | 0.0513 | 0.1217 | 0.3206 | 0.2292 | 0.3961 | 0.4149 | 0.1068 | 0.314 | 0.5566 | 0.4892 | 0.6698 | 0.1538 | 0.3772 | 0.1308 | 0.367 | 0.0526 | 0.3169 | 0.1977 | 0.3436 |
| 1.3533 | 23.0 | 2461 | 1.5632 | 0.206 | 0.423 | 0.1755 | 0.0558 | 0.1123 | 0.3259 | 0.2358 | 0.3957 | 0.4222 | 0.1182 | 0.3006 | 0.5721 | 0.4882 | 0.6739 | 0.1507 | 0.3937 | 0.1371 | 0.3688 | 0.055 | 0.3308 | 0.1992 | 0.344 |
| 1.2451 | 24.0 | 2568 | 1.5177 | 0.2083 | 0.4356 | 0.1778 | 0.0506 | 0.1205 | 0.3281 | 0.2387 | 0.4117 | 0.4344 | 0.1286 | 0.3056 | 0.5865 | 0.4806 | 0.6802 | 0.1463 | 0.4139 | 0.1384 | 0.3768 | 0.0577 | 0.34 | 0.2183 | 0.3613 |
| 1.2451 | 25.0 | 2675 | 1.5367 | 0.2092 | 0.427 | 0.1808 | 0.0553 | 0.1202 | 0.3256 | 0.2386 | 0.4115 | 0.4347 | 0.1224 | 0.3102 | 0.5915 | 0.4732 | 0.6748 | 0.1508 | 0.4203 | 0.1399 | 0.3795 | 0.0613 | 0.3354 | 0.2208 | 0.3636 |
| 1.2451 | 26.0 | 2782 | 1.5130 | 0.2093 | 0.4378 | 0.1884 | 0.0558 | 0.1225 | 0.3295 | 0.2394 | 0.4179 | 0.439 | 0.1442 | 0.3167 | 0.5958 | 0.4743 | 0.6761 | 0.1552 | 0.4228 | 0.1382 | 0.3759 | 0.0656 | 0.3615 | 0.2131 | 0.3587 |
| 1.2451 | 27.0 | 2889 | 1.5194 | 0.2122 | 0.4448 | 0.1893 | 0.0592 | 0.1231 | 0.3307 | 0.2405 | 0.4172 | 0.4352 | 0.1247 | 0.3171 | 0.5864 | 0.4826 | 0.6739 | 0.1597 | 0.4203 | 0.1384 | 0.3696 | 0.0692 | 0.3585 | 0.2108 | 0.3538 |
| 1.2451 | 28.0 | 2996 | 1.5213 | 0.2123 | 0.4451 | 0.1918 | 0.059 | 0.1221 | 0.3282 | 0.2426 | 0.4157 | 0.4347 | 0.1234 | 0.3165 | 0.5867 | 0.4856 | 0.677 | 0.1588 | 0.4177 | 0.1397 | 0.3754 | 0.0692 | 0.3508 | 0.208 | 0.3524 |
| 1.18 | 29.0 | 3103 | 1.5214 | 0.2135 | 0.4461 | 0.1923 | 0.0595 | 0.1228 | 0.3305 | 0.2414 | 0.4191 | 0.4392 | 0.1234 | 0.3189 | 0.5921 | 0.4857 | 0.6775 | 0.1626 | 0.4304 | 0.1393 | 0.3759 | 0.07 | 0.3569 | 0.2098 | 0.3551 |
| 1.18 | 30.0 | 3210 | 1.5232 | 0.2143 | 0.4481 | 0.1932 | 0.0595 | 0.1238 | 0.3317 | 0.2418 | 0.4177 | 0.4387 | 0.1234 | 0.3182 | 0.5933 | 0.4858 | 0.6766 | 0.1639 | 0.4278 | 0.1388 | 0.3763 | 0.0716 | 0.3538 | 0.2112 | 0.3587 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
[
"coverall",
"face_shield",
"gloves",
"goggles",
"mask"
] |
leon-cvetkovski/deta-equipment-17.5-epochs-trash
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7",
"label_8",
"label_9",
"label_10",
"label_11",
"label_12",
"label_13",
"label_14",
"label_15",
"label_16",
"label_17",
"label_18",
"label_19",
"label_20",
"label_21"
] |
leon-cvetkovski/deta-equipment-50-epochs
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7",
"label_8",
"label_9",
"label_10",
"label_11",
"label_12",
"label_13",
"label_14",
"label_15",
"label_16",
"label_17",
"label_18",
"label_19",
"label_20",
"label_21"
] |
Rareshika/detr-resnet-50_finetuned_cppe5
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr-resnet-50_finetuned_cppe5
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
[
"coverall",
"face_shield",
"gloves",
"goggles",
"mask"
] |
Rareshika/yolos_finetuned_cppe5
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# yolos_finetuned_cppe5
This model is a fine-tuned version of [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
[
"coverall",
"face_shield",
"gloves",
"goggles",
"mask"
] |
dbihbka/detr_finetuned_cppe5
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr_finetuned_cppe5
This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 20
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1
- Datasets 2.20.0
- Tokenizers 0.19.1
|
[
"speaker",
"participant",
"shared screen"
] |
Charles95/detr-resnet-50-notimm
|
# DETR (End-to-End Object Detection) model with ResNet-50 backbone
DEtection TRansformer (DETR) model trained end-to-end on COCO 2017 object detection (118k annotated images). It was introduced in the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Carion et al. and first released in [this repository](https://github.com/facebookresearch/detr).
Disclaimer: The team releasing DETR did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
The DETR model is an encoder-decoder transformer with a convolutional backbone. Two heads are added on top of the decoder outputs in order to perform object detection: a linear layer for the class labels and a MLP (multi-layer perceptron) for the bounding boxes. The model uses so-called object queries to detect objects in an image. Each object query looks for a particular object in the image. For COCO, the number of object queries is set to 100.
The model is trained using a "bipartite matching loss": one compares the predicted classes + bounding boxes of each of the N = 100 object queries to the ground truth annotations, padded up to the same length N (so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and "no bounding box" as bounding box). The Hungarian matching algorithm is used to create an optimal one-to-one mapping between each of the N queries and each of the N annotations. Next, standard cross-entropy (for the classes) and a linear combination of the L1 and generalized IoU loss (for the bounding boxes) are used to optimize the parameters of the model.

## Intended uses & limitations
You can use the raw model for object detection. See the [model hub](https://huggingface.co/models?search=facebook/detr) to look for all available DETR models.
### How to use
Here is how to use this model:
```python
from transformers import DetrImageProcessor, DetrForObjectDetection
import torch
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
# convert outputs (bounding boxes and class logits) to COCO API
# let's only keep detections with score > 0.9
target_sizes = torch.tensor([image.size[::-1]])
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
box = [round(i, 2) for i in box.tolist()]
print(
f"Detected {model.config.id2label[label.item()]} with confidence "
f"{round(score.item(), 3)} at location {box}"
)
```
This should output:
```
Detected remote with confidence 0.998 at location [40.16, 70.81, 175.55, 117.98]
Detected remote with confidence 0.996 at location [333.24, 72.55, 368.33, 187.66]
Detected couch with confidence 0.995 at location [-0.02, 1.15, 639.73, 473.76]
Detected cat with confidence 0.999 at location [13.24, 52.05, 314.02, 470.93]
Detected cat with confidence 0.999 at location [345.4, 23.85, 640.37, 368.72]
```
Currently, both the feature extractor and model support PyTorch.
## Training data
The DETR model was trained on [COCO 2017 object detection](https://cocodataset.org/#download), a dataset consisting of 118k/5k annotated images for training/validation respectively.
## Training procedure
### Preprocessing
The exact details of preprocessing of images during training/validation can be found [here](https://github.com/google-research/vision_transformer/blob/master/vit_jax/input_pipeline.py).
Images are resized/rescaled such that the shortest side is at least 800 pixels and the largest side at most 1333 pixels, and normalized across the RGB channels with the ImageNet mean (0.485, 0.456, 0.406) and standard deviation (0.229, 0.224, 0.225).
### Training
The model was trained for 300 epochs on 16 V100 GPUs. This takes 3 days, with 4 images per GPU (hence a total batch size of 64).
## Evaluation results
This model achieves an AP (average precision) of **42.0** on COCO 2017 validation. For more details regarding evaluation results, we refer to table 1 of the original paper.
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2005-12872,
author = {Nicolas Carion and
Francisco Massa and
Gabriel Synnaeve and
Nicolas Usunier and
Alexander Kirillov and
Sergey Zagoruyko},
title = {End-to-End Object Detection with Transformers},
journal = {CoRR},
volume = {abs/2005.12872},
year = {2020},
url = {https://arxiv.org/abs/2005.12872},
archivePrefix = {arXiv},
eprint = {2005.12872},
timestamp = {Thu, 28 May 2020 17:38:09 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2005-12872.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
|
[
"n/a",
"person",
"bicycle",
"car",
"motorcycle",
"airplane",
"bus",
"train",
"truck",
"boat",
"traffic light",
"fire hydrant",
"n/a",
"stop sign",
"parking meter",
"bench",
"bird",
"cat",
"dog",
"horse",
"sheep",
"cow",
"elephant",
"bear",
"zebra",
"giraffe",
"n/a",
"backpack",
"umbrella",
"n/a",
"n/a",
"handbag",
"tie",
"suitcase",
"frisbee",
"skis",
"snowboard",
"sports ball",
"kite",
"baseball bat",
"baseball glove",
"skateboard",
"surfboard",
"tennis racket",
"bottle",
"n/a",
"wine glass",
"cup",
"fork",
"knife",
"spoon",
"bowl",
"banana",
"apple",
"sandwich",
"orange",
"broccoli",
"carrot",
"hot dog",
"pizza",
"donut",
"cake",
"chair",
"couch",
"potted plant",
"bed",
"n/a",
"dining table",
"n/a",
"n/a",
"toilet",
"n/a",
"tv",
"laptop",
"mouse",
"remote",
"keyboard",
"cell phone",
"microwave",
"oven",
"toaster",
"sink",
"refrigerator",
"n/a",
"book",
"clock",
"vase",
"scissors",
"teddy bear",
"hair drier",
"toothbrush"
] |
ArrayDice/Vehicle_Detection_Model
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Vehicle_Detection_Model
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7220
- Map: 0.0875
- Map 50: 0.1634
- Map 75: 0.084
- Map Small: 0.355
- Map Medium: 0.1423
- Map Large: 0.0499
- Mar 1: 0.1462
- Mar 10: 0.2602
- Mar 100: 0.2709
- Mar Small: 0.5
- Mar Medium: 0.4013
- Mar Large: 0.3
- Map Camping car: 0.0039
- Mar 100 Camping car: 0.35
- Map Car: 0.4971
- Mar 100 Car: 0.6256
- Map Other: 0.0
- Mar 100 Other: 0.0
- Map Pickup: 0.0239
- Mar 100 Pickup: 0.65
- Map Truck: 0.0
- Mar 100 Truck: 0.0
- Map Van: 0.0
- Mar 100 Van: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Camping car | Mar 100 Camping car | Map Car | Mar 100 Car | Map Other | Mar 100 Other | Map Pickup | Mar 100 Pickup | Map Truck | Mar 100 Truck | Map Van | Mar 100 Van |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:---------------:|:-------------------:|:-------:|:-----------:|:---------:|:-------------:|:----------:|:--------------:|:---------:|:-------------:|:-------:|:-----------:|
| No log | 1.0 | 232 | 1.3186 | 0.0125 | 0.0292 | 0.0085 | 0.0059 | 0.0197 | 0.004 | 0.0182 | 0.0467 | 0.0903 | 0.0556 | 0.1396 | 0.1 | 0.0 | 0.0 | 0.0751 | 0.5416 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| No log | 2.0 | 464 | 1.0802 | 0.0375 | 0.0832 | 0.0283 | 0.263 | 0.0585 | 0.0102 | 0.0254 | 0.0734 | 0.0865 | 0.2667 | 0.1317 | 0.15 | 0.0 | 0.0 | 0.2249 | 0.5189 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.4746 | 3.0 | 696 | 0.9804 | 0.0608 | 0.125 | 0.0483 | 0.2948 | 0.0938 | 0.075 | 0.0305 | 0.0821 | 0.0903 | 0.3556 | 0.1372 | 0.075 | 0.0 | 0.0 | 0.3646 | 0.5416 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.4746 | 4.0 | 928 | 0.9139 | 0.0712 | 0.1426 | 0.0577 | 0.2232 | 0.1091 | 0.125 | 0.0315 | 0.085 | 0.0959 | 0.3333 | 0.1459 | 0.125 | 0.0 | 0.0 | 0.4274 | 0.5754 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0134 | 5.0 | 1160 | 0.9581 | 0.0637 | 0.1367 | 0.0426 | 0.0804 | 0.0993 | 0.075 | 0.0289 | 0.0771 | 0.0846 | 0.2556 | 0.1292 | 0.075 | 0.0 | 0.0 | 0.3823 | 0.5078 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0134 | 6.0 | 1392 | 0.8830 | 0.0743 | 0.1476 | 0.0645 | 0.2171 | 0.1139 | 0.075 | 0.0345 | 0.0862 | 0.0967 | 0.3222 | 0.1474 | 0.075 | 0.0 | 0.0 | 0.4456 | 0.5801 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.9133 | 7.0 | 1624 | 0.8645 | 0.0716 | 0.147 | 0.0571 | 0.2156 | 0.1099 | 0.0752 | 0.0329 | 0.0853 | 0.0966 | 0.3111 | 0.147 | 0.175 | 0.0 | 0.0 | 0.4296 | 0.5797 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.9133 | 8.0 | 1856 | 0.8776 | 0.0676 | 0.1478 | 0.0445 | 0.2225 | 0.1032 | 0.1254 | 0.0317 | 0.0811 | 0.0934 | 0.3333 | 0.1417 | 0.2 | 0.0 | 0.0 | 0.4056 | 0.5601 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8617 | 9.0 | 2088 | 0.8556 | 0.0754 | 0.1506 | 0.0638 | 0.252 | 0.1153 | 0.1254 | 0.0323 | 0.0881 | 0.0999 | 0.3667 | 0.1517 | 0.2 | 0.0 | 0.0 | 0.4525 | 0.5996 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8617 | 10.0 | 2320 | 0.7552 | 0.0821 | 0.1528 | 0.0803 | 0.361 | 0.1248 | 0.1257 | 0.0347 | 0.1119 | 0.1312 | 0.5222 | 0.1747 | 0.2625 | 0.0 | 0.0 | 0.4921 | 0.6206 | 0.0 | 0.0 | 0.0004 | 0.1667 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8182 | 11.0 | 2552 | 0.8211 | 0.0741 | 0.1525 | 0.0627 | 0.3014 | 0.114 | 0.0503 | 0.0381 | 0.1098 | 0.1544 | 0.4222 | 0.2641 | 0.125 | 0.0001 | 0.1 | 0.4422 | 0.5762 | 0.0 | 0.0 | 0.002 | 0.25 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8182 | 12.0 | 2784 | 0.8140 | 0.0734 | 0.1486 | 0.056 | 0.214 | 0.1129 | 0.0506 | 0.0451 | 0.1066 | 0.1184 | 0.3778 | 0.1941 | 0.125 | 0.0 | 0.0 | 0.4382 | 0.594 | 0.0 | 0.0 | 0.0024 | 0.1167 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8079 | 13.0 | 3016 | 0.7473 | 0.0848 | 0.1559 | 0.0789 | 0.2794 | 0.1307 | 0.0779 | 0.078 | 0.16 | 0.1727 | 0.5 | 0.2668 | 0.1625 | 0.0 | 0.0 | 0.4983 | 0.6363 | 0.0 | 0.0 | 0.0103 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8079 | 14.0 | 3248 | 0.8514 | 0.0706 | 0.1541 | 0.0485 | 0.3034 | 0.1071 | 0.1046 | 0.079 | 0.1726 | 0.1862 | 0.4222 | 0.2556 | 0.2875 | 0.0 | 0.0 | 0.4149 | 0.5669 | 0.0 | 0.0 | 0.0089 | 0.55 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8079 | 15.0 | 3480 | 0.7615 | 0.0814 | 0.1579 | 0.0709 | 0.3673 | 0.1229 | 0.0691 | 0.0929 | 0.161 | 0.1719 | 0.4444 | 0.2177 | 0.3125 | 0.0 | 0.0 | 0.4774 | 0.6146 | 0.0 | 0.0 | 0.0109 | 0.4167 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.7672 | 16.0 | 3712 | 0.7819 | 0.0786 | 0.1555 | 0.0732 | 0.2782 | 0.1182 | 0.1589 | 0.103 | 0.1757 | 0.1878 | 0.3556 | 0.2629 | 0.325 | 0.0 | 0.0 | 0.4557 | 0.5936 | 0.0 | 0.0 | 0.0159 | 0.5333 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.7672 | 17.0 | 3944 | 0.7723 | 0.0807 | 0.1551 | 0.0757 | 0.3302 | 0.1227 | 0.0687 | 0.0812 | 0.1762 | 0.1939 | 0.4 | 0.274 | 0.3 | 0.0 | 0.0 | 0.4724 | 0.6135 | 0.0 | 0.0 | 0.0121 | 0.55 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.744 | 18.0 | 4176 | 0.7838 | 0.0784 | 0.1535 | 0.0709 | 0.3594 | 0.1201 | 0.0564 | 0.0865 | 0.1865 | 0.2497 | 0.4 | 0.3637 | 0.325 | 0.0009 | 0.3 | 0.4503 | 0.5982 | 0.0 | 0.0 | 0.0191 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.744 | 19.0 | 4408 | 0.7714 | 0.0763 | 0.1552 | 0.0625 | 0.2732 | 0.116 | 0.0675 | 0.0605 | 0.1696 | 0.1824 | 0.4111 | 0.2502 | 0.3 | 0.0 | 0.0 | 0.4461 | 0.5943 | 0.0 | 0.0 | 0.0115 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.7219 | 20.0 | 4640 | 0.7403 | 0.0808 | 0.1543 | 0.0686 | 0.2968 | 0.1251 | 0.0665 | 0.0984 | 0.1889 | 0.1997 | 0.5111 | 0.2859 | 0.3 | 0.0 | 0.0 | 0.4738 | 0.6146 | 0.0 | 0.0 | 0.0109 | 0.5833 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.7219 | 21.0 | 4872 | 0.7421 | 0.0839 | 0.1599 | 0.0803 | 0.2862 | 0.2166 | 0.0451 | 0.1396 | 0.2437 | 0.257 | 0.5 | 0.3782 | 0.275 | 0.0123 | 0.4 | 0.4792 | 0.6089 | 0.0 | 0.0 | 0.0118 | 0.5333 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.6955 | 22.0 | 5104 | 0.7459 | 0.0844 | 0.1619 | 0.0753 | 0.3116 | 0.1475 | 0.0462 | 0.1395 | 0.2253 | 0.2342 | 0.4333 | 0.3404 | 0.2875 | 0.0068 | 0.25 | 0.4815 | 0.6053 | 0.0 | 0.0 | 0.018 | 0.55 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.6955 | 23.0 | 5336 | 0.7439 | 0.0844 | 0.1594 | 0.0782 | 0.3246 | 0.1335 | 0.0682 | 0.1559 | 0.2468 | 0.2567 | 0.4667 | 0.378 | 0.3 | 0.0031 | 0.3 | 0.4854 | 0.6071 | 0.0 | 0.0 | 0.018 | 0.6333 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.6836 | 24.0 | 5568 | 0.7263 | 0.0879 | 0.1619 | 0.0854 | 0.3509 | 0.1397 | 0.0597 | 0.1718 | 0.2499 | 0.2589 | 0.4333 | 0.3818 | 0.275 | 0.0027 | 0.3 | 0.4998 | 0.6203 | 0.0 | 0.0 | 0.025 | 0.6333 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.6836 | 25.0 | 5800 | 0.7146 | 0.0881 | 0.1632 | 0.087 | 0.3606 | 0.1412 | 0.0714 | 0.1518 | 0.2466 | 0.2572 | 0.4667 | 0.3768 | 0.3 | 0.0032 | 0.3 | 0.4988 | 0.6263 | 0.0 | 0.0 | 0.0267 | 0.6167 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.6671 | 26.0 | 6032 | 0.7180 | 0.0915 | 0.1678 | 0.0918 | 0.3652 | 0.2262 | 0.0483 | 0.163 | 0.2506 | 0.2672 | 0.5 | 0.3979 | 0.2875 | 0.0186 | 0.35 | 0.5069 | 0.6367 | 0.0 | 0.0 | 0.0235 | 0.6167 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.6671 | 27.0 | 6264 | 0.7219 | 0.0907 | 0.1678 | 0.0888 | 0.3596 | 0.2122 | 0.0492 | 0.1375 | 0.26 | 0.2709 | 0.5 | 0.4012 | 0.3 | 0.0184 | 0.35 | 0.5014 | 0.6253 | 0.0 | 0.0 | 0.0243 | 0.65 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.6671 | 28.0 | 6496 | 0.7177 | 0.0882 | 0.1642 | 0.0866 | 0.3625 | 0.1439 | 0.0505 | 0.1463 | 0.2603 | 0.2715 | 0.5111 | 0.4021 | 0.3 | 0.0038 | 0.35 | 0.4996 | 0.6288 | 0.0 | 0.0 | 0.0256 | 0.65 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.656 | 29.0 | 6728 | 0.7257 | 0.0873 | 0.1634 | 0.084 | 0.355 | 0.1417 | 0.0497 | 0.1433 | 0.2572 | 0.2708 | 0.5 | 0.401 | 0.3 | 0.0039 | 0.35 | 0.4962 | 0.6246 | 0.0 | 0.0 | 0.0237 | 0.65 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.656 | 30.0 | 6960 | 0.7220 | 0.0875 | 0.1634 | 0.084 | 0.355 | 0.1423 | 0.0499 | 0.1462 | 0.2602 | 0.2709 | 0.5 | 0.4013 | 0.3 | 0.0039 | 0.35 | 0.4971 | 0.6256 | 0.0 | 0.0 | 0.0239 | 0.65 | 0.0 | 0.0 | 0.0 | 0.0 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
[
"cars-trucks-vans",
"boat",
"camping car",
"car",
"motorcycle",
"other",
"pickup",
"plane",
"tractor",
"truck",
"van"
] |
auduod/detr-resnet-50_finetuned_cppe5
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr-resnet-50_finetuned_cppe5
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
[
"coverall",
"face_shield",
"gloves",
"goggles",
"mask"
] |
yi-zhao-K/detr-resnet-50_finetuned_test
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr-resnet-50_finetuned_test
This model was trained from scratch on the imagefolder dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 500
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cpu
- Datasets 2.20.0
- Tokenizers 0.19.1
|
[
"blackgum",
"chestnut oak",
"red maple",
"black cherry",
"norway spruce",
"northern red oak"
] |
Charles95/autotrain-detr-cppe-v5
|
# Model Trained Using AutoTrain
- Problem type: Object Detection
## Validation Metrics
loss: 1.1211919784545898
map: 0.3566
map_50: 0.7058
map_75: 0.3194
map_small: -1.0
map_medium: 0.2108
map_large: 0.4073
mar_1: 0.3081
mar_10: 0.5415
mar_100: 0.5725
mar_small: -1.0
mar_medium: 0.3701
mar_large: 0.6539
|
[
"coverall",
"face_shield",
"gloves",
"goggles",
"mask"
] |
machinelearningzuu/emotion_detection_cctv
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# emotion_detection_cctv
This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1520
- Map: 0.9392
- Map 50: 0.9998
- Map 75: 0.9948
- Map Small: -1.0
- Map Medium: -1.0
- Map Large: 0.9392
- Mar 1: 0.7807
- Mar 10: 0.9616
- Mar 100: 0.9616
- Mar Small: -1.0
- Mar Medium: -1.0
- Mar Large: 0.9616
- Map Nf: 0.9236
- Mar 100 Nf: 0.9523
- Map F: 0.9547
- Mar 100 F: 0.9708
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Nf | Mar 100 Nf | Map F | Mar 100 F |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:------:|:----------:|:------:|:---------:|
| No log | 1.0 | 90 | 1.8304 | 0.0733 | 0.1801 | 0.038 | -1.0 | 0.0 | 0.0738 | 0.117 | 0.4402 | 0.5369 | -1.0 | 0.0 | 0.5399 | 0.1099 | 0.6468 | 0.0366 | 0.427 |
| No log | 2.0 | 180 | 1.3214 | 0.1882 | 0.3323 | 0.2001 | -1.0 | -1.0 | 0.1882 | 0.2849 | 0.6302 | 0.6873 | -1.0 | -1.0 | 0.6873 | 0.3155 | 0.7319 | 0.0609 | 0.6427 |
| No log | 3.0 | 270 | 1.1104 | 0.3338 | 0.5621 | 0.3832 | -1.0 | -1.0 | 0.3338 | 0.3734 | 0.6759 | 0.7053 | -1.0 | -1.0 | 0.7053 | 0.5266 | 0.7375 | 0.141 | 0.673 |
| No log | 4.0 | 360 | 1.0762 | 0.3481 | 0.6067 | 0.3563 | -1.0 | -1.0 | 0.3481 | 0.3946 | 0.6117 | 0.6466 | -1.0 | -1.0 | 0.6466 | 0.5588 | 0.6875 | 0.1374 | 0.6056 |
| No log | 5.0 | 450 | 0.9652 | 0.3807 | 0.6111 | 0.443 | -1.0 | 0.0 | 0.3815 | 0.3975 | 0.6352 | 0.6545 | -1.0 | 0.0 | 0.6578 | 0.6101 | 0.7259 | 0.1513 | 0.5831 |
| 4.5043 | 6.0 | 540 | 0.9340 | 0.463 | 0.7541 | 0.5336 | -1.0 | 0.0 | 0.4652 | 0.4403 | 0.675 | 0.6853 | -1.0 | 0.0 | 0.689 | 0.5897 | 0.7167 | 0.3364 | 0.6539 |
| 4.5043 | 7.0 | 630 | 0.9507 | 0.4406 | 0.7489 | 0.4748 | 0.0 | -1.0 | 0.442 | 0.411 | 0.6556 | 0.6616 | 0.0 | -1.0 | 0.6633 | 0.568 | 0.7042 | 0.3132 | 0.6191 |
| 4.5043 | 8.0 | 720 | 0.7813 | 0.5193 | 0.8038 | 0.6507 | -1.0 | -1.0 | 0.5194 | 0.4466 | 0.7254 | 0.7274 | -1.0 | -1.0 | 0.7274 | 0.6451 | 0.7324 | 0.3936 | 0.7225 |
| 4.5043 | 9.0 | 810 | 0.7608 | 0.5436 | 0.8306 | 0.6426 | -1.0 | -1.0 | 0.5436 | 0.4949 | 0.7161 | 0.7166 | -1.0 | -1.0 | 0.7166 | 0.6642 | 0.7366 | 0.423 | 0.6966 |
| 4.5043 | 10.0 | 900 | 0.7774 | 0.5606 | 0.858 | 0.6495 | -1.0 | 0.0 | 0.5619 | 0.4995 | 0.7321 | 0.735 | -1.0 | 0.0 | 0.7367 | 0.6378 | 0.7329 | 0.4833 | 0.7371 |
| 4.5043 | 11.0 | 990 | 0.7060 | 0.5533 | 0.8493 | 0.6853 | -1.0 | -1.0 | 0.5533 | 0.5187 | 0.7171 | 0.7174 | -1.0 | -1.0 | 0.7174 | 0.6789 | 0.7583 | 0.4278 | 0.6764 |
| 0.8542 | 12.0 | 1080 | 0.7088 | 0.5999 | 0.9146 | 0.7448 | -1.0 | 0.0 | 0.6031 | 0.5423 | 0.7027 | 0.7043 | -1.0 | 0.0 | 0.7081 | 0.6665 | 0.7435 | 0.5334 | 0.6652 |
| 0.8542 | 13.0 | 1170 | 0.6888 | 0.6113 | 0.9251 | 0.7798 | -1.0 | 0.0 | 0.6128 | 0.5378 | 0.7202 | 0.7209 | -1.0 | 0.0 | 0.7227 | 0.6805 | 0.7486 | 0.5422 | 0.6933 |
| 0.8542 | 14.0 | 1260 | 0.6578 | 0.6267 | 0.931 | 0.7653 | -1.0 | -1.0 | 0.627 | 0.5623 | 0.7258 | 0.7272 | -1.0 | -1.0 | 0.7272 | 0.6656 | 0.7375 | 0.5878 | 0.7169 |
| 0.8542 | 15.0 | 1350 | 0.6039 | 0.6602 | 0.954 | 0.8066 | -1.0 | -1.0 | 0.6604 | 0.5807 | 0.7465 | 0.7474 | -1.0 | -1.0 | 0.7474 | 0.71 | 0.769 | 0.6104 | 0.7258 |
| 0.8542 | 16.0 | 1440 | 0.5776 | 0.6653 | 0.977 | 0.8311 | -1.0 | -1.0 | 0.6653 | 0.5896 | 0.7402 | 0.7407 | -1.0 | -1.0 | 0.7407 | 0.7063 | 0.7623 | 0.6244 | 0.7191 |
| 0.6835 | 17.0 | 1530 | 0.5971 | 0.6577 | 0.9538 | 0.8235 | -1.0 | -1.0 | 0.6577 | 0.5731 | 0.7449 | 0.7478 | -1.0 | -1.0 | 0.7478 | 0.6995 | 0.7619 | 0.6158 | 0.7337 |
| 0.6835 | 18.0 | 1620 | 0.6152 | 0.6566 | 0.9211 | 0.8114 | -1.0 | -1.0 | 0.6566 | 0.5949 | 0.7604 | 0.7615 | -1.0 | -1.0 | 0.7615 | 0.6964 | 0.7657 | 0.6167 | 0.7573 |
| 0.6835 | 19.0 | 1710 | 0.6240 | 0.6666 | 0.9503 | 0.8598 | -1.0 | 0.0 | 0.6811 | 0.5829 | 0.7345 | 0.7363 | -1.0 | 0.0 | 0.7532 | 0.6962 | 0.7569 | 0.637 | 0.7157 |
| 0.6835 | 20.0 | 1800 | 0.5781 | 0.6854 | 0.9693 | 0.8822 | -1.0 | -1.0 | 0.6856 | 0.6025 | 0.7605 | 0.7605 | -1.0 | -1.0 | 0.7605 | 0.704 | 0.7625 | 0.6668 | 0.7584 |
| 0.6835 | 21.0 | 1890 | 0.5097 | 0.7255 | 0.9829 | 0.9169 | -1.0 | 0.075 | 0.7321 | 0.6342 | 0.786 | 0.7862 | -1.0 | 0.15 | 0.7918 | 0.733 | 0.787 | 0.718 | 0.7854 |
| 0.6835 | 22.0 | 1980 | 0.5694 | 0.68 | 0.963 | 0.8484 | -1.0 | -1.0 | 0.68 | 0.6075 | 0.7613 | 0.762 | -1.0 | -1.0 | 0.762 | 0.7047 | 0.7611 | 0.6554 | 0.7629 |
| 0.5958 | 23.0 | 2070 | 0.5036 | 0.7132 | 0.9856 | 0.8779 | -1.0 | 0.0 | 0.7152 | 0.6227 | 0.778 | 0.7802 | -1.0 | 0.0 | 0.782 | 0.7326 | 0.7884 | 0.6939 | 0.7719 |
| 0.5958 | 24.0 | 2160 | 0.5662 | 0.6767 | 0.9519 | 0.8501 | -1.0 | 0.0 | 0.6787 | 0.6025 | 0.7635 | 0.7635 | -1.0 | 0.0 | 0.7653 | 0.7101 | 0.7708 | 0.6434 | 0.7562 |
| 0.5958 | 25.0 | 2250 | 0.5620 | 0.7029 | 0.9719 | 0.9007 | -1.0 | -1.0 | 0.703 | 0.6149 | 0.7708 | 0.7713 | -1.0 | -1.0 | 0.7713 | 0.7112 | 0.7796 | 0.6946 | 0.7629 |
| 0.5958 | 26.0 | 2340 | 0.5236 | 0.7173 | 0.9638 | 0.9165 | -1.0 | 0.016 | 0.7187 | 0.6328 | 0.7883 | 0.7886 | -1.0 | 0.4 | 0.7895 | 0.7285 | 0.7907 | 0.706 | 0.7864 |
| 0.5958 | 27.0 | 2430 | 0.4734 | 0.7433 | 0.9886 | 0.94 | -1.0 | -1.0 | 0.7434 | 0.6431 | 0.8014 | 0.8021 | -1.0 | -1.0 | 0.8021 | 0.7472 | 0.8042 | 0.7395 | 0.8 |
| 0.5447 | 28.0 | 2520 | 0.4826 | 0.7364 | 0.9868 | 0.942 | -1.0 | -1.0 | 0.7364 | 0.6417 | 0.7931 | 0.7941 | -1.0 | -1.0 | 0.7941 | 0.7555 | 0.8083 | 0.7172 | 0.7798 |
| 0.5447 | 29.0 | 2610 | 0.5002 | 0.7229 | 0.9827 | 0.9309 | -1.0 | 0.0 | 0.7279 | 0.6386 | 0.7812 | 0.7812 | -1.0 | 0.0 | 0.7856 | 0.7501 | 0.7995 | 0.6957 | 0.7629 |
| 0.5447 | 30.0 | 2700 | 0.4752 | 0.7529 | 0.9831 | 0.937 | -1.0 | -1.0 | 0.7529 | 0.6405 | 0.8089 | 0.8091 | -1.0 | -1.0 | 0.8091 | 0.7639 | 0.8093 | 0.7419 | 0.809 |
| 0.5447 | 31.0 | 2790 | 0.4524 | 0.7208 | 0.9756 | 0.9124 | -1.0 | -1.0 | 0.7209 | 0.6312 | 0.7916 | 0.7933 | -1.0 | -1.0 | 0.7933 | 0.7589 | 0.8157 | 0.6827 | 0.7708 |
| 0.5447 | 32.0 | 2880 | 0.4278 | 0.752 | 0.9906 | 0.9451 | -1.0 | -1.0 | 0.752 | 0.6536 | 0.8061 | 0.8066 | -1.0 | -1.0 | 0.8066 | 0.7781 | 0.8255 | 0.7259 | 0.7876 |
| 0.5447 | 33.0 | 2970 | 0.4699 | 0.7509 | 0.9883 | 0.9441 | -1.0 | -1.0 | 0.751 | 0.651 | 0.8109 | 0.8114 | -1.0 | -1.0 | 0.8114 | 0.7505 | 0.8014 | 0.7514 | 0.8213 |
| 0.5069 | 34.0 | 3060 | 0.5125 | 0.7178 | 0.9529 | 0.9109 | -1.0 | 0.0 | 0.7277 | 0.6415 | 0.7884 | 0.793 | -1.0 | 0.0 | 0.8041 | 0.7346 | 0.7917 | 0.7011 | 0.7943 |
| 0.5069 | 35.0 | 3150 | 0.5031 | 0.7323 | 0.9687 | 0.912 | -1.0 | 0.0 | 0.7407 | 0.643 | 0.7889 | 0.7906 | -1.0 | 0.0 | 0.7994 | 0.764 | 0.8148 | 0.7005 | 0.7663 |
| 0.5069 | 36.0 | 3240 | 0.4753 | 0.7423 | 0.9856 | 0.9226 | -1.0 | 0.0 | 0.7445 | 0.6481 | 0.7989 | 0.7989 | -1.0 | 0.0 | 0.8007 | 0.7594 | 0.8056 | 0.7252 | 0.7921 |
| 0.5069 | 37.0 | 3330 | 0.4264 | 0.7617 | 0.9804 | 0.9631 | -1.0 | 0.0 | 0.767 | 0.6575 | 0.815 | 0.815 | -1.0 | 0.0 | 0.8195 | 0.79 | 0.8333 | 0.7335 | 0.7966 |
| 0.5069 | 38.0 | 3420 | 0.3995 | 0.7762 | 0.9927 | 0.9628 | -1.0 | -1.0 | 0.7762 | 0.6747 | 0.8279 | 0.8279 | -1.0 | -1.0 | 0.8279 | 0.7764 | 0.8233 | 0.776 | 0.8326 |
| 0.4669 | 39.0 | 3510 | 0.4286 | 0.7475 | 0.9772 | 0.9464 | -1.0 | 0.0 | 0.7553 | 0.6506 | 0.8057 | 0.8057 | -1.0 | 0.0 | 0.812 | 0.7851 | 0.8293 | 0.71 | 0.782 |
| 0.4669 | 40.0 | 3600 | 0.3864 | 0.7726 | 0.9889 | 0.9608 | -1.0 | 0.0 | 0.7774 | 0.6696 | 0.8235 | 0.8235 | -1.0 | 0.0 | 0.8281 | 0.7991 | 0.8505 | 0.7461 | 0.7966 |
| 0.4669 | 41.0 | 3690 | 0.3316 | 0.8136 | 0.9983 | 0.9729 | -1.0 | -1.0 | 0.8136 | 0.6932 | 0.8572 | 0.8572 | -1.0 | -1.0 | 0.8572 | 0.8231 | 0.8639 | 0.8041 | 0.8506 |
| 0.4669 | 42.0 | 3780 | 0.3657 | 0.7848 | 0.9762 | 0.9601 | -1.0 | 0.0 | 0.7936 | 0.6833 | 0.8424 | 0.8424 | -1.0 | 0.0 | 0.8518 | 0.8105 | 0.86 | 0.759 | 0.8247 |
| 0.4669 | 43.0 | 3870 | 0.3636 | 0.7887 | 0.9952 | 0.9636 | -1.0 | -1.0 | 0.7888 | 0.6778 | 0.8408 | 0.8408 | -1.0 | -1.0 | 0.8408 | 0.7958 | 0.8491 | 0.7816 | 0.8326 |
| 0.4669 | 44.0 | 3960 | 0.3760 | 0.7813 | 0.9871 | 0.9434 | -1.0 | -1.0 | 0.7813 | 0.6789 | 0.8321 | 0.8327 | -1.0 | -1.0 | 0.8327 | 0.8005 | 0.844 | 0.7621 | 0.8213 |
| 0.4227 | 45.0 | 4050 | 0.3942 | 0.7916 | 0.9925 | 0.9407 | -1.0 | 0.02 | 0.7937 | 0.6846 | 0.8419 | 0.8421 | -1.0 | 0.1 | 0.8438 | 0.7844 | 0.8315 | 0.7988 | 0.8528 |
| 0.4227 | 46.0 | 4140 | 0.3440 | 0.8051 | 0.9979 | 0.9767 | -1.0 | -1.0 | 0.8051 | 0.6948 | 0.8578 | 0.8578 | -1.0 | -1.0 | 0.8578 | 0.8053 | 0.8537 | 0.8049 | 0.8618 |
| 0.4227 | 47.0 | 4230 | 0.3353 | 0.8129 | 0.9836 | 0.9605 | -1.0 | 0.0 | 0.8172 | 0.6903 | 0.8543 | 0.8543 | -1.0 | 0.0 | 0.8591 | 0.8318 | 0.8727 | 0.794 | 0.836 |
| 0.4227 | 48.0 | 4320 | 0.3638 | 0.8048 | 0.9915 | 0.9616 | -1.0 | 0.0 | 0.8069 | 0.6896 | 0.8514 | 0.8514 | -1.0 | 0.0 | 0.8534 | 0.8003 | 0.8444 | 0.8092 | 0.8584 |
| 0.4227 | 49.0 | 4410 | 0.3310 | 0.8218 | 0.9982 | 0.9699 | -1.0 | -1.0 | 0.8218 | 0.6972 | 0.865 | 0.8662 | -1.0 | -1.0 | 0.8662 | 0.8209 | 0.8694 | 0.8226 | 0.8629 |
| 0.3807 | 50.0 | 4500 | 0.3393 | 0.8108 | 0.9796 | 0.9528 | -1.0 | -1.0 | 0.8108 | 0.6952 | 0.8515 | 0.8515 | -1.0 | -1.0 | 0.8515 | 0.8227 | 0.8648 | 0.799 | 0.8382 |
| 0.3807 | 51.0 | 4590 | 0.3205 | 0.8225 | 0.9941 | 0.9719 | -1.0 | -1.0 | 0.8225 | 0.7047 | 0.8631 | 0.8631 | -1.0 | -1.0 | 0.8631 | 0.822 | 0.8644 | 0.8229 | 0.8618 |
| 0.3807 | 52.0 | 4680 | 0.3399 | 0.8078 | 0.9886 | 0.9539 | -1.0 | -1.0 | 0.8078 | 0.6925 | 0.8535 | 0.8535 | -1.0 | -1.0 | 0.8535 | 0.8261 | 0.8722 | 0.7894 | 0.8348 |
| 0.3807 | 53.0 | 4770 | 0.3614 | 0.8174 | 0.968 | 0.9492 | -1.0 | 0.0333 | 0.8223 | 0.6938 | 0.855 | 0.855 | -1.0 | 0.1 | 0.8614 | 0.8171 | 0.856 | 0.8177 | 0.8539 |
| 0.3807 | 54.0 | 4860 | 0.3446 | 0.8135 | 0.9906 | 0.9588 | -1.0 | 0.0 | 0.816 | 0.6978 | 0.8651 | 0.8651 | -1.0 | 0.0 | 0.8671 | 0.8183 | 0.8639 | 0.8086 | 0.8663 |
| 0.3807 | 55.0 | 4950 | 0.3518 | 0.8203 | 0.9867 | 0.9516 | -1.0 | -1.0 | 0.8203 | 0.6975 | 0.8615 | 0.8615 | -1.0 | -1.0 | 0.8615 | 0.8355 | 0.8736 | 0.8051 | 0.8494 |
| 0.366 | 56.0 | 5040 | 0.2746 | 0.8359 | 0.9998 | 0.9705 | -1.0 | -1.0 | 0.8359 | 0.7175 | 0.882 | 0.882 | -1.0 | -1.0 | 0.882 | 0.8422 | 0.8875 | 0.8296 | 0.8764 |
| 0.366 | 57.0 | 5130 | 0.2882 | 0.8351 | 0.9847 | 0.9698 | -1.0 | 0.0 | 0.8392 | 0.707 | 0.8763 | 0.8763 | -1.0 | 0.0 | 0.8813 | 0.847 | 0.8875 | 0.8232 | 0.8652 |
| 0.366 | 58.0 | 5220 | 0.3049 | 0.8414 | 0.9945 | 0.9679 | -1.0 | 0.15 | 0.8426 | 0.7083 | 0.8776 | 0.8776 | -1.0 | 0.3 | 0.879 | 0.8481 | 0.8833 | 0.8348 | 0.8719 |
| 0.366 | 59.0 | 5310 | 0.3217 | 0.821 | 0.9892 | 0.9743 | -1.0 | -1.0 | 0.821 | 0.6989 | 0.8643 | 0.8643 | -1.0 | -1.0 | 0.8643 | 0.8278 | 0.8713 | 0.8141 | 0.8573 |
| 0.366 | 60.0 | 5400 | 0.2654 | 0.8564 | 0.9996 | 0.9797 | -1.0 | -1.0 | 0.8564 | 0.7286 | 0.8941 | 0.8941 | -1.0 | -1.0 | 0.8941 | 0.8585 | 0.8972 | 0.8544 | 0.891 |
| 0.366 | 61.0 | 5490 | 0.2880 | 0.8637 | 0.9998 | 0.9787 | -1.0 | 0.1 | 0.8662 | 0.7285 | 0.9 | 0.9 | -1.0 | 0.1 | 0.9018 | 0.8521 | 0.8898 | 0.8754 | 0.9101 |
| 0.3186 | 62.0 | 5580 | 0.2817 | 0.8638 | 0.9955 | 0.9703 | -1.0 | -1.0 | 0.8638 | 0.7322 | 0.9086 | 0.9086 | -1.0 | -1.0 | 0.9086 | 0.8572 | 0.8958 | 0.8704 | 0.9213 |
| 0.3186 | 63.0 | 5670 | 0.2560 | 0.868 | 0.9951 | 0.9807 | -1.0 | -1.0 | 0.868 | 0.7366 | 0.9099 | 0.9099 | -1.0 | -1.0 | 0.9099 | 0.8672 | 0.9074 | 0.8688 | 0.9124 |
| 0.3186 | 64.0 | 5760 | 0.2785 | 0.8516 | 0.9831 | 0.9709 | -1.0 | 0.0 | 0.8539 | 0.7251 | 0.897 | 0.897 | -1.0 | 0.0 | 0.8991 | 0.854 | 0.894 | 0.8491 | 0.9 |
| 0.3186 | 65.0 | 5850 | 0.2623 | 0.8618 | 0.9891 | 0.9501 | -1.0 | -1.0 | 0.8618 | 0.7315 | 0.9035 | 0.9035 | -1.0 | -1.0 | 0.9035 | 0.8642 | 0.9069 | 0.8594 | 0.9 |
| 0.3186 | 66.0 | 5940 | 0.2568 | 0.8695 | 0.9895 | 0.9607 | -1.0 | -1.0 | 0.8695 | 0.7368 | 0.9079 | 0.9079 | -1.0 | -1.0 | 0.9079 | 0.8728 | 0.9102 | 0.8663 | 0.9056 |
| 0.2959 | 67.0 | 6030 | 0.2528 | 0.8736 | 0.9982 | 0.9643 | -1.0 | -1.0 | 0.8736 | 0.7344 | 0.9082 | 0.9091 | -1.0 | -1.0 | 0.9091 | 0.8793 | 0.9148 | 0.868 | 0.9034 |
| 0.2959 | 68.0 | 6120 | 0.2517 | 0.8736 | 0.9983 | 0.976 | -1.0 | -1.0 | 0.8736 | 0.7375 | 0.9102 | 0.9102 | -1.0 | -1.0 | 0.9102 | 0.8713 | 0.9093 | 0.8758 | 0.9112 |
| 0.2959 | 69.0 | 6210 | 0.2818 | 0.8636 | 0.992 | 0.9578 | -1.0 | 0.2515 | 0.8717 | 0.7353 | 0.9003 | 0.9003 | -1.0 | 0.25 | 0.9078 | 0.8607 | 0.8972 | 0.8664 | 0.9034 |
| 0.2959 | 70.0 | 6300 | 0.2222 | 0.8915 | 0.9998 | 0.98 | -1.0 | -1.0 | 0.8915 | 0.753 | 0.9261 | 0.9261 | -1.0 | -1.0 | 0.9261 | 0.8826 | 0.9208 | 0.9004 | 0.9315 |
| 0.2959 | 71.0 | 6390 | 0.2597 | 0.8699 | 0.9868 | 0.9517 | 0.0 | 0.25 | 0.8733 | 0.7353 | 0.9094 | 0.9094 | 0.0 | 0.5 | 0.9124 | 0.8745 | 0.9097 | 0.8653 | 0.909 |
| 0.2959 | 72.0 | 6480 | 0.2019 | 0.9087 | 0.9992 | 0.9992 | -1.0 | -1.0 | 0.9087 | 0.7603 | 0.9382 | 0.9382 | -1.0 | -1.0 | 0.9382 | 0.9001 | 0.9315 | 0.9172 | 0.9449 |
| 0.2565 | 73.0 | 6570 | 0.2035 | 0.8993 | 0.9997 | 0.9927 | -1.0 | -1.0 | 0.8993 | 0.7602 | 0.9331 | 0.9331 | -1.0 | -1.0 | 0.9331 | 0.8908 | 0.9269 | 0.9078 | 0.9393 |
| 0.2565 | 74.0 | 6660 | 0.2539 | 0.8807 | 0.9987 | 0.959 | -1.0 | -1.0 | 0.8808 | 0.7367 | 0.9145 | 0.9145 | -1.0 | -1.0 | 0.9145 | 0.8803 | 0.9144 | 0.8812 | 0.9146 |
| 0.2565 | 75.0 | 6750 | 0.1972 | 0.8966 | 1.0 | 0.9729 | -1.0 | -1.0 | 0.8966 | 0.7539 | 0.9299 | 0.9299 | -1.0 | -1.0 | 0.9299 | 0.9008 | 0.9306 | 0.8925 | 0.9292 |
| 0.2565 | 76.0 | 6840 | 0.2068 | 0.9105 | 0.9995 | 0.9936 | -1.0 | -1.0 | 0.9105 | 0.7648 | 0.9411 | 0.9411 | -1.0 | -1.0 | 0.9411 | 0.9042 | 0.9361 | 0.9169 | 0.9461 |
| 0.2565 | 77.0 | 6930 | 0.2286 | 0.8966 | 0.9996 | 0.964 | -1.0 | -1.0 | 0.8966 | 0.7543 | 0.9271 | 0.9271 | -1.0 | -1.0 | 0.9271 | 0.8868 | 0.9227 | 0.9064 | 0.9315 |
| 0.246 | 78.0 | 7020 | 0.2135 | 0.902 | 0.9899 | 0.9561 | -1.0 | 0.0 | 0.9083 | 0.7514 | 0.928 | 0.928 | -1.0 | 0.0 | 0.9332 | 0.901 | 0.9324 | 0.903 | 0.9236 |
| 0.246 | 79.0 | 7110 | 0.2176 | 0.9115 | 0.9894 | 0.9795 | -1.0 | 0.0 | 0.9196 | 0.7649 | 0.9424 | 0.9424 | -1.0 | 0.0 | 0.9478 | 0.8957 | 0.9319 | 0.9273 | 0.9528 |
| 0.246 | 80.0 | 7200 | 0.1864 | 0.9307 | 1.0 | 0.9827 | -1.0 | -1.0 | 0.9307 | 0.7734 | 0.9528 | 0.9528 | -1.0 | -1.0 | 0.9528 | 0.9082 | 0.937 | 0.9532 | 0.9685 |
| 0.246 | 81.0 | 7290 | 0.1990 | 0.9179 | 0.9927 | 0.9802 | -1.0 | 0.0 | 0.9222 | 0.7646 | 0.9468 | 0.9468 | -1.0 | 0.0 | 0.9511 | 0.897 | 0.9329 | 0.9389 | 0.9607 |
| 0.246 | 82.0 | 7380 | 0.1954 | 0.9117 | 0.9882 | 0.9734 | -1.0 | 0.0375 | 0.9212 | 0.7632 | 0.943 | 0.943 | -1.0 | 0.15 | 0.9489 | 0.8915 | 0.931 | 0.932 | 0.9551 |
| 0.246 | 83.0 | 7470 | 0.1765 | 0.9221 | 0.9979 | 0.9831 | -1.0 | -1.0 | 0.9221 | 0.7683 | 0.9483 | 0.9486 | -1.0 | -1.0 | 0.9486 | 0.9169 | 0.9477 | 0.9272 | 0.9494 |
| 0.2126 | 84.0 | 7560 | 0.2004 | 0.9092 | 0.995 | 0.9729 | -1.0 | 0.0 | 0.9131 | 0.7576 | 0.9378 | 0.9378 | -1.0 | 0.0 | 0.9399 | 0.9078 | 0.9384 | 0.9106 | 0.9371 |
| 0.2126 | 85.0 | 7650 | 0.1721 | 0.9352 | 0.9963 | 0.9864 | -1.0 | -1.0 | 0.9352 | 0.7757 | 0.959 | 0.959 | -1.0 | -1.0 | 0.959 | 0.9229 | 0.9486 | 0.9475 | 0.9693 |
| 0.2126 | 86.0 | 7740 | 0.1835 | 0.9187 | 0.9994 | 0.9699 | -1.0 | -1.0 | 0.9187 | 0.7621 | 0.9452 | 0.9452 | -1.0 | -1.0 | 0.9452 | 0.9072 | 0.9398 | 0.9303 | 0.9506 |
| 0.2126 | 87.0 | 7830 | 0.1892 | 0.9232 | 0.9947 | 0.9738 | -1.0 | 0.0 | 0.9257 | 0.7726 | 0.9483 | 0.9483 | -1.0 | 0.0 | 0.9505 | 0.9071 | 0.937 | 0.9393 | 0.9596 |
| 0.2126 | 88.0 | 7920 | 0.1753 | 0.9186 | 0.9901 | 0.9851 | -1.0 | -1.0 | 0.9186 | 0.7667 | 0.9482 | 0.9482 | -1.0 | -1.0 | 0.9482 | 0.912 | 0.9435 | 0.9253 | 0.9528 |
| 0.2316 | 89.0 | 8010 | 0.1709 | 0.9268 | 0.9998 | 0.9793 | -1.0 | -1.0 | 0.9268 | 0.7707 | 0.9528 | 0.9528 | -1.0 | -1.0 | 0.9528 | 0.916 | 0.9472 | 0.9375 | 0.9584 |
| 0.2316 | 90.0 | 8100 | 0.1818 | 0.9206 | 0.9987 | 0.9694 | -1.0 | -1.0 | 0.9206 | 0.7615 | 0.9446 | 0.9446 | -1.0 | -1.0 | 0.9446 | 0.9197 | 0.9477 | 0.9215 | 0.9416 |
| 0.2316 | 91.0 | 8190 | 0.1847 | 0.9161 | 0.9845 | 0.9737 | -1.0 | 0.0 | 0.923 | 0.7618 | 0.9413 | 0.9413 | -1.0 | 0.0 | 0.9488 | 0.9123 | 0.9398 | 0.9198 | 0.9427 |
| 0.2316 | 92.0 | 8280 | 0.1540 | 0.9446 | 0.9992 | 0.9971 | -1.0 | -1.0 | 0.9446 | 0.7812 | 0.9623 | 0.9623 | -1.0 | -1.0 | 0.9623 | 0.9377 | 0.9583 | 0.9516 | 0.9663 |
| 0.2316 | 93.0 | 8370 | 0.1645 | 0.9343 | 0.9995 | 0.9739 | -1.0 | -1.0 | 0.9343 | 0.7773 | 0.9571 | 0.9571 | -1.0 | -1.0 | 0.9571 | 0.9146 | 0.9444 | 0.954 | 0.9697 |
| 0.2316 | 94.0 | 8460 | 0.1992 | 0.9212 | 0.9881 | 0.962 | -1.0 | 0.6 | 0.9231 | 0.7686 | 0.9473 | 0.9473 | -1.0 | 0.6 | 0.9493 | 0.9004 | 0.9316 | 0.9419 | 0.9629 |
| 0.2112 | 95.0 | 8550 | 0.1736 | 0.9206 | 0.9858 | 0.9745 | -1.0 | 0.0112 | 0.9319 | 0.7639 | 0.9449 | 0.9449 | -1.0 | 0.1 | 0.9545 | 0.9246 | 0.9505 | 0.9165 | 0.9393 |
| 0.2112 | 96.0 | 8640 | 0.1558 | 0.9318 | 0.9997 | 0.9793 | -1.0 | -1.0 | 0.9318 | 0.7795 | 0.9571 | 0.9571 | -1.0 | -1.0 | 0.9571 | 0.9191 | 0.9491 | 0.9445 | 0.9652 |
| 0.2112 | 97.0 | 8730 | 0.1535 | 0.9296 | 0.9901 | 0.976 | -1.0 | 0.05 | 0.9398 | 0.7746 | 0.9573 | 0.9573 | -1.0 | 0.05 | 0.9647 | 0.9253 | 0.9528 | 0.9339 | 0.9618 |
| 0.2112 | 98.0 | 8820 | 0.2102 | 0.9071 | 0.9828 | 0.9617 | 0.0 | 0.0 | 0.9146 | 0.7557 | 0.9351 | 0.9351 | 0.0 | 0.0 | 0.9426 | 0.9034 | 0.9332 | 0.9107 | 0.9371 |
| 0.2112 | 99.0 | 8910 | 0.1861 | 0.9205 | 0.9969 | 0.9626 | -1.0 | -1.0 | 0.9205 | 0.7618 | 0.943 | 0.943 | -1.0 | -1.0 | 0.943 | 0.9134 | 0.9421 | 0.9275 | 0.9438 |
| 0.2125 | 100.0 | 9000 | 0.1520 | 0.9392 | 0.9998 | 0.9948 | -1.0 | -1.0 | 0.9392 | 0.7807 | 0.9616 | 0.9616 | -1.0 | -1.0 | 0.9616 | 0.9236 | 0.9523 | 0.9547 | 0.9708 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
[
"nf",
"f"
] |
glacialfire/detr-finetuned-balloon-v2
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5"
] |
glacialfire/detr-finetuned
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5"
] |
glacialfire/detr-finetuned1700
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5"
] |
glacialfire/detr-finetuned800
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5"
] |
glacialfire/detr-finetuned3600
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5"
] |
lucasphilippe14/model_finetuned_VinBigData
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model_finetuned_VinBigData
This model is a fine-tuned version of [mserrasa/detr-resnet-50_finetuned_cppe5](https://huggingface.co/mserrasa/detr-resnet-50_finetuned_cppe5) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.12.0
- Tokenizers 0.19.1
|
[
"aortic enlargement",
"cardiomegaly",
"nodule/mass",
"pleural thickening",
"pulmonary fibrosis"
] |
mthandazo/detr-resnet-50-hardhat-finetuned
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr-resnet-50-hardhat-finetuned
This model is a fine-tuned version of [facebook/detr-resnet-50-dc5](https://huggingface.co/facebook/detr-resnet-50-dc5) on the anindya64/hardhat dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
[
"head",
"helmet",
"person"
] |
tttarun/detr-resnet-50_finetuned_cppe5
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr-resnet-50_finetuned_cppe5
This model is a fine-tuned version of [tttarun/detr-resnet-50_finetuned_cppe5](https://huggingface.co/tttarun/detr-resnet-50_finetuned_cppe5) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
[
"diseases",
"ballooning",
"fibrosis",
"inflammation",
"steatosis"
] |
abhishekrn/resnet-stuff
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"n/a",
"person",
"bicycle",
"car",
"motorcycle",
"airplane",
"bus",
"train",
"truck",
"boat",
"traffic light",
"fire hydrant",
"n/a",
"stop sign",
"parking meter",
"bench",
"bird",
"cat",
"dog",
"horse",
"sheep",
"cow",
"elephant",
"bear",
"zebra",
"giraffe",
"n/a",
"backpack",
"umbrella",
"n/a",
"n/a",
"handbag",
"tie",
"suitcase",
"frisbee",
"skis",
"snowboard",
"sports ball",
"kite",
"baseball bat",
"baseball glove",
"skateboard",
"surfboard",
"tennis racket",
"bottle",
"n/a",
"wine glass",
"cup",
"fork",
"knife",
"spoon",
"bowl",
"banana",
"apple",
"sandwich",
"orange",
"broccoli",
"carrot",
"hot dog",
"pizza",
"donut",
"cake",
"chair",
"couch",
"potted plant",
"bed",
"n/a",
"dining table",
"n/a",
"n/a",
"toilet",
"n/a",
"tv",
"laptop",
"mouse",
"remote",
"keyboard",
"cell phone",
"microwave",
"oven",
"toaster",
"sink",
"refrigerator",
"n/a",
"book",
"clock",
"vase",
"scissors",
"teddy bear",
"hair drier",
"toothbrush"
] |
niujiahui/detr-finetuned-cppe-5-10k-steps
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr-finetuned-cppe-5-10k-steps
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the cppe-5 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6932
- Map: 0.1289
- Map 50: 0.2606
- Map 75: 0.1098
- Map Small: 0.0355
- Map Medium: 0.1082
- Map Large: 0.1676
- Mar 1: 0.1429
- Mar 10: 0.2628
- Mar 100: 0.2869
- Mar Small: 0.1256
- Mar Medium: 0.2299
- Mar Large: 0.3635
- Map Coverall: 0.399
- Mar 100 Coverall: 0.6383
- Map Face Shield: 0.0257
- Mar 100 Face Shield: 0.1557
- Map Gloves: 0.0535
- Mar 100 Gloves: 0.2772
- Map Goggles: 0.0002
- Mar 100 Goggles: 0.0031
- Map Mask: 0.166
- Mar 100 Mask: 0.36
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Coverall | Mar 100 Coverall | Map Face Shield | Mar 100 Face Shield | Map Gloves | Mar 100 Gloves | Map Goggles | Mar 100 Goggles | Map Mask | Mar 100 Mask |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:------------:|:----------------:|:---------------:|:-------------------:|:----------:|:--------------:|:-----------:|:---------------:|:--------:|:------------:|
| 2.6856 | 1.0 | 107 | 2.4604 | 0.0152 | 0.0396 | 0.0096 | 0.0051 | 0.0048 | 0.0234 | 0.0535 | 0.1109 | 0.1286 | 0.0401 | 0.089 | 0.1752 | 0.0622 | 0.3509 | 0.0 | 0.0 | 0.0045 | 0.1174 | 0.0 | 0.0 | 0.0092 | 0.1747 |
| 2.1242 | 2.0 | 214 | 2.1711 | 0.0464 | 0.1115 | 0.033 | 0.01 | 0.0466 | 0.0621 | 0.0776 | 0.1595 | 0.1801 | 0.0647 | 0.1406 | 0.2105 | 0.1861 | 0.5176 | 0.0 | 0.0 | 0.0139 | 0.1437 | 0.0 | 0.0 | 0.0317 | 0.2391 |
| 1.9759 | 3.0 | 321 | 2.0671 | 0.0662 | 0.1477 | 0.053 | 0.0129 | 0.0709 | 0.0846 | 0.0964 | 0.1814 | 0.199 | 0.057 | 0.1639 | 0.2279 | 0.2207 | 0.5608 | 0.0 | 0.0 | 0.0222 | 0.1688 | 0.0 | 0.0 | 0.0881 | 0.2653 |
| 1.8435 | 4.0 | 428 | 1.9923 | 0.084 | 0.1759 | 0.0717 | 0.0156 | 0.0673 | 0.1068 | 0.1017 | 0.1929 | 0.2119 | 0.0717 | 0.1646 | 0.2621 | 0.2915 | 0.5856 | 0.0 | 0.0 | 0.0302 | 0.1835 | 0.0 | 0.0 | 0.0982 | 0.2907 |
| 1.7693 | 5.0 | 535 | 1.9163 | 0.0851 | 0.181 | 0.0718 | 0.0201 | 0.0721 | 0.1072 | 0.1005 | 0.1956 | 0.2137 | 0.0924 | 0.1684 | 0.2556 | 0.2895 | 0.5559 | 0.004 | 0.0063 | 0.0256 | 0.1808 | 0.0 | 0.0 | 0.1064 | 0.3253 |
| 1.6961 | 6.0 | 642 | 1.8520 | 0.1045 | 0.2193 | 0.0909 | 0.0529 | 0.0938 | 0.133 | 0.1183 | 0.2171 | 0.2416 | 0.1111 | 0.2093 | 0.2975 | 0.3181 | 0.5748 | 0.0062 | 0.0329 | 0.0432 | 0.2598 | 0.0 | 0.0 | 0.1549 | 0.3404 |
| 1.6116 | 7.0 | 749 | 1.7836 | 0.1118 | 0.2368 | 0.089 | 0.0334 | 0.0935 | 0.1543 | 0.1308 | 0.2439 | 0.2684 | 0.1294 | 0.2151 | 0.3409 | 0.3489 | 0.6059 | 0.0081 | 0.1165 | 0.0517 | 0.2888 | 0.0 | 0.0 | 0.1503 | 0.3307 |
| 1.5518 | 8.0 | 856 | 1.7223 | 0.1235 | 0.2558 | 0.1096 | 0.0336 | 0.1039 | 0.1553 | 0.135 | 0.2555 | 0.2765 | 0.1211 | 0.2311 | 0.3411 | 0.3847 | 0.6203 | 0.0237 | 0.1494 | 0.0556 | 0.2661 | 0.0001 | 0.0015 | 0.1537 | 0.3453 |
| 1.5112 | 9.0 | 963 | 1.6986 | 0.1268 | 0.2639 | 0.1029 | 0.0318 | 0.1025 | 0.1676 | 0.1444 | 0.2626 | 0.2864 | 0.1204 | 0.2328 | 0.3611 | 0.3928 | 0.6392 | 0.0274 | 0.157 | 0.0536 | 0.2741 | 0.0012 | 0.0062 | 0.1591 | 0.3556 |
| 1.4924 | 10.0 | 1070 | 1.6932 | 0.1289 | 0.2606 | 0.1098 | 0.0355 | 0.1082 | 0.1676 | 0.1429 | 0.2628 | 0.2869 | 0.1256 | 0.2299 | 0.3635 | 0.399 | 0.6383 | 0.0257 | 0.1557 | 0.0535 | 0.2772 | 0.0002 | 0.0031 | 0.166 | 0.36 |
### Framework versions
- Transformers 4.42.4
- Pytorch 1.13.1+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1
|
[
"coverall",
"face_shield",
"gloves",
"goggles",
"mask"
] |
trungphien/table_transfomer-finetuned-v1
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"table",
"table rotated"
] |
trungphien/phien-table-detection
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"table",
"table rotated"
] |
Leotrim/detr_finetuned_cppe5
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/raspuntinov_ai/huggingface/runs/f0sny8se)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/raspuntinov_ai/huggingface/runs/f0sny8se)
# detr_finetuned_cppe5
This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2223
- Map: 0.3117
- Map 50: 0.6293
- Map 75: 0.2667
- Map Small: 0.106
- Map Medium: 0.2851
- Map Large: 0.4545
- Mar 1: 0.3195
- Mar 10: 0.4877
- Mar 100: 0.5017
- Mar Small: 0.3298
- Mar Medium: 0.4402
- Mar Large: 0.6375
- Map Coverall: 0.5742
- Mar 100 Coverall: 0.7165
- Map Face Shield: 0.2986
- Mar 100 Face Shield: 0.5309
- Map Gloves: 0.2081
- Mar 100 Gloves: 0.3644
- Map Goggles: 0.1561
- Mar 100 Goggles: 0.4509
- Map Mask: 0.3214
- Mar 100 Mask: 0.4458
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Coverall | Mar 100 Coverall | Map Face Shield | Mar 100 Face Shield | Map Gloves | Mar 100 Gloves | Map Goggles | Mar 100 Goggles | Map Mask | Mar 100 Mask |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:------------:|:----------------:|:---------------:|:-------------------:|:----------:|:--------------:|:-----------:|:---------------:|:--------:|:------------:|
| No log | 1.0 | 107 | 2.2632 | 0.0062 | 0.0235 | 0.0011 | 0.0073 | 0.0103 | 0.0113 | 0.0201 | 0.0898 | 0.1405 | 0.1997 | 0.1623 | 0.174 | 0.0017 | 0.0824 | 0.0034 | 0.0471 | 0.0033 | 0.1955 | 0.0037 | 0.0727 | 0.019 | 0.3047 |
| No log | 2.0 | 214 | 2.0234 | 0.0428 | 0.1012 | 0.0317 | 0.021 | 0.0786 | 0.0501 | 0.1375 | 0.2463 | 0.2875 | 0.2315 | 0.3098 | 0.3033 | 0.1382 | 0.5733 | 0.0104 | 0.1529 | 0.0071 | 0.2379 | 0.0034 | 0.1182 | 0.0549 | 0.3553 |
| No log | 3.0 | 321 | 1.8733 | 0.0639 | 0.1631 | 0.0411 | 0.0314 | 0.1147 | 0.0873 | 0.1589 | 0.3112 | 0.3549 | 0.2757 | 0.3445 | 0.4228 | 0.168 | 0.6642 | 0.0241 | 0.2309 | 0.0237 | 0.2819 | 0.0083 | 0.2091 | 0.0956 | 0.3884 |
| No log | 4.0 | 428 | 1.7409 | 0.115 | 0.2879 | 0.0752 | 0.07 | 0.1591 | 0.1481 | 0.1731 | 0.3487 | 0.3892 | 0.3703 | 0.3574 | 0.4902 | 0.276 | 0.617 | 0.0547 | 0.3471 | 0.0586 | 0.3339 | 0.0157 | 0.2436 | 0.17 | 0.4042 |
| 2.0328 | 5.0 | 535 | 1.6217 | 0.1734 | 0.3876 | 0.1395 | 0.1021 | 0.2176 | 0.239 | 0.2162 | 0.4068 | 0.4342 | 0.3228 | 0.3911 | 0.5637 | 0.4173 | 0.6705 | 0.1075 | 0.4059 | 0.0927 | 0.3655 | 0.0222 | 0.3182 | 0.2271 | 0.4111 |
| 2.0328 | 6.0 | 642 | 1.5774 | 0.1806 | 0.4081 | 0.1359 | 0.0693 | 0.1831 | 0.2549 | 0.2169 | 0.3982 | 0.4191 | 0.2609 | 0.3582 | 0.5482 | 0.4468 | 0.6687 | 0.1109 | 0.3926 | 0.0985 | 0.3316 | 0.0344 | 0.3382 | 0.2123 | 0.3642 |
| 2.0328 | 7.0 | 749 | 1.4768 | 0.1974 | 0.4263 | 0.162 | 0.0814 | 0.1819 | 0.3263 | 0.2326 | 0.4013 | 0.4296 | 0.25 | 0.3439 | 0.5935 | 0.4733 | 0.6682 | 0.0929 | 0.3765 | 0.1278 | 0.3458 | 0.0289 | 0.3473 | 0.2641 | 0.4105 |
| 2.0328 | 8.0 | 856 | 1.4344 | 0.2161 | 0.4708 | 0.181 | 0.0699 | 0.2098 | 0.333 | 0.2364 | 0.4117 | 0.4391 | 0.3247 | 0.391 | 0.5775 | 0.5021 | 0.6795 | 0.1504 | 0.4412 | 0.1385 | 0.3209 | 0.0341 | 0.3745 | 0.2553 | 0.3795 |
| 2.0328 | 9.0 | 963 | 1.4459 | 0.2189 | 0.4586 | 0.1836 | 0.1123 | 0.2038 | 0.3322 | 0.2571 | 0.4138 | 0.4358 | 0.3249 | 0.3825 | 0.5595 | 0.4938 | 0.6756 | 0.1193 | 0.4191 | 0.1437 | 0.3401 | 0.0531 | 0.3509 | 0.2845 | 0.3932 |
| 1.4446 | 10.0 | 1070 | 1.3804 | 0.2384 | 0.5297 | 0.1935 | 0.0951 | 0.2296 | 0.3716 | 0.2606 | 0.44 | 0.4664 | 0.2763 | 0.4271 | 0.5924 | 0.5123 | 0.6835 | 0.164 | 0.4794 | 0.193 | 0.3881 | 0.0584 | 0.4018 | 0.2642 | 0.3789 |
| 1.4446 | 11.0 | 1177 | 1.3651 | 0.2451 | 0.532 | 0.191 | 0.144 | 0.2261 | 0.3733 | 0.2756 | 0.4496 | 0.4642 | 0.2983 | 0.3913 | 0.6093 | 0.5158 | 0.7091 | 0.1875 | 0.4956 | 0.1824 | 0.3616 | 0.0623 | 0.3655 | 0.2777 | 0.3895 |
| 1.4446 | 12.0 | 1284 | 1.3426 | 0.2526 | 0.5358 | 0.208 | 0.1033 | 0.2291 | 0.38 | 0.285 | 0.4553 | 0.4771 | 0.281 | 0.4179 | 0.6092 | 0.5401 | 0.692 | 0.2285 | 0.5235 | 0.1492 | 0.3463 | 0.0697 | 0.4164 | 0.2753 | 0.4074 |
| 1.4446 | 13.0 | 1391 | 1.3738 | 0.2444 | 0.5204 | 0.2107 | 0.09 | 0.224 | 0.3802 | 0.2751 | 0.4449 | 0.4625 | 0.3096 | 0.398 | 0.5982 | 0.52 | 0.6835 | 0.1954 | 0.5132 | 0.1721 | 0.3362 | 0.0596 | 0.3655 | 0.2749 | 0.4142 |
| 1.4446 | 14.0 | 1498 | 1.3362 | 0.2562 | 0.5391 | 0.2243 | 0.0838 | 0.2223 | 0.4115 | 0.2789 | 0.4514 | 0.4694 | 0.2657 | 0.4098 | 0.6113 | 0.5536 | 0.6994 | 0.1741 | 0.5 | 0.1999 | 0.3593 | 0.089 | 0.3982 | 0.2646 | 0.39 |
| 1.2339 | 15.0 | 1605 | 1.2863 | 0.274 | 0.5738 | 0.235 | 0.1041 | 0.2467 | 0.4314 | 0.2953 | 0.4712 | 0.4907 | 0.3404 | 0.4268 | 0.6344 | 0.5423 | 0.7063 | 0.2487 | 0.5147 | 0.1963 | 0.3825 | 0.1043 | 0.4382 | 0.2783 | 0.4121 |
| 1.2339 | 16.0 | 1712 | 1.2890 | 0.2834 | 0.5828 | 0.246 | 0.1031 | 0.2535 | 0.4322 | 0.2994 | 0.4643 | 0.4831 | 0.3513 | 0.4217 | 0.6215 | 0.5515 | 0.6909 | 0.2501 | 0.5103 | 0.2154 | 0.3689 | 0.1029 | 0.4418 | 0.2969 | 0.4037 |
| 1.2339 | 17.0 | 1819 | 1.3175 | 0.2706 | 0.5655 | 0.2381 | 0.096 | 0.2336 | 0.4086 | 0.2952 | 0.4623 | 0.4779 | 0.3177 | 0.4192 | 0.6109 | 0.5271 | 0.6903 | 0.2482 | 0.5044 | 0.1664 | 0.352 | 0.1075 | 0.4309 | 0.3035 | 0.4121 |
| 1.2339 | 18.0 | 1926 | 1.2626 | 0.2851 | 0.5718 | 0.2366 | 0.0902 | 0.2654 | 0.4276 | 0.3093 | 0.4791 | 0.4957 | 0.2848 | 0.443 | 0.6326 | 0.5663 | 0.7091 | 0.2394 | 0.5279 | 0.204 | 0.3701 | 0.1101 | 0.4509 | 0.3058 | 0.4205 |
| 1.0914 | 19.0 | 2033 | 1.2619 | 0.2947 | 0.6021 | 0.2419 | 0.1009 | 0.2725 | 0.4294 | 0.3038 | 0.4833 | 0.4971 | 0.3184 | 0.4445 | 0.6232 | 0.5687 | 0.7017 | 0.2691 | 0.5368 | 0.2063 | 0.365 | 0.1127 | 0.4455 | 0.3169 | 0.4368 |
| 1.0914 | 20.0 | 2140 | 1.2522 | 0.3037 | 0.6086 | 0.2784 | 0.1125 | 0.2678 | 0.4599 | 0.3166 | 0.4787 | 0.4927 | 0.3366 | 0.4307 | 0.6243 | 0.5613 | 0.692 | 0.2928 | 0.5279 | 0.2075 | 0.3695 | 0.1509 | 0.4382 | 0.306 | 0.4358 |
| 1.0914 | 21.0 | 2247 | 1.2523 | 0.3006 | 0.6162 | 0.2592 | 0.1084 | 0.263 | 0.4545 | 0.3158 | 0.4778 | 0.4933 | 0.3353 | 0.4233 | 0.6332 | 0.5636 | 0.6989 | 0.2845 | 0.5162 | 0.1984 | 0.3599 | 0.1427 | 0.4582 | 0.3139 | 0.4332 |
| 1.0914 | 22.0 | 2354 | 1.2415 | 0.3077 | 0.624 | 0.2611 | 0.1393 | 0.2779 | 0.4448 | 0.3182 | 0.4826 | 0.4931 | 0.3503 | 0.426 | 0.6303 | 0.5733 | 0.7063 | 0.2865 | 0.5324 | 0.2076 | 0.3559 | 0.151 | 0.4418 | 0.32 | 0.4289 |
| 1.0914 | 23.0 | 2461 | 1.2369 | 0.306 | 0.6127 | 0.28 | 0.1183 | 0.2778 | 0.4528 | 0.3185 | 0.4812 | 0.4912 | 0.3626 | 0.4312 | 0.6278 | 0.5671 | 0.7017 | 0.2834 | 0.5221 | 0.2051 | 0.3593 | 0.1536 | 0.4309 | 0.3208 | 0.4421 |
| 1.0025 | 24.0 | 2568 | 1.2379 | 0.3076 | 0.6168 | 0.2685 | 0.1043 | 0.2796 | 0.4559 | 0.3191 | 0.4815 | 0.4946 | 0.3321 | 0.4344 | 0.6313 | 0.5695 | 0.7091 | 0.2823 | 0.5221 | 0.2061 | 0.3644 | 0.1542 | 0.4327 | 0.326 | 0.4447 |
| 1.0025 | 25.0 | 2675 | 1.2307 | 0.3139 | 0.6266 | 0.2715 | 0.1157 | 0.2888 | 0.4601 | 0.3206 | 0.4855 | 0.5023 | 0.3389 | 0.4441 | 0.6388 | 0.5695 | 0.7091 | 0.2934 | 0.525 | 0.2123 | 0.3678 | 0.1651 | 0.4545 | 0.3293 | 0.4553 |
| 1.0025 | 26.0 | 2782 | 1.2233 | 0.3133 | 0.6269 | 0.271 | 0.109 | 0.2844 | 0.4571 | 0.3171 | 0.4862 | 0.5019 | 0.3415 | 0.4391 | 0.6377 | 0.5774 | 0.7142 | 0.2981 | 0.5279 | 0.2093 | 0.3633 | 0.1619 | 0.46 | 0.32 | 0.4442 |
| 1.0025 | 27.0 | 2889 | 1.2248 | 0.313 | 0.6267 | 0.2686 | 0.1104 | 0.2867 | 0.4571 | 0.3185 | 0.4878 | 0.5026 | 0.361 | 0.44 | 0.637 | 0.5724 | 0.717 | 0.301 | 0.5338 | 0.2043 | 0.365 | 0.1653 | 0.4509 | 0.322 | 0.4463 |
| 1.0025 | 28.0 | 2996 | 1.2249 | 0.311 | 0.6268 | 0.2671 | 0.1071 | 0.2842 | 0.4533 | 0.3186 | 0.4887 | 0.5021 | 0.3363 | 0.4395 | 0.6376 | 0.5732 | 0.7176 | 0.2967 | 0.5265 | 0.201 | 0.3588 | 0.1609 | 0.4564 | 0.3234 | 0.4511 |
| 0.9487 | 29.0 | 3103 | 1.2225 | 0.3125 | 0.6304 | 0.2661 | 0.1045 | 0.2847 | 0.4557 | 0.3199 | 0.4891 | 0.503 | 0.3324 | 0.4407 | 0.639 | 0.5755 | 0.7182 | 0.3001 | 0.5338 | 0.2089 | 0.365 | 0.1574 | 0.4527 | 0.3208 | 0.4453 |
| 0.9487 | 30.0 | 3210 | 1.2223 | 0.3117 | 0.6293 | 0.2667 | 0.106 | 0.2851 | 0.4545 | 0.3195 | 0.4877 | 0.5017 | 0.3298 | 0.4402 | 0.6375 | 0.5742 | 0.7165 | 0.2986 | 0.5309 | 0.2081 | 0.3644 | 0.1561 | 0.4509 | 0.3214 | 0.4458 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
|
[
"coverall",
"face_shield",
"gloves",
"goggles",
"mask"
] |
yi-zhao-K/detr-resnet-50_cropped_37
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr-resnet-50_cropped_37
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the imagefolder dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 300
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cpu
- Datasets 2.20.0
- Tokenizers 0.19.1
|
[
"blackgum",
"chestnut oak",
"red maple",
"black cherry",
"norway spruce",
"northern red oak"
] |
daksh5656/detr-resnet-50_finetuned_cppe5
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr-resnet-50_finetuned_cppe5
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.43.3
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
[
"diseases",
"ballooning",
"fibrosis",
"inflammation",
"steatosis"
] |
ipd805/digit
|
open k
|
[
"digit",
"icon"
] |
ArrayDice/Vehicle_Detection_Model_Zoom
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Vehicle_Detection_Model_Zoom
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7673
- Map: 0.0853
- Map 50: 0.1613
- Map 75: 0.0814
- Map Small: 0.452
- Map Medium: 0.1098
- Map Large: 0.0
- Mar 1: 0.1187
- Mar 10: 0.1824
- Mar 100: 0.1934
- Mar Small: 0.5946
- Mar Medium: 0.1984
- Mar Large: 0.0
- Map Camping car: 0.0353
- Mar 100 Camping car: 0.35
- Map Car: 0.4678
- Mar 100 Car: 0.6103
- Map Other: 0.0
- Mar 100 Other: 0.0
- Map Pickup: 0.0088
- Mar 100 Pickup: 0.2
- Map Truck: 0.0
- Mar 100 Truck: 0.0
- Map Van: 0.0
- Mar 100 Van: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Camping car | Mar 100 Camping car | Map Car | Mar 100 Car | Map Other | Mar 100 Other | Map Pickup | Mar 100 Pickup | Map Truck | Mar 100 Truck | Map Van | Mar 100 Van |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:---------------:|:-------------------:|:-------:|:-----------:|:---------:|:-------------:|:----------:|:--------------:|:---------:|:-------------:|:-------:|:-----------:|
| No log | 1.0 | 232 | 1.2888 | 0.0179 | 0.0435 | 0.0095 | 0.118 | 0.0187 | 0.0 | 0.0175 | 0.0527 | 0.0838 | 0.4665 | 0.0955 | 0.0 | 0.0 | 0.0 | 0.1073 | 0.5028 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| No log | 2.0 | 464 | 1.1028 | 0.0308 | 0.0792 | 0.0172 | 0.2225 | 0.0267 | 0.0 | 0.0233 | 0.0637 | 0.0818 | 0.4346 | 0.0998 | 0.0 | 0.0 | 0.0 | 0.1851 | 0.4907 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.5836 | 3.0 | 696 | 1.0727 | 0.0509 | 0.1216 | 0.0268 | 0.3118 | 0.0531 | 0.0 | 0.0278 | 0.0702 | 0.0781 | 0.4362 | 0.0884 | 0.0 | 0.0 | 0.0 | 0.3055 | 0.4683 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.5836 | 4.0 | 928 | 1.1038 | 0.0467 | 0.1199 | 0.0193 | 0.2617 | 0.0543 | 0.0 | 0.0249 | 0.0679 | 0.0772 | 0.4357 | 0.0861 | 0.0 | 0.0 | 0.0 | 0.2803 | 0.4633 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.1611 | 5.0 | 1160 | 1.0186 | 0.057 | 0.13 | 0.0335 | 0.3254 | 0.0643 | 0.0 | 0.0281 | 0.0721 | 0.0819 | 0.4735 | 0.0877 | 0.0 | 0.0 | 0.0 | 0.3422 | 0.4915 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.1611 | 6.0 | 1392 | 1.0468 | 0.0541 | 0.1255 | 0.029 | 0.3094 | 0.0612 | 0.0 | 0.0288 | 0.0735 | 0.0816 | 0.4557 | 0.0925 | 0.0 | 0.0 | 0.0 | 0.3249 | 0.4897 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.1009 | 7.0 | 1624 | 0.9479 | 0.063 | 0.1366 | 0.0467 | 0.3682 | 0.0676 | 0.0 | 0.0312 | 0.0789 | 0.0905 | 0.507 | 0.1019 | 0.0 | 0.0 | 0.0 | 0.3781 | 0.5427 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.1009 | 8.0 | 1856 | 0.9808 | 0.0556 | 0.1305 | 0.0355 | 0.3103 | 0.0652 | 0.0 | 0.0295 | 0.074 | 0.0858 | 0.4789 | 0.0974 | 0.0 | 0.0 | 0.0 | 0.3338 | 0.5149 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.043 | 9.0 | 2088 | 1.0168 | 0.0504 | 0.1232 | 0.0248 | 0.2652 | 0.0654 | 0.0 | 0.0271 | 0.0716 | 0.0815 | 0.4443 | 0.0958 | 0.0 | 0.0 | 0.0 | 0.3022 | 0.489 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.043 | 10.0 | 2320 | 0.9497 | 0.0536 | 0.1207 | 0.0312 | 0.2924 | 0.0715 | 0.0 | 0.0299 | 0.0755 | 0.0888 | 0.4968 | 0.1003 | 0.0 | 0.0 | 0.0 | 0.3218 | 0.5327 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.026 | 11.0 | 2552 | 0.9826 | 0.0844 | 0.1826 | 0.0374 | 0.3582 | 0.0936 | 0.0 | 0.0727 | 0.1434 | 0.1534 | 0.4795 | 0.1667 | 0.0 | 0.127 | 0.4 | 0.3792 | 0.5206 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.026 | 12.0 | 2784 | 0.9282 | 0.0615 | 0.1396 | 0.0422 | 0.3292 | 0.0758 | 0.0 | 0.0809 | 0.1281 | 0.1357 | 0.4784 | 0.1472 | 0.0 | 0.0202 | 0.3 | 0.3487 | 0.5142 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.9794 | 13.0 | 3016 | 0.8976 | 0.0663 | 0.1368 | 0.0541 | 0.3854 | 0.0748 | 0.0 | 0.0317 | 0.0821 | 0.0942 | 0.5389 | 0.1026 | 0.0 | 0.0 | 0.0 | 0.3977 | 0.5651 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.9794 | 14.0 | 3248 | 0.8970 | 0.0633 | 0.1358 | 0.0474 | 0.3519 | 0.0754 | 0.0 | 0.0315 | 0.0799 | 0.0929 | 0.5151 | 0.1066 | 0.0 | 0.0 | 0.0 | 0.3798 | 0.5577 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.9794 | 15.0 | 3480 | 0.8418 | 0.0677 | 0.1368 | 0.052 | 0.3737 | 0.0807 | 0.0 | 0.0328 | 0.0837 | 0.0935 | 0.5265 | 0.1045 | 0.0 | 0.0 | 0.0 | 0.4063 | 0.5609 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.9189 | 16.0 | 3712 | 0.8709 | 0.0677 | 0.1414 | 0.055 | 0.3733 | 0.0808 | 0.0 | 0.066 | 0.1151 | 0.1261 | 0.5308 | 0.1344 | 0.0 | 0.0033 | 0.2 | 0.4031 | 0.5566 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.9189 | 17.0 | 3944 | 0.9095 | 0.0657 | 0.1386 | 0.048 | 0.3734 | 0.0746 | 0.0 | 0.0444 | 0.0925 | 0.1004 | 0.4935 | 0.1139 | 0.0 | 0.0 | 0.0 | 0.3918 | 0.5356 | 0.0 | 0.0 | 0.0024 | 0.0667 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8933 | 18.0 | 4176 | 0.8832 | 0.0651 | 0.1416 | 0.046 | 0.3467 | 0.0809 | 0.0 | 0.1021 | 0.1488 | 0.1594 | 0.5076 | 0.1698 | 0.0 | 0.0151 | 0.3 | 0.3708 | 0.5399 | 0.0 | 0.0 | 0.0045 | 0.1167 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8933 | 19.0 | 4408 | 0.8459 | 0.0707 | 0.1444 | 0.0527 | 0.4093 | 0.0782 | 0.0 | 0.043 | 0.0914 | 0.1017 | 0.5405 | 0.1082 | 0.0 | 0.0 | 0.0 | 0.4231 | 0.5605 | 0.0 | 0.0 | 0.0013 | 0.05 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8732 | 20.0 | 4640 | 0.8352 | 0.0719 | 0.151 | 0.0581 | 0.3987 | 0.0853 | 0.0 | 0.0699 | 0.1257 | 0.1366 | 0.5459 | 0.1443 | 0.0 | 0.001 | 0.05 | 0.4198 | 0.5698 | 0.0 | 0.0 | 0.0106 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8732 | 21.0 | 4872 | 0.8110 | 0.077 | 0.1574 | 0.0657 | 0.407 | 0.0938 | 0.0 | 0.1345 | 0.1896 | 0.2005 | 0.5638 | 0.2078 | 0.0 | 0.0104 | 0.3 | 0.4317 | 0.5865 | 0.0 | 0.0 | 0.0201 | 0.3167 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8261 | 22.0 | 5104 | 0.8235 | 0.074 | 0.1564 | 0.0561 | 0.4045 | 0.0867 | 0.0 | 0.0842 | 0.1682 | 0.1776 | 0.5422 | 0.1851 | 0.0 | 0.0066 | 0.15 | 0.4229 | 0.5655 | 0.0 | 0.0 | 0.0144 | 0.35 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8261 | 23.0 | 5336 | 0.8116 | 0.0817 | 0.1636 | 0.0731 | 0.4237 | 0.0965 | 0.0 | 0.1115 | 0.1724 | 0.1822 | 0.5557 | 0.1889 | 0.0 | 0.0433 | 0.3 | 0.4392 | 0.5765 | 0.0 | 0.0 | 0.0074 | 0.2167 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8213 | 24.0 | 5568 | 0.7748 | 0.0841 | 0.1619 | 0.0746 | 0.4393 | 0.1182 | 0.0 | 0.1244 | 0.1874 | 0.197 | 0.58 | 0.2031 | 0.0 | 0.0393 | 0.35 | 0.457 | 0.5989 | 0.0 | 0.0 | 0.0085 | 0.2333 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8213 | 25.0 | 5800 | 0.7782 | 0.0893 | 0.1678 | 0.0802 | 0.4418 | 0.1555 | 0.0 | 0.1376 | 0.2022 | 0.2134 | 0.5795 | 0.2191 | 0.0 | 0.0683 | 0.45 | 0.4583 | 0.5972 | 0.0 | 0.0 | 0.009 | 0.2333 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.794 | 26.0 | 6032 | 0.7822 | 0.082 | 0.1585 | 0.0738 | 0.4368 | 0.1026 | 0.0 | 0.118 | 0.191 | 0.2021 | 0.5773 | 0.208 | 0.0 | 0.0324 | 0.4 | 0.4519 | 0.5957 | 0.0 | 0.0 | 0.0074 | 0.2167 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.794 | 27.0 | 6264 | 0.7735 | 0.0888 | 0.1683 | 0.0879 | 0.4533 | 0.1188 | 0.0 | 0.1404 | 0.1981 | 0.2087 | 0.5865 | 0.2137 | 0.0 | 0.0505 | 0.35 | 0.4672 | 0.6021 | 0.0 | 0.0 | 0.0153 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.794 | 28.0 | 6496 | 0.7680 | 0.0852 | 0.1608 | 0.0842 | 0.4557 | 0.109 | 0.0 | 0.1186 | 0.1821 | 0.1924 | 0.5892 | 0.1974 | 0.0 | 0.0321 | 0.35 | 0.4705 | 0.6046 | 0.0 | 0.0 | 0.0088 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.7843 | 29.0 | 6728 | 0.7678 | 0.0852 | 0.1614 | 0.0817 | 0.4516 | 0.1095 | 0.0 | 0.1185 | 0.1821 | 0.1931 | 0.593 | 0.1981 | 0.0 | 0.0353 | 0.35 | 0.4673 | 0.6085 | 0.0 | 0.0 | 0.0088 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.7843 | 30.0 | 6960 | 0.7673 | 0.0853 | 0.1613 | 0.0814 | 0.452 | 0.1098 | 0.0 | 0.1187 | 0.1824 | 0.1934 | 0.5946 | 0.1984 | 0.0 | 0.0353 | 0.35 | 0.4678 | 0.6103 | 0.0 | 0.0 | 0.0088 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
[
"cars-trucks-vans",
"boat",
"camping car",
"car",
"motorcycle",
"other",
"pickup",
"plane",
"tractor",
"truck",
"van"
] |
NabilaLM/DETR_25
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2"
] |
namnguyen059/detr-finetuned-cppe-5-10k-steps
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr-finetuned-cppe-5-10k-steps
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the namnguyen059/PDFextract dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3774
- Map: 0.0076
- Map 50: 0.0237
- Map 75: 0.0004
- Map Small: 0.0
- Map Medium: 0.0117
- Map Large: 0.0
- Mar 1: 0.0014
- Mar 10: 0.0459
- Mar 100: 0.0622
- Mar Small: 0.0
- Mar Medium: 0.0958
- Mar Large: 0.0
- Map Table: 0.0
- Mar 100 Table: 0.0
- Map Text: 0.0152
- Mar 100 Text: 0.1243
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Table | Mar 100 Table | Map Text | Mar 100 Text |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:---------:|:-------------:|:--------:|:------------:|
| 6.2935 | 1.0 | 5 | 5.7125 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 5.6711 | 2.0 | 10 | 5.4708 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 5.3937 | 3.0 | 15 | 5.2153 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 5.001 | 4.0 | 20 | 4.8025 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 4.8611 | 5.0 | 25 | 4.6390 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 4.6947 | 6.0 | 30 | 4.2093 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0021 | 0.0 | 0.0 | 0.0027 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0001 | 0.0054 |
| 4.1881 | 7.0 | 35 | 3.8453 | 0.0003 | 0.0031 | 0.0 | 0.0 | 0.0006 | 0.0012 | 0.0 | 0.0014 | 0.0054 | 0.0 | 0.0021 | 0.15 | 0.0 | 0.0 | 0.0007 | 0.0108 |
| 3.9652 | 8.0 | 40 | 4.0073 | 0.003 | 0.0182 | 0.0 | 0.0 | 0.0052 | 0.0017 | 0.0014 | 0.0081 | 0.0122 | 0.0 | 0.0125 | 0.15 | 0.0 | 0.0 | 0.0059 | 0.0243 |
| 3.9875 | 9.0 | 45 | 4.0535 | 0.0001 | 0.0005 | 0.0001 | 0.0 | 0.0001 | 0.0019 | 0.0 | 0.0 | 0.0122 | 0.0 | 0.0063 | 0.3 | 0.0 | 0.0 | 0.0002 | 0.0243 |
| 4.041 | 10.0 | 50 | 4.0097 | 0.0002 | 0.0017 | 0.0 | 0.0 | 0.0004 | 0.0009 | 0.0 | 0.0 | 0.0081 | 0.0 | 0.0083 | 0.1 | 0.0 | 0.0 | 0.0003 | 0.0162 |
| 3.959 | 11.0 | 55 | 3.8365 | 0.0005 | 0.0021 | 0.0 | 0.0 | 0.0012 | 0.0003 | 0.0 | 0.0068 | 0.0122 | 0.0 | 0.0167 | 0.05 | 0.0 | 0.0 | 0.0009 | 0.0243 |
| 3.8681 | 12.0 | 60 | 3.6800 | 0.0007 | 0.0041 | 0.0 | 0.0 | 0.0014 | 0.001 | 0.0 | 0.0068 | 0.0149 | 0.0 | 0.0167 | 0.15 | 0.0 | 0.0 | 0.0013 | 0.0297 |
| 3.7309 | 13.0 | 65 | 3.6922 | 0.0029 | 0.0249 | 0.0 | 0.0 | 0.0068 | 0.0008 | 0.0014 | 0.0081 | 0.0189 | 0.0 | 0.025 | 0.1 | 0.0 | 0.0 | 0.0058 | 0.0378 |
| 3.647 | 14.0 | 70 | 3.7221 | 0.0024 | 0.0158 | 0.0 | 0.0 | 0.0045 | 0.0016 | 0.0014 | 0.0108 | 0.0162 | 0.0 | 0.0167 | 0.2 | 0.0 | 0.0 | 0.0048 | 0.0324 |
| 3.6564 | 15.0 | 75 | 3.6637 | 0.0007 | 0.0048 | 0.0 | 0.0 | 0.0012 | 0.0025 | 0.0014 | 0.0054 | 0.0189 | 0.0 | 0.0229 | 0.15 | 0.0 | 0.0 | 0.0014 | 0.0378 |
| 3.5905 | 16.0 | 80 | 3.6443 | 0.0078 | 0.0179 | 0.0 | 0.0 | 0.0116 | 0.0074 | 0.0135 | 0.0203 | 0.023 | 0.0 | 0.0312 | 0.1 | 0.0 | 0.0 | 0.0157 | 0.0459 |
| 3.8091 | 17.0 | 85 | 3.8066 | 0.0018 | 0.0122 | 0.0 | 0.0 | 0.003 | 0.0 | 0.0041 | 0.0108 | 0.0108 | 0.0 | 0.0167 | 0.0 | 0.0 | 0.0 | 0.0035 | 0.0216 |
| 3.8171 | 18.0 | 90 | 3.6044 | 0.0006 | 0.0032 | 0.0 | 0.0 | 0.0012 | 0.0 | 0.0 | 0.0054 | 0.0095 | 0.0 | 0.0146 | 0.0 | 0.0 | 0.0 | 0.0013 | 0.0189 |
| 3.7048 | 19.0 | 95 | 3.6161 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0018 | 0.0 | 0.0 | 0.0068 | 0.0 | 0.0 | 0.25 | 0.0 | 0.0 | 0.0 | 0.0135 |
| 3.8635 | 20.0 | 100 | 3.6542 | 0.0004 | 0.0015 | 0.0 | 0.0 | 0.0009 | 0.0 | 0.0 | 0.0054 | 0.0095 | 0.0 | 0.0146 | 0.0 | 0.0 | 0.0 | 0.0009 | 0.0189 |
| 3.7021 | 21.0 | 105 | 4.0802 | 0.0032 | 0.016 | 0.0 | 0.0 | 0.0053 | 0.0 | 0.0027 | 0.0068 | 0.0108 | 0.0 | 0.0167 | 0.0 | 0.0 | 0.0 | 0.0064 | 0.0216 |
| 3.7035 | 22.0 | 110 | 4.0508 | 0.0006 | 0.0041 | 0.0 | 0.0 | 0.001 | 0.0 | 0.0 | 0.0014 | 0.0162 | 0.0 | 0.025 | 0.0 | 0.0 | 0.0 | 0.0012 | 0.0324 |
| 3.6404 | 23.0 | 115 | 4.1771 | 0.0013 | 0.0057 | 0.0005 | 0.0 | 0.0022 | 0.0 | 0.0068 | 0.0162 | 0.0189 | 0.0 | 0.0292 | 0.0 | 0.0 | 0.0 | 0.0027 | 0.0378 |
| 3.7922 | 24.0 | 120 | 4.4617 | 0.006 | 0.0149 | 0.0 | 0.0 | 0.0099 | 0.0 | 0.0054 | 0.0054 | 0.0095 | 0.0 | 0.0146 | 0.0 | 0.0 | 0.0 | 0.0119 | 0.0189 |
| 3.7619 | 25.0 | 125 | 3.8533 | 0.001 | 0.0026 | 0.0 | 0.0 | 0.0053 | 0.0008 | 0.0 | 0.0108 | 0.0135 | 0.0 | 0.0167 | 0.1 | 0.0 | 0.0 | 0.0019 | 0.027 |
| 3.804 | 26.0 | 130 | 3.7589 | 0.001 | 0.0073 | 0.0 | 0.0 | 0.0036 | 0.0 | 0.0 | 0.0081 | 0.0122 | 0.0 | 0.0188 | 0.0 | 0.0 | 0.0 | 0.0021 | 0.0243 |
| 3.7785 | 27.0 | 135 | 3.6378 | 0.003 | 0.0197 | 0.0 | 0.0 | 0.01 | 0.0003 | 0.0027 | 0.0162 | 0.0189 | 0.0 | 0.0271 | 0.05 | 0.0 | 0.0 | 0.006 | 0.0378 |
| 3.726 | 28.0 | 140 | 3.7696 | 0.0003 | 0.0021 | 0.0001 | 0.0 | 0.0009 | 0.0 | 0.0 | 0.0041 | 0.0149 | 0.0 | 0.0229 | 0.0 | 0.0 | 0.0 | 0.0006 | 0.0297 |
| 3.682 | 29.0 | 145 | 3.8782 | 0.0003 | 0.0006 | 0.0003 | 0.0 | 0.001 | 0.0 | 0.0 | 0.0081 | 0.0108 | 0.0 | 0.0167 | 0.0 | 0.0 | 0.0 | 0.0006 | 0.0216 |
| 3.7331 | 30.0 | 150 | 4.3841 | 0.0005 | 0.0027 | 0.0 | 0.0 | 0.002 | 0.0009 | 0.0 | 0.0081 | 0.0189 | 0.0 | 0.025 | 0.1 | 0.0 | 0.0 | 0.001 | 0.0378 |
| 3.7627 | 31.0 | 155 | 4.7688 | 0.0007 | 0.0054 | 0.0 | 0.0 | 0.003 | 0.0 | 0.0 | 0.0081 | 0.0189 | 0.0 | 0.0292 | 0.0 | 0.0 | 0.0 | 0.0015 | 0.0378 |
| 3.8656 | 32.0 | 160 | 5.0427 | 0.0009 | 0.0046 | 0.0 | 0.0 | 0.0039 | 0.0007 | 0.0 | 0.0027 | 0.0324 | 0.0 | 0.0417 | 0.2 | 0.0 | 0.0 | 0.0018 | 0.0649 |
| 3.8845 | 33.0 | 165 | 4.1952 | 0.0012 | 0.0056 | 0.0 | 0.0 | 0.0027 | 0.0 | 0.0 | 0.0108 | 0.0243 | 0.0 | 0.0375 | 0.0 | 0.0 | 0.0 | 0.0024 | 0.0486 |
| 3.8416 | 34.0 | 170 | 4.1403 | 0.0048 | 0.0128 | 0.0006 | 0.0 | 0.0118 | 0.0048 | 0.0 | 0.0311 | 0.0703 | 0.0 | 0.1021 | 0.15 | 0.0 | 0.0 | 0.0096 | 0.1405 |
| 3.807 | 35.0 | 175 | 4.6646 | 0.0031 | 0.0218 | 0.0002 | 0.0 | 0.0103 | 0.0125 | 0.0014 | 0.0176 | 0.05 | 0.0 | 0.075 | 0.05 | 0.0 | 0.0 | 0.0062 | 0.1 |
| 3.8728 | 36.0 | 180 | 4.5890 | 0.0009 | 0.0039 | 0.0004 | 0.0 | 0.002 | 0.0 | 0.0 | 0.0014 | 0.0432 | 0.0 | 0.0667 | 0.0 | 0.0 | 0.0 | 0.0018 | 0.0865 |
| 3.7952 | 37.0 | 185 | 4.0300 | 0.0013 | 0.0048 | 0.0007 | 0.0 | 0.0023 | 0.0 | 0.0 | 0.0176 | 0.023 | 0.0 | 0.0354 | 0.0 | 0.0 | 0.0 | 0.0025 | 0.0459 |
| 3.725 | 38.0 | 190 | 3.9829 | 0.0003 | 0.0025 | 0.0001 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.0014 | 0.0135 | 0.0 | 0.0208 | 0.0 | 0.0 | 0.0 | 0.0006 | 0.027 |
| 3.6884 | 39.0 | 195 | 3.7402 | 0.0008 | 0.0036 | 0.0 | 0.0 | 0.0009 | 0.0119 | 0.0 | 0.0014 | 0.027 | 0.0 | 0.0333 | 0.2 | 0.0 | 0.0 | 0.0016 | 0.0541 |
| 3.6963 | 40.0 | 200 | 3.4723 | 0.0002 | 0.0015 | 0.0 | 0.0 | 0.0004 | 0.0 | 0.0 | 0.0 | 0.0081 | 0.0 | 0.0125 | 0.0 | 0.0 | 0.0 | 0.0004 | 0.0162 |
| 3.7368 | 41.0 | 205 | 3.6067 | 0.0 | 0.0004 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0027 | 0.0 | 0.0042 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0054 |
| 3.7349 | 42.0 | 210 | 3.6135 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0012 | 0.0 | 0.0014 | 0.0014 | 0.0 | 0.0 | 0.05 | 0.0 | 0.0 | 0.0 | 0.0027 |
| 3.6353 | 43.0 | 215 | 3.5835 | 0.0018 | 0.0062 | 0.0014 | 0.0 | 0.0074 | 0.0 | 0.0 | 0.0122 | 0.027 | 0.0 | 0.0417 | 0.0 | 0.0 | 0.0 | 0.0036 | 0.0541 |
| 3.6948 | 44.0 | 220 | 3.7714 | 0.0023 | 0.0077 | 0.0001 | 0.0 | 0.0045 | 0.0 | 0.0 | 0.0162 | 0.0324 | 0.0 | 0.05 | 0.0 | 0.0 | 0.0 | 0.0046 | 0.0649 |
| 3.7546 | 45.0 | 225 | 3.9600 | 0.0074 | 0.0207 | 0.0 | 0.0 | 0.0126 | 0.0 | 0.0054 | 0.0189 | 0.0243 | 0.0 | 0.0375 | 0.0 | 0.0 | 0.0 | 0.0149 | 0.0486 |
| 3.6691 | 46.0 | 230 | 3.8211 | 0.0018 | 0.0094 | 0.0 | 0.0 | 0.0037 | 0.0 | 0.0 | 0.0095 | 0.0297 | 0.0 | 0.0458 | 0.0 | 0.0 | 0.0 | 0.0037 | 0.0595 |
| 3.5355 | 47.0 | 235 | 3.6537 | 0.0006 | 0.0036 | 0.0001 | 0.0 | 0.0017 | 0.0 | 0.0 | 0.0068 | 0.0216 | 0.0 | 0.0333 | 0.0 | 0.0 | 0.0 | 0.0012 | 0.0432 |
| 3.5232 | 48.0 | 240 | 3.5552 | 0.0004 | 0.002 | 0.0 | 0.0 | 0.0018 | 0.0 | 0.0 | 0.0027 | 0.0149 | 0.0 | 0.0229 | 0.0 | 0.0 | 0.0 | 0.0008 | 0.0297 |
| 3.48 | 49.0 | 245 | 3.4924 | 0.0014 | 0.0126 | 0.0 | 0.0 | 0.0043 | 0.0017 | 0.0014 | 0.0108 | 0.0122 | 0.0 | 0.0167 | 0.05 | 0.0 | 0.0 | 0.0028 | 0.0243 |
| 3.6056 | 50.0 | 250 | 3.4697 | 0.0007 | 0.0024 | 0.0 | 0.0 | 0.0019 | 0.0002 | 0.0 | 0.0095 | 0.0122 | 0.0 | 0.0167 | 0.05 | 0.0 | 0.0 | 0.0014 | 0.0243 |
| 3.4806 | 51.0 | 255 | 3.5357 | 0.0045 | 0.0339 | 0.0 | 0.0 | 0.0129 | 0.0006 | 0.0014 | 0.023 | 0.0284 | 0.0 | 0.0417 | 0.05 | 0.0 | 0.0 | 0.0091 | 0.0568 |
| 3.5547 | 52.0 | 260 | 3.5216 | 0.0016 | 0.0141 | 0.0 | 0.0 | 0.004 | 0.0021 | 0.0 | 0.0108 | 0.0257 | 0.0 | 0.0292 | 0.25 | 0.0 | 0.0 | 0.0032 | 0.0514 |
| 3.483 | 53.0 | 265 | 3.4858 | 0.0048 | 0.028 | 0.0005 | 0.0 | 0.0077 | 0.0 | 0.0 | 0.0311 | 0.0405 | 0.0 | 0.0625 | 0.0 | 0.0 | 0.0 | 0.0095 | 0.0811 |
| 3.6952 | 54.0 | 270 | 3.4944 | 0.0083 | 0.0661 | 0.0 | 0.0 | 0.0131 | 0.0 | 0.0041 | 0.027 | 0.0284 | 0.0 | 0.0437 | 0.0 | 0.0 | 0.0 | 0.0165 | 0.0568 |
| 3.5447 | 55.0 | 275 | 3.5247 | 0.0049 | 0.0251 | 0.0 | 0.0 | 0.0079 | 0.0 | 0.0027 | 0.0176 | 0.0257 | 0.0 | 0.0396 | 0.0 | 0.0 | 0.0 | 0.0099 | 0.0514 |
| 3.6204 | 56.0 | 280 | 3.5457 | 0.0069 | 0.0452 | 0.0 | 0.0 | 0.0168 | 0.0 | 0.0068 | 0.0135 | 0.0257 | 0.0 | 0.0396 | 0.0 | 0.0 | 0.0 | 0.0137 | 0.0514 |
| 3.3873 | 57.0 | 285 | 3.4963 | 0.0134 | 0.0576 | 0.0 | 0.0 | 0.0218 | 0.0 | 0.0081 | 0.0365 | 0.0473 | 0.0 | 0.0729 | 0.0 | 0.0 | 0.0 | 0.0268 | 0.0946 |
| 3.5384 | 58.0 | 290 | 3.5618 | 0.0016 | 0.0083 | 0.0 | 0.0 | 0.0025 | 0.0 | 0.0 | 0.0122 | 0.0338 | 0.0 | 0.0521 | 0.0 | 0.0 | 0.0 | 0.0032 | 0.0676 |
| 3.6034 | 59.0 | 295 | 3.4600 | 0.0016 | 0.0102 | 0.0 | 0.0 | 0.0025 | 0.0 | 0.0 | 0.0081 | 0.0324 | 0.0 | 0.05 | 0.0 | 0.0 | 0.0 | 0.0032 | 0.0649 |
| 3.5524 | 60.0 | 300 | 3.4434 | 0.0012 | 0.0063 | 0.0004 | 0.0 | 0.0019 | 0.0 | 0.0 | 0.0041 | 0.0324 | 0.0 | 0.05 | 0.0 | 0.0 | 0.0 | 0.0024 | 0.0649 |
| 3.4222 | 61.0 | 305 | 3.5144 | 0.0043 | 0.0113 | 0.0002 | 0.0 | 0.0066 | 0.0 | 0.0 | 0.027 | 0.0419 | 0.0 | 0.0646 | 0.0 | 0.0 | 0.0 | 0.0086 | 0.0838 |
| 3.451 | 62.0 | 310 | 3.5189 | 0.0198 | 0.0582 | 0.0002 | 0.0 | 0.0304 | 0.0007 | 0.0189 | 0.0351 | 0.0446 | 0.0 | 0.0646 | 0.1 | 0.0 | 0.0 | 0.0396 | 0.0892 |
| 3.4485 | 63.0 | 315 | 3.4585 | 0.0125 | 0.0428 | 0.0 | 0.0 | 0.0202 | 0.0 | 0.0135 | 0.0297 | 0.0405 | 0.0 | 0.0625 | 0.0 | 0.0 | 0.0 | 0.0249 | 0.0811 |
| 3.475 | 64.0 | 320 | 3.3541 | 0.0063 | 0.0297 | 0.0012 | 0.0 | 0.0111 | 0.0016 | 0.0027 | 0.0216 | 0.0405 | 0.0 | 0.0583 | 0.1 | 0.0 | 0.0 | 0.0126 | 0.0811 |
| 3.4189 | 65.0 | 325 | 3.3517 | 0.0051 | 0.0315 | 0.0 | 0.0 | 0.0094 | 0.0 | 0.0014 | 0.0257 | 0.0378 | 0.0 | 0.0583 | 0.0 | 0.0 | 0.0 | 0.0102 | 0.0757 |
| 3.324 | 66.0 | 330 | 3.2557 | 0.0025 | 0.0134 | 0.0 | 0.0 | 0.0045 | 0.0 | 0.0 | 0.0216 | 0.0243 | 0.0 | 0.0375 | 0.0 | 0.0 | 0.0 | 0.005 | 0.0486 |
| 3.5049 | 67.0 | 335 | 3.3093 | 0.0031 | 0.0108 | 0.0 | 0.0 | 0.0051 | 0.0 | 0.0 | 0.027 | 0.027 | 0.0 | 0.0417 | 0.0 | 0.0 | 0.0 | 0.0061 | 0.0541 |
| 3.3219 | 68.0 | 340 | 3.3455 | 0.0119 | 0.0596 | 0.0008 | 0.0 | 0.0189 | 0.0 | 0.0095 | 0.0284 | 0.0432 | 0.0 | 0.0667 | 0.0 | 0.0 | 0.0 | 0.0239 | 0.0865 |
| 3.3633 | 69.0 | 345 | 3.4110 | 0.0268 | 0.0747 | 0.0034 | 0.0 | 0.0414 | 0.0 | 0.0203 | 0.0662 | 0.0662 | 0.0 | 0.1021 | 0.0 | 0.0 | 0.0 | 0.0536 | 0.1324 |
| 3.4628 | 70.0 | 350 | 3.3594 | 0.0024 | 0.0151 | 0.0002 | 0.0 | 0.0037 | 0.0 | 0.0014 | 0.0216 | 0.0405 | 0.0 | 0.0625 | 0.0 | 0.0 | 0.0 | 0.0048 | 0.0811 |
| 3.272 | 71.0 | 355 | 3.3655 | 0.0039 | 0.0174 | 0.0008 | 0.0 | 0.0061 | 0.0 | 0.0014 | 0.0149 | 0.0473 | 0.0 | 0.0729 | 0.0 | 0.0 | 0.0 | 0.0079 | 0.0946 |
| 3.3713 | 72.0 | 360 | 3.3455 | 0.0097 | 0.0609 | 0.0018 | 0.0 | 0.015 | 0.0 | 0.0108 | 0.0122 | 0.0473 | 0.0 | 0.0729 | 0.0 | 0.0 | 0.0 | 0.0195 | 0.0946 |
| 3.258 | 73.0 | 365 | 3.3679 | 0.0006 | 0.0025 | 0.0 | 0.0 | 0.0011 | 0.0 | 0.0 | 0.0068 | 0.023 | 0.0 | 0.0354 | 0.0 | 0.0 | 0.0 | 0.0013 | 0.0459 |
| 3.3666 | 74.0 | 370 | 3.3173 | 0.0004 | 0.0024 | 0.0 | 0.0 | 0.0008 | 0.0 | 0.0 | 0.0014 | 0.0216 | 0.0 | 0.0333 | 0.0 | 0.0 | 0.0 | 0.0009 | 0.0432 |
| 3.2339 | 75.0 | 375 | 3.3463 | 0.002 | 0.0103 | 0.0 | 0.0 | 0.0033 | 0.0 | 0.0 | 0.0081 | 0.0405 | 0.0 | 0.0625 | 0.0 | 0.0 | 0.0 | 0.004 | 0.0811 |
| 3.2601 | 76.0 | 380 | 3.3633 | 0.002 | 0.0111 | 0.0 | 0.0 | 0.0032 | 0.0 | 0.0 | 0.0081 | 0.0392 | 0.0 | 0.0604 | 0.0 | 0.0 | 0.0 | 0.0039 | 0.0784 |
| 3.3584 | 77.0 | 385 | 3.3331 | 0.0025 | 0.0108 | 0.0 | 0.0 | 0.004 | 0.0 | 0.0 | 0.0081 | 0.0486 | 0.0 | 0.075 | 0.0 | 0.0 | 0.0 | 0.0051 | 0.0973 |
| 3.2928 | 78.0 | 390 | 3.3012 | 0.0043 | 0.0139 | 0.0002 | 0.0 | 0.0066 | 0.0 | 0.0 | 0.0162 | 0.0635 | 0.0 | 0.0979 | 0.0 | 0.0 | 0.0 | 0.0085 | 0.127 |
| 3.2633 | 79.0 | 395 | 3.2913 | 0.0076 | 0.0226 | 0.0003 | 0.0 | 0.0117 | 0.0 | 0.0027 | 0.0392 | 0.0432 | 0.0 | 0.0667 | 0.0 | 0.0 | 0.0 | 0.0153 | 0.0865 |
| 3.3965 | 80.0 | 400 | 3.3141 | 0.008 | 0.0224 | 0.0051 | 0.0 | 0.0126 | 0.0 | 0.0014 | 0.0405 | 0.0419 | 0.0 | 0.0646 | 0.0 | 0.0 | 0.0 | 0.016 | 0.0838 |
| 3.2753 | 81.0 | 405 | 3.4127 | 0.0077 | 0.0231 | 0.0036 | 0.0 | 0.012 | 0.0 | 0.0 | 0.0405 | 0.0432 | 0.0 | 0.0667 | 0.0 | 0.0 | 0.0 | 0.0155 | 0.0865 |
| 3.3362 | 82.0 | 410 | 3.4194 | 0.0099 | 0.0365 | 0.0032 | 0.0 | 0.0152 | 0.0 | 0.0054 | 0.0473 | 0.0568 | 0.0 | 0.0875 | 0.0 | 0.0 | 0.0 | 0.0197 | 0.1135 |
| 3.3752 | 83.0 | 415 | 3.3421 | 0.0086 | 0.0411 | 0.0 | 0.0 | 0.0134 | 0.0 | 0.0014 | 0.0351 | 0.0432 | 0.0 | 0.0667 | 0.0 | 0.0 | 0.0 | 0.0173 | 0.0865 |
| 3.3222 | 84.0 | 420 | 3.2956 | 0.004 | 0.0234 | 0.0 | 0.0 | 0.0063 | 0.0 | 0.0014 | 0.0243 | 0.0243 | 0.0 | 0.0375 | 0.0 | 0.0 | 0.0 | 0.008 | 0.0486 |
| 3.3732 | 85.0 | 425 | 3.2515 | 0.0281 | 0.0614 | 0.0 | 0.0 | 0.0434 | 0.0 | 0.0257 | 0.0338 | 0.0459 | 0.0 | 0.0708 | 0.0 | 0.0 | 0.0 | 0.0562 | 0.0919 |
| 3.1932 | 86.0 | 430 | 3.2197 | 0.0263 | 0.0603 | 0.0 | 0.0 | 0.0409 | 0.0 | 0.0243 | 0.0297 | 0.0459 | 0.0 | 0.0708 | 0.0 | 0.0 | 0.0 | 0.0527 | 0.0919 |
| 3.3181 | 87.0 | 435 | 3.3373 | 0.0027 | 0.0142 | 0.0 | 0.0 | 0.0042 | 0.0 | 0.0 | 0.023 | 0.0297 | 0.0 | 0.0458 | 0.0 | 0.0 | 0.0 | 0.0055 | 0.0595 |
| 3.3382 | 88.0 | 440 | 3.3707 | 0.0019 | 0.0069 | 0.0 | 0.0 | 0.003 | 0.0 | 0.0 | 0.0243 | 0.0297 | 0.0 | 0.0458 | 0.0 | 0.0 | 0.0 | 0.0039 | 0.0595 |
| 3.1525 | 89.0 | 445 | 3.4728 | 0.0025 | 0.0056 | 0.0 | 0.0 | 0.0038 | 0.0 | 0.0 | 0.0324 | 0.0324 | 0.0 | 0.05 | 0.0 | 0.0 | 0.0 | 0.005 | 0.0649 |
| 3.1836 | 90.0 | 450 | 3.4726 | 0.0103 | 0.0357 | 0.0 | 0.0 | 0.0163 | 0.0 | 0.0041 | 0.0486 | 0.05 | 0.0 | 0.0771 | 0.0 | 0.0 | 0.0 | 0.0206 | 0.1 |
| 3.2294 | 91.0 | 455 | 3.4077 | 0.0116 | 0.0309 | 0.0 | 0.0 | 0.0183 | 0.0 | 0.0041 | 0.0581 | 0.0595 | 0.0 | 0.0917 | 0.0 | 0.0 | 0.0 | 0.0233 | 0.1189 |
| 3.2468 | 92.0 | 460 | 3.3905 | 0.0101 | 0.0324 | 0.0004 | 0.0 | 0.0158 | 0.0 | 0.0027 | 0.0581 | 0.0581 | 0.0 | 0.0896 | 0.0 | 0.0 | 0.0 | 0.0202 | 0.1162 |
| 3.2433 | 93.0 | 465 | 3.3989 | 0.0099 | 0.0309 | 0.0004 | 0.0 | 0.0155 | 0.0 | 0.0027 | 0.0581 | 0.0581 | 0.0 | 0.0896 | 0.0 | 0.0 | 0.0 | 0.0198 | 0.1162 |
| 3.152 | 94.0 | 470 | 3.3957 | 0.0113 | 0.0352 | 0.0003 | 0.0 | 0.0177 | 0.0 | 0.0027 | 0.0568 | 0.0568 | 0.0 | 0.0875 | 0.0 | 0.0 | 0.0 | 0.0226 | 0.1135 |
| 3.2372 | 95.0 | 475 | 3.3941 | 0.0105 | 0.0345 | 0.0003 | 0.0 | 0.0163 | 0.0 | 0.0027 | 0.0527 | 0.0527 | 0.0 | 0.0812 | 0.0 | 0.0 | 0.0 | 0.0209 | 0.1054 |
| 3.2734 | 96.0 | 480 | 3.3851 | 0.0103 | 0.0256 | 0.0003 | 0.0 | 0.016 | 0.0 | 0.0041 | 0.0568 | 0.0568 | 0.0 | 0.0875 | 0.0 | 0.0 | 0.0 | 0.0205 | 0.1135 |
| 3.2559 | 97.0 | 485 | 3.3807 | 0.0113 | 0.0308 | 0.0003 | 0.0 | 0.0174 | 0.0 | 0.0041 | 0.0595 | 0.0608 | 0.0 | 0.0938 | 0.0 | 0.0 | 0.0 | 0.0226 | 0.1216 |
| 3.3223 | 98.0 | 490 | 3.3773 | 0.0094 | 0.03 | 0.0003 | 0.0 | 0.0146 | 0.0 | 0.0027 | 0.0527 | 0.0608 | 0.0 | 0.0938 | 0.0 | 0.0 | 0.0 | 0.0189 | 0.1216 |
| 3.1813 | 99.0 | 495 | 3.3789 | 0.0084 | 0.025 | 0.0004 | 0.0 | 0.0129 | 0.0 | 0.0027 | 0.0486 | 0.0622 | 0.0 | 0.0958 | 0.0 | 0.0 | 0.0 | 0.0168 | 0.1243 |
| 3.1959 | 100.0 | 500 | 3.3774 | 0.0076 | 0.0237 | 0.0004 | 0.0 | 0.0117 | 0.0 | 0.0014 | 0.0459 | 0.0622 | 0.0 | 0.0958 | 0.0 | 0.0 | 0.0 | 0.0152 | 0.1243 |
### Framework versions
- Transformers 4.44.0.dev0
- Pytorch 2.3.1
- Datasets 2.20.0
- Tokenizers 0.19.1
|
[
"table",
"text"
] |
Mudassir41/silkworm_rt-detr
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"can",
"heathly",
"sick"
] |
anastasispk/law-game-evidence-replacement-finetune-v1
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# law-game-evidence-replacement-finetune
This model is a fine-tuned version of [PekingU/rtdetr_r50vd_coco_o365](https://huggingface.co/PekingU/rtdetr_r50vd_coco_o365) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 3.4253
- eval_map: 0.8264
- eval_map_50: 0.8488
- eval_map_75: 0.8441
- eval_map_small: 0.5688
- eval_map_medium: 0.9527
- eval_map_large: 0.8547
- eval_mar_1: 0.7043
- eval_mar_10: 0.9575
- eval_mar_100: 0.9727
- eval_mar_small: 0.5949
- eval_mar_medium: 0.9738
- eval_mar_large: 0.9894
- eval_map_evidence: -1.0
- eval_mar_100_evidence: -1.0
- eval_map_ambulance: 0.9802
- eval_mar_100_ambulance: 0.9899
- eval_map_artificial_target: 0.9267
- eval_mar_100_artificial_target: 0.9572
- eval_map_cartridge: 0.9742
- eval_mar_100_cartridge: 0.9949
- eval_map_gun: 0.9165
- eval_mar_100_gun: 0.9403
- eval_map_knife: 0.8599
- eval_mar_100_knife: 0.931
- eval_map_police: 0.9935
- eval_mar_100_police: 0.9959
- eval_map_traffic: 0.9586
- eval_mar_100_traffic: 0.9726
- eval_map_traffic_cone: 0.0013
- eval_mar_100_traffic_cone: 1.0
- eval_runtime: 50.5267
- eval_samples_per_second: 16.467
- eval_steps_per_second: 2.058
- epoch: 28.0
- step: 5152
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 50
### Framework versions
- Transformers 4.44.0.dev0
- Pytorch 2.3.1+cu121
- Tokenizers 0.19.1
|
[
"evidence",
"ambulance",
"artificial_target",
"cartridge",
"gun",
"knife",
"police",
"traffic",
"traffic_cone"
] |
psyche/document-layout-detector
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"text",
"title",
"list",
"table",
"figure"
] |
anastasispk/law-game-evidence-replacement-finetune
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# law-game-evidence-replacement-finetune
This model is a fine-tuned version of [PekingU/rtdetr_r50vd_coco_o365](https://huggingface.co/PekingU/rtdetr_r50vd_coco_o365) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5533
- Map: 0.9339
- Map 50: 0.9616
- Map 75: 0.9575
- Map Small: 0.5574
- Map Medium: 0.9423
- Map Large: 0.9699
- Mar 1: 0.6597
- Mar 10: 0.9522
- Mar 100: 0.9722
- Mar Small: 0.7411
- Mar Medium: 0.9806
- Mar Large: 0.9908
- Map Evidence: -1.0
- Mar 100 Evidence: -1.0
- Map Ambulance: 0.9802
- Mar 100 Ambulance: 0.9899
- Map Artificial Target: 0.9245
- Mar 100 Artificial Target: 0.9611
- Map Cartridge: 0.9759
- Mar 100 Cartridge: 0.9937
- Map Gun: 0.9225
- Mar 100 Gun: 0.9542
- Map Knife: 0.8562
- Mar 100 Knife: 0.9404
- Map Police: 0.9495
- Mar 100 Police: 0.999
- Map Traffic Cone: 0.9285
- Mar 100 Traffic Cone: 0.9673
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 25
### Training results
| Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Evidence | Mar 100 Evidence | Map Ambulance | Mar 100 Ambulance | Map Artificial Target | Mar 100 Artificial Target | Map Cartridge | Mar 100 Cartridge | Map Gun | Mar 100 Gun | Map Knife | Mar 100 Knife | Map Police | Mar 100 Police | Map Traffic Cone | Mar 100 Traffic Cone |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:------------:|:----------------:|:-------------:|:-----------------:|:---------------------:|:-------------------------:|:-------------:|:-----------------:|:-------:|:-----------:|:---------:|:-------------:|:----------:|:--------------:|:----------------:|:--------------------:|
| No log | 1.0 | 183 | 17.1925 | 0.553 | 0.61 | 0.584 | 0.1918 | 0.3235 | 0.6555 | 0.5467 | 0.8763 | 0.8964 | 0.3142 | 0.8206 | 0.9705 | -1.0 | -1.0 | 0.9057 | 0.9848 | 0.5233 | 0.7299 | 0.9125 | 0.9647 | 0.1841 | 0.9194 | 0.6003 | 0.8687 | 0.518 | 0.9286 | 0.2268 | 0.8789 |
| No log | 2.0 | 366 | 7.1301 | 0.7763 | 0.8536 | 0.8146 | 0.2855 | 0.6006 | 0.875 | 0.6198 | 0.9116 | 0.9359 | 0.62 | 0.876 | 0.9781 | -1.0 | -1.0 | 0.9418 | 0.9707 | 0.7052 | 0.8648 | 0.9529 | 0.9733 | 0.5436 | 0.9667 | 0.7831 | 0.9172 | 0.8516 | 0.9398 | 0.656 | 0.9191 |
| 37.3669 | 3.0 | 549 | 5.7075 | 0.848 | 0.9115 | 0.8936 | 0.3256 | 0.7543 | 0.9317 | 0.6317 | 0.9274 | 0.9486 | 0.6783 | 0.9289 | 0.9849 | -1.0 | -1.0 | 0.9687 | 0.9879 | 0.7575 | 0.8761 | 0.9619 | 0.9822 | 0.8187 | 0.9653 | 0.8076 | 0.9172 | 0.9181 | 0.9827 | 0.7032 | 0.9287 |
| 37.3669 | 4.0 | 732 | 5.8395 | 0.8232 | 0.8809 | 0.8653 | 0.3221 | 0.7104 | 0.8994 | 0.642 | 0.9362 | 0.9536 | 0.688 | 0.9333 | 0.9884 | -1.0 | -1.0 | 0.9718 | 0.9899 | 0.8061 | 0.8878 | 0.9676 | 0.9854 | 0.8731 | 0.9778 | 0.7678 | 0.9162 | 0.6454 | 0.9867 | 0.7303 | 0.9317 |
| 37.3669 | 5.0 | 915 | 5.2081 | 0.8722 | 0.924 | 0.9156 | 0.3818 | 0.7789 | 0.951 | 0.6457 | 0.9406 | 0.9593 | 0.6963 | 0.9663 | 0.9887 | -1.0 | -1.0 | 0.976 | 0.9899 | 0.8077 | 0.9071 | 0.973 | 0.9869 | 0.7967 | 0.9611 | 0.8391 | 0.9313 | 0.8822 | 0.9908 | 0.8309 | 0.9482 |
| 4.4127 | 6.0 | 1098 | 5.4515 | 0.8848 | 0.9339 | 0.9262 | 0.5118 | 0.8295 | 0.9572 | 0.6538 | 0.9446 | 0.9624 | 0.6997 | 0.9621 | 0.9903 | -1.0 | -1.0 | 0.9686 | 0.9889 | 0.7937 | 0.9057 | 0.9784 | 0.9886 | 0.8982 | 0.9722 | 0.8491 | 0.9434 | 0.8521 | 0.9888 | 0.8534 | 0.9495 |
| 4.4127 | 7.0 | 1281 | 4.9756 | 0.9019 | 0.9468 | 0.9396 | 0.5037 | 0.8805 | 0.9631 | 0.6476 | 0.9443 | 0.9666 | 0.703 | 0.9692 | 0.9932 | -1.0 | -1.0 | 0.9754 | 0.9889 | 0.821 | 0.9129 | 0.9753 | 0.9907 | 0.9017 | 0.9833 | 0.8054 | 0.9414 | 0.9414 | 0.9949 | 0.8933 | 0.9541 |
| 4.4127 | 8.0 | 1464 | 4.4998 | 0.9119 | 0.9554 | 0.9432 | 0.5098 | 0.9047 | 0.9619 | 0.6482 | 0.9436 | 0.9641 | 0.7091 | 0.9786 | 0.9876 | -1.0 | -1.0 | 0.9726 | 0.9899 | 0.869 | 0.9248 | 0.9738 | 0.9902 | 0.8528 | 0.9556 | 0.8667 | 0.9384 | 0.9631 | 0.9939 | 0.8853 | 0.9561 |
| 3.3287 | 9.0 | 1647 | 4.5378 | 0.9107 | 0.9472 | 0.9424 | 0.5347 | 0.91 | 0.9625 | 0.6551 | 0.9498 | 0.9694 | 0.7243 | 0.984 | 0.9908 | -1.0 | -1.0 | 0.9802 | 0.9899 | 0.8691 | 0.9281 | 0.9785 | 0.9939 | 0.9128 | 0.9736 | 0.8646 | 0.9424 | 0.8889 | 0.9929 | 0.8805 | 0.965 |
| 3.3287 | 10.0 | 1830 | 5.0033 | 0.8831 | 0.9264 | 0.9202 | 0.5206 | 0.8887 | 0.9369 | 0.6497 | 0.9456 | 0.9661 | 0.7104 | 0.9714 | 0.9895 | -1.0 | -1.0 | 0.9404 | 0.9899 | 0.8686 | 0.929 | 0.9741 | 0.9917 | 0.92 | 0.9722 | 0.8131 | 0.9323 | 0.7768 | 0.9908 | 0.889 | 0.9568 |
| 2.8465 | 11.0 | 2013 | 4.1896 | 0.9183 | 0.9522 | 0.9491 | 0.4507 | 0.8926 | 0.9704 | 0.6595 | 0.9497 | 0.9676 | 0.7033 | 0.9677 | 0.9884 | -1.0 | -1.0 | 0.9786 | 0.9899 | 0.8902 | 0.9333 | 0.9745 | 0.993 | 0.9182 | 0.9583 | 0.8633 | 0.9424 | 0.9004 | 0.9929 | 0.9031 | 0.963 |
| 2.8465 | 12.0 | 2196 | 4.3806 | 0.9118 | 0.9486 | 0.9445 | 0.5313 | 0.8959 | 0.9574 | 0.6545 | 0.9487 | 0.9701 | 0.688 | 0.9741 | 0.9929 | -1.0 | -1.0 | 0.9791 | 0.9899 | 0.8856 | 0.935 | 0.9736 | 0.9924 | 0.9151 | 0.975 | 0.8429 | 0.9384 | 0.8852 | 0.998 | 0.9008 | 0.9617 |
| 2.8465 | 13.0 | 2379 | 4.3575 | 0.9131 | 0.9471 | 0.9419 | 0.5419 | 0.9126 | 0.9643 | 0.6576 | 0.9531 | 0.9717 | 0.7239 | 0.9875 | 0.9909 | -1.0 | -1.0 | 0.9677 | 0.9899 | 0.8731 | 0.9358 | 0.9774 | 0.9951 | 0.9226 | 0.9708 | 0.8794 | 0.9545 | 0.8601 | 0.9939 | 0.9114 | 0.9617 |
| 2.5085 | 14.0 | 2562 | 4.0609 | 0.9277 | 0.9619 | 0.9539 | 0.5802 | 0.9195 | 0.9659 | 0.6566 | 0.9518 | 0.9703 | 0.7168 | 0.9791 | 0.9913 | -1.0 | -1.0 | 0.9697 | 0.9899 | 0.902 | 0.9451 | 0.9819 | 0.9958 | 0.9273 | 0.9667 | 0.8392 | 0.9374 | 0.954 | 0.9939 | 0.9199 | 0.9634 |
| 2.5085 | 15.0 | 2745 | 4.2034 | 0.9284 | 0.961 | 0.9559 | 0.541 | 0.9483 | 0.9743 | 0.6606 | 0.9502 | 0.9695 | 0.7169 | 0.9792 | 0.9902 | -1.0 | -1.0 | 0.979 | 0.9899 | 0.9022 | 0.9469 | 0.9781 | 0.9947 | 0.9251 | 0.9611 | 0.8495 | 0.9404 | 0.9481 | 0.9918 | 0.9167 | 0.9614 |
| 2.5085 | 16.0 | 2928 | 4.1849 | 0.9283 | 0.9599 | 0.9559 | 0.5591 | 0.9323 | 0.9644 | 0.6575 | 0.9493 | 0.9697 | 0.7267 | 0.9795 | 0.988 | -1.0 | -1.0 | 0.9716 | 0.9899 | 0.9033 | 0.948 | 0.9754 | 0.9949 | 0.9108 | 0.9583 | 0.8469 | 0.9404 | 0.9675 | 0.9929 | 0.9222 | 0.9634 |
| 2.2183 | 17.0 | 3111 | 4.0696 | 0.9222 | 0.9556 | 0.9503 | 0.5517 | 0.9288 | 0.9634 | 0.6572 | 0.9523 | 0.9726 | 0.7348 | 0.9863 | 0.992 | -1.0 | -1.0 | 0.9707 | 0.9899 | 0.9052 | 0.9496 | 0.9784 | 0.9949 | 0.9309 | 0.9694 | 0.8074 | 0.9465 | 0.9525 | 0.9959 | 0.91 | 0.962 |
| 2.2183 | 18.0 | 3294 | 4.3283 | 0.9126 | 0.9461 | 0.9414 | 0.5422 | 0.9246 | 0.9498 | 0.6564 | 0.9502 | 0.9698 | 0.7138 | 0.9805 | 0.9896 | -1.0 | -1.0 | 0.9723 | 0.9899 | 0.901 | 0.9483 | 0.9815 | 0.9952 | 0.9204 | 0.9528 | 0.7964 | 0.9394 | 0.9043 | 0.9969 | 0.9125 | 0.966 |
| 2.2183 | 19.0 | 3477 | 3.7839 | 0.9209 | 0.9518 | 0.9477 | 0.5608 | 0.9475 | 0.9583 | 0.6562 | 0.9512 | 0.9701 | 0.7414 | 0.9806 | 0.9885 | -1.0 | -1.0 | 0.9566 | 0.9899 | 0.9131 | 0.9531 | 0.9779 | 0.9949 | 0.9132 | 0.9486 | 0.833 | 0.9404 | 0.9407 | 0.9959 | 0.9117 | 0.9677 |
| 2.009 | 20.0 | 3660 | 3.7275 | 0.9287 | 0.958 | 0.9542 | 0.5558 | 0.9078 | 0.9681 | 0.6586 | 0.951 | 0.9709 | 0.7422 | 0.979 | 0.9892 | -1.0 | -1.0 | 0.9802 | 0.9899 | 0.9239 | 0.96 | 0.9761 | 0.9944 | 0.9222 | 0.9514 | 0.8345 | 0.9364 | 0.9389 | 0.998 | 0.9248 | 0.966 |
| 2.009 | 21.0 | 3843 | 3.8496 | 0.93 | 0.9592 | 0.9554 | 0.5552 | 0.9187 | 0.9664 | 0.6581 | 0.9508 | 0.9708 | 0.7373 | 0.9788 | 0.9904 | -1.0 | -1.0 | 0.9802 | 0.9899 | 0.9148 | 0.9565 | 0.9778 | 0.9949 | 0.9227 | 0.9556 | 0.853 | 0.9364 | 0.9443 | 1.0 | 0.9167 | 0.9624 |
| 1.8494 | 22.0 | 4026 | 3.6452 | 0.9309 | 0.9592 | 0.9551 | 0.5561 | 0.929 | 0.9664 | 0.6595 | 0.9495 | 0.9709 | 0.723 | 0.9801 | 0.9902 | -1.0 | -1.0 | 0.9802 | 0.9899 | 0.9176 | 0.9593 | 0.9764 | 0.9935 | 0.9212 | 0.95 | 0.8459 | 0.9374 | 0.9471 | 0.999 | 0.928 | 0.9673 |
| 1.8494 | 23.0 | 4209 | 3.6352 | 0.9299 | 0.9587 | 0.9546 | 0.5524 | 0.9155 | 0.9681 | 0.659 | 0.9509 | 0.9708 | 0.7217 | 0.98 | 0.9902 | -1.0 | -1.0 | 0.9802 | 0.9899 | 0.9175 | 0.9589 | 0.9756 | 0.9935 | 0.9217 | 0.9514 | 0.8458 | 0.9364 | 0.9448 | 0.999 | 0.9236 | 0.9667 |
| 1.8494 | 24.0 | 4392 | 3.6526 | 0.9298 | 0.9577 | 0.9535 | 0.5572 | 0.9119 | 0.9666 | 0.6593 | 0.9518 | 0.972 | 0.725 | 0.9794 | 0.9911 | -1.0 | -1.0 | 0.9802 | 0.9899 | 0.9229 | 0.9609 | 0.976 | 0.9934 | 0.9217 | 0.9542 | 0.8493 | 0.9394 | 0.936 | 1.0 | 0.9226 | 0.9663 |
| 1.7025 | 25.0 | 4575 | 3.5533 | 0.9339 | 0.9616 | 0.9575 | 0.5574 | 0.9423 | 0.9699 | 0.6597 | 0.9522 | 0.9722 | 0.7411 | 0.9806 | 0.9908 | -1.0 | -1.0 | 0.9802 | 0.9899 | 0.9245 | 0.9611 | 0.9759 | 0.9937 | 0.9225 | 0.9542 | 0.8562 | 0.9404 | 0.9495 | 0.999 | 0.9285 | 0.9673 |
### Framework versions
- Transformers 4.44.0.dev0
- Pytorch 2.3.1+cu121
- Tokenizers 0.19.1
|
[
"evidence",
"ambulance",
"artificial_target",
"cartridge",
"gun",
"knife",
"police",
"traffic_cone"
] |
NabilaLM/detr-weapons-detection
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3"
] |
Shrusti1/detr_shrusti
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4"
] |
cmarkea/detr-layout-detection
|
# DETR-layout-detection
We present the model cmarkea/detr-layout-detection, which allows extracting different layouts (Text, Picture, Caption, Footnote, etc.) from an image of a document.
This is a fine-tuning of the model [detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the [DocLayNet](https://huggingface.co/datasets/ds4sd/DocLayNet)
dataset. This model can jointly predict masks and bounding boxes for documentary objects. It is ideal for processing documentary corpora to be ingested into an
ODQA system.
This model allows extracting 11 entities, which are: Caption, Footnote, Formula, List-item, Page-footer, Page-header, Picture, Section-header, Table, Text, and Title.
## Performance
In this section, we will assess the model's performance by separately considering semantic segmentation and object detection. In both cases, no post-processing was
applied after estimation.
For semantic segmentation, we will use the F1-score to evaluate the classification of each pixel. For object detection, we will assess performance based on the
Generalized Intersection over Union (GIoU) and the accuracy of the predicted bounding box class. The evaluation is conducted on 500 pages from the PDF evaluation
dataset of DocLayNet.
| Class | f1-score (x100) | GIoU (x100) | accuracy (x100) |
|:--------------:|:---------------:|:-----------:|:---------------:|
| Background | 95.82 | NA | NA |
| Caption | 82.68 | 74.71 | 69.05 |
| Footnote | 78.19 | 74.71 | 74.19 |
| Formula | 87.25 | 76.31 | 97.79 |
| List-item | 81.43 | 77.0 | 90.62 |
| Page-footer | 82.01 | 69.86 | 96.64 |
| Page-header | 68.32 | 77.68 | 88.3 |
| Picture | 81.04 | 81.84 | 90.88 |
| Section-header | 73.52 | 73.46 | 85.96 |
| Table | 78.59 | 85.45 | 90.58 |
| Text | 91.93 | 83.16 | 91.8 |
| Title | 70.38 | 74.13 | 63.33 |
## Benchmark
Now, let's compare the performance of this model with other models.
| Model | f1-score (x100) | GIoU (x100) | accuracy (x100) |
|:---------------------------------------------------------------------------------------------:|:---------------:|:-----------:|:---------------:|
| cmarkea/detr-layout-detection | 91.27 | 80.66 | 90.46 |
| [cmarkea/dit-base-layout-detection](https://huggingface.co/cmarkea/dit-base-layout-detection) | 90.77 | 56.29 | 85.26 |
## Direct Use
```python
from transformers import AutoImageProcessor
from transformers.models.detr import DetrForSegmentation
img_proc = AutoImageProcessor.from_pretrained(
"cmarkea/detr-layout-detection"
)
model = DetrForSegmentation.from_pretrained(
"cmarkea/detr-layout-detection"
)
img: PIL.Image
with torch.inference_mode():
input_ids = img_proc(img, return_tensors='pt')
output = model(**input_ids)
threshold=0.4
segmentation_mask = img_proc.post_process_segmentation(
output,
threshold=threshold,
target_sizes=[img.size[::-1]]
)
bbox_pred = img_proc.post_process_object_detection(
output,
threshold=threshold,
target_sizes=[img.size[::-1]]
)
```
### Example

### Citation
```
@online{DeDetrLay,
AUTHOR = {Cyrile Delestre},
URL = {https://huggingface.co/cmarkea/detr-layout-detection},
YEAR = {2024},
KEYWORDS = {Image Processing ; Transformers ; Layout},
}
```
|
[
"caption",
"footnote",
"formula",
"list-item",
"page-footer",
"page-header",
"picture",
"section-header",
"table",
"text",
"title"
] |
NabilaLM/detr-weapons-detection_30ep
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3"
] |
NabilaLM/detr-weapons-detection_40ep
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3"
] |
deepaksen12/detr-resnet-50_finetuned_cppe5-1
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr-resnet-50_finetuned_cppe5-1
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.43.3
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
[
"coverall",
"face_shield",
"gloves",
"goggles",
"mask"
] |
NabilaLM/detr-weapons-detection_50ep
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3"
] |
Shrusti1/detr_shrusti_100
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4"
] |
Overseer66/cervix_and_blurry_cervix_detector
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cervix_and_blurry_cervix_detector
This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on the webdataset dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.43.3
- Pytorch 1.14.0a0+410ce96
- Datasets 2.20.0
- Tokenizers 0.19.1
|
[
"cervix",
"blurrycervix"
] |
Shrusti1/detr_shrusti_60
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4"
] |
deepaksen12/detr-resnet-50_finetuned_cppe5-3
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr-resnet-50_finetuned_cppe5-3
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.43.3
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
[
"coverall",
"face_shield",
"gloves",
"goggles",
"mask"
] |
Shrusti1/detr_shrusti_100N
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4"
] |
Shrusti1/detr_shrusti_50_conditional
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"bone-fracture",
"angle",
"fracture",
"line",
"messed_up_angle"
] |
farhanishraq/table_tr-finetuned-bs
|
# Bank Statement Structure Detection
A table structure detection model capable of parsing bank statements.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of bank statement table structure detection model, finetuned on a custom dataset collected from personal bank statements.
It is capable of detecting rows and columns from Chase and Bank of America.
- **Developed by:** Ahmad Farhan Ishraq
- **Finetuned from model [optional]:** microsoft/table-transformer-detection
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
|
[
"no object",
"table row",
"table column"
] |
bellayu/transformer-scorebug
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
anastasispk/law-game-replace-finetune
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# law-game-replace-finetune
This model is a fine-tuned version of [PekingU/rtdetr_r50vd_coco_o365](https://huggingface.co/PekingU/rtdetr_r50vd_coco_o365) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 5.6852
- Map: 0.8547
- Map 50: 0.9219
- Map 75: 0.8855
- Map Small: 0.6003
- Map Medium: 0.6465
- Map Large: 0.9074
- Mar 1: 0.652
- Mar 10: 0.9364
- Mar 100: 0.9452
- Mar Small: 0.779
- Mar Medium: 0.924
- Mar Large: 0.9818
- Map Evidence: -1.0
- Mar 100 Evidence: -1.0
- Map Ambulance: 1.0
- Mar 100 Ambulance: 1.0
- Map Artificial Target: 0.8084
- Mar 100 Artificial Target: 0.8727
- Map Cartridge: 0.9022
- Mar 100 Cartridge: 0.9681
- Map Gun: 0.7068
- Mar 100 Gun: 0.9667
- Map Knife: 0.7732
- Mar 100 Knife: 0.9111
- Map Police: 0.9573
- Mar 100 Police: 0.9818
- Map Traffic: 0.835
- Mar 100 Traffic: 0.9162
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Evidence | Mar 100 Evidence | Map Ambulance | Mar 100 Ambulance | Map Artificial Target | Mar 100 Artificial Target | Map Cartridge | Mar 100 Cartridge | Map Gun | Mar 100 Gun | Map Knife | Mar 100 Knife | Map Police | Mar 100 Police | Map Traffic | Mar 100 Traffic |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:------------:|:----------------:|:-------------:|:-----------------:|:---------------------:|:-------------------------:|:-------------:|:-----------------:|:-------:|:-----------:|:---------:|:-------------:|:----------:|:--------------:|:-----------:|:---------------:|
| No log | 1.0 | 35 | 134.6829 | 0.0007 | 0.0015 | 0.0001 | 0.0 | 0.0001 | 0.0025 | 0.0014 | 0.0168 | 0.0462 | 0.0 | 0.0686 | 0.0457 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0023 | 0.0033 | 0.0203 | 0.0 | 0.0407 | 0.0001 | 0.1667 | 0.0009 | 0.0909 | 0.0004 | 0.0027 |
| No log | 2.0 | 70 | 65.3809 | 0.0021 | 0.0028 | 0.0022 | 0.0001 | 0.0003 | 0.0074 | 0.0229 | 0.0958 | 0.167 | 0.095 | 0.3103 | 0.1895 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0114 | 0.0 | 0.0203 | 0.0002 | 0.2444 | 0.0007 | 0.4185 | 0.007 | 0.3364 | 0.0064 | 0.1378 |
| No log | 3.0 | 105 | 35.8052 | 0.0174 | 0.0218 | 0.0181 | 0.0018 | 0.0208 | 0.0403 | 0.1026 | 0.3488 | 0.4766 | 0.2068 | 0.3434 | 0.5788 | -1.0 | -1.0 | 0.002 | 0.6 | 0.0299 | 0.5614 | 0.0465 | 0.4087 | 0.0025 | 0.4889 | 0.0087 | 0.6963 | 0.0043 | 0.3727 | 0.0275 | 0.2081 |
| No log | 4.0 | 140 | 25.0458 | 0.1381 | 0.1523 | 0.1431 | 0.0303 | 0.1563 | 0.182 | 0.3056 | 0.7303 | 0.8222 | 0.3066 | 0.7579 | 0.9116 | -1.0 | -1.0 | 0.0486 | 0.99 | 0.1396 | 0.8114 | 0.5183 | 0.9478 | 0.0069 | 0.6519 | 0.1362 | 0.8556 | 0.0466 | 0.9909 | 0.0704 | 0.5081 |
| No log | 5.0 | 175 | 17.7820 | 0.3449 | 0.3761 | 0.3616 | 0.1626 | 0.3378 | 0.4356 | 0.4732 | 0.8209 | 0.8887 | 0.5946 | 0.834 | 0.9595 | -1.0 | -1.0 | 0.049 | 0.99 | 0.5783 | 0.8307 | 0.7758 | 0.9507 | 0.0242 | 0.8519 | 0.3644 | 0.8889 | 0.4966 | 0.9909 | 0.1259 | 0.7176 |
| No log | 6.0 | 210 | 12.9410 | 0.5642 | 0.6087 | 0.5938 | 0.2533 | 0.4341 | 0.6233 | 0.5662 | 0.8824 | 0.9137 | 0.6323 | 0.8828 | 0.9676 | -1.0 | -1.0 | 0.522 | 0.99 | 0.5584 | 0.8205 | 0.8377 | 0.9754 | 0.2365 | 0.8889 | 0.6276 | 0.9 | 0.907 | 0.9818 | 0.2599 | 0.8392 |
| No log | 7.0 | 245 | 10.9532 | 0.621 | 0.6648 | 0.6501 | 0.2326 | 0.5144 | 0.7328 | 0.557 | 0.8817 | 0.9294 | 0.7018 | 0.9104 | 0.9762 | -1.0 | -1.0 | 0.8543 | 0.99 | 0.7325 | 0.8534 | 0.8209 | 0.9783 | 0.1195 | 0.9148 | 0.4129 | 0.9222 | 0.8795 | 0.9727 | 0.527 | 0.8743 |
| No log | 8.0 | 280 | 10.0540 | 0.5983 | 0.6382 | 0.6263 | 0.2675 | 0.4634 | 0.7109 | 0.5338 | 0.8619 | 0.8908 | 0.7047 | 0.8926 | 0.9389 | -1.0 | -1.0 | 0.6275 | 0.99 | 0.7514 | 0.8477 | 0.8526 | 0.9739 | 0.3547 | 0.937 | 0.5777 | 0.9185 | 0.5453 | 0.7091 | 0.4788 | 0.8595 |
| No log | 9.0 | 315 | 9.1369 | 0.7135 | 0.7584 | 0.7387 | 0.3085 | 0.5685 | 0.8728 | 0.602 | 0.9018 | 0.9292 | 0.708 | 0.7784 | 0.9823 | -1.0 | -1.0 | 0.9209 | 0.99 | 0.7616 | 0.833 | 0.8367 | 0.9681 | 0.258 | 0.9037 | 0.7433 | 0.9296 | 0.9341 | 0.9909 | 0.54 | 0.8892 |
| No log | 10.0 | 350 | 8.3330 | 0.7455 | 0.7925 | 0.7791 | 0.3892 | 0.5906 | 0.8393 | 0.6105 | 0.9109 | 0.9418 | 0.7521 | 0.8131 | 0.9867 | -1.0 | -1.0 | 0.8772 | 0.99 | 0.7901 | 0.8602 | 0.8873 | 0.9797 | 0.4403 | 0.9407 | 0.6274 | 0.9259 | 0.884 | 0.9909 | 0.7124 | 0.9054 |
| No log | 11.0 | 385 | 7.8064 | 0.7386 | 0.7829 | 0.7659 | 0.386 | 0.5855 | 0.8299 | 0.598 | 0.9136 | 0.9447 | 0.7716 | 0.8992 | 0.9875 | -1.0 | -1.0 | 0.9646 | 0.99 | 0.797 | 0.8773 | 0.8289 | 0.9739 | 0.2469 | 0.9593 | 0.6911 | 0.9148 | 0.9411 | 0.9909 | 0.7008 | 0.9068 |
| No log | 12.0 | 420 | 7.3854 | 0.7433 | 0.7883 | 0.7675 | 0.4603 | 0.5849 | 0.8471 | 0.6029 | 0.9147 | 0.9389 | 0.7745 | 0.8155 | 0.9831 | -1.0 | -1.0 | 0.9646 | 0.99 | 0.8199 | 0.8602 | 0.7835 | 0.9754 | 0.2672 | 0.9222 | 0.6356 | 0.9296 | 0.9685 | 0.9909 | 0.7639 | 0.9041 |
| No log | 13.0 | 455 | 7.1834 | 0.7809 | 0.8401 | 0.7988 | 0.4502 | 0.6114 | 0.8633 | 0.6232 | 0.9163 | 0.9319 | 0.7806 | 0.814 | 0.9751 | -1.0 | -1.0 | 0.9495 | 0.99 | 0.7535 | 0.8625 | 0.8276 | 0.9725 | 0.5165 | 0.8963 | 0.7709 | 0.9259 | 0.8929 | 0.9818 | 0.7556 | 0.8946 |
| No log | 14.0 | 490 | 6.9868 | 0.7827 | 0.8428 | 0.8038 | 0.4806 | 0.6204 | 0.8808 | 0.6146 | 0.918 | 0.9335 | 0.7759 | 0.7932 | 0.9763 | -1.0 | -1.0 | 0.8188 | 0.99 | 0.8202 | 0.8727 | 0.8257 | 0.9551 | 0.5485 | 0.9074 | 0.7324 | 0.9222 | 0.9589 | 0.9909 | 0.7743 | 0.8959 |
| 32.4583 | 15.0 | 525 | 6.9190 | 0.7805 | 0.8338 | 0.8066 | 0.4936 | 0.595 | 0.8772 | 0.6148 | 0.9272 | 0.9467 | 0.7756 | 0.9095 | 0.9864 | -1.0 | -1.0 | 0.912 | 0.99 | 0.7913 | 0.8557 | 0.8613 | 0.9855 | 0.5283 | 0.963 | 0.6932 | 0.9296 | 0.8962 | 0.9909 | 0.7809 | 0.9122 |
| 32.4583 | 16.0 | 560 | 7.0608 | 0.7653 | 0.8279 | 0.7837 | 0.5397 | 0.5975 | 0.838 | 0.6004 | 0.9049 | 0.9226 | 0.7743 | 0.8751 | 0.9682 | -1.0 | -1.0 | 0.9569 | 0.99 | 0.7921 | 0.8455 | 0.7774 | 0.9174 | 0.4303 | 0.9 | 0.6478 | 0.9185 | 0.9515 | 0.9909 | 0.8008 | 0.8959 |
| 32.4583 | 17.0 | 595 | 6.5305 | 0.7648 | 0.8275 | 0.7858 | 0.4759 | 0.6282 | 0.866 | 0.6017 | 0.919 | 0.9327 | 0.7467 | 0.8837 | 0.977 | -1.0 | -1.0 | 0.982 | 0.99 | 0.8007 | 0.8648 | 0.8692 | 0.971 | 0.2549 | 0.9296 | 0.7184 | 0.9 | 0.9133 | 0.9818 | 0.8148 | 0.8919 |
| 32.4583 | 18.0 | 630 | 6.3597 | 0.7757 | 0.837 | 0.8076 | 0.5064 | 0.6482 | 0.863 | 0.5974 | 0.9229 | 0.9362 | 0.7693 | 0.8368 | 0.9779 | -1.0 | -1.0 | 0.8771 | 1.0 | 0.8099 | 0.867 | 0.9032 | 0.9696 | 0.2876 | 0.9222 | 0.7655 | 0.9074 | 0.9522 | 0.9818 | 0.8346 | 0.9054 |
| 32.4583 | 19.0 | 665 | 6.2977 | 0.8016 | 0.8679 | 0.8317 | 0.5793 | 0.6589 | 0.8646 | 0.6006 | 0.9256 | 0.9403 | 0.7879 | 0.9265 | 0.9749 | -1.0 | -1.0 | 0.9534 | 0.99 | 0.8131 | 0.8739 | 0.9071 | 0.9725 | 0.4297 | 0.9407 | 0.7494 | 0.9185 | 0.9567 | 0.9909 | 0.8015 | 0.8959 |
| 32.4583 | 20.0 | 700 | 6.2690 | 0.7843 | 0.8443 | 0.8135 | 0.5068 | 0.6505 | 0.887 | 0.6166 | 0.9212 | 0.9362 | 0.7759 | 0.8952 | 0.9767 | -1.0 | -1.0 | 0.9725 | 0.99 | 0.8173 | 0.8739 | 0.8936 | 0.9812 | 0.3364 | 0.9296 | 0.7669 | 0.9037 | 0.9347 | 0.9818 | 0.7686 | 0.8932 |
| 32.4583 | 21.0 | 735 | 6.3902 | 0.8137 | 0.8806 | 0.8417 | 0.7055 | 0.6578 | 0.8776 | 0.6087 | 0.9276 | 0.9445 | 0.7868 | 0.9097 | 0.9828 | -1.0 | -1.0 | 0.9807 | 0.99 | 0.8096 | 0.8739 | 0.9099 | 0.9696 | 0.5614 | 0.9741 | 0.6762 | 0.9074 | 0.9398 | 0.9909 | 0.8186 | 0.9054 |
| 32.4583 | 22.0 | 770 | 6.5328 | 0.8196 | 0.8927 | 0.8492 | 0.5932 | 0.626 | 0.876 | 0.6229 | 0.9181 | 0.9309 | 0.785 | 0.8935 | 0.9673 | -1.0 | -1.0 | 0.9881 | 0.99 | 0.8162 | 0.8705 | 0.8924 | 0.9638 | 0.6492 | 0.9333 | 0.7485 | 0.8704 | 0.8867 | 0.9818 | 0.7563 | 0.9068 |
| 32.4583 | 23.0 | 805 | 6.2433 | 0.8291 | 0.8944 | 0.8509 | 0.5805 | 0.6343 | 0.9025 | 0.64 | 0.9191 | 0.9392 | 0.8098 | 0.8845 | 0.981 | -1.0 | -1.0 | 1.0 | 1.0 | 0.8052 | 0.8705 | 0.9029 | 0.9623 | 0.5827 | 0.9333 | 0.7635 | 0.9222 | 0.9357 | 0.9818 | 0.8135 | 0.9041 |
| 32.4583 | 24.0 | 840 | 6.1554 | 0.8171 | 0.885 | 0.8449 | 0.6088 | 0.6328 | 0.8923 | 0.6174 | 0.9203 | 0.9316 | 0.7746 | 0.782 | 0.976 | -1.0 | -1.0 | 1.0 | 1.0 | 0.8049 | 0.8727 | 0.878 | 0.9667 | 0.5197 | 0.9148 | 0.75 | 0.8889 | 0.9508 | 0.9818 | 0.8159 | 0.8959 |
| 32.4583 | 25.0 | 875 | 5.9349 | 0.8258 | 0.8844 | 0.8498 | 0.6153 | 0.6481 | 0.8945 | 0.6112 | 0.9268 | 0.9361 | 0.7883 | 0.7972 | 0.9813 | -1.0 | -1.0 | 1.0 | 1.0 | 0.8164 | 0.8795 | 0.9086 | 0.9565 | 0.4921 | 0.9185 | 0.7741 | 0.9185 | 0.9465 | 0.9727 | 0.8429 | 0.9068 |
| 32.4583 | 26.0 | 910 | 6.3160 | 0.7895 | 0.8497 | 0.8183 | 0.5915 | 0.6343 | 0.8686 | 0.6264 | 0.9223 | 0.9318 | 0.7793 | 0.8842 | 0.9716 | -1.0 | -1.0 | 0.9497 | 0.99 | 0.7948 | 0.867 | 0.859 | 0.9493 | 0.3445 | 0.9333 | 0.7677 | 0.9 | 0.968 | 0.9818 | 0.8428 | 0.9014 |
| 32.4583 | 27.0 | 945 | 6.4135 | 0.8095 | 0.8772 | 0.838 | 0.5667 | 0.6294 | 0.876 | 0.6148 | 0.9118 | 0.9303 | 0.7603 | 0.876 | 0.9693 | -1.0 | -1.0 | 0.9317 | 0.98 | 0.8026 | 0.8648 | 0.8146 | 0.9246 | 0.5762 | 0.9481 | 0.7626 | 0.9111 | 0.9675 | 0.9818 | 0.8115 | 0.9014 |
| 32.4583 | 28.0 | 980 | 5.8669 | 0.8351 | 0.8972 | 0.8582 | 0.6038 | 0.6358 | 0.8918 | 0.6464 | 0.928 | 0.9365 | 0.795 | 0.8915 | 0.9783 | -1.0 | -1.0 | 0.9752 | 0.99 | 0.821 | 0.8739 | 0.8749 | 0.9754 | 0.6426 | 0.9444 | 0.7537 | 0.8741 | 0.9634 | 0.9909 | 0.8152 | 0.9068 |
| 5.1898 | 29.0 | 1015 | 5.9247 | 0.86 | 0.9246 | 0.882 | 0.6164 | 0.6296 | 0.9322 | 0.6408 | 0.9206 | 0.9326 | 0.7759 | 0.8898 | 0.9781 | -1.0 | -1.0 | 0.991 | 1.0 | 0.8174 | 0.8636 | 0.8344 | 0.9174 | 0.7097 | 0.9333 | 0.8459 | 0.9259 | 0.9812 | 0.9909 | 0.8404 | 0.8973 |
| 5.1898 | 30.0 | 1050 | 5.9808 | 0.8348 | 0.9006 | 0.8552 | 0.5928 | 0.6299 | 0.8899 | 0.6409 | 0.9203 | 0.928 | 0.7853 | 0.7907 | 0.9711 | -1.0 | -1.0 | 0.9901 | 0.99 | 0.8064 | 0.8693 | 0.8471 | 0.9449 | 0.7043 | 0.9222 | 0.7611 | 0.9 | 0.9621 | 0.9818 | 0.7727 | 0.8878 |
| 5.1898 | 31.0 | 1085 | 5.9738 | 0.8511 | 0.9076 | 0.8774 | 0.5968 | 0.6397 | 0.9095 | 0.644 | 0.9194 | 0.9335 | 0.7835 | 0.8017 | 0.9779 | -1.0 | -1.0 | 0.9835 | 1.0 | 0.8134 | 0.8739 | 0.8661 | 0.9362 | 0.744 | 0.9222 | 0.7586 | 0.9296 | 0.9647 | 0.9727 | 0.8277 | 0.9 |
| 5.1898 | 32.0 | 1120 | 6.0519 | 0.8567 | 0.9245 | 0.8833 | 0.6084 | 0.6568 | 0.9083 | 0.6565 | 0.9215 | 0.9332 | 0.7877 | 0.8841 | 0.9733 | -1.0 | -1.0 | 0.982 | 0.99 | 0.8148 | 0.8682 | 0.8808 | 0.9681 | 0.7649 | 0.9333 | 0.7794 | 0.8926 | 0.9557 | 0.9818 | 0.8196 | 0.8986 |
| 5.1898 | 33.0 | 1155 | 5.8607 | 0.8556 | 0.9226 | 0.8835 | 0.6277 | 0.6905 | 0.9001 | 0.6521 | 0.926 | 0.9366 | 0.7708 | 0.9035 | 0.9755 | -1.0 | -1.0 | 1.0 | 1.0 | 0.7983 | 0.8693 | 0.8764 | 0.9609 | 0.7527 | 0.9444 | 0.7659 | 0.8889 | 0.9675 | 0.9818 | 0.8285 | 0.9108 |
| 5.1898 | 34.0 | 1190 | 5.7650 | 0.851 | 0.9163 | 0.8812 | 0.5894 | 0.6515 | 0.9045 | 0.6564 | 0.9253 | 0.9367 | 0.7932 | 0.8781 | 0.9762 | -1.0 | -1.0 | 1.0 | 1.0 | 0.7983 | 0.875 | 0.8831 | 0.9609 | 0.667 | 0.9444 | 0.7993 | 0.8852 | 0.9675 | 0.9818 | 0.842 | 0.9095 |
| 5.1898 | 35.0 | 1225 | 5.6566 | 0.8525 | 0.9147 | 0.8784 | 0.5964 | 0.6244 | 0.905 | 0.6486 | 0.9316 | 0.9414 | 0.7726 | 0.9147 | 0.9757 | -1.0 | -1.0 | 0.9772 | 1.0 | 0.8076 | 0.8682 | 0.9067 | 0.9667 | 0.6843 | 0.9407 | 0.7884 | 0.9074 | 0.9812 | 0.9909 | 0.8225 | 0.9162 |
| 5.1898 | 36.0 | 1260 | 5.7578 | 0.8626 | 0.9252 | 0.89 | 0.6101 | 0.6392 | 0.9241 | 0.6555 | 0.9323 | 0.9426 | 0.785 | 0.9145 | 0.9808 | -1.0 | -1.0 | 0.9835 | 1.0 | 0.8056 | 0.8636 | 0.8808 | 0.9696 | 0.7216 | 0.963 | 0.8373 | 0.9074 | 0.9812 | 0.9909 | 0.8284 | 0.9041 |
| 5.1898 | 37.0 | 1295 | 5.7752 | 0.8529 | 0.9132 | 0.8854 | 0.6004 | 0.6418 | 0.9072 | 0.6458 | 0.9251 | 0.9412 | 0.7632 | 0.9092 | 0.9834 | -1.0 | -1.0 | 0.9772 | 1.0 | 0.8062 | 0.8693 | 0.8795 | 0.9594 | 0.7218 | 0.9407 | 0.7752 | 0.9222 | 0.9652 | 0.9818 | 0.8453 | 0.9149 |
| 5.1898 | 38.0 | 1330 | 5.8527 | 0.854 | 0.9169 | 0.8842 | 0.6171 | 0.6414 | 0.9136 | 0.6539 | 0.9288 | 0.9456 | 0.7921 | 0.9069 | 0.9876 | -1.0 | -1.0 | 0.991 | 1.0 | 0.8115 | 0.8773 | 0.8773 | 0.9652 | 0.6804 | 0.9667 | 0.8167 | 0.9185 | 0.9651 | 0.9818 | 0.8358 | 0.9095 |
| 5.1898 | 39.0 | 1365 | 5.6796 | 0.864 | 0.9314 | 0.8903 | 0.6112 | 0.6373 | 0.9218 | 0.6476 | 0.9308 | 0.9413 | 0.7787 | 0.9145 | 0.9782 | -1.0 | -1.0 | 1.0 | 1.0 | 0.8099 | 0.8705 | 0.9009 | 0.9652 | 0.706 | 0.9556 | 0.8127 | 0.8963 | 0.9812 | 0.9909 | 0.8375 | 0.9108 |
| 5.1898 | 40.0 | 1400 | 5.6425 | 0.8536 | 0.9205 | 0.8835 | 0.6029 | 0.6507 | 0.9146 | 0.6521 | 0.9329 | 0.9418 | 0.7882 | 0.9185 | 0.9792 | -1.0 | -1.0 | 0.9772 | 1.0 | 0.8058 | 0.8716 | 0.909 | 0.9696 | 0.6723 | 0.9593 | 0.7884 | 0.9074 | 0.9647 | 0.9727 | 0.8578 | 0.9122 |
| 5.1898 | 41.0 | 1435 | 5.6851 | 0.8526 | 0.9164 | 0.8808 | 0.6038 | 0.6471 | 0.916 | 0.6569 | 0.9325 | 0.9399 | 0.7945 | 0.9122 | 0.9793 | -1.0 | -1.0 | 1.0 | 1.0 | 0.8085 | 0.875 | 0.923 | 0.9754 | 0.6399 | 0.9407 | 0.7996 | 0.9037 | 0.9738 | 0.9818 | 0.8236 | 0.9027 |
| 5.1898 | 42.0 | 1470 | 5.6092 | 0.864 | 0.9291 | 0.893 | 0.6087 | 0.6473 | 0.9309 | 0.652 | 0.9334 | 0.9418 | 0.7832 | 0.9139 | 0.9805 | -1.0 | -1.0 | 1.0 | 1.0 | 0.8058 | 0.8705 | 0.9203 | 0.9681 | 0.6728 | 0.9667 | 0.8363 | 0.9 | 0.9647 | 0.9727 | 0.8484 | 0.9149 |
| 4.0823 | 43.0 | 1505 | 5.4824 | 0.8709 | 0.9372 | 0.8972 | 0.6011 | 0.6472 | 0.937 | 0.6562 | 0.9342 | 0.9434 | 0.7777 | 0.9143 | 0.9847 | -1.0 | -1.0 | 1.0 | 1.0 | 0.8119 | 0.8705 | 0.9112 | 0.9652 | 0.721 | 0.963 | 0.8411 | 0.9222 | 0.9652 | 0.9818 | 0.846 | 0.9014 |
| 4.0823 | 44.0 | 1540 | 5.5914 | 0.8642 | 0.9316 | 0.8912 | 0.6061 | 0.6487 | 0.9302 | 0.6586 | 0.9353 | 0.9424 | 0.7779 | 0.9139 | 0.9826 | -1.0 | -1.0 | 0.991 | 1.0 | 0.8078 | 0.8693 | 0.9284 | 0.971 | 0.6971 | 0.9667 | 0.8299 | 0.9037 | 0.9654 | 0.9818 | 0.8299 | 0.9041 |
| 4.0823 | 45.0 | 1575 | 5.6331 | 0.86 | 0.9296 | 0.8902 | 0.6114 | 0.6418 | 0.9152 | 0.6456 | 0.9336 | 0.9419 | 0.7856 | 0.9124 | 0.9809 | -1.0 | -1.0 | 1.0 | 1.0 | 0.8105 | 0.8773 | 0.9199 | 0.9696 | 0.7093 | 0.9593 | 0.7953 | 0.9 | 0.9653 | 0.9818 | 0.82 | 0.9054 |
| 4.0823 | 46.0 | 1610 | 5.6049 | 0.8607 | 0.9295 | 0.889 | 0.6164 | 0.6419 | 0.9181 | 0.6484 | 0.9316 | 0.9404 | 0.7568 | 0.9149 | 0.9799 | -1.0 | -1.0 | 0.991 | 1.0 | 0.8076 | 0.8716 | 0.9103 | 0.971 | 0.7084 | 0.9556 | 0.8046 | 0.9 | 0.9647 | 0.9727 | 0.838 | 0.9122 |
| 4.0823 | 47.0 | 1645 | 5.6549 | 0.8492 | 0.9148 | 0.8762 | 0.6114 | 0.6449 | 0.9051 | 0.6431 | 0.9325 | 0.9427 | 0.7934 | 0.9172 | 0.9801 | -1.0 | -1.0 | 0.9835 | 1.0 | 0.8064 | 0.8773 | 0.9207 | 0.9667 | 0.6572 | 0.963 | 0.7851 | 0.9074 | 0.9647 | 0.9727 | 0.8268 | 0.9122 |
| 4.0823 | 48.0 | 1680 | 5.5983 | 0.858 | 0.926 | 0.8891 | 0.6136 | 0.6419 | 0.9136 | 0.6499 | 0.9324 | 0.9438 | 0.7845 | 0.9192 | 0.9812 | -1.0 | -1.0 | 0.9835 | 1.0 | 0.8059 | 0.8739 | 0.9212 | 0.971 | 0.7215 | 0.963 | 0.773 | 0.9037 | 0.9589 | 0.9818 | 0.8419 | 0.9135 |
| 4.0823 | 49.0 | 1715 | 5.6368 | 0.8556 | 0.9223 | 0.8844 | 0.6091 | 0.6486 | 0.9069 | 0.6488 | 0.9349 | 0.9438 | 0.7895 | 0.9236 | 0.979 | -1.0 | -1.0 | 0.991 | 1.0 | 0.81 | 0.8739 | 0.9161 | 0.9696 | 0.7073 | 0.963 | 0.7632 | 0.9074 | 0.9577 | 0.9727 | 0.8439 | 0.9203 |
| 4.0823 | 50.0 | 1750 | 5.6852 | 0.8547 | 0.9219 | 0.8855 | 0.6003 | 0.6465 | 0.9074 | 0.652 | 0.9364 | 0.9452 | 0.779 | 0.924 | 0.9818 | -1.0 | -1.0 | 1.0 | 1.0 | 0.8084 | 0.8727 | 0.9022 | 0.9681 | 0.7068 | 0.9667 | 0.7732 | 0.9111 | 0.9573 | 0.9818 | 0.835 | 0.9162 |
### Framework versions
- Transformers 4.44.0.dev0
- Pytorch 2.3.1+cu121
- Tokenizers 0.19.1
|
[
"evidence",
"ambulance",
"artificial_target",
"cartridge",
"gun",
"knife",
"police",
"traffic"
] |
trungphien/phien-table-straighten-detection
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"table",
"table rotated"
] |
trungphien/phien-table-straighten-detection-130
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"table",
"table rotated"
] |
trungphien/phien-table-straighten-detection-fixID
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"table",
"table rotated"
] |
mostafasmart/detr-resnet-50_finetuned_11
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"ca",
"uv",
"pt",
"st",
"t.nor"
] |
MedicalVision/detr_nih_1ep
|
## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.001
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.003
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.008
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.008
```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.006
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.015
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.017
```
## Config
- dataset: NIH
- original model: facebook/detr-resnet-50
- lr: 0.0001
- max_epochs: 1
## Logging
### Training process
```
{'training_loss': tensor(2.9624, device='cuda:0'), 'train_loss_ce': tensor(0.4469, device='cuda:0'), 'train_loss_bbox': tensor(0.2411, device='cuda:0'), 'train_loss_giou': tensor(0.6551, device='cuda:0'), 'train_cardinality_error': tensor(1.1250, device='cuda:0'), 'validation_loss': tensor(2.4818, device='cuda:0'), 'validation_loss_ce': tensor(0.5116, device='cuda:0'), 'validation_loss_bbox': tensor(0.1740, device='cuda:0'), 'validation_loss_giou': tensor(0.5502, device='cuda:0'), 'validation_cardinality_error': tensor(1.0955, device='cuda:0')}
```
### Validation process
```
{'validation_loss': tensor(5.8176, device='cuda:0'), 'validation_loss_ce': tensor(2.3980, device='cuda:0'), 'validation_loss_bbox': tensor(0.4030, device='cuda:0'), 'validation_loss_giou': tensor(0.7024, device='cuda:0'), 'validation_cardinality_error': tensor(98.5312, device='cuda:0')}
{'training_loss': tensor(2.9624, device='cuda:0'), 'train_loss_ce': tensor(0.4469, device='cuda:0'), 'train_loss_bbox': tensor(0.2411, device='cuda:0'), 'train_loss_giou': tensor(0.6551, device='cuda:0'), 'train_cardinality_error': tensor(1.1250, device='cuda:0'), 'validation_loss': tensor(2.4818, device='cuda:0'), 'validation_loss_ce': tensor(0.5116, device='cuda:0'), 'validation_loss_bbox': tensor(0.1740, device='cuda:0'), 'validation_loss_giou': tensor(0.5502, device='cuda:0'), 'validation_cardinality_error': tensor(1.0955, device='cuda:0')}
```
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
MedicalVision/detr_nih_10ep
|
## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.001
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.002
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.004
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.004
```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.003
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.011
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.001
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.003
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.037
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.074
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.084
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.006
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.085
```
## Config
- dataset: NIH
- original model: facebook/detr-resnet-50
- lr: 5e-05
- max_epochs: 10
## Logging
### Training process
```
{'validation_loss': tensor(6.4663, device='cuda:0'), 'validation_loss_ce': tensor(2.5639, device='cuda:0'), 'validation_loss_bbox': tensor(0.4662, device='cuda:0'), 'validation_loss_giou': tensor(0.7858, device='cuda:0'), 'validation_cardinality_error': tensor(98.8125, device='cuda:0')}
{'training_loss': tensor(4.3831, device='cuda:0'), 'train_loss_ce': tensor(1.5780, device='cuda:0'), 'train_loss_bbox': tensor(0.2546, device='cuda:0'), 'train_loss_giou': tensor(0.7661, device='cuda:0'), 'train_cardinality_error': tensor(3.7500, device='cuda:0'), 'validation_loss': tensor(4.1328, device='cuda:0'), 'validation_loss_ce': tensor(1.5373, device='cuda:0'), 'validation_loss_bbox': tensor(0.2405, device='cuda:0'), 'validation_loss_giou': tensor(0.6965, device='cuda:0'), 'validation_cardinality_error': tensor(1.4364, device='cuda:0')}
{'training_loss': tensor(2.8787, device='cuda:0'), 'train_loss_ce': tensor(0.7759, device='cuda:0'), 'train_loss_bbox': tensor(0.1841, device='cuda:0'), 'train_loss_giou': tensor(0.5911, device='cuda:0'), 'train_cardinality_error': tensor(1.0625, device='cuda:0'), 'validation_loss': tensor(2.8971, device='cuda:0'), 'validation_loss_ce': tensor(0.7507, device='cuda:0'), 'validation_loss_bbox': tensor(0.1935, device='cuda:0'), 'validation_loss_giou': tensor(0.5893, device='cuda:0'), 'validation_cardinality_error': tensor(1.1159, device='cuda:0')}
{'training_loss': tensor(2.8165, device='cuda:0'), 'train_loss_ce': tensor(0.5296, device='cuda:0'), 'train_loss_bbox': tensor(0.2043, device='cuda:0'), 'train_loss_giou': tensor(0.6328, device='cuda:0'), 'train_cardinality_error': tensor(1.0625, device='cuda:0'), 'validation_loss': tensor(2.6196, device='cuda:0'), 'validation_loss_ce': tensor(0.5727, device='cuda:0'), 'validation_loss_bbox': tensor(0.1831, device='cuda:0'), 'validation_loss_giou': tensor(0.5656, device='cuda:0'), 'validation_cardinality_error': tensor(1.1159, device='cuda:0')}
{'training_loss': tensor(2.6336, device='cuda:0'), 'train_loss_ce': tensor(0.5603, device='cuda:0'), 'train_loss_bbox': tensor(0.1886, device='cuda:0'), 'train_loss_giou': tensor(0.5651, device='cuda:0'), 'train_cardinality_error': tensor(1.1875, device='cuda:0'), 'validation_loss': tensor(2.4110, device='cuda:0'), 'validation_loss_ce': tensor(0.5158, device='cuda:0'), 'validation_loss_bbox': tensor(0.1616, device='cuda:0'), 'validation_loss_giou': tensor(0.5437, device='cuda:0'), 'validation_cardinality_error': tensor(1.1159, device='cuda:0')}
{'training_loss': tensor(2.3404, device='cuda:0'), 'train_loss_ce': tensor(0.4770, device='cuda:0'), 'train_loss_bbox': tensor(0.1684, device='cuda:0'), 'train_loss_giou': tensor(0.5106, device='cuda:0'), 'train_cardinality_error': tensor(1.2500, device='cuda:0'), 'validation_loss': tensor(2.3158, device='cuda:0'), 'validation_loss_ce': tensor(0.5015, device='cuda:0'), 'validation_loss_bbox': tensor(0.1579, device='cuda:0'), 'validation_loss_giou': tensor(0.5123, device='cuda:0'), 'validation_cardinality_error': tensor(1.1159, device='cuda:0')}
{'training_loss': tensor(2.4181, device='cuda:0'), 'train_loss_ce': tensor(0.4818, device='cuda:0'), 'train_loss_bbox': tensor(0.1594, device='cuda:0'), 'train_loss_giou': tensor(0.5697, device='cuda:0'), 'train_cardinality_error': tensor(1.0625, device='cuda:0'), 'validation_loss': tensor(2.2529, device='cuda:0'), 'validation_loss_ce': tensor(0.4929, device='cuda:0'), 'validation_loss_bbox': tensor(0.1507, device='cuda:0'), 'validation_loss_giou': tensor(0.5034, device='cuda:0'), 'validation_cardinality_error': tensor(1.1159, device='cuda:0')}
{'training_loss': tensor(2.3413, device='cuda:0'), 'train_loss_ce': tensor(0.6037, device='cuda:0'), 'train_loss_bbox': tensor(0.1422, device='cuda:0'), 'train_loss_giou': tensor(0.5133, device='cuda:0'), 'train_cardinality_error': tensor(1.3750, device='cuda:0'), 'validation_loss': tensor(2.2137, device='cuda:0'), 'validation_loss_ce': tensor(0.4902, device='cuda:0'), 'validation_loss_bbox': tensor(0.1481, device='cuda:0'), 'validation_loss_giou': tensor(0.4914, device='cuda:0'), 'validation_cardinality_error': tensor(1.1159, device='cuda:0')}
{'training_loss': tensor(2.3693, device='cuda:0'), 'train_loss_ce': tensor(0.4641, device='cuda:0'), 'train_loss_bbox': tensor(0.1578, device='cuda:0'), 'train_loss_giou': tensor(0.5582, device='cuda:0'), 'train_cardinality_error': tensor(1.1250, device='cuda:0'), 'validation_loss': tensor(2.1577, device='cuda:0'), 'validation_loss_ce': tensor(0.4842, device='cuda:0'), 'validation_loss_bbox': tensor(0.1380, device='cuda:0'), 'validation_loss_giou': tensor(0.4917, device='cuda:0'), 'validation_cardinality_error': tensor(1.1159, device='cuda:0')}
{'training_loss': tensor(2.0663, device='cuda:0'), 'train_loss_ce': tensor(0.4912, device='cuda:0'), 'train_loss_bbox': tensor(0.1322, device='cuda:0'), 'train_loss_giou': tensor(0.4571, device='cuda:0'), 'train_cardinality_error': tensor(1.1250, device='cuda:0'), 'validation_loss': tensor(2.1651, device='cuda:0'), 'validation_loss_ce': tensor(0.4833, device='cuda:0'), 'validation_loss_bbox': tensor(0.1443, device='cuda:0'), 'validation_loss_giou': tensor(0.4801, device='cuda:0'), 'validation_cardinality_error': tensor(1.1159, device='cuda:0')}
{'training_loss': tensor(2.2925, device='cuda:0'), 'train_loss_ce': tensor(0.3871, device='cuda:0'), 'train_loss_bbox': tensor(0.1779, device='cuda:0'), 'train_loss_giou': tensor(0.5079, device='cuda:0'), 'train_cardinality_error': tensor(1.0625, device='cuda:0'), 'validation_loss': tensor(2.2612, device='cuda:0'), 'validation_loss_ce': tensor(0.4804, device='cuda:0'), 'validation_loss_bbox': tensor(0.1531, device='cuda:0'), 'validation_loss_giou': tensor(0.5077, device='cuda:0'), 'validation_cardinality_error': tensor(1.1159, device='cuda:0')}
```
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
MedicalVision/detr_nih_20ep
|
## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.006
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.025
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.025
```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.005
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.015
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.003
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.005
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.037
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.105
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.110
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.111
```
## Config
- dataset: NIH
- original model: facebook/detr-resnet-50
- lr: 0.0001
- max_epochs: 20
## Logging
### Training process
```
{'validation_loss': tensor(6.3146, device='cuda:0'), 'validation_loss_ce': tensor(2.1177, device='cuda:0'), 'validation_loss_bbox': tensor(0.4698, device='cuda:0'), 'validation_loss_giou': tensor(0.9240, device='cuda:0'), 'validation_cardinality_error': tensor(92.7500, device='cuda:0')}
{'training_loss': tensor(2.3670, device='cuda:0'), 'train_loss_ce': tensor(0.4749, device='cuda:0'), 'train_loss_bbox': tensor(0.1771, device='cuda:0'), 'train_loss_giou': tensor(0.5034, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5731, device='cuda:0'), 'validation_loss_ce': tensor(0.4578, device='cuda:0'), 'validation_loss_bbox': tensor(0.1954, device='cuda:0'), 'validation_loss_giou': tensor(0.5691, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8187, device='cuda:0'), 'train_loss_ce': tensor(0.4641, device='cuda:0'), 'train_loss_bbox': tensor(0.1463, device='cuda:0'), 'train_loss_giou': tensor(0.3115, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3214, device='cuda:0'), 'validation_loss_ce': tensor(0.4453, device='cuda:0'), 'validation_loss_bbox': tensor(0.1656, device='cuda:0'), 'validation_loss_giou': tensor(0.5240, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0658, device='cuda:0'), 'train_loss_ce': tensor(0.4764, device='cuda:0'), 'train_loss_bbox': tensor(0.1381, device='cuda:0'), 'train_loss_giou': tensor(0.4494, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5311, device='cuda:0'), 'validation_loss_ce': tensor(0.4494, device='cuda:0'), 'validation_loss_bbox': tensor(0.1959, device='cuda:0'), 'validation_loss_giou': tensor(0.5512, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2448, device='cuda:0'), 'train_loss_ce': tensor(0.4614, device='cuda:0'), 'train_loss_bbox': tensor(0.1400, device='cuda:0'), 'train_loss_giou': tensor(0.5416, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.4153, device='cuda:0'), 'validation_loss_ce': tensor(0.4393, device='cuda:0'), 'validation_loss_bbox': tensor(0.1699, device='cuda:0'), 'validation_loss_giou': tensor(0.5632, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1852, device='cuda:0'), 'train_loss_ce': tensor(0.3962, device='cuda:0'), 'train_loss_bbox': tensor(0.1427, device='cuda:0'), 'train_loss_giou': tensor(0.5378, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5502, device='cuda:0'), 'validation_loss_ce': tensor(0.4350, device='cuda:0'), 'validation_loss_bbox': tensor(0.1922, device='cuda:0'), 'validation_loss_giou': tensor(0.5771, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3992, device='cuda:0'), 'train_loss_ce': tensor(0.4620, device='cuda:0'), 'train_loss_bbox': tensor(0.1689, device='cuda:0'), 'train_loss_giou': tensor(0.5463, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3235, device='cuda:0'), 'validation_loss_ce': tensor(0.4311, device='cuda:0'), 'validation_loss_bbox': tensor(0.1645, device='cuda:0'), 'validation_loss_giou': tensor(0.5349, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(3.3016, device='cuda:0'), 'train_loss_ce': tensor(0.4607, device='cuda:0'), 'train_loss_bbox': tensor(0.2840, device='cuda:0'), 'train_loss_giou': tensor(0.7105, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(3.1183, device='cuda:0'), 'validation_loss_ce': tensor(0.4855, device='cuda:0'), 'validation_loss_bbox': tensor(0.2575, device='cuda:0'), 'validation_loss_giou': tensor(0.6727, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2759, device='cuda:0'), 'train_loss_ce': tensor(0.4727, device='cuda:0'), 'train_loss_bbox': tensor(0.1564, device='cuda:0'), 'train_loss_giou': tensor(0.5106, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.4930, device='cuda:0'), 'validation_loss_ce': tensor(0.4559, device='cuda:0'), 'validation_loss_bbox': tensor(0.1806, device='cuda:0'), 'validation_loss_giou': tensor(0.5671, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1693, device='cuda:0'), 'train_loss_ce': tensor(0.4572, device='cuda:0'), 'train_loss_bbox': tensor(0.1668, device='cuda:0'), 'train_loss_giou': tensor(0.4391, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.4470, device='cuda:0'), 'validation_loss_ce': tensor(0.4276, device='cuda:0'), 'validation_loss_bbox': tensor(0.1828, device='cuda:0'), 'validation_loss_giou': tensor(0.5526, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1987, device='cuda:0'), 'train_loss_ce': tensor(0.4733, device='cuda:0'), 'train_loss_bbox': tensor(0.1611, device='cuda:0'), 'train_loss_giou': tensor(0.4599, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3597, device='cuda:0'), 'validation_loss_ce': tensor(0.4294, device='cuda:0'), 'validation_loss_bbox': tensor(0.1693, device='cuda:0'), 'validation_loss_giou': tensor(0.5418, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5232, device='cuda:0'), 'train_loss_ce': tensor(0.4011, device='cuda:0'), 'train_loss_bbox': tensor(0.1782, device='cuda:0'), 'train_loss_giou': tensor(0.6154, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2632, device='cuda:0'), 'validation_loss_ce': tensor(0.4187, device='cuda:0'), 'validation_loss_bbox': tensor(0.1576, device='cuda:0'), 'validation_loss_giou': tensor(0.5281, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6633, device='cuda:0'), 'train_loss_ce': tensor(0.4540, device='cuda:0'), 'train_loss_bbox': tensor(0.1967, device='cuda:0'), 'train_loss_giou': tensor(0.6129, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3457, device='cuda:0'), 'validation_loss_ce': tensor(0.4227, device='cuda:0'), 'validation_loss_bbox': tensor(0.1699, device='cuda:0'), 'validation_loss_giou': tensor(0.5369, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4428, device='cuda:0'), 'train_loss_ce': tensor(0.4721, device='cuda:0'), 'train_loss_bbox': tensor(0.1833, device='cuda:0'), 'train_loss_giou': tensor(0.5272, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5712, device='cuda:0'), 'validation_loss_ce': tensor(0.4430, device='cuda:0'), 'validation_loss_bbox': tensor(0.1854, device='cuda:0'), 'validation_loss_giou': tensor(0.6006, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2497, device='cuda:0'), 'train_loss_ce': tensor(0.4085, device='cuda:0'), 'train_loss_bbox': tensor(0.1480, device='cuda:0'), 'train_loss_giou': tensor(0.5506, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2828, device='cuda:0'), 'validation_loss_ce': tensor(0.4168, device='cuda:0'), 'validation_loss_bbox': tensor(0.1639, device='cuda:0'), 'validation_loss_giou': tensor(0.5232, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3250, device='cuda:0'), 'train_loss_ce': tensor(0.4841, device='cuda:0'), 'train_loss_bbox': tensor(0.1521, device='cuda:0'), 'train_loss_giou': tensor(0.5402, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2129, device='cuda:0'), 'validation_loss_ce': tensor(0.4072, device='cuda:0'), 'validation_loss_bbox': tensor(0.1600, device='cuda:0'), 'validation_loss_giou': tensor(0.5028, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6468, device='cuda:0'), 'train_loss_ce': tensor(0.4126, device='cuda:0'), 'train_loss_bbox': tensor(0.1863, device='cuda:0'), 'train_loss_giou': tensor(0.6512, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1853, device='cuda:0'), 'validation_loss_ce': tensor(0.4065, device='cuda:0'), 'validation_loss_bbox': tensor(0.1541, device='cuda:0'), 'validation_loss_giou': tensor(0.5041, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(3.1960, device='cuda:0'), 'train_loss_ce': tensor(0.3919, device='cuda:0'), 'train_loss_bbox': tensor(0.2759, device='cuda:0'), 'train_loss_giou': tensor(0.7123, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(4.5836, device='cuda:0'), 'validation_loss_ce': tensor(0.4463, device='cuda:0'), 'validation_loss_bbox': tensor(0.4188, device='cuda:0'), 'validation_loss_giou': tensor(1.0216, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6624, device='cuda:0'), 'train_loss_ce': tensor(0.4196, device='cuda:0'), 'train_loss_bbox': tensor(0.1069, device='cuda:0'), 'train_loss_giou': tensor(0.3542, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3143, device='cuda:0'), 'validation_loss_ce': tensor(0.4098, device='cuda:0'), 'validation_loss_bbox': tensor(0.1679, device='cuda:0'), 'validation_loss_giou': tensor(0.5325, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6003, device='cuda:0'), 'train_loss_ce': tensor(0.3036, device='cuda:0'), 'train_loss_bbox': tensor(0.1298, device='cuda:0'), 'train_loss_giou': tensor(0.3238, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1774, device='cuda:0'), 'validation_loss_ce': tensor(0.4031, device='cuda:0'), 'validation_loss_bbox': tensor(0.1508, device='cuda:0'), 'validation_loss_giou': tensor(0.5101, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9200, device='cuda:0'), 'train_loss_ce': tensor(0.4339, device='cuda:0'), 'train_loss_bbox': tensor(0.1293, device='cuda:0'), 'train_loss_giou': tensor(0.4198, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2109, device='cuda:0'), 'validation_loss_ce': tensor(0.4018, device='cuda:0'), 'validation_loss_bbox': tensor(0.1551, device='cuda:0'), 'validation_loss_giou': tensor(0.5167, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
```
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
MedicalVision/detr_nih_50ep
|
## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.004
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.014
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.001
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.004
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.048
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.123
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.138
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.139
```
## Config
- dataset: NIH
- original model: facebook/detr-resnet-50
- lr: 0.0001
- max_epochs: 50
## Logging
### Training process
```
{'validation_loss': tensor(6.7355, device='cuda:0'), 'validation_loss_ce': tensor(2.3414, device='cuda:0'), 'validation_loss_bbox': tensor(0.5120, device='cuda:0'), 'validation_loss_giou': tensor(0.9169, device='cuda:0'), 'validation_cardinality_error': tensor(99., device='cuda:0')}
{'training_loss': tensor(4.2989, device='cuda:0'), 'train_loss_ce': tensor(0.9732, device='cuda:0'), 'train_loss_bbox': tensor(0.3333, device='cuda:0'), 'train_loss_giou': tensor(0.8296, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(3.9485, device='cuda:0'), 'validation_loss_ce': tensor(0.9262, device='cuda:0'), 'validation_loss_bbox': tensor(0.3221, device='cuda:0'), 'validation_loss_giou': tensor(0.7058, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.7515, device='cuda:0'), 'train_loss_ce': tensor(0.5029, device='cuda:0'), 'train_loss_bbox': tensor(0.2295, device='cuda:0'), 'train_loss_giou': tensor(0.5505, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5776, device='cuda:0'), 'validation_loss_ce': tensor(0.4768, device='cuda:0'), 'validation_loss_bbox': tensor(0.1898, device='cuda:0'), 'validation_loss_giou': tensor(0.5758, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3356, device='cuda:0'), 'train_loss_ce': tensor(0.4177, device='cuda:0'), 'train_loss_bbox': tensor(0.1543, device='cuda:0'), 'train_loss_giou': tensor(0.5733, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.4808, device='cuda:0'), 'validation_loss_ce': tensor(0.4571, device='cuda:0'), 'validation_loss_bbox': tensor(0.1730, device='cuda:0'), 'validation_loss_giou': tensor(0.5793, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9933, device='cuda:0'), 'train_loss_ce': tensor(0.4613, device='cuda:0'), 'train_loss_bbox': tensor(0.1401, device='cuda:0'), 'train_loss_giou': tensor(0.4158, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3650, device='cuda:0'), 'validation_loss_ce': tensor(0.4503, device='cuda:0'), 'validation_loss_bbox': tensor(0.1647, device='cuda:0'), 'validation_loss_giou': tensor(0.5457, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0481, device='cuda:0'), 'train_loss_ce': tensor(0.3977, device='cuda:0'), 'train_loss_bbox': tensor(0.1540, device='cuda:0'), 'train_loss_giou': tensor(0.4403, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3372, device='cuda:0'), 'validation_loss_ce': tensor(0.4469, device='cuda:0'), 'validation_loss_bbox': tensor(0.1631, device='cuda:0'), 'validation_loss_giou': tensor(0.5374, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4309, device='cuda:0'), 'train_loss_ce': tensor(0.4756, device='cuda:0'), 'train_loss_bbox': tensor(0.1706, device='cuda:0'), 'train_loss_giou': tensor(0.5512, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2796, device='cuda:0'), 'validation_loss_ce': tensor(0.4371, device='cuda:0'), 'validation_loss_bbox': tensor(0.1569, device='cuda:0'), 'validation_loss_giou': tensor(0.5290, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9510, device='cuda:0'), 'train_loss_ce': tensor(0.4784, device='cuda:0'), 'train_loss_bbox': tensor(0.1131, device='cuda:0'), 'train_loss_giou': tensor(0.4534, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2986, device='cuda:0'), 'validation_loss_ce': tensor(0.4409, device='cuda:0'), 'validation_loss_bbox': tensor(0.1559, device='cuda:0'), 'validation_loss_giou': tensor(0.5390, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1536, device='cuda:0'), 'train_loss_ce': tensor(0.3923, device='cuda:0'), 'train_loss_bbox': tensor(0.1764, device='cuda:0'), 'train_loss_giou': tensor(0.4395, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2657, device='cuda:0'), 'validation_loss_ce': tensor(0.4253, device='cuda:0'), 'validation_loss_bbox': tensor(0.1554, device='cuda:0'), 'validation_loss_giou': tensor(0.5316, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.8424, device='cuda:0'), 'train_loss_ce': tensor(0.4607, device='cuda:0'), 'train_loss_bbox': tensor(0.2119, device='cuda:0'), 'train_loss_giou': tensor(0.6611, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2672, device='cuda:0'), 'validation_loss_ce': tensor(0.4220, device='cuda:0'), 'validation_loss_bbox': tensor(0.1551, device='cuda:0'), 'validation_loss_giou': tensor(0.5347, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5335, device='cuda:0'), 'train_loss_ce': tensor(0.4637, device='cuda:0'), 'train_loss_bbox': tensor(0.1740, device='cuda:0'), 'train_loss_giou': tensor(0.6000, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2053, device='cuda:0'), 'validation_loss_ce': tensor(0.4174, device='cuda:0'), 'validation_loss_bbox': tensor(0.1510, device='cuda:0'), 'validation_loss_giou': tensor(0.5164, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5893, device='cuda:0'), 'train_loss_ce': tensor(0.5016, device='cuda:0'), 'train_loss_bbox': tensor(0.1615, device='cuda:0'), 'train_loss_giou': tensor(0.6401, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2368, device='cuda:0'), 'validation_loss_ce': tensor(0.4208, device='cuda:0'), 'validation_loss_bbox': tensor(0.1543, device='cuda:0'), 'validation_loss_giou': tensor(0.5223, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4504, device='cuda:0'), 'train_loss_ce': tensor(0.4651, device='cuda:0'), 'train_loss_bbox': tensor(0.0965, device='cuda:0'), 'train_loss_giou': tensor(0.2513, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2319, device='cuda:0'), 'validation_loss_ce': tensor(0.4114, device='cuda:0'), 'validation_loss_bbox': tensor(0.1530, device='cuda:0'), 'validation_loss_giou': tensor(0.5278, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0496, device='cuda:0'), 'train_loss_ce': tensor(0.4008, device='cuda:0'), 'train_loss_bbox': tensor(0.1288, device='cuda:0'), 'train_loss_giou': tensor(0.5022, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1484, device='cuda:0'), 'validation_loss_ce': tensor(0.4115, device='cuda:0'), 'validation_loss_bbox': tensor(0.1460, device='cuda:0'), 'validation_loss_giou': tensor(0.5033, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5699, device='cuda:0'), 'train_loss_ce': tensor(0.4060, device='cuda:0'), 'train_loss_bbox': tensor(0.1818, device='cuda:0'), 'train_loss_giou': tensor(0.6275, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2269, device='cuda:0'), 'validation_loss_ce': tensor(0.4097, device='cuda:0'), 'validation_loss_bbox': tensor(0.1515, device='cuda:0'), 'validation_loss_giou': tensor(0.5299, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9846, device='cuda:0'), 'train_loss_ce': tensor(0.3594, device='cuda:0'), 'train_loss_bbox': tensor(0.1214, device='cuda:0'), 'train_loss_giou': tensor(0.5092, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1588, device='cuda:0'), 'validation_loss_ce': tensor(0.4080, device='cuda:0'), 'validation_loss_bbox': tensor(0.1479, device='cuda:0'), 'validation_loss_giou': tensor(0.5056, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6960, device='cuda:0'), 'train_loss_ce': tensor(0.4680, device='cuda:0'), 'train_loss_bbox': tensor(0.1701, device='cuda:0'), 'train_loss_giou': tensor(0.6887, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1550, device='cuda:0'), 'validation_loss_ce': tensor(0.4088, device='cuda:0'), 'validation_loss_bbox': tensor(0.1471, device='cuda:0'), 'validation_loss_giou': tensor(0.5055, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6094, device='cuda:0'), 'train_loss_ce': tensor(0.4531, device='cuda:0'), 'train_loss_bbox': tensor(0.1609, device='cuda:0'), 'train_loss_giou': tensor(0.6760, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2189, device='cuda:0'), 'validation_loss_ce': tensor(0.4108, device='cuda:0'), 'validation_loss_bbox': tensor(0.1554, device='cuda:0'), 'validation_loss_giou': tensor(0.5154, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4433, device='cuda:0'), 'train_loss_ce': tensor(0.3159, device='cuda:0'), 'train_loss_bbox': tensor(0.1567, device='cuda:0'), 'train_loss_giou': tensor(0.6720, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1715, device='cuda:0'), 'validation_loss_ce': tensor(0.4031, device='cuda:0'), 'validation_loss_bbox': tensor(0.1484, device='cuda:0'), 'validation_loss_giou': tensor(0.5133, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4039, device='cuda:0'), 'train_loss_ce': tensor(0.4460, device='cuda:0'), 'train_loss_bbox': tensor(0.1383, device='cuda:0'), 'train_loss_giou': tensor(0.6332, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1735, device='cuda:0'), 'validation_loss_ce': tensor(0.3934, device='cuda:0'), 'validation_loss_bbox': tensor(0.1480, device='cuda:0'), 'validation_loss_giou': tensor(0.5201, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9081, device='cuda:0'), 'train_loss_ce': tensor(0.4036, device='cuda:0'), 'train_loss_bbox': tensor(0.1146, device='cuda:0'), 'train_loss_giou': tensor(0.4658, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1387, device='cuda:0'), 'validation_loss_ce': tensor(0.3972, device='cuda:0'), 'validation_loss_bbox': tensor(0.1451, device='cuda:0'), 'validation_loss_giou': tensor(0.5081, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0626, device='cuda:0'), 'train_loss_ce': tensor(0.4191, device='cuda:0'), 'train_loss_bbox': tensor(0.1056, device='cuda:0'), 'train_loss_giou': tensor(0.5577, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1411, device='cuda:0'), 'validation_loss_ce': tensor(0.3979, device='cuda:0'), 'validation_loss_bbox': tensor(0.1432, device='cuda:0'), 'validation_loss_giou': tensor(0.5135, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2678, device='cuda:0'), 'train_loss_ce': tensor(0.4217, device='cuda:0'), 'train_loss_bbox': tensor(0.1590, device='cuda:0'), 'train_loss_giou': tensor(0.5255, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1717, device='cuda:0'), 'validation_loss_ce': tensor(0.3926, device='cuda:0'), 'validation_loss_bbox': tensor(0.1487, device='cuda:0'), 'validation_loss_giou': tensor(0.5179, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3910, device='cuda:0'), 'train_loss_ce': tensor(0.4204, device='cuda:0'), 'train_loss_bbox': tensor(0.1529, device='cuda:0'), 'train_loss_giou': tensor(0.6031, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1903, device='cuda:0'), 'validation_loss_ce': tensor(0.3953, device='cuda:0'), 'validation_loss_bbox': tensor(0.1472, device='cuda:0'), 'validation_loss_giou': tensor(0.5295, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8479, device='cuda:0'), 'train_loss_ce': tensor(0.3773, device='cuda:0'), 'train_loss_bbox': tensor(0.1305, device='cuda:0'), 'train_loss_giou': tensor(0.4091, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1565, device='cuda:0'), 'validation_loss_ce': tensor(0.3969, device='cuda:0'), 'validation_loss_bbox': tensor(0.1452, device='cuda:0'), 'validation_loss_giou': tensor(0.5169, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1730, device='cuda:0'), 'train_loss_ce': tensor(0.4172, device='cuda:0'), 'train_loss_bbox': tensor(0.1460, device='cuda:0'), 'train_loss_giou': tensor(0.5130, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1036, device='cuda:0'), 'validation_loss_ce': tensor(0.3943, device='cuda:0'), 'validation_loss_bbox': tensor(0.1411, device='cuda:0'), 'validation_loss_giou': tensor(0.5018, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8016, device='cuda:0'), 'train_loss_ce': tensor(0.4028, device='cuda:0'), 'train_loss_bbox': tensor(0.1016, device='cuda:0'), 'train_loss_giou': tensor(0.4454, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1573, device='cuda:0'), 'validation_loss_ce': tensor(0.3874, device='cuda:0'), 'validation_loss_bbox': tensor(0.1477, device='cuda:0'), 'validation_loss_giou': tensor(0.5157, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6024, device='cuda:0'), 'train_loss_ce': tensor(0.3457, device='cuda:0'), 'train_loss_bbox': tensor(0.1116, device='cuda:0'), 'train_loss_giou': tensor(0.3492, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1883, device='cuda:0'), 'validation_loss_ce': tensor(0.3874, device='cuda:0'), 'validation_loss_bbox': tensor(0.1467, device='cuda:0'), 'validation_loss_giou': tensor(0.5337, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9963, device='cuda:0'), 'train_loss_ce': tensor(0.4002, device='cuda:0'), 'train_loss_bbox': tensor(0.1176, device='cuda:0'), 'train_loss_giou': tensor(0.5042, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2006, device='cuda:0'), 'validation_loss_ce': tensor(0.3913, device='cuda:0'), 'validation_loss_bbox': tensor(0.1480, device='cuda:0'), 'validation_loss_giou': tensor(0.5346, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5630, device='cuda:0'), 'train_loss_ce': tensor(0.4750, device='cuda:0'), 'train_loss_bbox': tensor(0.1592, device='cuda:0'), 'train_loss_giou': tensor(0.6460, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1714, device='cuda:0'), 'validation_loss_ce': tensor(0.3860, device='cuda:0'), 'validation_loss_bbox': tensor(0.1463, device='cuda:0'), 'validation_loss_giou': tensor(0.5271, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8705, device='cuda:0'), 'train_loss_ce': tensor(0.3653, device='cuda:0'), 'train_loss_bbox': tensor(0.1246, device='cuda:0'), 'train_loss_giou': tensor(0.4410, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1371, device='cuda:0'), 'validation_loss_ce': tensor(0.3832, device='cuda:0'), 'validation_loss_bbox': tensor(0.1447, device='cuda:0'), 'validation_loss_giou': tensor(0.5151, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9302, device='cuda:0'), 'train_loss_ce': tensor(0.3382, device='cuda:0'), 'train_loss_bbox': tensor(0.1192, device='cuda:0'), 'train_loss_giou': tensor(0.4981, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1219, device='cuda:0'), 'validation_loss_ce': tensor(0.3821, device='cuda:0'), 'validation_loss_bbox': tensor(0.1394, device='cuda:0'), 'validation_loss_giou': tensor(0.5213, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9771, device='cuda:0'), 'train_loss_ce': tensor(0.3544, device='cuda:0'), 'train_loss_bbox': tensor(0.1526, device='cuda:0'), 'train_loss_giou': tensor(0.4298, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1438, device='cuda:0'), 'validation_loss_ce': tensor(0.3832, device='cuda:0'), 'validation_loss_bbox': tensor(0.1434, device='cuda:0'), 'validation_loss_giou': tensor(0.5218, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9313, device='cuda:0'), 'train_loss_ce': tensor(0.3667, device='cuda:0'), 'train_loss_bbox': tensor(0.0948, device='cuda:0'), 'train_loss_giou': tensor(0.5452, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1534, device='cuda:0'), 'validation_loss_ce': tensor(0.3846, device='cuda:0'), 'validation_loss_bbox': tensor(0.1429, device='cuda:0'), 'validation_loss_giou': tensor(0.5272, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9903, device='cuda:0'), 'train_loss_ce': tensor(0.4433, device='cuda:0'), 'train_loss_bbox': tensor(0.1192, device='cuda:0'), 'train_loss_giou': tensor(0.4755, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1217, device='cuda:0'), 'validation_loss_ce': tensor(0.3823, device='cuda:0'), 'validation_loss_bbox': tensor(0.1419, device='cuda:0'), 'validation_loss_giou': tensor(0.5149, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4136, device='cuda:0'), 'train_loss_ce': tensor(0.4184, device='cuda:0'), 'train_loss_bbox': tensor(0.1630, device='cuda:0'), 'train_loss_giou': tensor(0.5901, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1248, device='cuda:0'), 'validation_loss_ce': tensor(0.3810, device='cuda:0'), 'validation_loss_bbox': tensor(0.1440, device='cuda:0'), 'validation_loss_giou': tensor(0.5118, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9108, device='cuda:0'), 'train_loss_ce': tensor(0.3214, device='cuda:0'), 'train_loss_bbox': tensor(0.1509, device='cuda:0'), 'train_loss_giou': tensor(0.4173, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1050, device='cuda:0'), 'validation_loss_ce': tensor(0.3767, device='cuda:0'), 'validation_loss_bbox': tensor(0.1419, device='cuda:0'), 'validation_loss_giou': tensor(0.5095, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9270, device='cuda:0'), 'train_loss_ce': tensor(0.4032, device='cuda:0'), 'train_loss_bbox': tensor(0.1316, device='cuda:0'), 'train_loss_giou': tensor(0.4329, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0740, device='cuda:0'), 'validation_loss_ce': tensor(0.3742, device='cuda:0'), 'validation_loss_bbox': tensor(0.1377, device='cuda:0'), 'validation_loss_giou': tensor(0.5057, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.8170, device='cuda:0'), 'train_loss_ce': tensor(0.4599, device='cuda:0'), 'train_loss_bbox': tensor(0.2162, device='cuda:0'), 'train_loss_giou': tensor(0.6380, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1286, device='cuda:0'), 'validation_loss_ce': tensor(0.3828, device='cuda:0'), 'validation_loss_bbox': tensor(0.1477, device='cuda:0'), 'validation_loss_giou': tensor(0.5035, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0931, device='cuda:0'), 'train_loss_ce': tensor(0.4059, device='cuda:0'), 'train_loss_bbox': tensor(0.1503, device='cuda:0'), 'train_loss_giou': tensor(0.4679, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1095, device='cuda:0'), 'validation_loss_ce': tensor(0.3793, device='cuda:0'), 'validation_loss_bbox': tensor(0.1426, device='cuda:0'), 'validation_loss_giou': tensor(0.5086, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9892, device='cuda:0'), 'train_loss_ce': tensor(0.3857, device='cuda:0'), 'train_loss_bbox': tensor(0.1383, device='cuda:0'), 'train_loss_giou': tensor(0.4559, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1471, device='cuda:0'), 'validation_loss_ce': tensor(0.3811, device='cuda:0'), 'validation_loss_bbox': tensor(0.1432, device='cuda:0'), 'validation_loss_giou': tensor(0.5250, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3467, device='cuda:0'), 'train_loss_ce': tensor(0.4135, device='cuda:0'), 'train_loss_bbox': tensor(0.1792, device='cuda:0'), 'train_loss_giou': tensor(0.5187, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1041, device='cuda:0'), 'validation_loss_ce': tensor(0.3736, device='cuda:0'), 'validation_loss_bbox': tensor(0.1414, device='cuda:0'), 'validation_loss_giou': tensor(0.5117, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6740, device='cuda:0'), 'train_loss_ce': tensor(0.3917, device='cuda:0'), 'train_loss_bbox': tensor(0.0950, device='cuda:0'), 'train_loss_giou': tensor(0.4037, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1349, device='cuda:0'), 'validation_loss_ce': tensor(0.3773, device='cuda:0'), 'validation_loss_bbox': tensor(0.1429, device='cuda:0'), 'validation_loss_giou': tensor(0.5215, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9380, device='cuda:0'), 'train_loss_ce': tensor(0.3875, device='cuda:0'), 'train_loss_bbox': tensor(0.1116, device='cuda:0'), 'train_loss_giou': tensor(0.4964, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0988, device='cuda:0'), 'validation_loss_ce': tensor(0.3746, device='cuda:0'), 'validation_loss_bbox': tensor(0.1414, device='cuda:0'), 'validation_loss_giou': tensor(0.5085, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1384, device='cuda:0'), 'train_loss_ce': tensor(0.3058, device='cuda:0'), 'train_loss_bbox': tensor(0.1389, device='cuda:0'), 'train_loss_giou': tensor(0.5690, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1067, device='cuda:0'), 'validation_loss_ce': tensor(0.3731, device='cuda:0'), 'validation_loss_bbox': tensor(0.1391, device='cuda:0'), 'validation_loss_giou': tensor(0.5190, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7617, device='cuda:0'), 'train_loss_ce': tensor(0.3099, device='cuda:0'), 'train_loss_bbox': tensor(0.1112, device='cuda:0'), 'train_loss_giou': tensor(0.4479, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1630, device='cuda:0'), 'validation_loss_ce': tensor(0.3751, device='cuda:0'), 'validation_loss_bbox': tensor(0.1481, device='cuda:0'), 'validation_loss_giou': tensor(0.5237, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4843, device='cuda:0'), 'train_loss_ce': tensor(0.4262, device='cuda:0'), 'train_loss_bbox': tensor(0.1539, device='cuda:0'), 'train_loss_giou': tensor(0.6443, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0932, device='cuda:0'), 'validation_loss_ce': tensor(0.3742, device='cuda:0'), 'validation_loss_bbox': tensor(0.1395, device='cuda:0'), 'validation_loss_giou': tensor(0.5107, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4933, device='cuda:0'), 'train_loss_ce': tensor(0.4430, device='cuda:0'), 'train_loss_bbox': tensor(0.0835, device='cuda:0'), 'train_loss_giou': tensor(0.3164, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1536, device='cuda:0'), 'validation_loss_ce': tensor(0.3775, device='cuda:0'), 'validation_loss_bbox': tensor(0.1445, device='cuda:0'), 'validation_loss_giou': tensor(0.5269, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7820, device='cuda:0'), 'train_loss_ce': tensor(0.4506, device='cuda:0'), 'train_loss_bbox': tensor(0.1117, device='cuda:0'), 'train_loss_giou': tensor(0.3864, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0689, device='cuda:0'), 'validation_loss_ce': tensor(0.3741, device='cuda:0'), 'validation_loss_bbox': tensor(0.1384, device='cuda:0'), 'validation_loss_giou': tensor(0.5015, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8570, device='cuda:0'), 'train_loss_ce': tensor(0.3104, device='cuda:0'), 'train_loss_bbox': tensor(0.1319, device='cuda:0'), 'train_loss_giou': tensor(0.4437, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1382, device='cuda:0'), 'validation_loss_ce': tensor(0.3746, device='cuda:0'), 'validation_loss_bbox': tensor(0.1433, device='cuda:0'), 'validation_loss_giou': tensor(0.5236, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8662, device='cuda:0'), 'train_loss_ce': tensor(0.3441, device='cuda:0'), 'train_loss_bbox': tensor(0.1282, device='cuda:0'), 'train_loss_giou': tensor(0.4406, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1352, device='cuda:0'), 'validation_loss_ce': tensor(0.3726, device='cuda:0'), 'validation_loss_bbox': tensor(0.1454, device='cuda:0'), 'validation_loss_giou': tensor(0.5179, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
```
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
MedicalVision/detr_nih_100ep
|
## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.007
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.019
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.003
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.008
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.060
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.147
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.160
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.167
```
## Config
- dataset: NIH
- original model: facebook/detr-resnet-50
- lr: 0.0001
- max_epochs: 100
## Logging
### Training process
```
{'validation_loss': tensor(6.3390, device='cuda:0'), 'validation_loss_ce': tensor(1.9257, device='cuda:0'), 'validation_loss_bbox': tensor(0.5244, device='cuda:0'), 'validation_loss_giou': tensor(0.8958, device='cuda:0'), 'validation_cardinality_error': tensor(60.5938, device='cuda:0')}
{'training_loss': tensor(3.2533, device='cuda:0'), 'train_loss_ce': tensor(0.6592, device='cuda:0'), 'train_loss_bbox': tensor(0.2086, device='cuda:0'), 'train_loss_giou': tensor(0.7757, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(3.0453, device='cuda:0'), 'validation_loss_ce': tensor(0.5371, device='cuda:0'), 'validation_loss_bbox': tensor(0.2398, device='cuda:0'), 'validation_loss_giou': tensor(0.6546, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6515, device='cuda:0'), 'train_loss_ce': tensor(0.3552, device='cuda:0'), 'train_loss_bbox': tensor(0.1901, device='cuda:0'), 'train_loss_giou': tensor(0.6729, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3760, device='cuda:0'), 'validation_loss_ce': tensor(0.4638, device='cuda:0'), 'validation_loss_bbox': tensor(0.1636, device='cuda:0'), 'validation_loss_giou': tensor(0.5470, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2251, device='cuda:0'), 'train_loss_ce': tensor(0.4881, device='cuda:0'), 'train_loss_bbox': tensor(0.1581, device='cuda:0'), 'train_loss_giou': tensor(0.4732, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3159, device='cuda:0'), 'validation_loss_ce': tensor(0.4545, device='cuda:0'), 'validation_loss_bbox': tensor(0.1584, device='cuda:0'), 'validation_loss_giou': tensor(0.5348, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6269, device='cuda:0'), 'train_loss_ce': tensor(0.4099, device='cuda:0'), 'train_loss_bbox': tensor(0.2217, device='cuda:0'), 'train_loss_giou': tensor(0.5543, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3354, device='cuda:0'), 'validation_loss_ce': tensor(0.4496, device='cuda:0'), 'validation_loss_bbox': tensor(0.1670, device='cuda:0'), 'validation_loss_giou': tensor(0.5253, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0376, device='cuda:0'), 'train_loss_ce': tensor(0.4754, device='cuda:0'), 'train_loss_bbox': tensor(0.1529, device='cuda:0'), 'train_loss_giou': tensor(0.3987, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2204, device='cuda:0'), 'validation_loss_ce': tensor(0.4507, device='cuda:0'), 'validation_loss_bbox': tensor(0.1517, device='cuda:0'), 'validation_loss_giou': tensor(0.5057, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9224, device='cuda:0'), 'train_loss_ce': tensor(0.4734, device='cuda:0'), 'train_loss_bbox': tensor(0.1257, device='cuda:0'), 'train_loss_giou': tensor(0.4103, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3003, device='cuda:0'), 'validation_loss_ce': tensor(0.4434, device='cuda:0'), 'validation_loss_bbox': tensor(0.1589, device='cuda:0'), 'validation_loss_giou': tensor(0.5311, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0460, device='cuda:0'), 'train_loss_ce': tensor(0.3925, device='cuda:0'), 'train_loss_bbox': tensor(0.1550, device='cuda:0'), 'train_loss_giou': tensor(0.4393, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2038, device='cuda:0'), 'validation_loss_ce': tensor(0.4365, device='cuda:0'), 'validation_loss_bbox': tensor(0.1544, device='cuda:0'), 'validation_loss_giou': tensor(0.4977, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9657, device='cuda:0'), 'train_loss_ce': tensor(0.3771, device='cuda:0'), 'train_loss_bbox': tensor(0.1054, device='cuda:0'), 'train_loss_giou': tensor(0.5309, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2134, device='cuda:0'), 'validation_loss_ce': tensor(0.4344, device='cuda:0'), 'validation_loss_bbox': tensor(0.1532, device='cuda:0'), 'validation_loss_giou': tensor(0.5065, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5808, device='cuda:0'), 'train_loss_ce': tensor(0.4870, device='cuda:0'), 'train_loss_bbox': tensor(0.1566, device='cuda:0'), 'train_loss_giou': tensor(0.6554, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1047, device='cuda:0'), 'validation_loss_ce': tensor(0.4241, device='cuda:0'), 'validation_loss_bbox': tensor(0.1445, device='cuda:0'), 'validation_loss_giou': tensor(0.4789, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9521, device='cuda:0'), 'train_loss_ce': tensor(0.4557, device='cuda:0'), 'train_loss_bbox': tensor(0.1401, device='cuda:0'), 'train_loss_giou': tensor(0.3981, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2028, device='cuda:0'), 'validation_loss_ce': tensor(0.4253, device='cuda:0'), 'validation_loss_bbox': tensor(0.1533, device='cuda:0'), 'validation_loss_giou': tensor(0.5055, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1985, device='cuda:0'), 'train_loss_ce': tensor(0.4123, device='cuda:0'), 'train_loss_bbox': tensor(0.1583, device='cuda:0'), 'train_loss_giou': tensor(0.4974, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2105, device='cuda:0'), 'validation_loss_ce': tensor(0.4224, device='cuda:0'), 'validation_loss_bbox': tensor(0.1548, device='cuda:0'), 'validation_loss_giou': tensor(0.5069, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9210, device='cuda:0'), 'train_loss_ce': tensor(0.4587, device='cuda:0'), 'train_loss_bbox': tensor(0.1236, device='cuda:0'), 'train_loss_giou': tensor(0.4223, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1568, device='cuda:0'), 'validation_loss_ce': tensor(0.4179, device='cuda:0'), 'validation_loss_bbox': tensor(0.1463, device='cuda:0'), 'validation_loss_giou': tensor(0.5037, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2657, device='cuda:0'), 'train_loss_ce': tensor(0.4704, device='cuda:0'), 'train_loss_bbox': tensor(0.1318, device='cuda:0'), 'train_loss_giou': tensor(0.5682, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1193, device='cuda:0'), 'validation_loss_ce': tensor(0.4051, device='cuda:0'), 'validation_loss_bbox': tensor(0.1438, device='cuda:0'), 'validation_loss_giou': tensor(0.4977, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3029, device='cuda:0'), 'train_loss_ce': tensor(0.4030, device='cuda:0'), 'train_loss_bbox': tensor(0.1263, device='cuda:0'), 'train_loss_giou': tensor(0.6342, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2088, device='cuda:0'), 'validation_loss_ce': tensor(0.4041, device='cuda:0'), 'validation_loss_bbox': tensor(0.1504, device='cuda:0'), 'validation_loss_giou': tensor(0.5263, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.8812, device='cuda:0'), 'train_loss_ce': tensor(0.3058, device='cuda:0'), 'train_loss_bbox': tensor(0.2438, device='cuda:0'), 'train_loss_giou': tensor(0.6782, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3665, device='cuda:0'), 'validation_loss_ce': tensor(0.4019, device='cuda:0'), 'validation_loss_bbox': tensor(0.1675, device='cuda:0'), 'validation_loss_giou': tensor(0.5636, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4764, device='cuda:0'), 'train_loss_ce': tensor(0.4440, device='cuda:0'), 'train_loss_bbox': tensor(0.1895, device='cuda:0'), 'train_loss_giou': tensor(0.5425, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1566, device='cuda:0'), 'validation_loss_ce': tensor(0.4153, device='cuda:0'), 'validation_loss_bbox': tensor(0.1411, device='cuda:0'), 'validation_loss_giou': tensor(0.5178, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0193, device='cuda:0'), 'train_loss_ce': tensor(0.4573, device='cuda:0'), 'train_loss_bbox': tensor(0.1105, device='cuda:0'), 'train_loss_giou': tensor(0.5048, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2405, device='cuda:0'), 'validation_loss_ce': tensor(0.4085, device='cuda:0'), 'validation_loss_bbox': tensor(0.1557, device='cuda:0'), 'validation_loss_giou': tensor(0.5267, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5841, device='cuda:0'), 'train_loss_ce': tensor(0.4252, device='cuda:0'), 'train_loss_bbox': tensor(0.1618, device='cuda:0'), 'train_loss_giou': tensor(0.6749, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2696, device='cuda:0'), 'validation_loss_ce': tensor(0.4067, device='cuda:0'), 'validation_loss_bbox': tensor(0.1596, device='cuda:0'), 'validation_loss_giou': tensor(0.5323, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6886, device='cuda:0'), 'train_loss_ce': tensor(0.3702, device='cuda:0'), 'train_loss_bbox': tensor(0.1072, device='cuda:0'), 'train_loss_giou': tensor(0.3912, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2096, device='cuda:0'), 'validation_loss_ce': tensor(0.4089, device='cuda:0'), 'validation_loss_bbox': tensor(0.1525, device='cuda:0'), 'validation_loss_giou': tensor(0.5190, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1230, device='cuda:0'), 'train_loss_ce': tensor(0.4198, device='cuda:0'), 'train_loss_bbox': tensor(0.1435, device='cuda:0'), 'train_loss_giou': tensor(0.4928, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1773, device='cuda:0'), 'validation_loss_ce': tensor(0.4031, device='cuda:0'), 'validation_loss_bbox': tensor(0.1482, device='cuda:0'), 'validation_loss_giou': tensor(0.5165, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5241, device='cuda:0'), 'train_loss_ce': tensor(0.4181, device='cuda:0'), 'train_loss_bbox': tensor(0.1501, device='cuda:0'), 'train_loss_giou': tensor(0.6776, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1722, device='cuda:0'), 'validation_loss_ce': tensor(0.4043, device='cuda:0'), 'validation_loss_bbox': tensor(0.1533, device='cuda:0'), 'validation_loss_giou': tensor(0.5007, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8520, device='cuda:0'), 'train_loss_ce': tensor(0.3231, device='cuda:0'), 'train_loss_bbox': tensor(0.1631, device='cuda:0'), 'train_loss_giou': tensor(0.3568, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2206, device='cuda:0'), 'validation_loss_ce': tensor(0.3981, device='cuda:0'), 'validation_loss_bbox': tensor(0.1534, device='cuda:0'), 'validation_loss_giou': tensor(0.5277, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.9843, device='cuda:0'), 'train_loss_ce': tensor(0.3498, device='cuda:0'), 'train_loss_bbox': tensor(0.1875, device='cuda:0'), 'train_loss_giou': tensor(0.8486, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1809, device='cuda:0'), 'validation_loss_ce': tensor(0.3994, device='cuda:0'), 'validation_loss_bbox': tensor(0.1476, device='cuda:0'), 'validation_loss_giou': tensor(0.5217, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1377, device='cuda:0'), 'train_loss_ce': tensor(0.3029, device='cuda:0'), 'train_loss_bbox': tensor(0.1409, device='cuda:0'), 'train_loss_giou': tensor(0.5652, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1106, device='cuda:0'), 'validation_loss_ce': tensor(0.3999, device='cuda:0'), 'validation_loss_bbox': tensor(0.1438, device='cuda:0'), 'validation_loss_giou': tensor(0.4958, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4975, device='cuda:0'), 'train_loss_ce': tensor(0.3330, device='cuda:0'), 'train_loss_bbox': tensor(0.1928, device='cuda:0'), 'train_loss_giou': tensor(0.6002, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1350, device='cuda:0'), 'validation_loss_ce': tensor(0.3967, device='cuda:0'), 'validation_loss_bbox': tensor(0.1490, device='cuda:0'), 'validation_loss_giou': tensor(0.4965, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5386, device='cuda:0'), 'train_loss_ce': tensor(0.4152, device='cuda:0'), 'train_loss_bbox': tensor(0.1651, device='cuda:0'), 'train_loss_giou': tensor(0.6489, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1501, device='cuda:0'), 'validation_loss_ce': tensor(0.3897, device='cuda:0'), 'validation_loss_bbox': tensor(0.1507, device='cuda:0'), 'validation_loss_giou': tensor(0.5035, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6820, device='cuda:0'), 'train_loss_ce': tensor(0.3676, device='cuda:0'), 'train_loss_bbox': tensor(0.1056, device='cuda:0'), 'train_loss_giou': tensor(0.3931, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1110, device='cuda:0'), 'validation_loss_ce': tensor(0.3867, device='cuda:0'), 'validation_loss_bbox': tensor(0.1429, device='cuda:0'), 'validation_loss_giou': tensor(0.5050, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1343, device='cuda:0'), 'train_loss_ce': tensor(0.4739, device='cuda:0'), 'train_loss_bbox': tensor(0.1416, device='cuda:0'), 'train_loss_giou': tensor(0.4763, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1163, device='cuda:0'), 'validation_loss_ce': tensor(0.3942, device='cuda:0'), 'validation_loss_bbox': tensor(0.1432, device='cuda:0'), 'validation_loss_giou': tensor(0.5030, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4529, device='cuda:0'), 'train_loss_ce': tensor(0.4035, device='cuda:0'), 'train_loss_bbox': tensor(0.1063, device='cuda:0'), 'train_loss_giou': tensor(0.2591, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1397, device='cuda:0'), 'validation_loss_ce': tensor(0.3933, device='cuda:0'), 'validation_loss_bbox': tensor(0.1417, device='cuda:0'), 'validation_loss_giou': tensor(0.5189, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9394, device='cuda:0'), 'train_loss_ce': tensor(0.4311, device='cuda:0'), 'train_loss_bbox': tensor(0.1253, device='cuda:0'), 'train_loss_giou': tensor(0.4409, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0978, device='cuda:0'), 'validation_loss_ce': tensor(0.3903, device='cuda:0'), 'validation_loss_bbox': tensor(0.1444, device='cuda:0'), 'validation_loss_giou': tensor(0.4928, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8952, device='cuda:0'), 'train_loss_ce': tensor(0.4004, device='cuda:0'), 'train_loss_bbox': tensor(0.1394, device='cuda:0'), 'train_loss_giou': tensor(0.3989, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0628, device='cuda:0'), 'validation_loss_ce': tensor(0.3902, device='cuda:0'), 'validation_loss_bbox': tensor(0.1391, device='cuda:0'), 'validation_loss_giou': tensor(0.4886, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2561, device='cuda:0'), 'train_loss_ce': tensor(0.3637, device='cuda:0'), 'train_loss_bbox': tensor(0.1834, device='cuda:0'), 'train_loss_giou': tensor(0.4878, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1056, device='cuda:0'), 'validation_loss_ce': tensor(0.3887, device='cuda:0'), 'validation_loss_bbox': tensor(0.1427, device='cuda:0'), 'validation_loss_giou': tensor(0.5016, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5524, device='cuda:0'), 'train_loss_ce': tensor(0.3860, device='cuda:0'), 'train_loss_bbox': tensor(0.1140, device='cuda:0'), 'train_loss_giou': tensor(0.2982, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0447, device='cuda:0'), 'validation_loss_ce': tensor(0.3936, device='cuda:0'), 'validation_loss_bbox': tensor(0.1359, device='cuda:0'), 'validation_loss_giou': tensor(0.4857, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8684, device='cuda:0'), 'train_loss_ce': tensor(0.4558, device='cuda:0'), 'train_loss_bbox': tensor(0.1200, device='cuda:0'), 'train_loss_giou': tensor(0.4063, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0730, device='cuda:0'), 'validation_loss_ce': tensor(0.3882, device='cuda:0'), 'validation_loss_bbox': tensor(0.1371, device='cuda:0'), 'validation_loss_giou': tensor(0.4996, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5090, device='cuda:0'), 'train_loss_ce': tensor(0.3182, device='cuda:0'), 'train_loss_bbox': tensor(0.1065, device='cuda:0'), 'train_loss_giou': tensor(0.3291, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0544, device='cuda:0'), 'validation_loss_ce': tensor(0.3875, device='cuda:0'), 'validation_loss_bbox': tensor(0.1371, device='cuda:0'), 'validation_loss_giou': tensor(0.4906, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8722, device='cuda:0'), 'train_loss_ce': tensor(0.3839, device='cuda:0'), 'train_loss_bbox': tensor(0.1036, device='cuda:0'), 'train_loss_giou': tensor(0.4852, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0563, device='cuda:0'), 'validation_loss_ce': tensor(0.3879, device='cuda:0'), 'validation_loss_bbox': tensor(0.1384, device='cuda:0'), 'validation_loss_giou': tensor(0.4882, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3860, device='cuda:0'), 'train_loss_ce': tensor(0.3807, device='cuda:0'), 'train_loss_bbox': tensor(0.0868, device='cuda:0'), 'train_loss_giou': tensor(0.2856, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0778, device='cuda:0'), 'validation_loss_ce': tensor(0.3841, device='cuda:0'), 'validation_loss_bbox': tensor(0.1409, device='cuda:0'), 'validation_loss_giou': tensor(0.4945, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9843, device='cuda:0'), 'train_loss_ce': tensor(0.3739, device='cuda:0'), 'train_loss_bbox': tensor(0.1480, device='cuda:0'), 'train_loss_giou': tensor(0.4351, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1187, device='cuda:0'), 'validation_loss_ce': tensor(0.3844, device='cuda:0'), 'validation_loss_bbox': tensor(0.1426, device='cuda:0'), 'validation_loss_giou': tensor(0.5105, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5204, device='cuda:0'), 'train_loss_ce': tensor(0.4118, device='cuda:0'), 'train_loss_bbox': tensor(0.0832, device='cuda:0'), 'train_loss_giou': tensor(0.3463, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0224, device='cuda:0'), 'validation_loss_ce': tensor(0.3890, device='cuda:0'), 'validation_loss_bbox': tensor(0.1316, device='cuda:0'), 'validation_loss_giou': tensor(0.4877, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2597, device='cuda:0'), 'train_loss_ce': tensor(0.3966, device='cuda:0'), 'train_loss_bbox': tensor(0.1726, device='cuda:0'), 'train_loss_giou': tensor(0.5000, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0580, device='cuda:0'), 'validation_loss_ce': tensor(0.3862, device='cuda:0'), 'validation_loss_bbox': tensor(0.1368, device='cuda:0'), 'validation_loss_giou': tensor(0.4939, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7906, device='cuda:0'), 'train_loss_ce': tensor(0.3486, device='cuda:0'), 'train_loss_bbox': tensor(0.1204, device='cuda:0'), 'train_loss_giou': tensor(0.4199, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1189, device='cuda:0'), 'validation_loss_ce': tensor(0.3948, device='cuda:0'), 'validation_loss_bbox': tensor(0.1414, device='cuda:0'), 'validation_loss_giou': tensor(0.5085, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9370, device='cuda:0'), 'train_loss_ce': tensor(0.3879, device='cuda:0'), 'train_loss_bbox': tensor(0.1565, device='cuda:0'), 'train_loss_giou': tensor(0.3834, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1355, device='cuda:0'), 'validation_loss_ce': tensor(0.3949, device='cuda:0'), 'validation_loss_bbox': tensor(0.1440, device='cuda:0'), 'validation_loss_giou': tensor(0.5102, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0198, device='cuda:0'), 'train_loss_ce': tensor(0.4168, device='cuda:0'), 'train_loss_bbox': tensor(0.1335, device='cuda:0'), 'train_loss_giou': tensor(0.4677, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0019, device='cuda:0'), 'validation_loss_ce': tensor(0.3896, device='cuda:0'), 'validation_loss_bbox': tensor(0.1331, device='cuda:0'), 'validation_loss_giou': tensor(0.4734, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4911, device='cuda:0'), 'train_loss_ce': tensor(0.3119, device='cuda:0'), 'train_loss_bbox': tensor(0.1959, device='cuda:0'), 'train_loss_giou': tensor(0.6000, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0886, device='cuda:0'), 'validation_loss_ce': tensor(0.3959, device='cuda:0'), 'validation_loss_bbox': tensor(0.1413, device='cuda:0'), 'validation_loss_giou': tensor(0.4932, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6566, device='cuda:0'), 'train_loss_ce': tensor(0.3404, device='cuda:0'), 'train_loss_bbox': tensor(0.1195, device='cuda:0'), 'train_loss_giou': tensor(0.3594, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0247, device='cuda:0'), 'validation_loss_ce': tensor(0.3822, device='cuda:0'), 'validation_loss_bbox': tensor(0.1363, device='cuda:0'), 'validation_loss_giou': tensor(0.4804, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8599, device='cuda:0'), 'train_loss_ce': tensor(0.4108, device='cuda:0'), 'train_loss_bbox': tensor(0.1218, device='cuda:0'), 'train_loss_giou': tensor(0.4200, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0718, device='cuda:0'), 'validation_loss_ce': tensor(0.3836, device='cuda:0'), 'validation_loss_bbox': tensor(0.1383, device='cuda:0'), 'validation_loss_giou': tensor(0.4983, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5002, device='cuda:0'), 'train_loss_ce': tensor(0.2797, device='cuda:0'), 'train_loss_bbox': tensor(0.0958, device='cuda:0'), 'train_loss_giou': tensor(0.3707, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0942, device='cuda:0'), 'validation_loss_ce': tensor(0.3911, device='cuda:0'), 'validation_loss_bbox': tensor(0.1398, device='cuda:0'), 'validation_loss_giou': tensor(0.5021, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8327, device='cuda:0'), 'train_loss_ce': tensor(0.3331, device='cuda:0'), 'train_loss_bbox': tensor(0.1234, device='cuda:0'), 'train_loss_giou': tensor(0.4412, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1069, device='cuda:0'), 'validation_loss_ce': tensor(0.3810, device='cuda:0'), 'validation_loss_bbox': tensor(0.1401, device='cuda:0'), 'validation_loss_giou': tensor(0.5127, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8568, device='cuda:0'), 'train_loss_ce': tensor(0.3002, device='cuda:0'), 'train_loss_bbox': tensor(0.1278, device='cuda:0'), 'train_loss_giou': tensor(0.4589, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1316, device='cuda:0'), 'validation_loss_ce': tensor(0.3870, device='cuda:0'), 'validation_loss_bbox': tensor(0.1459, device='cuda:0'), 'validation_loss_giou': tensor(0.5074, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8340, device='cuda:0'), 'train_loss_ce': tensor(0.3993, device='cuda:0'), 'train_loss_bbox': tensor(0.0955, device='cuda:0'), 'train_loss_giou': tensor(0.4785, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0989, device='cuda:0'), 'validation_loss_ce': tensor(0.3856, device='cuda:0'), 'validation_loss_bbox': tensor(0.1426, device='cuda:0'), 'validation_loss_giou': tensor(0.5001, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5213, device='cuda:0'), 'train_loss_ce': tensor(0.3783, device='cuda:0'), 'train_loss_bbox': tensor(0.0988, device='cuda:0'), 'train_loss_giou': tensor(0.3245, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0630, device='cuda:0'), 'validation_loss_ce': tensor(0.3901, device='cuda:0'), 'validation_loss_bbox': tensor(0.1366, device='cuda:0'), 'validation_loss_giou': tensor(0.4950, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6132, device='cuda:0'), 'train_loss_ce': tensor(0.3880, device='cuda:0'), 'train_loss_bbox': tensor(0.1036, device='cuda:0'), 'train_loss_giou': tensor(0.3536, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1324, device='cuda:0'), 'validation_loss_ce': tensor(0.3910, device='cuda:0'), 'validation_loss_bbox': tensor(0.1463, device='cuda:0'), 'validation_loss_giou': tensor(0.5048, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.7959, device='cuda:0'), 'train_loss_ce': tensor(0.2961, device='cuda:0'), 'train_loss_bbox': tensor(0.1611, device='cuda:0'), 'train_loss_giou': tensor(0.8470, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0648, device='cuda:0'), 'validation_loss_ce': tensor(0.3888, device='cuda:0'), 'validation_loss_bbox': tensor(0.1392, device='cuda:0'), 'validation_loss_giou': tensor(0.4899, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7365, device='cuda:0'), 'train_loss_ce': tensor(0.3049, device='cuda:0'), 'train_loss_bbox': tensor(0.0945, device='cuda:0'), 'train_loss_giou': tensor(0.4795, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1188, device='cuda:0'), 'validation_loss_ce': tensor(0.3938, device='cuda:0'), 'validation_loss_bbox': tensor(0.1427, device='cuda:0'), 'validation_loss_giou': tensor(0.5058, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6797, device='cuda:0'), 'train_loss_ce': tensor(0.2318, device='cuda:0'), 'train_loss_bbox': tensor(0.1011, device='cuda:0'), 'train_loss_giou': tensor(0.4712, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0538, device='cuda:0'), 'validation_loss_ce': tensor(0.3907, device='cuda:0'), 'validation_loss_bbox': tensor(0.1392, device='cuda:0'), 'validation_loss_giou': tensor(0.4836, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6598, device='cuda:0'), 'train_loss_ce': tensor(0.3845, device='cuda:0'), 'train_loss_bbox': tensor(0.1099, device='cuda:0'), 'train_loss_giou': tensor(0.3628, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0272, device='cuda:0'), 'validation_loss_ce': tensor(0.3904, device='cuda:0'), 'validation_loss_bbox': tensor(0.1359, device='cuda:0'), 'validation_loss_giou': tensor(0.4787, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7540, device='cuda:0'), 'train_loss_ce': tensor(0.3992, device='cuda:0'), 'train_loss_bbox': tensor(0.0991, device='cuda:0'), 'train_loss_giou': tensor(0.4296, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0134, device='cuda:0'), 'validation_loss_ce': tensor(0.3856, device='cuda:0'), 'validation_loss_bbox': tensor(0.1320, device='cuda:0'), 'validation_loss_giou': tensor(0.4839, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8146, device='cuda:0'), 'train_loss_ce': tensor(0.3424, device='cuda:0'), 'train_loss_bbox': tensor(0.1307, device='cuda:0'), 'train_loss_giou': tensor(0.4092, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0881, device='cuda:0'), 'validation_loss_ce': tensor(0.3841, device='cuda:0'), 'validation_loss_bbox': tensor(0.1418, device='cuda:0'), 'validation_loss_giou': tensor(0.4975, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0731, device='cuda:0'), 'train_loss_ce': tensor(0.4251, device='cuda:0'), 'train_loss_bbox': tensor(0.1307, device='cuda:0'), 'train_loss_giou': tensor(0.4972, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1575, device='cuda:0'), 'validation_loss_ce': tensor(0.3838, device='cuda:0'), 'validation_loss_bbox': tensor(0.1474, device='cuda:0'), 'validation_loss_giou': tensor(0.5183, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6609, device='cuda:0'), 'train_loss_ce': tensor(0.2998, device='cuda:0'), 'train_loss_bbox': tensor(0.1308, device='cuda:0'), 'train_loss_giou': tensor(0.3536, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1064, device='cuda:0'), 'validation_loss_ce': tensor(0.3913, device='cuda:0'), 'validation_loss_bbox': tensor(0.1419, device='cuda:0'), 'validation_loss_giou': tensor(0.5029, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9422, device='cuda:0'), 'train_loss_ce': tensor(0.3974, device='cuda:0'), 'train_loss_bbox': tensor(0.1527, device='cuda:0'), 'train_loss_giou': tensor(0.3908, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0934, device='cuda:0'), 'validation_loss_ce': tensor(0.3858, device='cuda:0'), 'validation_loss_bbox': tensor(0.1411, device='cuda:0'), 'validation_loss_giou': tensor(0.5011, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5661, device='cuda:0'), 'train_loss_ce': tensor(0.4049, device='cuda:0'), 'train_loss_bbox': tensor(0.0887, device='cuda:0'), 'train_loss_giou': tensor(0.3590, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0897, device='cuda:0'), 'validation_loss_ce': tensor(0.3820, device='cuda:0'), 'validation_loss_bbox': tensor(0.1450, device='cuda:0'), 'validation_loss_giou': tensor(0.4914, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8715, device='cuda:0'), 'train_loss_ce': tensor(0.2896, device='cuda:0'), 'train_loss_bbox': tensor(0.1124, device='cuda:0'), 'train_loss_giou': tensor(0.5099, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1005, device='cuda:0'), 'validation_loss_ce': tensor(0.3885, device='cuda:0'), 'validation_loss_bbox': tensor(0.1402, device='cuda:0'), 'validation_loss_giou': tensor(0.5054, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3379, device='cuda:0'), 'train_loss_ce': tensor(0.2874, device='cuda:0'), 'train_loss_bbox': tensor(0.1206, device='cuda:0'), 'train_loss_giou': tensor(0.7238, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0576, device='cuda:0'), 'validation_loss_ce': tensor(0.3837, device='cuda:0'), 'validation_loss_bbox': tensor(0.1349, device='cuda:0'), 'validation_loss_giou': tensor(0.4997, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6371, device='cuda:0'), 'train_loss_ce': tensor(0.3817, device='cuda:0'), 'train_loss_bbox': tensor(0.0911, device='cuda:0'), 'train_loss_giou': tensor(0.3999, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0546, device='cuda:0'), 'validation_loss_ce': tensor(0.3860, device='cuda:0'), 'validation_loss_bbox': tensor(0.1380, device='cuda:0'), 'validation_loss_giou': tensor(0.4893, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8805, device='cuda:0'), 'train_loss_ce': tensor(0.4204, device='cuda:0'), 'train_loss_bbox': tensor(0.1027, device='cuda:0'), 'train_loss_giou': tensor(0.4732, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0748, device='cuda:0'), 'validation_loss_ce': tensor(0.3845, device='cuda:0'), 'validation_loss_bbox': tensor(0.1371, device='cuda:0'), 'validation_loss_giou': tensor(0.5024, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9058, device='cuda:0'), 'train_loss_ce': tensor(0.3446, device='cuda:0'), 'train_loss_bbox': tensor(0.1163, device='cuda:0'), 'train_loss_giou': tensor(0.4899, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0819, device='cuda:0'), 'validation_loss_ce': tensor(0.3845, device='cuda:0'), 'validation_loss_bbox': tensor(0.1385, device='cuda:0'), 'validation_loss_giou': tensor(0.5025, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4291, device='cuda:0'), 'train_loss_ce': tensor(0.3248, device='cuda:0'), 'train_loss_bbox': tensor(0.0844, device='cuda:0'), 'train_loss_giou': tensor(0.3410, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1260, device='cuda:0'), 'validation_loss_ce': tensor(0.3788, device='cuda:0'), 'validation_loss_bbox': tensor(0.1420, device='cuda:0'), 'validation_loss_giou': tensor(0.5187, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7359, device='cuda:0'), 'train_loss_ce': tensor(0.4413, device='cuda:0'), 'train_loss_bbox': tensor(0.1164, device='cuda:0'), 'train_loss_giou': tensor(0.3562, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1060, device='cuda:0'), 'validation_loss_ce': tensor(0.3866, device='cuda:0'), 'validation_loss_bbox': tensor(0.1412, device='cuda:0'), 'validation_loss_giou': tensor(0.5067, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2880, device='cuda:0'), 'train_loss_ce': tensor(0.4125, device='cuda:0'), 'train_loss_bbox': tensor(0.1120, device='cuda:0'), 'train_loss_giou': tensor(0.6576, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0801, device='cuda:0'), 'validation_loss_ce': tensor(0.3830, device='cuda:0'), 'validation_loss_bbox': tensor(0.1353, device='cuda:0'), 'validation_loss_giou': tensor(0.5104, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1695, device='cuda:0'), 'train_loss_ce': tensor(0.4099, device='cuda:0'), 'train_loss_bbox': tensor(0.1342, device='cuda:0'), 'train_loss_giou': tensor(0.5443, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1187, device='cuda:0'), 'validation_loss_ce': tensor(0.3830, device='cuda:0'), 'validation_loss_bbox': tensor(0.1398, device='cuda:0'), 'validation_loss_giou': tensor(0.5184, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8867, device='cuda:0'), 'train_loss_ce': tensor(0.3194, device='cuda:0'), 'train_loss_bbox': tensor(0.1411, device='cuda:0'), 'train_loss_giou': tensor(0.4310, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1040, device='cuda:0'), 'validation_loss_ce': tensor(0.3862, device='cuda:0'), 'validation_loss_bbox': tensor(0.1408, device='cuda:0'), 'validation_loss_giou': tensor(0.5068, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3850, device='cuda:0'), 'train_loss_ce': tensor(0.3493, device='cuda:0'), 'train_loss_bbox': tensor(0.1546, device='cuda:0'), 'train_loss_giou': tensor(0.6314, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0848, device='cuda:0'), 'validation_loss_ce': tensor(0.3840, device='cuda:0'), 'validation_loss_bbox': tensor(0.1406, device='cuda:0'), 'validation_loss_giou': tensor(0.4988, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0267, device='cuda:0'), 'train_loss_ce': tensor(0.3763, device='cuda:0'), 'train_loss_bbox': tensor(0.1346, device='cuda:0'), 'train_loss_giou': tensor(0.4888, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1331, device='cuda:0'), 'validation_loss_ce': tensor(0.3804, device='cuda:0'), 'validation_loss_bbox': tensor(0.1453, device='cuda:0'), 'validation_loss_giou': tensor(0.5132, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5077, device='cuda:0'), 'train_loss_ce': tensor(0.4619, device='cuda:0'), 'train_loss_bbox': tensor(0.1632, device='cuda:0'), 'train_loss_giou': tensor(0.6150, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1199, device='cuda:0'), 'validation_loss_ce': tensor(0.3893, device='cuda:0'), 'validation_loss_bbox': tensor(0.1443, device='cuda:0'), 'validation_loss_giou': tensor(0.5045, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7107, device='cuda:0'), 'train_loss_ce': tensor(0.3087, device='cuda:0'), 'train_loss_bbox': tensor(0.1234, device='cuda:0'), 'train_loss_giou': tensor(0.3924, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0656, device='cuda:0'), 'validation_loss_ce': tensor(0.3807, device='cuda:0'), 'validation_loss_bbox': tensor(0.1377, device='cuda:0'), 'validation_loss_giou': tensor(0.4982, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0077, device='cuda:0'), 'train_loss_ce': tensor(0.2910, device='cuda:0'), 'train_loss_bbox': tensor(0.1449, device='cuda:0'), 'train_loss_giou': tensor(0.4960, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0828, device='cuda:0'), 'validation_loss_ce': tensor(0.3821, device='cuda:0'), 'validation_loss_bbox': tensor(0.1409, device='cuda:0'), 'validation_loss_giou': tensor(0.4980, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4115, device='cuda:0'), 'train_loss_ce': tensor(0.3874, device='cuda:0'), 'train_loss_bbox': tensor(0.0880, device='cuda:0'), 'train_loss_giou': tensor(0.2922, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1684, device='cuda:0'), 'validation_loss_ce': tensor(0.3856, device='cuda:0'), 'validation_loss_bbox': tensor(0.1456, device='cuda:0'), 'validation_loss_giou': tensor(0.5274, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5083, device='cuda:0'), 'train_loss_ce': tensor(0.3590, device='cuda:0'), 'train_loss_bbox': tensor(0.1232, device='cuda:0'), 'train_loss_giou': tensor(0.2667, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1580, device='cuda:0'), 'validation_loss_ce': tensor(0.3892, device='cuda:0'), 'validation_loss_bbox': tensor(0.1426, device='cuda:0'), 'validation_loss_giou': tensor(0.5280, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(2.1324, device='cuda:0'), 'train_loss_ce': tensor(0.2822, device='cuda:0'), 'train_loss_bbox': tensor(0.1537, device='cuda:0'), 'train_loss_giou': tensor(0.5408, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0846, device='cuda:0'), 'validation_loss_ce': tensor(0.3768, device='cuda:0'), 'validation_loss_bbox': tensor(0.1387, device='cuda:0'), 'validation_loss_giou': tensor(0.5072, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9802, device='cuda:0'), 'train_loss_ce': tensor(0.2778, device='cuda:0'), 'train_loss_bbox': tensor(0.1397, device='cuda:0'), 'train_loss_giou': tensor(0.5019, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0597, device='cuda:0'), 'validation_loss_ce': tensor(0.3708, device='cuda:0'), 'validation_loss_bbox': tensor(0.1378, device='cuda:0'), 'validation_loss_giou': tensor(0.5000, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(1.8049, device='cuda:0'), 'train_loss_ce': tensor(0.4238, device='cuda:0'), 'train_loss_bbox': tensor(0.1342, device='cuda:0'), 'train_loss_giou': tensor(0.3550, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1193, device='cuda:0'), 'validation_loss_ce': tensor(0.3712, device='cuda:0'), 'validation_loss_bbox': tensor(0.1435, device='cuda:0'), 'validation_loss_giou': tensor(0.5152, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(1.4867, device='cuda:0'), 'train_loss_ce': tensor(0.3765, device='cuda:0'), 'train_loss_bbox': tensor(0.1116, device='cuda:0'), 'train_loss_giou': tensor(0.2762, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0593, device='cuda:0'), 'validation_loss_ce': tensor(0.3730, device='cuda:0'), 'validation_loss_bbox': tensor(0.1393, device='cuda:0'), 'validation_loss_giou': tensor(0.4948, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6941, device='cuda:0'), 'train_loss_ce': tensor(0.3182, device='cuda:0'), 'train_loss_bbox': tensor(0.1069, device='cuda:0'), 'train_loss_giou': tensor(0.4207, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0618, device='cuda:0'), 'validation_loss_ce': tensor(0.3682, device='cuda:0'), 'validation_loss_bbox': tensor(0.1379, device='cuda:0'), 'validation_loss_giou': tensor(0.5021, device='cuda:0'), 'validation_cardinality_error': tensor(0.8485, device='cuda:0')}
{'training_loss': tensor(1.1113, device='cuda:0'), 'train_loss_ce': tensor(0.3081, device='cuda:0'), 'train_loss_bbox': tensor(0.0766, device='cuda:0'), 'train_loss_giou': tensor(0.2101, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0995, device='cuda:0'), 'validation_loss_ce': tensor(0.3756, device='cuda:0'), 'validation_loss_bbox': tensor(0.1425, device='cuda:0'), 'validation_loss_giou': tensor(0.5057, device='cuda:0'), 'validation_cardinality_error': tensor(0.7879, device='cuda:0')}
{'training_loss': tensor(1.2509, device='cuda:0'), 'train_loss_ce': tensor(0.2919, device='cuda:0'), 'train_loss_bbox': tensor(0.0893, device='cuda:0'), 'train_loss_giou': tensor(0.2564, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0875, device='cuda:0'), 'validation_loss_ce': tensor(0.3768, device='cuda:0'), 'validation_loss_bbox': tensor(0.1419, device='cuda:0'), 'validation_loss_giou': tensor(0.5006, device='cuda:0'), 'validation_cardinality_error': tensor(0.8889, device='cuda:0')}
{'training_loss': tensor(2.0985, device='cuda:0'), 'train_loss_ce': tensor(0.4567, device='cuda:0'), 'train_loss_bbox': tensor(0.1506, device='cuda:0'), 'train_loss_giou': tensor(0.4444, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0427, device='cuda:0'), 'validation_loss_ce': tensor(0.3717, device='cuda:0'), 'validation_loss_bbox': tensor(0.1338, device='cuda:0'), 'validation_loss_giou': tensor(0.5009, device='cuda:0'), 'validation_cardinality_error': tensor(0.8586, device='cuda:0')}
{'training_loss': tensor(1.4819, device='cuda:0'), 'train_loss_ce': tensor(0.3455, device='cuda:0'), 'train_loss_bbox': tensor(0.0939, device='cuda:0'), 'train_loss_giou': tensor(0.3335, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0359, device='cuda:0'), 'validation_loss_ce': tensor(0.3772, device='cuda:0'), 'validation_loss_bbox': tensor(0.1353, device='cuda:0'), 'validation_loss_giou': tensor(0.4910, device='cuda:0'), 'validation_cardinality_error': tensor(0.8081, device='cuda:0')}
{'training_loss': tensor(1.5143, device='cuda:0'), 'train_loss_ce': tensor(0.3716, device='cuda:0'), 'train_loss_bbox': tensor(0.0961, device='cuda:0'), 'train_loss_giou': tensor(0.3310, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0415, device='cuda:0'), 'validation_loss_ce': tensor(0.3759, device='cuda:0'), 'validation_loss_bbox': tensor(0.1340, device='cuda:0'), 'validation_loss_giou': tensor(0.4977, device='cuda:0'), 'validation_cardinality_error': tensor(0.7172, device='cuda:0')}
{'training_loss': tensor(1.5073, device='cuda:0'), 'train_loss_ce': tensor(0.4135, device='cuda:0'), 'train_loss_bbox': tensor(0.0790, device='cuda:0'), 'train_loss_giou': tensor(0.3494, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0644, device='cuda:0'), 'validation_loss_ce': tensor(0.3671, device='cuda:0'), 'validation_loss_bbox': tensor(0.1376, device='cuda:0'), 'validation_loss_giou': tensor(0.5045, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6490, device='cuda:0'), 'train_loss_ce': tensor(0.3305, device='cuda:0'), 'train_loss_bbox': tensor(0.1019, device='cuda:0'), 'train_loss_giou': tensor(0.4045, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0022, device='cuda:0'), 'validation_loss_ce': tensor(0.3722, device='cuda:0'), 'validation_loss_bbox': tensor(0.1319, device='cuda:0'), 'validation_loss_giou': tensor(0.4852, device='cuda:0'), 'validation_cardinality_error': tensor(0.7677, device='cuda:0')}
{'training_loss': tensor(1.5561, device='cuda:0'), 'train_loss_ce': tensor(0.3952, device='cuda:0'), 'train_loss_bbox': tensor(0.0957, device='cuda:0'), 'train_loss_giou': tensor(0.3413, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0142, device='cuda:0'), 'validation_loss_ce': tensor(0.3756, device='cuda:0'), 'validation_loss_bbox': tensor(0.1325, device='cuda:0'), 'validation_loss_giou': tensor(0.4880, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(1.7862, device='cuda:0'), 'train_loss_ce': tensor(0.4257, device='cuda:0'), 'train_loss_bbox': tensor(0.0938, device='cuda:0'), 'train_loss_giou': tensor(0.4458, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0516, device='cuda:0'), 'validation_loss_ce': tensor(0.3752, device='cuda:0'), 'validation_loss_bbox': tensor(0.1374, device='cuda:0'), 'validation_loss_giou': tensor(0.4947, device='cuda:0'), 'validation_cardinality_error': tensor(0.7273, device='cuda:0')}
{'training_loss': tensor(1.2506, device='cuda:0'), 'train_loss_ce': tensor(0.2011, device='cuda:0'), 'train_loss_bbox': tensor(0.0865, device='cuda:0'), 'train_loss_giou': tensor(0.3084, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0788, device='cuda:0'), 'validation_loss_ce': tensor(0.3698, device='cuda:0'), 'validation_loss_bbox': tensor(0.1379, device='cuda:0'), 'validation_loss_giou': tensor(0.5097, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(1.0275, device='cuda:0'), 'train_loss_ce': tensor(0.3081, device='cuda:0'), 'train_loss_bbox': tensor(0.0678, device='cuda:0'), 'train_loss_giou': tensor(0.1902, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0275, device='cuda:0'), 'validation_loss_ce': tensor(0.3691, device='cuda:0'), 'validation_loss_bbox': tensor(0.1308, device='cuda:0'), 'validation_loss_giou': tensor(0.5021, device='cuda:0'), 'validation_cardinality_error': tensor(0.8485, device='cuda:0')}
{'training_loss': tensor(1.1726, device='cuda:0'), 'train_loss_ce': tensor(0.3240, device='cuda:0'), 'train_loss_bbox': tensor(0.0523, device='cuda:0'), 'train_loss_giou': tensor(0.2935, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0288, device='cuda:0'), 'validation_loss_ce': tensor(0.3669, device='cuda:0'), 'validation_loss_bbox': tensor(0.1348, device='cuda:0'), 'validation_loss_giou': tensor(0.4941, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(1.5491, device='cuda:0'), 'train_loss_ce': tensor(0.3478, device='cuda:0'), 'train_loss_bbox': tensor(0.0993, device='cuda:0'), 'train_loss_giou': tensor(0.3525, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0170, device='cuda:0'), 'validation_loss_ce': tensor(0.3702, device='cuda:0'), 'validation_loss_bbox': tensor(0.1325, device='cuda:0'), 'validation_loss_giou': tensor(0.4921, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(1.3482, device='cuda:0'), 'train_loss_ce': tensor(0.2806, device='cuda:0'), 'train_loss_bbox': tensor(0.0887, device='cuda:0'), 'train_loss_giou': tensor(0.3121, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0218, device='cuda:0'), 'validation_loss_ce': tensor(0.3643, device='cuda:0'), 'validation_loss_bbox': tensor(0.1347, device='cuda:0'), 'validation_loss_giou': tensor(0.4919, device='cuda:0'), 'validation_cardinality_error': tensor(0.5859, device='cuda:0')}
{'training_loss': tensor(1.4447, device='cuda:0'), 'train_loss_ce': tensor(0.4458, device='cuda:0'), 'train_loss_bbox': tensor(0.0673, device='cuda:0'), 'train_loss_giou': tensor(0.3311, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0012, device='cuda:0'), 'validation_loss_ce': tensor(0.3722, device='cuda:0'), 'validation_loss_bbox': tensor(0.1287, device='cuda:0'), 'validation_loss_giou': tensor(0.4928, device='cuda:0'), 'validation_cardinality_error': tensor(0.7778, device='cuda:0')}
{'training_loss': tensor(1.0222, device='cuda:0'), 'train_loss_ce': tensor(0.2589, device='cuda:0'), 'train_loss_bbox': tensor(0.0659, device='cuda:0'), 'train_loss_giou': tensor(0.2170, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0226, device='cuda:0'), 'validation_loss_ce': tensor(0.3678, device='cuda:0'), 'validation_loss_bbox': tensor(0.1364, device='cuda:0'), 'validation_loss_giou': tensor(0.4865, device='cuda:0'), 'validation_cardinality_error': tensor(0.8586, device='cuda:0')}
```
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
mrdbourke/detr_finetuned_trashify_box_detector
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr_finetuned_trashify_box_detector
This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1302
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 25
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 101.8783 | 1.0 | 50 | 7.5132 |
| 4.1455 | 2.0 | 100 | 3.0556 |
| 2.5964 | 3.0 | 150 | 2.2737 |
| 2.2773 | 4.0 | 200 | 2.0691 |
| 2.0818 | 5.0 | 250 | 1.8494 |
| 1.9253 | 6.0 | 300 | 1.6872 |
| 1.7802 | 7.0 | 350 | 1.6033 |
| 1.675 | 8.0 | 400 | 1.4511 |
| 1.5263 | 9.0 | 450 | 1.4097 |
| 1.4322 | 10.0 | 500 | 1.3397 |
| 1.386 | 11.0 | 550 | 1.2897 |
| 1.3098 | 12.0 | 600 | 1.2813 |
| 1.248 | 13.0 | 650 | 1.2096 |
| 1.209 | 14.0 | 700 | 1.2200 |
| 1.1757 | 15.0 | 750 | 1.1987 |
| 1.144 | 16.0 | 800 | 1.1757 |
| 1.0732 | 17.0 | 850 | 1.1935 |
| 1.0501 | 18.0 | 900 | 1.1531 |
| 0.9864 | 19.0 | 950 | 1.1576 |
| 0.9941 | 20.0 | 1000 | 1.1513 |
| 0.9589 | 21.0 | 1050 | 1.1450 |
| 0.9279 | 22.0 | 1100 | 1.1355 |
| 0.9071 | 23.0 | 1150 | 1.1233 |
| 0.8851 | 24.0 | 1200 | 1.1338 |
| 0.8709 | 25.0 | 1250 | 1.1302 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu124
- Datasets 2.21.0
- Tokenizers 0.19.1
|
[
"bin",
"hand",
"not_bin",
"not_hand",
"not_trash",
"trash",
"trash_arm"
] |
MedicalVision/detr_nih_3ep
|
## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.001
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.008
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.017
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.017
```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.003
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.007
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.002
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.003
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.024
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.066
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.070
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.071
```
## Config
- dataset: NIH
- original model: facebook/detr-resnet-50
- lr: 0.0001
- max_epochs: 3
## Logging
### Training process
```
{'training_loss': tensor(2.0822, device='cuda:0'), 'train_loss_ce': tensor(0.5032, device='cuda:0'), 'train_loss_bbox': tensor(0.1356, device='cuda:0'), 'train_loss_giou': tensor(0.4505, device='cuda:0'), 'train_cardinality_error': tensor(1.0625, device='cuda:0'), 'validation_loss': tensor(2.3906, device='cuda:0'), 'validation_loss_ce': tensor(0.5131, device='cuda:0'), 'validation_loss_bbox': tensor(0.1641, device='cuda:0'), 'validation_loss_giou': tensor(0.5285, device='cuda:0'), 'validation_cardinality_error': tensor(1.1227, device='cuda:0')}
{'training_loss': tensor(2.5546, device='cuda:0'), 'train_loss_ce': tensor(0.5681, device='cuda:0'), 'train_loss_bbox': tensor(0.1646, device='cuda:0'), 'train_loss_giou': tensor(0.5818, device='cuda:0'), 'train_cardinality_error': tensor(1.2500, device='cuda:0'), 'validation_loss': tensor(2.4028, device='cuda:0'), 'validation_loss_ce': tensor(0.5090, device='cuda:0'), 'validation_loss_bbox': tensor(0.1696, device='cuda:0'), 'validation_loss_giou': tensor(0.5230, device='cuda:0'), 'validation_cardinality_error': tensor(1.1227, device='cuda:0')}
{'training_loss': tensor(2.4528, device='cuda:0'), 'train_loss_ce': tensor(0.4475, device='cuda:0'), 'train_loss_bbox': tensor(0.1614, device='cuda:0'), 'train_loss_giou': tensor(0.5991, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3522, device='cuda:0'), 'validation_loss_ce': tensor(0.4847, device='cuda:0'), 'validation_loss_bbox': tensor(0.1584, device='cuda:0'), 'validation_loss_giou': tensor(0.5377, device='cuda:0'), 'validation_cardinality_error': tensor(1.1227, device='cuda:0')}
```
### Validation process
```
{'validation_loss': tensor(6.1819, device='cuda:0'), 'validation_loss_ce': tensor(2.1987, device='cuda:0'), 'validation_loss_bbox': tensor(0.4528, device='cuda:0'), 'validation_loss_giou': tensor(0.8597, device='cuda:0'), 'validation_cardinality_error': tensor(97.7500, device='cuda:0')}
{'training_loss': tensor(2.0822, device='cuda:0'), 'train_loss_ce': tensor(0.5032, device='cuda:0'), 'train_loss_bbox': tensor(0.1356, device='cuda:0'), 'train_loss_giou': tensor(0.4505, device='cuda:0'), 'train_cardinality_error': tensor(1.0625, device='cuda:0'), 'validation_loss': tensor(2.3906, device='cuda:0'), 'validation_loss_ce': tensor(0.5131, device='cuda:0'), 'validation_loss_bbox': tensor(0.1641, device='cuda:0'), 'validation_loss_giou': tensor(0.5285, device='cuda:0'), 'validation_cardinality_error': tensor(1.1227, device='cuda:0')}
{'training_loss': tensor(2.5546, device='cuda:0'), 'train_loss_ce': tensor(0.5681, device='cuda:0'), 'train_loss_bbox': tensor(0.1646, device='cuda:0'), 'train_loss_giou': tensor(0.5818, device='cuda:0'), 'train_cardinality_error': tensor(1.2500, device='cuda:0'), 'validation_loss': tensor(2.4028, device='cuda:0'), 'validation_loss_ce': tensor(0.5090, device='cuda:0'), 'validation_loss_bbox': tensor(0.1696, device='cuda:0'), 'validation_loss_giou': tensor(0.5230, device='cuda:0'), 'validation_cardinality_error': tensor(1.1227, device='cuda:0')}
{'training_loss': tensor(2.4528, device='cuda:0'), 'train_loss_ce': tensor(0.4475, device='cuda:0'), 'train_loss_bbox': tensor(0.1614, device='cuda:0'), 'train_loss_giou': tensor(0.5991, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3522, device='cuda:0'), 'validation_loss_ce': tensor(0.4847, device='cuda:0'), 'validation_loss_bbox': tensor(0.1584, device='cuda:0'), 'validation_loss_giou': tensor(0.5377, device='cuda:0'), 'validation_cardinality_error': tensor(1.1227, device='cuda:0')}
```
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
mahim05078/detr-finetuned-bangla-logos-small
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4"
] |
MedicalVision/detr_nih_300ep
|
## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.002
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.008
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.012
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.012
```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.026
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.055
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.019
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.050
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.026
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.063
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.147
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.169
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.050
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.170
```
## Config
- dataset: NIH
- original model: facebook/detr-resnet-50
- lr: 0.0001
- dropout_rate: 0.1
- weight_decay: 0.0001
- max_epochs: 300
- train samples: 885
## Logging
### Training process
```
{'validation_loss': tensor(6.1729, device='cuda:0'), 'validation_loss_ce': tensor(2.3765, device='cuda:0'), 'validation_loss_bbox': tensor(0.4626, device='cuda:0'), 'validation_loss_giou': tensor(0.7416, device='cuda:0'), 'validation_cardinality_error': tensor(99., device='cuda:0')}
{'training_loss': tensor(1.9768, device='cuda:0'), 'train_loss_ce': tensor(0.4683, device='cuda:0'), 'train_loss_bbox': tensor(0.1455, device='cuda:0'), 'train_loss_giou': tensor(0.3905, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5229, device='cuda:0'), 'validation_loss_ce': tensor(0.4876, device='cuda:0'), 'validation_loss_bbox': tensor(0.1898, device='cuda:0'), 'validation_loss_giou': tensor(0.5430, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2565, device='cuda:0'), 'train_loss_ce': tensor(0.5037, device='cuda:0'), 'train_loss_bbox': tensor(0.1667, device='cuda:0'), 'train_loss_giou': tensor(0.4595, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.4304, device='cuda:0'), 'validation_loss_ce': tensor(0.4650, device='cuda:0'), 'validation_loss_bbox': tensor(0.1682, device='cuda:0'), 'validation_loss_giou': tensor(0.5622, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8743, device='cuda:0'), 'train_loss_ce': tensor(0.4792, device='cuda:0'), 'train_loss_bbox': tensor(0.1430, device='cuda:0'), 'train_loss_giou': tensor(0.3400, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2783, device='cuda:0'), 'validation_loss_ce': tensor(0.4509, device='cuda:0'), 'validation_loss_bbox': tensor(0.1640, device='cuda:0'), 'validation_loss_giou': tensor(0.5036, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7595, device='cuda:0'), 'train_loss_ce': tensor(0.3362, device='cuda:0'), 'train_loss_bbox': tensor(0.1213, device='cuda:0'), 'train_loss_giou': tensor(0.4083, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2793, device='cuda:0'), 'validation_loss_ce': tensor(0.4431, device='cuda:0'), 'validation_loss_bbox': tensor(0.1564, device='cuda:0'), 'validation_loss_giou': tensor(0.5271, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0072, device='cuda:0'), 'train_loss_ce': tensor(0.3691, device='cuda:0'), 'train_loss_bbox': tensor(0.1479, device='cuda:0'), 'train_loss_giou': tensor(0.4493, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3733, device='cuda:0'), 'validation_loss_ce': tensor(0.4411, device='cuda:0'), 'validation_loss_bbox': tensor(0.1695, device='cuda:0'), 'validation_loss_giou': tensor(0.5423, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0424, device='cuda:0'), 'train_loss_ce': tensor(0.4760, device='cuda:0'), 'train_loss_bbox': tensor(0.1358, device='cuda:0'), 'train_loss_giou': tensor(0.4438, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2889, device='cuda:0'), 'validation_loss_ce': tensor(0.4379, device='cuda:0'), 'validation_loss_bbox': tensor(0.1555, device='cuda:0'), 'validation_loss_giou': tensor(0.5367, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3528, device='cuda:0'), 'train_loss_ce': tensor(0.4798, device='cuda:0'), 'train_loss_bbox': tensor(0.1837, device='cuda:0'), 'train_loss_giou': tensor(0.4772, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.4406, device='cuda:0'), 'validation_loss_ce': tensor(0.4332, device='cuda:0'), 'validation_loss_bbox': tensor(0.1816, device='cuda:0'), 'validation_loss_giou': tensor(0.5496, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3109, device='cuda:0'), 'train_loss_ce': tensor(0.4148, device='cuda:0'), 'train_loss_bbox': tensor(0.1586, device='cuda:0'), 'train_loss_giou': tensor(0.5516, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3142, device='cuda:0'), 'validation_loss_ce': tensor(0.4199, device='cuda:0'), 'validation_loss_bbox': tensor(0.1623, device='cuda:0'), 'validation_loss_giou': tensor(0.5413, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4382, device='cuda:0'), 'train_loss_ce': tensor(0.4403, device='cuda:0'), 'train_loss_bbox': tensor(0.1548, device='cuda:0'), 'train_loss_giou': tensor(0.6120, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3237, device='cuda:0'), 'validation_loss_ce': tensor(0.4240, device='cuda:0'), 'validation_loss_bbox': tensor(0.1715, device='cuda:0'), 'validation_loss_giou': tensor(0.5211, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6776, device='cuda:0'), 'train_loss_ce': tensor(0.4352, device='cuda:0'), 'train_loss_bbox': tensor(0.1960, device='cuda:0'), 'train_loss_giou': tensor(0.6313, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2536, device='cuda:0'), 'validation_loss_ce': tensor(0.4135, device='cuda:0'), 'validation_loss_bbox': tensor(0.1544, device='cuda:0'), 'validation_loss_giou': tensor(0.5340, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6297, device='cuda:0'), 'train_loss_ce': tensor(0.4469, device='cuda:0'), 'train_loss_bbox': tensor(0.1635, device='cuda:0'), 'train_loss_giou': tensor(0.6827, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3257, device='cuda:0'), 'validation_loss_ce': tensor(0.4182, device='cuda:0'), 'validation_loss_bbox': tensor(0.1592, device='cuda:0'), 'validation_loss_giou': tensor(0.5557, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2102, device='cuda:0'), 'train_loss_ce': tensor(0.4286, device='cuda:0'), 'train_loss_bbox': tensor(0.1806, device='cuda:0'), 'train_loss_giou': tensor(0.4392, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2917, device='cuda:0'), 'validation_loss_ce': tensor(0.4211, device='cuda:0'), 'validation_loss_bbox': tensor(0.1658, device='cuda:0'), 'validation_loss_giou': tensor(0.5207, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6300, device='cuda:0'), 'train_loss_ce': tensor(0.4146, device='cuda:0'), 'train_loss_bbox': tensor(0.2136, device='cuda:0'), 'train_loss_giou': tensor(0.5736, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2158, device='cuda:0'), 'validation_loss_ce': tensor(0.4029, device='cuda:0'), 'validation_loss_bbox': tensor(0.1491, device='cuda:0'), 'validation_loss_giou': tensor(0.5337, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4508, device='cuda:0'), 'train_loss_ce': tensor(0.4961, device='cuda:0'), 'train_loss_bbox': tensor(0.1671, device='cuda:0'), 'train_loss_giou': tensor(0.5597, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2129, device='cuda:0'), 'validation_loss_ce': tensor(0.4059, device='cuda:0'), 'validation_loss_bbox': tensor(0.1541, device='cuda:0'), 'validation_loss_giou': tensor(0.5182, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3293, device='cuda:0'), 'train_loss_ce': tensor(0.4587, device='cuda:0'), 'train_loss_bbox': tensor(0.1856, device='cuda:0'), 'train_loss_giou': tensor(0.4713, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2456, device='cuda:0'), 'validation_loss_ce': tensor(0.4039, device='cuda:0'), 'validation_loss_bbox': tensor(0.1538, device='cuda:0'), 'validation_loss_giou': tensor(0.5365, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1533, device='cuda:0'), 'train_loss_ce': tensor(0.4523, device='cuda:0'), 'train_loss_bbox': tensor(0.1418, device='cuda:0'), 'train_loss_giou': tensor(0.4961, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1543, device='cuda:0'), 'validation_loss_ce': tensor(0.4051, device='cuda:0'), 'validation_loss_bbox': tensor(0.1477, device='cuda:0'), 'validation_loss_giou': tensor(0.5053, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4328, device='cuda:0'), 'train_loss_ce': tensor(0.4121, device='cuda:0'), 'train_loss_bbox': tensor(0.1924, device='cuda:0'), 'train_loss_giou': tensor(0.5293, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1815, device='cuda:0'), 'validation_loss_ce': tensor(0.4003, device='cuda:0'), 'validation_loss_bbox': tensor(0.1553, device='cuda:0'), 'validation_loss_giou': tensor(0.5025, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3327, device='cuda:0'), 'train_loss_ce': tensor(0.4085, device='cuda:0'), 'train_loss_bbox': tensor(0.1528, device='cuda:0'), 'train_loss_giou': tensor(0.5802, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1423, device='cuda:0'), 'validation_loss_ce': tensor(0.4021, device='cuda:0'), 'validation_loss_bbox': tensor(0.1481, device='cuda:0'), 'validation_loss_giou': tensor(0.4998, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1731, device='cuda:0'), 'train_loss_ce': tensor(0.3394, device='cuda:0'), 'train_loss_bbox': tensor(0.1433, device='cuda:0'), 'train_loss_giou': tensor(0.5587, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1276, device='cuda:0'), 'validation_loss_ce': tensor(0.4034, device='cuda:0'), 'validation_loss_bbox': tensor(0.1427, device='cuda:0'), 'validation_loss_giou': tensor(0.5054, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9050, device='cuda:0'), 'train_loss_ce': tensor(0.4386, device='cuda:0'), 'train_loss_bbox': tensor(0.1259, device='cuda:0'), 'train_loss_giou': tensor(0.4183, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1161, device='cuda:0'), 'validation_loss_ce': tensor(0.4035, device='cuda:0'), 'validation_loss_bbox': tensor(0.1446, device='cuda:0'), 'validation_loss_giou': tensor(0.4949, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4393, device='cuda:0'), 'train_loss_ce': tensor(0.3216, device='cuda:0'), 'train_loss_bbox': tensor(0.0883, device='cuda:0'), 'train_loss_giou': tensor(0.3381, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1112, device='cuda:0'), 'validation_loss_ce': tensor(0.4004, device='cuda:0'), 'validation_loss_bbox': tensor(0.1439, device='cuda:0'), 'validation_loss_giou': tensor(0.4955, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9875, device='cuda:0'), 'train_loss_ce': tensor(0.3581, device='cuda:0'), 'train_loss_bbox': tensor(0.1700, device='cuda:0'), 'train_loss_giou': tensor(0.3896, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1815, device='cuda:0'), 'validation_loss_ce': tensor(0.3924, device='cuda:0'), 'validation_loss_bbox': tensor(0.1487, device='cuda:0'), 'validation_loss_giou': tensor(0.5228, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1323, device='cuda:0'), 'train_loss_ce': tensor(0.3492, device='cuda:0'), 'train_loss_bbox': tensor(0.1593, device='cuda:0'), 'train_loss_giou': tensor(0.4933, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1192, device='cuda:0'), 'validation_loss_ce': tensor(0.3907, device='cuda:0'), 'validation_loss_bbox': tensor(0.1410, device='cuda:0'), 'validation_loss_giou': tensor(0.5117, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6604, device='cuda:0'), 'train_loss_ce': tensor(0.3695, device='cuda:0'), 'train_loss_bbox': tensor(0.1074, device='cuda:0'), 'train_loss_giou': tensor(0.3768, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1118, device='cuda:0'), 'validation_loss_ce': tensor(0.3882, device='cuda:0'), 'validation_loss_bbox': tensor(0.1436, device='cuda:0'), 'validation_loss_giou': tensor(0.5028, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9365, device='cuda:0'), 'train_loss_ce': tensor(0.4398, device='cuda:0'), 'train_loss_bbox': tensor(0.1379, device='cuda:0'), 'train_loss_giou': tensor(0.4036, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0648, device='cuda:0'), 'validation_loss_ce': tensor(0.3894, device='cuda:0'), 'validation_loss_bbox': tensor(0.1391, device='cuda:0'), 'validation_loss_giou': tensor(0.4900, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8999, device='cuda:0'), 'train_loss_ce': tensor(0.4143, device='cuda:0'), 'train_loss_bbox': tensor(0.0899, device='cuda:0'), 'train_loss_giou': tensor(0.5180, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1873, device='cuda:0'), 'validation_loss_ce': tensor(0.3962, device='cuda:0'), 'validation_loss_bbox': tensor(0.1504, device='cuda:0'), 'validation_loss_giou': tensor(0.5195, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5143, device='cuda:0'), 'train_loss_ce': tensor(0.3970, device='cuda:0'), 'train_loss_bbox': tensor(0.1021, device='cuda:0'), 'train_loss_giou': tensor(0.3035, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1281, device='cuda:0'), 'validation_loss_ce': tensor(0.3872, device='cuda:0'), 'validation_loss_bbox': tensor(0.1442, device='cuda:0'), 'validation_loss_giou': tensor(0.5100, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0324, device='cuda:0'), 'train_loss_ce': tensor(0.3770, device='cuda:0'), 'train_loss_bbox': tensor(0.1464, device='cuda:0'), 'train_loss_giou': tensor(0.4618, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3013, device='cuda:0'), 'validation_loss_ce': tensor(0.3861, device='cuda:0'), 'validation_loss_bbox': tensor(0.1602, device='cuda:0'), 'validation_loss_giou': tensor(0.5572, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7836, device='cuda:0'), 'train_loss_ce': tensor(0.2117, device='cuda:0'), 'train_loss_bbox': tensor(0.1052, device='cuda:0'), 'train_loss_giou': tensor(0.5228, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2670, device='cuda:0'), 'validation_loss_ce': tensor(0.3883, device='cuda:0'), 'validation_loss_bbox': tensor(0.1565, device='cuda:0'), 'validation_loss_giou': tensor(0.5482, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9509, device='cuda:0'), 'train_loss_ce': tensor(0.3883, device='cuda:0'), 'train_loss_bbox': tensor(0.1198, device='cuda:0'), 'train_loss_giou': tensor(0.4818, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2944, device='cuda:0'), 'validation_loss_ce': tensor(0.3947, device='cuda:0'), 'validation_loss_bbox': tensor(0.1655, device='cuda:0'), 'validation_loss_giou': tensor(0.5361, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5513, device='cuda:0'), 'train_loss_ce': tensor(0.3791, device='cuda:0'), 'train_loss_bbox': tensor(0.1619, device='cuda:0'), 'train_loss_giou': tensor(0.6813, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2066, device='cuda:0'), 'validation_loss_ce': tensor(0.3921, device='cuda:0'), 'validation_loss_bbox': tensor(0.1570, device='cuda:0'), 'validation_loss_giou': tensor(0.5148, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0664, device='cuda:0'), 'train_loss_ce': tensor(0.2885, device='cuda:0'), 'train_loss_bbox': tensor(0.1384, device='cuda:0'), 'train_loss_giou': tensor(0.5431, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2298, device='cuda:0'), 'validation_loss_ce': tensor(0.3854, device='cuda:0'), 'validation_loss_bbox': tensor(0.1567, device='cuda:0'), 'validation_loss_giou': tensor(0.5304, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8168, device='cuda:0'), 'train_loss_ce': tensor(0.4226, device='cuda:0'), 'train_loss_bbox': tensor(0.1012, device='cuda:0'), 'train_loss_giou': tensor(0.4442, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0811, device='cuda:0'), 'validation_loss_ce': tensor(0.3888, device='cuda:0'), 'validation_loss_bbox': tensor(0.1430, device='cuda:0'), 'validation_loss_giou': tensor(0.4887, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5709, device='cuda:0'), 'train_loss_ce': tensor(0.3138, device='cuda:0'), 'train_loss_bbox': tensor(0.1387, device='cuda:0'), 'train_loss_giou': tensor(0.2818, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0811, device='cuda:0'), 'validation_loss_ce': tensor(0.3866, device='cuda:0'), 'validation_loss_bbox': tensor(0.1395, device='cuda:0'), 'validation_loss_giou': tensor(0.4986, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4688, device='cuda:0'), 'train_loss_ce': tensor(0.4238, device='cuda:0'), 'train_loss_bbox': tensor(0.1624, device='cuda:0'), 'train_loss_giou': tensor(0.6164, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1392, device='cuda:0'), 'validation_loss_ce': tensor(0.3822, device='cuda:0'), 'validation_loss_bbox': tensor(0.1477, device='cuda:0'), 'validation_loss_giou': tensor(0.5091, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8585, device='cuda:0'), 'train_loss_ce': tensor(0.4070, device='cuda:0'), 'train_loss_bbox': tensor(0.1223, device='cuda:0'), 'train_loss_giou': tensor(0.4198, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1581, device='cuda:0'), 'validation_loss_ce': tensor(0.3767, device='cuda:0'), 'validation_loss_bbox': tensor(0.1489, device='cuda:0'), 'validation_loss_giou': tensor(0.5185, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5960, device='cuda:0'), 'train_loss_ce': tensor(0.3624, device='cuda:0'), 'train_loss_bbox': tensor(0.1700, device='cuda:0'), 'train_loss_giou': tensor(0.6917, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1490, device='cuda:0'), 'validation_loss_ce': tensor(0.3883, device='cuda:0'), 'validation_loss_bbox': tensor(0.1485, device='cuda:0'), 'validation_loss_giou': tensor(0.5090, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8009, device='cuda:0'), 'train_loss_ce': tensor(0.3733, device='cuda:0'), 'train_loss_bbox': tensor(0.1084, device='cuda:0'), 'train_loss_giou': tensor(0.4429, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1493, device='cuda:0'), 'validation_loss_ce': tensor(0.3884, device='cuda:0'), 'validation_loss_bbox': tensor(0.1498, device='cuda:0'), 'validation_loss_giou': tensor(0.5060, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4390, device='cuda:0'), 'train_loss_ce': tensor(0.3220, device='cuda:0'), 'train_loss_bbox': tensor(0.1714, device='cuda:0'), 'train_loss_giou': tensor(0.6301, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1273, device='cuda:0'), 'validation_loss_ce': tensor(0.3849, device='cuda:0'), 'validation_loss_bbox': tensor(0.1406, device='cuda:0'), 'validation_loss_giou': tensor(0.5197, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9436, device='cuda:0'), 'train_loss_ce': tensor(0.3124, device='cuda:0'), 'train_loss_bbox': tensor(0.1541, device='cuda:0'), 'train_loss_giou': tensor(0.4304, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1366, device='cuda:0'), 'validation_loss_ce': tensor(0.3770, device='cuda:0'), 'validation_loss_bbox': tensor(0.1462, device='cuda:0'), 'validation_loss_giou': tensor(0.5144, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6861, device='cuda:0'), 'train_loss_ce': tensor(0.4179, device='cuda:0'), 'train_loss_bbox': tensor(0.1082, device='cuda:0'), 'train_loss_giou': tensor(0.3635, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0992, device='cuda:0'), 'validation_loss_ce': tensor(0.3881, device='cuda:0'), 'validation_loss_bbox': tensor(0.1440, device='cuda:0'), 'validation_loss_giou': tensor(0.4956, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6742, device='cuda:0'), 'train_loss_ce': tensor(0.3585, device='cuda:0'), 'train_loss_bbox': tensor(0.1173, device='cuda:0'), 'train_loss_giou': tensor(0.3645, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1485, device='cuda:0'), 'validation_loss_ce': tensor(0.3871, device='cuda:0'), 'validation_loss_bbox': tensor(0.1487, device='cuda:0'), 'validation_loss_giou': tensor(0.5089, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5242, device='cuda:0'), 'train_loss_ce': tensor(0.4011, device='cuda:0'), 'train_loss_bbox': tensor(0.1749, device='cuda:0'), 'train_loss_giou': tensor(0.6242, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1222, device='cuda:0'), 'validation_loss_ce': tensor(0.3830, device='cuda:0'), 'validation_loss_bbox': tensor(0.1430, device='cuda:0'), 'validation_loss_giou': tensor(0.5121, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7615, device='cuda:0'), 'train_loss_ce': tensor(0.3536, device='cuda:0'), 'train_loss_bbox': tensor(0.1177, device='cuda:0'), 'train_loss_giou': tensor(0.4098, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1244, device='cuda:0'), 'validation_loss_ce': tensor(0.3828, device='cuda:0'), 'validation_loss_bbox': tensor(0.1447, device='cuda:0'), 'validation_loss_giou': tensor(0.5091, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1540, device='cuda:0'), 'train_loss_ce': tensor(0.4076, device='cuda:0'), 'train_loss_bbox': tensor(0.1302, device='cuda:0'), 'train_loss_giou': tensor(0.5478, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1317, device='cuda:0'), 'validation_loss_ce': tensor(0.3798, device='cuda:0'), 'validation_loss_bbox': tensor(0.1468, device='cuda:0'), 'validation_loss_giou': tensor(0.5089, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1596, device='cuda:0'), 'train_loss_ce': tensor(0.3635, device='cuda:0'), 'train_loss_bbox': tensor(0.1233, device='cuda:0'), 'train_loss_giou': tensor(0.5898, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1125, device='cuda:0'), 'validation_loss_ce': tensor(0.3800, device='cuda:0'), 'validation_loss_bbox': tensor(0.1449, device='cuda:0'), 'validation_loss_giou': tensor(0.5039, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8765, device='cuda:0'), 'train_loss_ce': tensor(0.3343, device='cuda:0'), 'train_loss_bbox': tensor(0.0919, device='cuda:0'), 'train_loss_giou': tensor(0.5413, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0806, device='cuda:0'), 'validation_loss_ce': tensor(0.3797, device='cuda:0'), 'validation_loss_bbox': tensor(0.1389, device='cuda:0'), 'validation_loss_giou': tensor(0.5032, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3246, device='cuda:0'), 'train_loss_ce': tensor(0.3787, device='cuda:0'), 'train_loss_bbox': tensor(0.1778, device='cuda:0'), 'train_loss_giou': tensor(0.5285, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0798, device='cuda:0'), 'validation_loss_ce': tensor(0.3758, device='cuda:0'), 'validation_loss_bbox': tensor(0.1417, device='cuda:0'), 'validation_loss_giou': tensor(0.4977, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3424, device='cuda:0'), 'train_loss_ce': tensor(0.1963, device='cuda:0'), 'train_loss_bbox': tensor(0.1047, device='cuda:0'), 'train_loss_giou': tensor(0.3113, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1074, device='cuda:0'), 'validation_loss_ce': tensor(0.3809, device='cuda:0'), 'validation_loss_bbox': tensor(0.1406, device='cuda:0'), 'validation_loss_giou': tensor(0.5116, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2559, device='cuda:0'), 'train_loss_ce': tensor(0.3588, device='cuda:0'), 'train_loss_bbox': tensor(0.1432, device='cuda:0'), 'train_loss_giou': tensor(0.5906, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0993, device='cuda:0'), 'validation_loss_ce': tensor(0.3779, device='cuda:0'), 'validation_loss_bbox': tensor(0.1388, device='cuda:0'), 'validation_loss_giou': tensor(0.5136, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0802, device='cuda:0'), 'train_loss_ce': tensor(0.3706, device='cuda:0'), 'train_loss_bbox': tensor(0.1284, device='cuda:0'), 'train_loss_giou': tensor(0.5339, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0899, device='cuda:0'), 'validation_loss_ce': tensor(0.3839, device='cuda:0'), 'validation_loss_bbox': tensor(0.1380, device='cuda:0'), 'validation_loss_giou': tensor(0.5080, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1732, device='cuda:0'), 'train_loss_ce': tensor(0.4073, device='cuda:0'), 'train_loss_bbox': tensor(0.1728, device='cuda:0'), 'train_loss_giou': tensor(0.4509, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1103, device='cuda:0'), 'validation_loss_ce': tensor(0.3766, device='cuda:0'), 'validation_loss_bbox': tensor(0.1370, device='cuda:0'), 'validation_loss_giou': tensor(0.5245, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3162, device='cuda:0'), 'train_loss_ce': tensor(0.3084, device='cuda:0'), 'train_loss_bbox': tensor(0.0822, device='cuda:0'), 'train_loss_giou': tensor(0.2983, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0768, device='cuda:0'), 'validation_loss_ce': tensor(0.3853, device='cuda:0'), 'validation_loss_bbox': tensor(0.1383, device='cuda:0'), 'validation_loss_giou': tensor(0.4999, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9922, device='cuda:0'), 'train_loss_ce': tensor(0.4556, device='cuda:0'), 'train_loss_bbox': tensor(0.1258, device='cuda:0'), 'train_loss_giou': tensor(0.4537, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0830, device='cuda:0'), 'validation_loss_ce': tensor(0.3769, device='cuda:0'), 'validation_loss_bbox': tensor(0.1375, device='cuda:0'), 'validation_loss_giou': tensor(0.5094, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3636, device='cuda:0'), 'train_loss_ce': tensor(0.4202, device='cuda:0'), 'train_loss_bbox': tensor(0.1257, device='cuda:0'), 'train_loss_giou': tensor(0.6575, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0323, device='cuda:0'), 'validation_loss_ce': tensor(0.3800, device='cuda:0'), 'validation_loss_bbox': tensor(0.1340, device='cuda:0'), 'validation_loss_giou': tensor(0.4910, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8101, device='cuda:0'), 'train_loss_ce': tensor(0.4259, device='cuda:0'), 'train_loss_bbox': tensor(0.1129, device='cuda:0'), 'train_loss_giou': tensor(0.4100, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1178, device='cuda:0'), 'validation_loss_ce': tensor(0.3851, device='cuda:0'), 'validation_loss_bbox': tensor(0.1374, device='cuda:0'), 'validation_loss_giou': tensor(0.5228, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1336, device='cuda:0'), 'train_loss_ce': tensor(0.4710, device='cuda:0'), 'train_loss_bbox': tensor(0.1202, device='cuda:0'), 'train_loss_giou': tensor(0.5308, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0391, device='cuda:0'), 'validation_loss_ce': tensor(0.3816, device='cuda:0'), 'validation_loss_bbox': tensor(0.1341, device='cuda:0'), 'validation_loss_giou': tensor(0.4934, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1983, device='cuda:0'), 'train_loss_ce': tensor(0.3994, device='cuda:0'), 'train_loss_bbox': tensor(0.1535, device='cuda:0'), 'train_loss_giou': tensor(0.5156, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9727, device='cuda:0'), 'validation_loss_ce': tensor(0.3808, device='cuda:0'), 'validation_loss_bbox': tensor(0.1294, device='cuda:0'), 'validation_loss_giou': tensor(0.4724, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3790, device='cuda:0'), 'train_loss_ce': tensor(0.4012, device='cuda:0'), 'train_loss_bbox': tensor(0.1531, device='cuda:0'), 'train_loss_giou': tensor(0.6063, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1039, device='cuda:0'), 'validation_loss_ce': tensor(0.3849, device='cuda:0'), 'validation_loss_bbox': tensor(0.1462, device='cuda:0'), 'validation_loss_giou': tensor(0.4939, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8709, device='cuda:0'), 'train_loss_ce': tensor(0.3784, device='cuda:0'), 'train_loss_bbox': tensor(0.1397, device='cuda:0'), 'train_loss_giou': tensor(0.3969, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1388, device='cuda:0'), 'validation_loss_ce': tensor(0.3697, device='cuda:0'), 'validation_loss_bbox': tensor(0.1442, device='cuda:0'), 'validation_loss_giou': tensor(0.5240, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4547, device='cuda:0'), 'train_loss_ce': tensor(0.3664, device='cuda:0'), 'train_loss_bbox': tensor(0.1784, device='cuda:0'), 'train_loss_giou': tensor(0.5981, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1262, device='cuda:0'), 'validation_loss_ce': tensor(0.3886, device='cuda:0'), 'validation_loss_bbox': tensor(0.1386, device='cuda:0'), 'validation_loss_giou': tensor(0.5224, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3686, device='cuda:0'), 'train_loss_ce': tensor(0.4661, device='cuda:0'), 'train_loss_bbox': tensor(0.1692, device='cuda:0'), 'train_loss_giou': tensor(0.5283, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1383, device='cuda:0'), 'validation_loss_ce': tensor(0.3879, device='cuda:0'), 'validation_loss_bbox': tensor(0.1425, device='cuda:0'), 'validation_loss_giou': tensor(0.5188, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5183, device='cuda:0'), 'train_loss_ce': tensor(0.3320, device='cuda:0'), 'train_loss_bbox': tensor(0.1046, device='cuda:0'), 'train_loss_giou': tensor(0.3317, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1035, device='cuda:0'), 'validation_loss_ce': tensor(0.3731, device='cuda:0'), 'validation_loss_bbox': tensor(0.1405, device='cuda:0'), 'validation_loss_giou': tensor(0.5139, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4681, device='cuda:0'), 'train_loss_ce': tensor(0.3561, device='cuda:0'), 'train_loss_bbox': tensor(0.0997, device='cuda:0'), 'train_loss_giou': tensor(0.3069, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1328, device='cuda:0'), 'validation_loss_ce': tensor(0.3825, device='cuda:0'), 'validation_loss_bbox': tensor(0.1453, device='cuda:0'), 'validation_loss_giou': tensor(0.5118, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6664, device='cuda:0'), 'train_loss_ce': tensor(0.3840, device='cuda:0'), 'train_loss_bbox': tensor(0.0876, device='cuda:0'), 'train_loss_giou': tensor(0.4221, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0805, device='cuda:0'), 'validation_loss_ce': tensor(0.3767, device='cuda:0'), 'validation_loss_bbox': tensor(0.1394, device='cuda:0'), 'validation_loss_giou': tensor(0.5034, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2892, device='cuda:0'), 'train_loss_ce': tensor(0.3487, device='cuda:0'), 'train_loss_bbox': tensor(0.1487, device='cuda:0'), 'train_loss_giou': tensor(0.5985, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1251, device='cuda:0'), 'validation_loss_ce': tensor(0.3745, device='cuda:0'), 'validation_loss_bbox': tensor(0.1406, device='cuda:0'), 'validation_loss_giou': tensor(0.5238, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0110, device='cuda:0'), 'train_loss_ce': tensor(0.3878, device='cuda:0'), 'train_loss_bbox': tensor(0.1262, device='cuda:0'), 'train_loss_giou': tensor(0.4962, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0694, device='cuda:0'), 'validation_loss_ce': tensor(0.3721, device='cuda:0'), 'validation_loss_bbox': tensor(0.1392, device='cuda:0'), 'validation_loss_giou': tensor(0.5007, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2947, device='cuda:0'), 'train_loss_ce': tensor(0.3983, device='cuda:0'), 'train_loss_bbox': tensor(0.1630, device='cuda:0'), 'train_loss_giou': tensor(0.5406, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0502, device='cuda:0'), 'validation_loss_ce': tensor(0.3758, device='cuda:0'), 'validation_loss_bbox': tensor(0.1364, device='cuda:0'), 'validation_loss_giou': tensor(0.4962, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(2.1195, device='cuda:0'), 'train_loss_ce': tensor(0.3740, device='cuda:0'), 'train_loss_bbox': tensor(0.1673, device='cuda:0'), 'train_loss_giou': tensor(0.4546, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1555, device='cuda:0'), 'validation_loss_ce': tensor(0.3731, device='cuda:0'), 'validation_loss_bbox': tensor(0.1466, device='cuda:0'), 'validation_loss_giou': tensor(0.5247, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9802, device='cuda:0'), 'train_loss_ce': tensor(0.3621, device='cuda:0'), 'train_loss_bbox': tensor(0.1325, device='cuda:0'), 'train_loss_giou': tensor(0.4779, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0786, device='cuda:0'), 'validation_loss_ce': tensor(0.3800, device='cuda:0'), 'validation_loss_bbox': tensor(0.1341, device='cuda:0'), 'validation_loss_giou': tensor(0.5140, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5797, device='cuda:0'), 'train_loss_ce': tensor(0.3933, device='cuda:0'), 'train_loss_bbox': tensor(0.0912, device='cuda:0'), 'train_loss_giou': tensor(0.3653, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0571, device='cuda:0'), 'validation_loss_ce': tensor(0.3809, device='cuda:0'), 'validation_loss_bbox': tensor(0.1385, device='cuda:0'), 'validation_loss_giou': tensor(0.4918, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7911, device='cuda:0'), 'train_loss_ce': tensor(0.3987, device='cuda:0'), 'train_loss_bbox': tensor(0.1139, device='cuda:0'), 'train_loss_giou': tensor(0.4116, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0919, device='cuda:0'), 'validation_loss_ce': tensor(0.3777, device='cuda:0'), 'validation_loss_bbox': tensor(0.1372, device='cuda:0'), 'validation_loss_giou': tensor(0.5142, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3491, device='cuda:0'), 'train_loss_ce': tensor(0.3667, device='cuda:0'), 'train_loss_bbox': tensor(0.1578, device='cuda:0'), 'train_loss_giou': tensor(0.5968, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.1061, device='cuda:0'), 'validation_loss_ce': tensor(0.3733, device='cuda:0'), 'validation_loss_bbox': tensor(0.1466, device='cuda:0'), 'validation_loss_giou': tensor(0.4999, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(2.0175, device='cuda:0'), 'train_loss_ce': tensor(0.4165, device='cuda:0'), 'train_loss_bbox': tensor(0.1378, device='cuda:0'), 'train_loss_giou': tensor(0.4561, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0156, device='cuda:0'), 'validation_loss_ce': tensor(0.3638, device='cuda:0'), 'validation_loss_bbox': tensor(0.1342, device='cuda:0'), 'validation_loss_giou': tensor(0.4905, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5258, device='cuda:0'), 'train_loss_ce': tensor(0.2924, device='cuda:0'), 'train_loss_bbox': tensor(0.1183, device='cuda:0'), 'train_loss_giou': tensor(0.3209, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9774, device='cuda:0'), 'validation_loss_ce': tensor(0.3659, device='cuda:0'), 'validation_loss_bbox': tensor(0.1345, device='cuda:0'), 'validation_loss_giou': tensor(0.4696, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6544, device='cuda:0'), 'train_loss_ce': tensor(0.3250, device='cuda:0'), 'train_loss_bbox': tensor(0.0886, device='cuda:0'), 'train_loss_giou': tensor(0.4431, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0287, device='cuda:0'), 'validation_loss_ce': tensor(0.3641, device='cuda:0'), 'validation_loss_bbox': tensor(0.1332, device='cuda:0'), 'validation_loss_giou': tensor(0.4994, device='cuda:0'), 'validation_cardinality_error': tensor(0.7475, device='cuda:0')}
{'training_loss': tensor(2.1439, device='cuda:0'), 'train_loss_ce': tensor(0.3862, device='cuda:0'), 'train_loss_bbox': tensor(0.1390, device='cuda:0'), 'train_loss_giou': tensor(0.5314, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0379, device='cuda:0'), 'validation_loss_ce': tensor(0.3679, device='cuda:0'), 'validation_loss_bbox': tensor(0.1356, device='cuda:0'), 'validation_loss_giou': tensor(0.4961, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0931, device='cuda:0'), 'train_loss_ce': tensor(0.4383, device='cuda:0'), 'train_loss_bbox': tensor(0.1203, device='cuda:0'), 'train_loss_giou': tensor(0.5267, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0885, device='cuda:0'), 'validation_loss_ce': tensor(0.3674, device='cuda:0'), 'validation_loss_bbox': tensor(0.1453, device='cuda:0'), 'validation_loss_giou': tensor(0.4973, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(1.8629, device='cuda:0'), 'train_loss_ce': tensor(0.3668, device='cuda:0'), 'train_loss_bbox': tensor(0.1006, device='cuda:0'), 'train_loss_giou': tensor(0.4966, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0586, device='cuda:0'), 'validation_loss_ce': tensor(0.3712, device='cuda:0'), 'validation_loss_bbox': tensor(0.1380, device='cuda:0'), 'validation_loss_giou': tensor(0.4988, device='cuda:0'), 'validation_cardinality_error': tensor(0.6768, device='cuda:0')}
{'training_loss': tensor(2.2188, device='cuda:0'), 'train_loss_ce': tensor(0.4821, device='cuda:0'), 'train_loss_bbox': tensor(0.1478, device='cuda:0'), 'train_loss_giou': tensor(0.4988, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.9958, device='cuda:0'), 'validation_loss_ce': tensor(0.3701, device='cuda:0'), 'validation_loss_bbox': tensor(0.1347, device='cuda:0'), 'validation_loss_giou': tensor(0.4760, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(1.6669, device='cuda:0'), 'train_loss_ce': tensor(0.3583, device='cuda:0'), 'train_loss_bbox': tensor(0.1019, device='cuda:0'), 'train_loss_giou': tensor(0.3995, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0142, device='cuda:0'), 'validation_loss_ce': tensor(0.3738, device='cuda:0'), 'validation_loss_bbox': tensor(0.1371, device='cuda:0'), 'validation_loss_giou': tensor(0.4773, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9223, device='cuda:0'), 'train_loss_ce': tensor(0.3449, device='cuda:0'), 'train_loss_bbox': tensor(0.0987, device='cuda:0'), 'train_loss_giou': tensor(0.5419, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9738, device='cuda:0'), 'validation_loss_ce': tensor(0.3724, device='cuda:0'), 'validation_loss_bbox': tensor(0.1274, device='cuda:0'), 'validation_loss_giou': tensor(0.4822, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(2.0668, device='cuda:0'), 'train_loss_ce': tensor(0.2655, device='cuda:0'), 'train_loss_bbox': tensor(0.1742, device='cuda:0'), 'train_loss_giou': tensor(0.4651, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0525, device='cuda:0'), 'validation_loss_ce': tensor(0.3731, device='cuda:0'), 'validation_loss_bbox': tensor(0.1380, device='cuda:0'), 'validation_loss_giou': tensor(0.4946, device='cuda:0'), 'validation_cardinality_error': tensor(0.8687, device='cuda:0')}
{'training_loss': tensor(1.6505, device='cuda:0'), 'train_loss_ce': tensor(0.4286, device='cuda:0'), 'train_loss_bbox': tensor(0.1007, device='cuda:0'), 'train_loss_giou': tensor(0.3592, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0150, device='cuda:0'), 'validation_loss_ce': tensor(0.3740, device='cuda:0'), 'validation_loss_bbox': tensor(0.1351, device='cuda:0'), 'validation_loss_giou': tensor(0.4828, device='cuda:0'), 'validation_cardinality_error': tensor(0.7778, device='cuda:0')}
{'training_loss': tensor(1.5629, device='cuda:0'), 'train_loss_ce': tensor(0.3559, device='cuda:0'), 'train_loss_bbox': tensor(0.1081, device='cuda:0'), 'train_loss_giou': tensor(0.3332, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0478, device='cuda:0'), 'validation_loss_ce': tensor(0.3730, device='cuda:0'), 'validation_loss_bbox': tensor(0.1360, device='cuda:0'), 'validation_loss_giou': tensor(0.4975, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3027, device='cuda:0'), 'train_loss_ce': tensor(0.3286, device='cuda:0'), 'train_loss_bbox': tensor(0.0871, device='cuda:0'), 'train_loss_giou': tensor(0.2693, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9956, device='cuda:0'), 'validation_loss_ce': tensor(0.3681, device='cuda:0'), 'validation_loss_bbox': tensor(0.1335, device='cuda:0'), 'validation_loss_giou': tensor(0.4799, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(1.5853, device='cuda:0'), 'train_loss_ce': tensor(0.3520, device='cuda:0'), 'train_loss_bbox': tensor(0.0849, device='cuda:0'), 'train_loss_giou': tensor(0.4043, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9804, device='cuda:0'), 'validation_loss_ce': tensor(0.3718, device='cuda:0'), 'validation_loss_bbox': tensor(0.1284, device='cuda:0'), 'validation_loss_giou': tensor(0.4833, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(1.7593, device='cuda:0'), 'train_loss_ce': tensor(0.3029, device='cuda:0'), 'train_loss_bbox': tensor(0.0920, device='cuda:0'), 'train_loss_giou': tensor(0.4982, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9488, device='cuda:0'), 'validation_loss_ce': tensor(0.3629, device='cuda:0'), 'validation_loss_bbox': tensor(0.1287, device='cuda:0'), 'validation_loss_giou': tensor(0.4712, device='cuda:0'), 'validation_cardinality_error': tensor(0.8889, device='cuda:0')}
{'training_loss': tensor(1.6067, device='cuda:0'), 'train_loss_ce': tensor(0.3597, device='cuda:0'), 'train_loss_bbox': tensor(0.1270, device='cuda:0'), 'train_loss_giou': tensor(0.3060, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9440, device='cuda:0'), 'validation_loss_ce': tensor(0.3656, device='cuda:0'), 'validation_loss_bbox': tensor(0.1280, device='cuda:0'), 'validation_loss_giou': tensor(0.4693, device='cuda:0'), 'validation_cardinality_error': tensor(0.8081, device='cuda:0')}
{'training_loss': tensor(2.0476, device='cuda:0'), 'train_loss_ce': tensor(0.3808, device='cuda:0'), 'train_loss_bbox': tensor(0.1043, device='cuda:0'), 'train_loss_giou': tensor(0.5727, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9337, device='cuda:0'), 'validation_loss_ce': tensor(0.3601, device='cuda:0'), 'validation_loss_bbox': tensor(0.1259, device='cuda:0'), 'validation_loss_giou': tensor(0.4721, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(1.5660, device='cuda:0'), 'train_loss_ce': tensor(0.2963, device='cuda:0'), 'train_loss_bbox': tensor(0.0858, device='cuda:0'), 'train_loss_giou': tensor(0.4203, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(1.9740, device='cuda:0'), 'validation_loss_ce': tensor(0.3643, device='cuda:0'), 'validation_loss_bbox': tensor(0.1301, device='cuda:0'), 'validation_loss_giou': tensor(0.4796, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(1.7172, device='cuda:0'), 'train_loss_ce': tensor(0.4024, device='cuda:0'), 'train_loss_bbox': tensor(0.0775, device='cuda:0'), 'train_loss_giou': tensor(0.4636, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9502, device='cuda:0'), 'validation_loss_ce': tensor(0.3628, device='cuda:0'), 'validation_loss_bbox': tensor(0.1257, device='cuda:0'), 'validation_loss_giou': tensor(0.4795, device='cuda:0'), 'validation_cardinality_error': tensor(0.7879, device='cuda:0')}
{'training_loss': tensor(1.9386, device='cuda:0'), 'train_loss_ce': tensor(0.3912, device='cuda:0'), 'train_loss_bbox': tensor(0.0962, device='cuda:0'), 'train_loss_giou': tensor(0.5331, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9551, device='cuda:0'), 'validation_loss_ce': tensor(0.3569, device='cuda:0'), 'validation_loss_bbox': tensor(0.1316, device='cuda:0'), 'validation_loss_giou': tensor(0.4702, device='cuda:0'), 'validation_cardinality_error': tensor(0.7980, device='cuda:0')}
{'training_loss': tensor(1.7392, device='cuda:0'), 'train_loss_ce': tensor(0.3602, device='cuda:0'), 'train_loss_bbox': tensor(0.0710, device='cuda:0'), 'train_loss_giou': tensor(0.5121, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9657, device='cuda:0'), 'validation_loss_ce': tensor(0.3626, device='cuda:0'), 'validation_loss_bbox': tensor(0.1296, device='cuda:0'), 'validation_loss_giou': tensor(0.4776, device='cuda:0'), 'validation_cardinality_error': tensor(0.8081, device='cuda:0')}
{'training_loss': tensor(1.4376, device='cuda:0'), 'train_loss_ce': tensor(0.3731, device='cuda:0'), 'train_loss_bbox': tensor(0.1104, device='cuda:0'), 'train_loss_giou': tensor(0.2562, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.9491, device='cuda:0'), 'validation_loss_ce': tensor(0.3611, device='cuda:0'), 'validation_loss_bbox': tensor(0.1261, device='cuda:0'), 'validation_loss_giou': tensor(0.4788, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(1.6784, device='cuda:0'), 'train_loss_ce': tensor(0.4033, device='cuda:0'), 'train_loss_bbox': tensor(0.0729, device='cuda:0'), 'train_loss_giou': tensor(0.4554, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9657, device='cuda:0'), 'validation_loss_ce': tensor(0.3612, device='cuda:0'), 'validation_loss_bbox': tensor(0.1326, device='cuda:0'), 'validation_loss_giou': tensor(0.4709, device='cuda:0'), 'validation_cardinality_error': tensor(0.8586, device='cuda:0')}
{'training_loss': tensor(1.4486, device='cuda:0'), 'train_loss_ce': tensor(0.3214, device='cuda:0'), 'train_loss_bbox': tensor(0.0859, device='cuda:0'), 'train_loss_giou': tensor(0.3490, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(1.9083, device='cuda:0'), 'validation_loss_ce': tensor(0.3573, device='cuda:0'), 'validation_loss_bbox': tensor(0.1271, device='cuda:0'), 'validation_loss_giou': tensor(0.4578, device='cuda:0'), 'validation_cardinality_error': tensor(0.8485, device='cuda:0')}
{'training_loss': tensor(1.5262, device='cuda:0'), 'train_loss_ce': tensor(0.3729, device='cuda:0'), 'train_loss_bbox': tensor(0.0922, device='cuda:0'), 'train_loss_giou': tensor(0.3460, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.8807, device='cuda:0'), 'validation_loss_ce': tensor(0.3602, device='cuda:0'), 'validation_loss_bbox': tensor(0.1239, device='cuda:0'), 'validation_loss_giou': tensor(0.4505, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(1.4131, device='cuda:0'), 'train_loss_ce': tensor(0.4784, device='cuda:0'), 'train_loss_bbox': tensor(0.0647, device='cuda:0'), 'train_loss_giou': tensor(0.3057, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(1.9621, device='cuda:0'), 'validation_loss_ce': tensor(0.3545, device='cuda:0'), 'validation_loss_bbox': tensor(0.1303, device='cuda:0'), 'validation_loss_giou': tensor(0.4780, device='cuda:0'), 'validation_cardinality_error': tensor(0.8586, device='cuda:0')}
{'training_loss': tensor(1.3458, device='cuda:0'), 'train_loss_ce': tensor(0.2946, device='cuda:0'), 'train_loss_bbox': tensor(0.0673, device='cuda:0'), 'train_loss_giou': tensor(0.3572, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.9353, device='cuda:0'), 'validation_loss_ce': tensor(0.3584, device='cuda:0'), 'validation_loss_bbox': tensor(0.1264, device='cuda:0'), 'validation_loss_giou': tensor(0.4725, device='cuda:0'), 'validation_cardinality_error': tensor(0.8485, device='cuda:0')}
{'training_loss': tensor(1.7748, device='cuda:0'), 'train_loss_ce': tensor(0.4120, device='cuda:0'), 'train_loss_bbox': tensor(0.1048, device='cuda:0'), 'train_loss_giou': tensor(0.4193, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.9787, device='cuda:0'), 'validation_loss_ce': tensor(0.3609, device='cuda:0'), 'validation_loss_bbox': tensor(0.1320, device='cuda:0'), 'validation_loss_giou': tensor(0.4789, device='cuda:0'), 'validation_cardinality_error': tensor(0.8687, device='cuda:0')}
{'training_loss': tensor(1.7214, device='cuda:0'), 'train_loss_ce': tensor(0.3934, device='cuda:0'), 'train_loss_bbox': tensor(0.1051, device='cuda:0'), 'train_loss_giou': tensor(0.4011, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.9443, device='cuda:0'), 'validation_loss_ce': tensor(0.3538, device='cuda:0'), 'validation_loss_bbox': tensor(0.1273, device='cuda:0'), 'validation_loss_giou': tensor(0.4770, device='cuda:0'), 'validation_cardinality_error': tensor(0.7677, device='cuda:0')}
{'training_loss': tensor(1.8521, device='cuda:0'), 'train_loss_ce': tensor(0.3326, device='cuda:0'), 'train_loss_bbox': tensor(0.1040, device='cuda:0'), 'train_loss_giou': tensor(0.4998, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9938, device='cuda:0'), 'validation_loss_ce': tensor(0.3575, device='cuda:0'), 'validation_loss_bbox': tensor(0.1293, device='cuda:0'), 'validation_loss_giou': tensor(0.4950, device='cuda:0'), 'validation_cardinality_error': tensor(0.8283, device='cuda:0')}
{'training_loss': tensor(0.9955, device='cuda:0'), 'train_loss_ce': tensor(0.2377, device='cuda:0'), 'train_loss_bbox': tensor(0.0552, device='cuda:0'), 'train_loss_giou': tensor(0.2408, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(1.9546, device='cuda:0'), 'validation_loss_ce': tensor(0.3675, device='cuda:0'), 'validation_loss_bbox': tensor(0.1309, device='cuda:0'), 'validation_loss_giou': tensor(0.4662, device='cuda:0'), 'validation_cardinality_error': tensor(0.7576, device='cuda:0')}
{'training_loss': tensor(1.3475, device='cuda:0'), 'train_loss_ce': tensor(0.3177, device='cuda:0'), 'train_loss_bbox': tensor(0.0981, device='cuda:0'), 'train_loss_giou': tensor(0.2696, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9666, device='cuda:0'), 'validation_loss_ce': tensor(0.3664, device='cuda:0'), 'validation_loss_bbox': tensor(0.1301, device='cuda:0'), 'validation_loss_giou': tensor(0.4748, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(1.5049, device='cuda:0'), 'train_loss_ce': tensor(0.3492, device='cuda:0'), 'train_loss_bbox': tensor(0.0827, device='cuda:0'), 'train_loss_giou': tensor(0.3712, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9329, device='cuda:0'), 'validation_loss_ce': tensor(0.3644, device='cuda:0'), 'validation_loss_bbox': tensor(0.1271, device='cuda:0'), 'validation_loss_giou': tensor(0.4664, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(1.1465, device='cuda:0'), 'train_loss_ce': tensor(0.3618, device='cuda:0'), 'train_loss_bbox': tensor(0.0478, device='cuda:0'), 'train_loss_giou': tensor(0.2729, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.9591, device='cuda:0'), 'validation_loss_ce': tensor(0.3613, device='cuda:0'), 'validation_loss_bbox': tensor(0.1317, device='cuda:0'), 'validation_loss_giou': tensor(0.4696, device='cuda:0'), 'validation_cardinality_error': tensor(0.8586, device='cuda:0')}
{'training_loss': tensor(1.3096, device='cuda:0'), 'train_loss_ce': tensor(0.2238, device='cuda:0'), 'train_loss_bbox': tensor(0.0726, device='cuda:0'), 'train_loss_giou': tensor(0.3615, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(1.9268, device='cuda:0'), 'validation_loss_ce': tensor(0.3639, device='cuda:0'), 'validation_loss_bbox': tensor(0.1291, device='cuda:0'), 'validation_loss_giou': tensor(0.4587, device='cuda:0'), 'validation_cardinality_error': tensor(0.7576, device='cuda:0')}
{'training_loss': tensor(1.0565, device='cuda:0'), 'train_loss_ce': tensor(0.2633, device='cuda:0'), 'train_loss_bbox': tensor(0.0444, device='cuda:0'), 'train_loss_giou': tensor(0.2855, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9408, device='cuda:0'), 'validation_loss_ce': tensor(0.3609, device='cuda:0'), 'validation_loss_bbox': tensor(0.1280, device='cuda:0'), 'validation_loss_giou': tensor(0.4699, device='cuda:0'), 'validation_cardinality_error': tensor(0.8586, device='cuda:0')}
{'training_loss': tensor(1.0715, device='cuda:0'), 'train_loss_ce': tensor(0.2538, device='cuda:0'), 'train_loss_bbox': tensor(0.0478, device='cuda:0'), 'train_loss_giou': tensor(0.2892, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(1.9220, device='cuda:0'), 'validation_loss_ce': tensor(0.3600, device='cuda:0'), 'validation_loss_bbox': tensor(0.1261, device='cuda:0'), 'validation_loss_giou': tensor(0.4658, device='cuda:0'), 'validation_cardinality_error': tensor(0.7273, device='cuda:0')}
{'training_loss': tensor(1.1734, device='cuda:0'), 'train_loss_ce': tensor(0.2503, device='cuda:0'), 'train_loss_bbox': tensor(0.0903, device='cuda:0'), 'train_loss_giou': tensor(0.2359, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(1.9619, device='cuda:0'), 'validation_loss_ce': tensor(0.3509, device='cuda:0'), 'validation_loss_bbox': tensor(0.1294, device='cuda:0'), 'validation_loss_giou': tensor(0.4821, device='cuda:0'), 'validation_cardinality_error': tensor(0.6869, device='cuda:0')}
{'training_loss': tensor(1.1854, device='cuda:0'), 'train_loss_ce': tensor(0.3110, device='cuda:0'), 'train_loss_bbox': tensor(0.0782, device='cuda:0'), 'train_loss_giou': tensor(0.2417, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(1.9619, device='cuda:0'), 'validation_loss_ce': tensor(0.3623, device='cuda:0'), 'validation_loss_bbox': tensor(0.1330, device='cuda:0'), 'validation_loss_giou': tensor(0.4672, device='cuda:0'), 'validation_cardinality_error': tensor(0.8485, device='cuda:0')}
{'training_loss': tensor(1.3953, device='cuda:0'), 'train_loss_ce': tensor(0.4118, device='cuda:0'), 'train_loss_bbox': tensor(0.0852, device='cuda:0'), 'train_loss_giou': tensor(0.2788, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(1.9984, device='cuda:0'), 'validation_loss_ce': tensor(0.3702, device='cuda:0'), 'validation_loss_bbox': tensor(0.1305, device='cuda:0'), 'validation_loss_giou': tensor(0.4878, device='cuda:0'), 'validation_cardinality_error': tensor(0.8384, device='cuda:0')}
{'training_loss': tensor(1.0128, device='cuda:0'), 'train_loss_ce': tensor(0.2579, device='cuda:0'), 'train_loss_bbox': tensor(0.0586, device='cuda:0'), 'train_loss_giou': tensor(0.2309, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.9353, device='cuda:0'), 'validation_loss_ce': tensor(0.3602, device='cuda:0'), 'validation_loss_bbox': tensor(0.1269, device='cuda:0'), 'validation_loss_giou': tensor(0.4704, device='cuda:0'), 'validation_cardinality_error': tensor(0.8182, device='cuda:0')}
{'training_loss': tensor(1.1216, device='cuda:0'), 'train_loss_ce': tensor(0.3540, device='cuda:0'), 'train_loss_bbox': tensor(0.0567, device='cuda:0'), 'train_loss_giou': tensor(0.2421, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9362, device='cuda:0'), 'validation_loss_ce': tensor(0.3499, device='cuda:0'), 'validation_loss_bbox': tensor(0.1286, device='cuda:0'), 'validation_loss_giou': tensor(0.4717, device='cuda:0'), 'validation_cardinality_error': tensor(0.8485, device='cuda:0')}
{'training_loss': tensor(1.1683, device='cuda:0'), 'train_loss_ce': tensor(0.2674, device='cuda:0'), 'train_loss_bbox': tensor(0.0583, device='cuda:0'), 'train_loss_giou': tensor(0.3048, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9339, device='cuda:0'), 'validation_loss_ce': tensor(0.3637, device='cuda:0'), 'validation_loss_bbox': tensor(0.1233, device='cuda:0'), 'validation_loss_giou': tensor(0.4769, device='cuda:0'), 'validation_cardinality_error': tensor(0.8586, device='cuda:0')}
{'training_loss': tensor(1.4650, device='cuda:0'), 'train_loss_ce': tensor(0.2364, device='cuda:0'), 'train_loss_bbox': tensor(0.0632, device='cuda:0'), 'train_loss_giou': tensor(0.4564, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9680, device='cuda:0'), 'validation_loss_ce': tensor(0.3585, device='cuda:0'), 'validation_loss_bbox': tensor(0.1338, device='cuda:0'), 'validation_loss_giou': tensor(0.4703, device='cuda:0'), 'validation_cardinality_error': tensor(0.8283, device='cuda:0')}
{'training_loss': tensor(1.1539, device='cuda:0'), 'train_loss_ce': tensor(0.2614, device='cuda:0'), 'train_loss_bbox': tensor(0.0584, device='cuda:0'), 'train_loss_giou': tensor(0.3003, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.9119, device='cuda:0'), 'validation_loss_ce': tensor(0.3623, device='cuda:0'), 'validation_loss_bbox': tensor(0.1229, device='cuda:0'), 'validation_loss_giou': tensor(0.4676, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(1.1036, device='cuda:0'), 'train_loss_ce': tensor(0.3058, device='cuda:0'), 'train_loss_bbox': tensor(0.0512, device='cuda:0'), 'train_loss_giou': tensor(0.2708, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.9665, device='cuda:0'), 'validation_loss_ce': tensor(0.3676, device='cuda:0'), 'validation_loss_bbox': tensor(0.1288, device='cuda:0'), 'validation_loss_giou': tensor(0.4774, device='cuda:0'), 'validation_cardinality_error': tensor(0.8283, device='cuda:0')}
{'training_loss': tensor(1.0536, device='cuda:0'), 'train_loss_ce': tensor(0.3497, device='cuda:0'), 'train_loss_bbox': tensor(0.0591, device='cuda:0'), 'train_loss_giou': tensor(0.2043, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.9168, device='cuda:0'), 'validation_loss_ce': tensor(0.3576, device='cuda:0'), 'validation_loss_bbox': tensor(0.1299, device='cuda:0'), 'validation_loss_giou': tensor(0.4548, device='cuda:0'), 'validation_cardinality_error': tensor(0.7980, device='cuda:0')}
{'training_loss': tensor(0.8846, device='cuda:0'), 'train_loss_ce': tensor(0.2746, device='cuda:0'), 'train_loss_bbox': tensor(0.0485, device='cuda:0'), 'train_loss_giou': tensor(0.1838, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9260, device='cuda:0'), 'validation_loss_ce': tensor(0.3708, device='cuda:0'), 'validation_loss_bbox': tensor(0.1245, device='cuda:0'), 'validation_loss_giou': tensor(0.4664, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(1.2364, device='cuda:0'), 'train_loss_ce': tensor(0.2148, device='cuda:0'), 'train_loss_bbox': tensor(0.0473, device='cuda:0'), 'train_loss_giou': tensor(0.3925, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9370, device='cuda:0'), 'validation_loss_ce': tensor(0.3661, device='cuda:0'), 'validation_loss_bbox': tensor(0.1269, device='cuda:0'), 'validation_loss_giou': tensor(0.4683, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(1.3943, device='cuda:0'), 'train_loss_ce': tensor(0.3499, device='cuda:0'), 'train_loss_bbox': tensor(0.0689, device='cuda:0'), 'train_loss_giou': tensor(0.3498, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(1.8933, device='cuda:0'), 'validation_loss_ce': tensor(0.3531, device='cuda:0'), 'validation_loss_bbox': tensor(0.1235, device='cuda:0'), 'validation_loss_giou': tensor(0.4613, device='cuda:0'), 'validation_cardinality_error': tensor(0.8283, device='cuda:0')}
{'training_loss': tensor(0.9212, device='cuda:0'), 'train_loss_ce': tensor(0.2663, device='cuda:0'), 'train_loss_bbox': tensor(0.0427, device='cuda:0'), 'train_loss_giou': tensor(0.2208, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(1.9380, device='cuda:0'), 'validation_loss_ce': tensor(0.3743, device='cuda:0'), 'validation_loss_bbox': tensor(0.1302, device='cuda:0'), 'validation_loss_giou': tensor(0.4563, device='cuda:0'), 'validation_cardinality_error': tensor(0.7980, device='cuda:0')}
{'training_loss': tensor(0.8695, device='cuda:0'), 'train_loss_ce': tensor(0.3232, device='cuda:0'), 'train_loss_bbox': tensor(0.0382, device='cuda:0'), 'train_loss_giou': tensor(0.1776, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9115, device='cuda:0'), 'validation_loss_ce': tensor(0.3579, device='cuda:0'), 'validation_loss_bbox': tensor(0.1218, device='cuda:0'), 'validation_loss_giou': tensor(0.4724, device='cuda:0'), 'validation_cardinality_error': tensor(0.7778, device='cuda:0')}
{'training_loss': tensor(1.1592, device='cuda:0'), 'train_loss_ce': tensor(0.2762, device='cuda:0'), 'train_loss_bbox': tensor(0.0712, device='cuda:0'), 'train_loss_giou': tensor(0.2635, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.8887, device='cuda:0'), 'validation_loss_ce': tensor(0.3615, device='cuda:0'), 'validation_loss_bbox': tensor(0.1248, device='cuda:0'), 'validation_loss_giou': tensor(0.4517, device='cuda:0'), 'validation_cardinality_error': tensor(0.7677, device='cuda:0')}
{'training_loss': tensor(1.4403, device='cuda:0'), 'train_loss_ce': tensor(0.2735, device='cuda:0'), 'train_loss_bbox': tensor(0.0656, device='cuda:0'), 'train_loss_giou': tensor(0.4193, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(1.8994, device='cuda:0'), 'validation_loss_ce': tensor(0.3603, device='cuda:0'), 'validation_loss_bbox': tensor(0.1277, device='cuda:0'), 'validation_loss_giou': tensor(0.4504, device='cuda:0'), 'validation_cardinality_error': tensor(0.7980, device='cuda:0')}
{'training_loss': tensor(0.8482, device='cuda:0'), 'train_loss_ce': tensor(0.3012, device='cuda:0'), 'train_loss_bbox': tensor(0.0501, device='cuda:0'), 'train_loss_giou': tensor(0.1482, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.9109, device='cuda:0'), 'validation_loss_ce': tensor(0.3679, device='cuda:0'), 'validation_loss_bbox': tensor(0.1287, device='cuda:0'), 'validation_loss_giou': tensor(0.4497, device='cuda:0'), 'validation_cardinality_error': tensor(0.7980, device='cuda:0')}
{'training_loss': tensor(0.9017, device='cuda:0'), 'train_loss_ce': tensor(0.2700, device='cuda:0'), 'train_loss_bbox': tensor(0.0419, device='cuda:0'), 'train_loss_giou': tensor(0.2110, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9263, device='cuda:0'), 'validation_loss_ce': tensor(0.3760, device='cuda:0'), 'validation_loss_bbox': tensor(0.1314, device='cuda:0'), 'validation_loss_giou': tensor(0.4466, device='cuda:0'), 'validation_cardinality_error': tensor(0.8384, device='cuda:0')}
{'training_loss': tensor(0.8587, device='cuda:0'), 'train_loss_ce': tensor(0.2622, device='cuda:0'), 'train_loss_bbox': tensor(0.0452, device='cuda:0'), 'train_loss_giou': tensor(0.1852, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.9193, device='cuda:0'), 'validation_loss_ce': tensor(0.3658, device='cuda:0'), 'validation_loss_bbox': tensor(0.1304, device='cuda:0'), 'validation_loss_giou': tensor(0.4508, device='cuda:0'), 'validation_cardinality_error': tensor(0.7475, device='cuda:0')}
{'training_loss': tensor(0.6538, device='cuda:0'), 'train_loss_ce': tensor(0.2116, device='cuda:0'), 'train_loss_bbox': tensor(0.0351, device='cuda:0'), 'train_loss_giou': tensor(0.1333, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.9072, device='cuda:0'), 'validation_loss_ce': tensor(0.3631, device='cuda:0'), 'validation_loss_bbox': tensor(0.1242, device='cuda:0'), 'validation_loss_giou': tensor(0.4616, device='cuda:0'), 'validation_cardinality_error': tensor(0.6263, device='cuda:0')}
{'training_loss': tensor(1.0185, device='cuda:0'), 'train_loss_ce': tensor(0.2459, device='cuda:0'), 'train_loss_bbox': tensor(0.0640, device='cuda:0'), 'train_loss_giou': tensor(0.2262, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.9312, device='cuda:0'), 'validation_loss_ce': tensor(0.3775, device='cuda:0'), 'validation_loss_bbox': tensor(0.1280, device='cuda:0'), 'validation_loss_giou': tensor(0.4569, device='cuda:0'), 'validation_cardinality_error': tensor(0.8182, device='cuda:0')}
{'training_loss': tensor(1.0316, device='cuda:0'), 'train_loss_ce': tensor(0.2918, device='cuda:0'), 'train_loss_bbox': tensor(0.0334, device='cuda:0'), 'train_loss_giou': tensor(0.2863, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9205, device='cuda:0'), 'validation_loss_ce': tensor(0.3717, device='cuda:0'), 'validation_loss_bbox': tensor(0.1295, device='cuda:0'), 'validation_loss_giou': tensor(0.4507, device='cuda:0'), 'validation_cardinality_error': tensor(0.7879, device='cuda:0')}
{'training_loss': tensor(0.8003, device='cuda:0'), 'train_loss_ce': tensor(0.2815, device='cuda:0'), 'train_loss_bbox': tensor(0.0371, device='cuda:0'), 'train_loss_giou': tensor(0.1668, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9472, device='cuda:0'), 'validation_loss_ce': tensor(0.3774, device='cuda:0'), 'validation_loss_bbox': tensor(0.1279, device='cuda:0'), 'validation_loss_giou': tensor(0.4651, device='cuda:0'), 'validation_cardinality_error': tensor(0.7475, device='cuda:0')}
{'training_loss': tensor(0.8447, device='cuda:0'), 'train_loss_ce': tensor(0.3112, device='cuda:0'), 'train_loss_bbox': tensor(0.0265, device='cuda:0'), 'train_loss_giou': tensor(0.2006, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9635, device='cuda:0'), 'validation_loss_ce': tensor(0.3772, device='cuda:0'), 'validation_loss_bbox': tensor(0.1309, device='cuda:0'), 'validation_loss_giou': tensor(0.4660, device='cuda:0'), 'validation_cardinality_error': tensor(0.7778, device='cuda:0')}
{'training_loss': tensor(1.2318, device='cuda:0'), 'train_loss_ce': tensor(0.3038, device='cuda:0'), 'train_loss_bbox': tensor(0.0663, device='cuda:0'), 'train_loss_giou': tensor(0.2983, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9307, device='cuda:0'), 'validation_loss_ce': tensor(0.3788, device='cuda:0'), 'validation_loss_bbox': tensor(0.1280, device='cuda:0'), 'validation_loss_giou': tensor(0.4559, device='cuda:0'), 'validation_cardinality_error': tensor(0.7980, device='cuda:0')}
{'training_loss': tensor(0.6476, device='cuda:0'), 'train_loss_ce': tensor(0.2395, device='cuda:0'), 'train_loss_bbox': tensor(0.0339, device='cuda:0'), 'train_loss_giou': tensor(0.1193, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.9652, device='cuda:0'), 'validation_loss_ce': tensor(0.3763, device='cuda:0'), 'validation_loss_bbox': tensor(0.1287, device='cuda:0'), 'validation_loss_giou': tensor(0.4727, device='cuda:0'), 'validation_cardinality_error': tensor(0.6465, device='cuda:0')}
{'training_loss': tensor(0.8404, device='cuda:0'), 'train_loss_ce': tensor(0.2333, device='cuda:0'), 'train_loss_bbox': tensor(0.0479, device='cuda:0'), 'train_loss_giou': tensor(0.1838, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(1.9462, device='cuda:0'), 'validation_loss_ce': tensor(0.3849, device='cuda:0'), 'validation_loss_bbox': tensor(0.1291, device='cuda:0'), 'validation_loss_giou': tensor(0.4579, device='cuda:0'), 'validation_cardinality_error': tensor(0.7374, device='cuda:0')}
{'training_loss': tensor(0.6902, device='cuda:0'), 'train_loss_ce': tensor(0.2554, device='cuda:0'), 'train_loss_bbox': tensor(0.0361, device='cuda:0'), 'train_loss_giou': tensor(0.1270, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(1.9561, device='cuda:0'), 'validation_loss_ce': tensor(0.3895, device='cuda:0'), 'validation_loss_bbox': tensor(0.1300, device='cuda:0'), 'validation_loss_giou': tensor(0.4584, device='cuda:0'), 'validation_cardinality_error': tensor(0.8384, device='cuda:0')}
{'training_loss': tensor(0.5212, device='cuda:0'), 'train_loss_ce': tensor(0.2012, device='cuda:0'), 'train_loss_bbox': tensor(0.0285, device='cuda:0'), 'train_loss_giou': tensor(0.0888, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(1.9444, device='cuda:0'), 'validation_loss_ce': tensor(0.3845, device='cuda:0'), 'validation_loss_bbox': tensor(0.1309, device='cuda:0'), 'validation_loss_giou': tensor(0.4527, device='cuda:0'), 'validation_cardinality_error': tensor(0.7778, device='cuda:0')}
{'training_loss': tensor(0.7154, device='cuda:0'), 'train_loss_ce': tensor(0.2898, device='cuda:0'), 'train_loss_bbox': tensor(0.0286, device='cuda:0'), 'train_loss_giou': tensor(0.1414, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(1.9708, device='cuda:0'), 'validation_loss_ce': tensor(0.3685, device='cuda:0'), 'validation_loss_bbox': tensor(0.1304, device='cuda:0'), 'validation_loss_giou': tensor(0.4752, device='cuda:0'), 'validation_cardinality_error': tensor(0.7576, device='cuda:0')}
{'training_loss': tensor(0.8034, device='cuda:0'), 'train_loss_ce': tensor(0.2139, device='cuda:0'), 'train_loss_bbox': tensor(0.0481, device='cuda:0'), 'train_loss_giou': tensor(0.1745, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(1.9483, device='cuda:0'), 'validation_loss_ce': tensor(0.3616, device='cuda:0'), 'validation_loss_bbox': tensor(0.1289, device='cuda:0'), 'validation_loss_giou': tensor(0.4711, device='cuda:0'), 'validation_cardinality_error': tensor(0.7879, device='cuda:0')}
{'training_loss': tensor(0.6028, device='cuda:0'), 'train_loss_ce': tensor(0.1856, device='cuda:0'), 'train_loss_bbox': tensor(0.0291, device='cuda:0'), 'train_loss_giou': tensor(0.1358, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(1.9548, device='cuda:0'), 'validation_loss_ce': tensor(0.3816, device='cuda:0'), 'validation_loss_bbox': tensor(0.1285, device='cuda:0'), 'validation_loss_giou': tensor(0.4654, device='cuda:0'), 'validation_cardinality_error': tensor(0.7677, device='cuda:0')}
{'training_loss': tensor(0.7744, device='cuda:0'), 'train_loss_ce': tensor(0.3252, device='cuda:0'), 'train_loss_bbox': tensor(0.0272, device='cuda:0'), 'train_loss_giou': tensor(0.1566, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(1.9854, device='cuda:0'), 'validation_loss_ce': tensor(0.3992, device='cuda:0'), 'validation_loss_bbox': tensor(0.1315, device='cuda:0'), 'validation_loss_giou': tensor(0.4644, device='cuda:0'), 'validation_cardinality_error': tensor(0.7273, device='cuda:0')}
{'training_loss': tensor(0.5443, device='cuda:0'), 'train_loss_ce': tensor(0.2736, device='cuda:0'), 'train_loss_bbox': tensor(0.0163, device='cuda:0'), 'train_loss_giou': tensor(0.0947, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(1.9864, device='cuda:0'), 'validation_loss_ce': tensor(0.3877, device='cuda:0'), 'validation_loss_bbox': tensor(0.1292, device='cuda:0'), 'validation_loss_giou': tensor(0.4765, device='cuda:0'), 'validation_cardinality_error': tensor(0.7677, device='cuda:0')}
{'training_loss': tensor(0.8021, device='cuda:0'), 'train_loss_ce': tensor(0.1701, device='cuda:0'), 'train_loss_bbox': tensor(0.0375, device='cuda:0'), 'train_loss_giou': tensor(0.2224, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.9695, device='cuda:0'), 'validation_loss_ce': tensor(0.4099, device='cuda:0'), 'validation_loss_bbox': tensor(0.1287, device='cuda:0'), 'validation_loss_giou': tensor(0.4581, device='cuda:0'), 'validation_cardinality_error': tensor(0.8586, device='cuda:0')}
{'training_loss': tensor(0.5782, device='cuda:0'), 'train_loss_ce': tensor(0.1721, device='cuda:0'), 'train_loss_bbox': tensor(0.0330, device='cuda:0'), 'train_loss_giou': tensor(0.1206, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(1.9591, device='cuda:0'), 'validation_loss_ce': tensor(0.4033, device='cuda:0'), 'validation_loss_bbox': tensor(0.1257, device='cuda:0'), 'validation_loss_giou': tensor(0.4636, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(0.6928, device='cuda:0'), 'train_loss_ce': tensor(0.2364, device='cuda:0'), 'train_loss_bbox': tensor(0.0352, device='cuda:0'), 'train_loss_giou': tensor(0.1401, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(1.9912, device='cuda:0'), 'validation_loss_ce': tensor(0.3888, device='cuda:0'), 'validation_loss_bbox': tensor(0.1330, device='cuda:0'), 'validation_loss_giou': tensor(0.4688, device='cuda:0'), 'validation_cardinality_error': tensor(0.8485, device='cuda:0')}
{'training_loss': tensor(1.0208, device='cuda:0'), 'train_loss_ce': tensor(0.3634, device='cuda:0'), 'train_loss_bbox': tensor(0.0445, device='cuda:0'), 'train_loss_giou': tensor(0.2175, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.9822, device='cuda:0'), 'validation_loss_ce': tensor(0.4102, device='cuda:0'), 'validation_loss_bbox': tensor(0.1300, device='cuda:0'), 'validation_loss_giou': tensor(0.4610, device='cuda:0'), 'validation_cardinality_error': tensor(0.7576, device='cuda:0')}
{'training_loss': tensor(0.8656, device='cuda:0'), 'train_loss_ce': tensor(0.2303, device='cuda:0'), 'train_loss_bbox': tensor(0.0294, device='cuda:0'), 'train_loss_giou': tensor(0.2442, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0023, device='cuda:0'), 'validation_loss_ce': tensor(0.4095, device='cuda:0'), 'validation_loss_bbox': tensor(0.1316, device='cuda:0'), 'validation_loss_giou': tensor(0.4673, device='cuda:0'), 'validation_cardinality_error': tensor(0.8687, device='cuda:0')}
{'training_loss': tensor(0.8781, device='cuda:0'), 'train_loss_ce': tensor(0.1970, device='cuda:0'), 'train_loss_bbox': tensor(0.0267, device='cuda:0'), 'train_loss_giou': tensor(0.2739, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0177, device='cuda:0'), 'validation_loss_ce': tensor(0.4098, device='cuda:0'), 'validation_loss_bbox': tensor(0.1323, device='cuda:0'), 'validation_loss_giou': tensor(0.4733, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(0.6593, device='cuda:0'), 'train_loss_ce': tensor(0.2536, device='cuda:0'), 'train_loss_bbox': tensor(0.0299, device='cuda:0'), 'train_loss_giou': tensor(0.1280, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0010, device='cuda:0'), 'validation_loss_ce': tensor(0.4141, device='cuda:0'), 'validation_loss_bbox': tensor(0.1301, device='cuda:0'), 'validation_loss_giou': tensor(0.4683, device='cuda:0'), 'validation_cardinality_error': tensor(0.7576, device='cuda:0')}
{'training_loss': tensor(0.8113, device='cuda:0'), 'train_loss_ce': tensor(0.3122, device='cuda:0'), 'train_loss_bbox': tensor(0.0350, device='cuda:0'), 'train_loss_giou': tensor(0.1620, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0112, device='cuda:0'), 'validation_loss_ce': tensor(0.4252, device='cuda:0'), 'validation_loss_bbox': tensor(0.1259, device='cuda:0'), 'validation_loss_giou': tensor(0.4783, device='cuda:0'), 'validation_cardinality_error': tensor(0.6869, device='cuda:0')}
{'training_loss': tensor(0.5945, device='cuda:0'), 'train_loss_ce': tensor(0.2501, device='cuda:0'), 'train_loss_bbox': tensor(0.0236, device='cuda:0'), 'train_loss_giou': tensor(0.1132, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0261, device='cuda:0'), 'validation_loss_ce': tensor(0.4333, device='cuda:0'), 'validation_loss_bbox': tensor(0.1304, device='cuda:0'), 'validation_loss_giou': tensor(0.4705, device='cuda:0'), 'validation_cardinality_error': tensor(0.7677, device='cuda:0')}
{'training_loss': tensor(0.9080, device='cuda:0'), 'train_loss_ce': tensor(0.1761, device='cuda:0'), 'train_loss_bbox': tensor(0.0541, device='cuda:0'), 'train_loss_giou': tensor(0.2306, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0353, device='cuda:0'), 'validation_loss_ce': tensor(0.4298, device='cuda:0'), 'validation_loss_bbox': tensor(0.1288, device='cuda:0'), 'validation_loss_giou': tensor(0.4808, device='cuda:0'), 'validation_cardinality_error': tensor(0.7677, device='cuda:0')}
{'training_loss': tensor(0.8040, device='cuda:0'), 'train_loss_ce': tensor(0.1759, device='cuda:0'), 'train_loss_bbox': tensor(0.0349, device='cuda:0'), 'train_loss_giou': tensor(0.2269, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.9834, device='cuda:0'), 'validation_loss_ce': tensor(0.4335, device='cuda:0'), 'validation_loss_bbox': tensor(0.1259, device='cuda:0'), 'validation_loss_giou': tensor(0.4601, device='cuda:0'), 'validation_cardinality_error': tensor(0.8283, device='cuda:0')}
{'training_loss': tensor(0.5225, device='cuda:0'), 'train_loss_ce': tensor(0.1933, device='cuda:0'), 'train_loss_bbox': tensor(0.0201, device='cuda:0'), 'train_loss_giou': tensor(0.1143, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0057, device='cuda:0'), 'validation_loss_ce': tensor(0.4375, device='cuda:0'), 'validation_loss_bbox': tensor(0.1279, device='cuda:0'), 'validation_loss_giou': tensor(0.4643, device='cuda:0'), 'validation_cardinality_error': tensor(0.7879, device='cuda:0')}
{'training_loss': tensor(0.6113, device='cuda:0'), 'train_loss_ce': tensor(0.1686, device='cuda:0'), 'train_loss_bbox': tensor(0.0306, device='cuda:0'), 'train_loss_giou': tensor(0.1447, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0234, device='cuda:0'), 'validation_loss_ce': tensor(0.4424, device='cuda:0'), 'validation_loss_bbox': tensor(0.1270, device='cuda:0'), 'validation_loss_giou': tensor(0.4731, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.8666, device='cuda:0'), 'train_loss_ce': tensor(0.1354, device='cuda:0'), 'train_loss_bbox': tensor(0.0556, device='cuda:0'), 'train_loss_giou': tensor(0.2266, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0600, device='cuda:0'), 'validation_loss_ce': tensor(0.4490, device='cuda:0'), 'validation_loss_bbox': tensor(0.1308, device='cuda:0'), 'validation_loss_giou': tensor(0.4785, device='cuda:0'), 'validation_cardinality_error': tensor(0.6970, device='cuda:0')}
{'training_loss': tensor(0.4135, device='cuda:0'), 'train_loss_ce': tensor(0.1210, device='cuda:0'), 'train_loss_bbox': tensor(0.0173, device='cuda:0'), 'train_loss_giou': tensor(0.1031, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0541, device='cuda:0'), 'validation_loss_ce': tensor(0.4508, device='cuda:0'), 'validation_loss_bbox': tensor(0.1286, device='cuda:0'), 'validation_loss_giou': tensor(0.4802, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(0.5275, device='cuda:0'), 'train_loss_ce': tensor(0.1586, device='cuda:0'), 'train_loss_bbox': tensor(0.0263, device='cuda:0'), 'train_loss_giou': tensor(0.1186, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.0483, device='cuda:0'), 'validation_loss_ce': tensor(0.4283, device='cuda:0'), 'validation_loss_bbox': tensor(0.1317, device='cuda:0'), 'validation_loss_giou': tensor(0.4807, device='cuda:0'), 'validation_cardinality_error': tensor(0.8081, device='cuda:0')}
{'training_loss': tensor(0.5993, device='cuda:0'), 'train_loss_ce': tensor(0.1355, device='cuda:0'), 'train_loss_bbox': tensor(0.0391, device='cuda:0'), 'train_loss_giou': tensor(0.1341, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0092, device='cuda:0'), 'validation_loss_ce': tensor(0.4346, device='cuda:0'), 'validation_loss_bbox': tensor(0.1252, device='cuda:0'), 'validation_loss_giou': tensor(0.4744, device='cuda:0'), 'validation_cardinality_error': tensor(1.1111, device='cuda:0')}
{'training_loss': tensor(0.7648, device='cuda:0'), 'train_loss_ce': tensor(0.1834, device='cuda:0'), 'train_loss_bbox': tensor(0.0332, device='cuda:0'), 'train_loss_giou': tensor(0.2076, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0281, device='cuda:0'), 'validation_loss_ce': tensor(0.4431, device='cuda:0'), 'validation_loss_bbox': tensor(0.1277, device='cuda:0'), 'validation_loss_giou': tensor(0.4732, device='cuda:0'), 'validation_cardinality_error': tensor(0.7677, device='cuda:0')}
{'training_loss': tensor(0.6021, device='cuda:0'), 'train_loss_ce': tensor(0.1172, device='cuda:0'), 'train_loss_bbox': tensor(0.0316, device='cuda:0'), 'train_loss_giou': tensor(0.1633, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0520, device='cuda:0'), 'validation_loss_ce': tensor(0.4639, device='cuda:0'), 'validation_loss_bbox': tensor(0.1299, device='cuda:0'), 'validation_loss_giou': tensor(0.4694, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(0.4915, device='cuda:0'), 'train_loss_ce': tensor(0.0913, device='cuda:0'), 'train_loss_bbox': tensor(0.0323, device='cuda:0'), 'train_loss_giou': tensor(0.1194, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0824, device='cuda:0'), 'validation_loss_ce': tensor(0.4749, device='cuda:0'), 'validation_loss_bbox': tensor(0.1274, device='cuda:0'), 'validation_loss_giou': tensor(0.4853, device='cuda:0'), 'validation_cardinality_error': tensor(0.6768, device='cuda:0')}
{'training_loss': tensor(0.4274, device='cuda:0'), 'train_loss_ce': tensor(0.1708, device='cuda:0'), 'train_loss_bbox': tensor(0.0222, device='cuda:0'), 'train_loss_giou': tensor(0.0727, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0770, device='cuda:0'), 'validation_loss_ce': tensor(0.4845, device='cuda:0'), 'validation_loss_bbox': tensor(0.1280, device='cuda:0'), 'validation_loss_giou': tensor(0.4762, device='cuda:0'), 'validation_cardinality_error': tensor(0.7980, device='cuda:0')}
{'training_loss': tensor(0.4601, device='cuda:0'), 'train_loss_ce': tensor(0.1573, device='cuda:0'), 'train_loss_bbox': tensor(0.0141, device='cuda:0'), 'train_loss_giou': tensor(0.1161, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0802, device='cuda:0'), 'validation_loss_ce': tensor(0.4785, device='cuda:0'), 'validation_loss_bbox': tensor(0.1300, device='cuda:0'), 'validation_loss_giou': tensor(0.4760, device='cuda:0'), 'validation_cardinality_error': tensor(0.8586, device='cuda:0')}
{'training_loss': tensor(0.5092, device='cuda:0'), 'train_loss_ce': tensor(0.1020, device='cuda:0'), 'train_loss_bbox': tensor(0.0263, device='cuda:0'), 'train_loss_giou': tensor(0.1377, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0348, device='cuda:0'), 'validation_loss_ce': tensor(0.4608, device='cuda:0'), 'validation_loss_bbox': tensor(0.1246, device='cuda:0'), 'validation_loss_giou': tensor(0.4754, device='cuda:0'), 'validation_cardinality_error': tensor(0.8182, device='cuda:0')}
{'training_loss': tensor(0.6001, device='cuda:0'), 'train_loss_ce': tensor(0.1524, device='cuda:0'), 'train_loss_bbox': tensor(0.0306, device='cuda:0'), 'train_loss_giou': tensor(0.1473, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(2.0814, device='cuda:0'), 'validation_loss_ce': tensor(0.4829, device='cuda:0'), 'validation_loss_bbox': tensor(0.1295, device='cuda:0'), 'validation_loss_giou': tensor(0.4755, device='cuda:0'), 'validation_cardinality_error': tensor(1.0606, device='cuda:0')}
{'training_loss': tensor(0.5772, device='cuda:0'), 'train_loss_ce': tensor(0.1419, device='cuda:0'), 'train_loss_bbox': tensor(0.0225, device='cuda:0'), 'train_loss_giou': tensor(0.1615, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0759, device='cuda:0'), 'validation_loss_ce': tensor(0.4713, device='cuda:0'), 'validation_loss_bbox': tensor(0.1322, device='cuda:0'), 'validation_loss_giou': tensor(0.4719, device='cuda:0'), 'validation_cardinality_error': tensor(0.7374, device='cuda:0')}
{'training_loss': tensor(0.6542, device='cuda:0'), 'train_loss_ce': tensor(0.1177, device='cuda:0'), 'train_loss_bbox': tensor(0.0319, device='cuda:0'), 'train_loss_giou': tensor(0.1886, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0471, device='cuda:0'), 'validation_loss_ce': tensor(0.4951, device='cuda:0'), 'validation_loss_bbox': tensor(0.1260, device='cuda:0'), 'validation_loss_giou': tensor(0.4611, device='cuda:0'), 'validation_cardinality_error': tensor(0.5556, device='cuda:0')}
{'training_loss': tensor(0.7754, device='cuda:0'), 'train_loss_ce': tensor(0.1143, device='cuda:0'), 'train_loss_bbox': tensor(0.0509, device='cuda:0'), 'train_loss_giou': tensor(0.2033, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(2.0893, device='cuda:0'), 'validation_loss_ce': tensor(0.4770, device='cuda:0'), 'validation_loss_bbox': tensor(0.1268, device='cuda:0'), 'validation_loss_giou': tensor(0.4892, device='cuda:0'), 'validation_cardinality_error': tensor(0.7273, device='cuda:0')}
{'training_loss': tensor(0.4449, device='cuda:0'), 'train_loss_ce': tensor(0.1495, device='cuda:0'), 'train_loss_bbox': tensor(0.0213, device='cuda:0'), 'train_loss_giou': tensor(0.0944, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0786, device='cuda:0'), 'validation_loss_ce': tensor(0.5021, device='cuda:0'), 'validation_loss_bbox': tensor(0.1240, device='cuda:0'), 'validation_loss_giou': tensor(0.4781, device='cuda:0'), 'validation_cardinality_error': tensor(0.8586, device='cuda:0')}
{'training_loss': tensor(0.5305, device='cuda:0'), 'train_loss_ce': tensor(0.0955, device='cuda:0'), 'train_loss_bbox': tensor(0.0321, device='cuda:0'), 'train_loss_giou': tensor(0.1371, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.1106, device='cuda:0'), 'validation_loss_ce': tensor(0.5152, device='cuda:0'), 'validation_loss_bbox': tensor(0.1309, device='cuda:0'), 'validation_loss_giou': tensor(0.4706, device='cuda:0'), 'validation_cardinality_error': tensor(0.7475, device='cuda:0')}
{'training_loss': tensor(0.5004, device='cuda:0'), 'train_loss_ce': tensor(0.0933, device='cuda:0'), 'train_loss_bbox': tensor(0.0238, device='cuda:0'), 'train_loss_giou': tensor(0.1442, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.1205, device='cuda:0'), 'validation_loss_ce': tensor(0.5339, device='cuda:0'), 'validation_loss_bbox': tensor(0.1272, device='cuda:0'), 'validation_loss_giou': tensor(0.4754, device='cuda:0'), 'validation_cardinality_error': tensor(0.6970, device='cuda:0')}
{'training_loss': tensor(0.4218, device='cuda:0'), 'train_loss_ce': tensor(0.1280, device='cuda:0'), 'train_loss_bbox': tensor(0.0163, device='cuda:0'), 'train_loss_giou': tensor(0.1061, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.1143, device='cuda:0'), 'validation_loss_ce': tensor(0.5302, device='cuda:0'), 'validation_loss_bbox': tensor(0.1246, device='cuda:0'), 'validation_loss_giou': tensor(0.4806, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.5640, device='cuda:0'), 'train_loss_ce': tensor(0.0942, device='cuda:0'), 'train_loss_bbox': tensor(0.0210, device='cuda:0'), 'train_loss_giou': tensor(0.1825, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.1276, device='cuda:0'), 'validation_loss_ce': tensor(0.5339, device='cuda:0'), 'validation_loss_bbox': tensor(0.1291, device='cuda:0'), 'validation_loss_giou': tensor(0.4742, device='cuda:0'), 'validation_cardinality_error': tensor(0.8586, device='cuda:0')}
{'training_loss': tensor(0.5279, device='cuda:0'), 'train_loss_ce': tensor(0.1142, device='cuda:0'), 'train_loss_bbox': tensor(0.0261, device='cuda:0'), 'train_loss_giou': tensor(0.1415, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1176, device='cuda:0'), 'validation_loss_ce': tensor(0.5059, device='cuda:0'), 'validation_loss_bbox': tensor(0.1309, device='cuda:0'), 'validation_loss_giou': tensor(0.4786, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.5718, device='cuda:0'), 'train_loss_ce': tensor(0.0803, device='cuda:0'), 'train_loss_bbox': tensor(0.0254, device='cuda:0'), 'train_loss_giou': tensor(0.1822, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.1181, device='cuda:0'), 'validation_loss_ce': tensor(0.5317, device='cuda:0'), 'validation_loss_bbox': tensor(0.1291, device='cuda:0'), 'validation_loss_giou': tensor(0.4703, device='cuda:0'), 'validation_cardinality_error': tensor(0.8687, device='cuda:0')}
{'training_loss': tensor(0.4815, device='cuda:0'), 'train_loss_ce': tensor(0.1360, device='cuda:0'), 'train_loss_bbox': tensor(0.0308, device='cuda:0'), 'train_loss_giou': tensor(0.0959, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1820, device='cuda:0'), 'validation_loss_ce': tensor(0.5588, device='cuda:0'), 'validation_loss_bbox': tensor(0.1325, device='cuda:0'), 'validation_loss_giou': tensor(0.4804, device='cuda:0'), 'validation_cardinality_error': tensor(0.6667, device='cuda:0')}
{'training_loss': tensor(0.4280, device='cuda:0'), 'train_loss_ce': tensor(0.0811, device='cuda:0'), 'train_loss_bbox': tensor(0.0296, device='cuda:0'), 'train_loss_giou': tensor(0.0995, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1690, device='cuda:0'), 'validation_loss_ce': tensor(0.5364, device='cuda:0'), 'validation_loss_bbox': tensor(0.1358, device='cuda:0'), 'validation_loss_giou': tensor(0.4769, device='cuda:0'), 'validation_cardinality_error': tensor(1.0909, device='cuda:0')}
{'training_loss': tensor(0.5015, device='cuda:0'), 'train_loss_ce': tensor(0.1018, device='cuda:0'), 'train_loss_bbox': tensor(0.0198, device='cuda:0'), 'train_loss_giou': tensor(0.1504, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.1563, device='cuda:0'), 'validation_loss_ce': tensor(0.5431, device='cuda:0'), 'validation_loss_bbox': tensor(0.1287, device='cuda:0'), 'validation_loss_giou': tensor(0.4847, device='cuda:0'), 'validation_cardinality_error': tensor(0.8283, device='cuda:0')}
{'training_loss': tensor(0.4984, device='cuda:0'), 'train_loss_ce': tensor(0.0940, device='cuda:0'), 'train_loss_bbox': tensor(0.0284, device='cuda:0'), 'train_loss_giou': tensor(0.1312, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1561, device='cuda:0'), 'validation_loss_ce': tensor(0.5460, device='cuda:0'), 'validation_loss_bbox': tensor(0.1323, device='cuda:0'), 'validation_loss_giou': tensor(0.4744, device='cuda:0'), 'validation_cardinality_error': tensor(1.1010, device='cuda:0')}
{'training_loss': tensor(0.3916, device='cuda:0'), 'train_loss_ce': tensor(0.0955, device='cuda:0'), 'train_loss_bbox': tensor(0.0175, device='cuda:0'), 'train_loss_giou': tensor(0.1042, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1863, device='cuda:0'), 'validation_loss_ce': tensor(0.5813, device='cuda:0'), 'validation_loss_bbox': tensor(0.1333, device='cuda:0'), 'validation_loss_giou': tensor(0.4694, device='cuda:0'), 'validation_cardinality_error': tensor(0.7374, device='cuda:0')}
{'training_loss': tensor(0.4718, device='cuda:0'), 'train_loss_ce': tensor(0.0441, device='cuda:0'), 'train_loss_bbox': tensor(0.0264, device='cuda:0'), 'train_loss_giou': tensor(0.1479, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.2032, device='cuda:0'), 'validation_loss_ce': tensor(0.6013, device='cuda:0'), 'validation_loss_bbox': tensor(0.1305, device='cuda:0'), 'validation_loss_giou': tensor(0.4747, device='cuda:0'), 'validation_cardinality_error': tensor(0.7576, device='cuda:0')}
{'training_loss': tensor(0.3367, device='cuda:0'), 'train_loss_ce': tensor(0.0597, device='cuda:0'), 'train_loss_bbox': tensor(0.0203, device='cuda:0'), 'train_loss_giou': tensor(0.0878, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.2071, device='cuda:0'), 'validation_loss_ce': tensor(0.5816, device='cuda:0'), 'validation_loss_bbox': tensor(0.1299, device='cuda:0'), 'validation_loss_giou': tensor(0.4880, device='cuda:0'), 'validation_cardinality_error': tensor(0.8384, device='cuda:0')}
{'training_loss': tensor(0.4744, device='cuda:0'), 'train_loss_ce': tensor(0.0851, device='cuda:0'), 'train_loss_bbox': tensor(0.0341, device='cuda:0'), 'train_loss_giou': tensor(0.1094, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.1816, device='cuda:0'), 'validation_loss_ce': tensor(0.5718, device='cuda:0'), 'validation_loss_bbox': tensor(0.1289, device='cuda:0'), 'validation_loss_giou': tensor(0.4826, device='cuda:0'), 'validation_cardinality_error': tensor(0.7475, device='cuda:0')}
{'training_loss': tensor(0.4140, device='cuda:0'), 'train_loss_ce': tensor(0.0769, device='cuda:0'), 'train_loss_bbox': tensor(0.0218, device='cuda:0'), 'train_loss_giou': tensor(0.1141, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1842, device='cuda:0'), 'validation_loss_ce': tensor(0.5961, device='cuda:0'), 'validation_loss_bbox': tensor(0.1288, device='cuda:0'), 'validation_loss_giou': tensor(0.4720, device='cuda:0'), 'validation_cardinality_error': tensor(0.6768, device='cuda:0')}
{'training_loss': tensor(0.4426, device='cuda:0'), 'train_loss_ce': tensor(0.0751, device='cuda:0'), 'train_loss_bbox': tensor(0.0257, device='cuda:0'), 'train_loss_giou': tensor(0.1195, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.2430, device='cuda:0'), 'validation_loss_ce': tensor(0.6063, device='cuda:0'), 'validation_loss_bbox': tensor(0.1347, device='cuda:0'), 'validation_loss_giou': tensor(0.4816, device='cuda:0'), 'validation_cardinality_error': tensor(0.7374, device='cuda:0')}
{'training_loss': tensor(0.2740, device='cuda:0'), 'train_loss_ce': tensor(0.0554, device='cuda:0'), 'train_loss_bbox': tensor(0.0167, device='cuda:0'), 'train_loss_giou': tensor(0.0676, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.2476, device='cuda:0'), 'validation_loss_ce': tensor(0.6091, device='cuda:0'), 'validation_loss_bbox': tensor(0.1330, device='cuda:0'), 'validation_loss_giou': tensor(0.4867, device='cuda:0'), 'validation_cardinality_error': tensor(0.6566, device='cuda:0')}
{'training_loss': tensor(0.4675, device='cuda:0'), 'train_loss_ce': tensor(0.1672, device='cuda:0'), 'train_loss_bbox': tensor(0.0221, device='cuda:0'), 'train_loss_giou': tensor(0.0950, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.2826, device='cuda:0'), 'validation_loss_ce': tensor(0.6572, device='cuda:0'), 'validation_loss_bbox': tensor(0.1294, device='cuda:0'), 'validation_loss_giou': tensor(0.4892, device='cuda:0'), 'validation_cardinality_error': tensor(0.5758, device='cuda:0')}
{'training_loss': tensor(0.5248, device='cuda:0'), 'train_loss_ce': tensor(0.1485, device='cuda:0'), 'train_loss_bbox': tensor(0.0216, device='cuda:0'), 'train_loss_giou': tensor(0.1342, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.2370, device='cuda:0'), 'validation_loss_ce': tensor(0.6159, device='cuda:0'), 'validation_loss_bbox': tensor(0.1270, device='cuda:0'), 'validation_loss_giou': tensor(0.4931, device='cuda:0'), 'validation_cardinality_error': tensor(0.6667, device='cuda:0')}
{'training_loss': tensor(0.4011, device='cuda:0'), 'train_loss_ce': tensor(0.0957, device='cuda:0'), 'train_loss_bbox': tensor(0.0229, device='cuda:0'), 'train_loss_giou': tensor(0.0954, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.2288, device='cuda:0'), 'validation_loss_ce': tensor(0.6055, device='cuda:0'), 'validation_loss_bbox': tensor(0.1318, device='cuda:0'), 'validation_loss_giou': tensor(0.4822, device='cuda:0'), 'validation_cardinality_error': tensor(1.1919, device='cuda:0')}
{'training_loss': tensor(0.4810, device='cuda:0'), 'train_loss_ce': tensor(0.0839, device='cuda:0'), 'train_loss_bbox': tensor(0.0185, device='cuda:0'), 'train_loss_giou': tensor(0.1522, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.2494, device='cuda:0'), 'validation_loss_ce': tensor(0.6398, device='cuda:0'), 'validation_loss_bbox': tensor(0.1291, device='cuda:0'), 'validation_loss_giou': tensor(0.4821, device='cuda:0'), 'validation_cardinality_error': tensor(0.8889, device='cuda:0')}
{'training_loss': tensor(0.5087, device='cuda:0'), 'train_loss_ce': tensor(0.0804, device='cuda:0'), 'train_loss_bbox': tensor(0.0171, device='cuda:0'), 'train_loss_giou': tensor(0.1714, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2825, device='cuda:0'), 'validation_loss_ce': tensor(0.6832, device='cuda:0'), 'validation_loss_bbox': tensor(0.1276, device='cuda:0'), 'validation_loss_giou': tensor(0.4806, device='cuda:0'), 'validation_cardinality_error': tensor(0.7172, device='cuda:0')}
{'training_loss': tensor(0.3379, device='cuda:0'), 'train_loss_ce': tensor(0.0778, device='cuda:0'), 'train_loss_bbox': tensor(0.0248, device='cuda:0'), 'train_loss_giou': tensor(0.0680, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.3122, device='cuda:0'), 'validation_loss_ce': tensor(0.7047, device='cuda:0'), 'validation_loss_bbox': tensor(0.1291, device='cuda:0'), 'validation_loss_giou': tensor(0.4809, device='cuda:0'), 'validation_cardinality_error': tensor(0.6768, device='cuda:0')}
{'training_loss': tensor(0.3063, device='cuda:0'), 'train_loss_ce': tensor(0.0539, device='cuda:0'), 'train_loss_bbox': tensor(0.0170, device='cuda:0'), 'train_loss_giou': tensor(0.0837, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.2885, device='cuda:0'), 'validation_loss_ce': tensor(0.6761, device='cuda:0'), 'validation_loss_bbox': tensor(0.1297, device='cuda:0'), 'validation_loss_giou': tensor(0.4820, device='cuda:0'), 'validation_cardinality_error': tensor(0.6566, device='cuda:0')}
{'training_loss': tensor(0.2474, device='cuda:0'), 'train_loss_ce': tensor(0.0282, device='cuda:0'), 'train_loss_bbox': tensor(0.0226, device='cuda:0'), 'train_loss_giou': tensor(0.0532, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.2837, device='cuda:0'), 'validation_loss_ce': tensor(0.6920, device='cuda:0'), 'validation_loss_bbox': tensor(0.1297, device='cuda:0'), 'validation_loss_giou': tensor(0.4716, device='cuda:0'), 'validation_cardinality_error': tensor(0.6162, device='cuda:0')}
{'training_loss': tensor(0.3458, device='cuda:0'), 'train_loss_ce': tensor(0.0389, device='cuda:0'), 'train_loss_bbox': tensor(0.0169, device='cuda:0'), 'train_loss_giou': tensor(0.1112, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(2.3368, device='cuda:0'), 'validation_loss_ce': tensor(0.7394, device='cuda:0'), 'validation_loss_bbox': tensor(0.1319, device='cuda:0'), 'validation_loss_giou': tensor(0.4690, device='cuda:0'), 'validation_cardinality_error': tensor(0.6162, device='cuda:0')}
{'training_loss': tensor(0.3950, device='cuda:0'), 'train_loss_ce': tensor(0.0727, device='cuda:0'), 'train_loss_bbox': tensor(0.0227, device='cuda:0'), 'train_loss_giou': tensor(0.1045, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.3054, device='cuda:0'), 'validation_loss_ce': tensor(0.7169, device='cuda:0'), 'validation_loss_bbox': tensor(0.1292, device='cuda:0'), 'validation_loss_giou': tensor(0.4713, device='cuda:0'), 'validation_cardinality_error': tensor(0.7273, device='cuda:0')}
{'training_loss': tensor(0.3499, device='cuda:0'), 'train_loss_ce': tensor(0.0438, device='cuda:0'), 'train_loss_bbox': tensor(0.0212, device='cuda:0'), 'train_loss_giou': tensor(0.1001, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.2585, device='cuda:0'), 'validation_loss_ce': tensor(0.6722, device='cuda:0'), 'validation_loss_bbox': tensor(0.1296, device='cuda:0'), 'validation_loss_giou': tensor(0.4693, device='cuda:0'), 'validation_cardinality_error': tensor(0.7677, device='cuda:0')}
{'training_loss': tensor(0.3466, device='cuda:0'), 'train_loss_ce': tensor(0.0608, device='cuda:0'), 'train_loss_bbox': tensor(0.0216, device='cuda:0'), 'train_loss_giou': tensor(0.0888, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.3360, device='cuda:0'), 'validation_loss_ce': tensor(0.7180, device='cuda:0'), 'validation_loss_bbox': tensor(0.1340, device='cuda:0'), 'validation_loss_giou': tensor(0.4739, device='cuda:0'), 'validation_cardinality_error': tensor(0.5354, device='cuda:0')}
{'training_loss': tensor(0.3930, device='cuda:0'), 'train_loss_ce': tensor(0.0676, device='cuda:0'), 'train_loss_bbox': tensor(0.0235, device='cuda:0'), 'train_loss_giou': tensor(0.1039, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.3570, device='cuda:0'), 'validation_loss_ce': tensor(0.7539, device='cuda:0'), 'validation_loss_bbox': tensor(0.1297, device='cuda:0'), 'validation_loss_giou': tensor(0.4772, device='cuda:0'), 'validation_cardinality_error': tensor(0.7677, device='cuda:0')}
{'training_loss': tensor(0.6573, device='cuda:0'), 'train_loss_ce': tensor(0.0744, device='cuda:0'), 'train_loss_bbox': tensor(0.0272, device='cuda:0'), 'train_loss_giou': tensor(0.2235, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2846, device='cuda:0'), 'validation_loss_ce': tensor(0.6852, device='cuda:0'), 'validation_loss_bbox': tensor(0.1313, device='cuda:0'), 'validation_loss_giou': tensor(0.4713, device='cuda:0'), 'validation_cardinality_error': tensor(0.7475, device='cuda:0')}
{'training_loss': tensor(0.5552, device='cuda:0'), 'train_loss_ce': tensor(0.0394, device='cuda:0'), 'train_loss_bbox': tensor(0.0178, device='cuda:0'), 'train_loss_giou': tensor(0.2134, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.3271, device='cuda:0'), 'validation_loss_ce': tensor(0.7234, device='cuda:0'), 'validation_loss_bbox': tensor(0.1309, device='cuda:0'), 'validation_loss_giou': tensor(0.4746, device='cuda:0'), 'validation_cardinality_error': tensor(0.8182, device='cuda:0')}
{'training_loss': tensor(0.4361, device='cuda:0'), 'train_loss_ce': tensor(0.0771, device='cuda:0'), 'train_loss_bbox': tensor(0.0327, device='cuda:0'), 'train_loss_giou': tensor(0.0977, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.3695, device='cuda:0'), 'validation_loss_ce': tensor(0.7518, device='cuda:0'), 'validation_loss_bbox': tensor(0.1305, device='cuda:0'), 'validation_loss_giou': tensor(0.4827, device='cuda:0'), 'validation_cardinality_error': tensor(0.5960, device='cuda:0')}
{'training_loss': tensor(0.4325, device='cuda:0'), 'train_loss_ce': tensor(0.0276, device='cuda:0'), 'train_loss_bbox': tensor(0.0250, device='cuda:0'), 'train_loss_giou': tensor(0.1399, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.3329, device='cuda:0'), 'validation_loss_ce': tensor(0.7291, device='cuda:0'), 'validation_loss_bbox': tensor(0.1316, device='cuda:0'), 'validation_loss_giou': tensor(0.4729, device='cuda:0'), 'validation_cardinality_error': tensor(0.7677, device='cuda:0')}
{'training_loss': tensor(0.2425, device='cuda:0'), 'train_loss_ce': tensor(0.0407, device='cuda:0'), 'train_loss_bbox': tensor(0.0176, device='cuda:0'), 'train_loss_giou': tensor(0.0568, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.2969, device='cuda:0'), 'validation_loss_ce': tensor(0.6921, device='cuda:0'), 'validation_loss_bbox': tensor(0.1298, device='cuda:0'), 'validation_loss_giou': tensor(0.4779, device='cuda:0'), 'validation_cardinality_error': tensor(0.8182, device='cuda:0')}
{'training_loss': tensor(0.6130, device='cuda:0'), 'train_loss_ce': tensor(0.0675, device='cuda:0'), 'train_loss_bbox': tensor(0.0272, device='cuda:0'), 'train_loss_giou': tensor(0.2048, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.3826, device='cuda:0'), 'validation_loss_ce': tensor(0.7644, device='cuda:0'), 'validation_loss_bbox': tensor(0.1308, device='cuda:0'), 'validation_loss_giou': tensor(0.4822, device='cuda:0'), 'validation_cardinality_error': tensor(0.7778, device='cuda:0')}
{'training_loss': tensor(0.4159, device='cuda:0'), 'train_loss_ce': tensor(0.0738, device='cuda:0'), 'train_loss_bbox': tensor(0.0233, device='cuda:0'), 'train_loss_giou': tensor(0.1129, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.4371, device='cuda:0'), 'validation_loss_ce': tensor(0.8200, device='cuda:0'), 'validation_loss_bbox': tensor(0.1316, device='cuda:0'), 'validation_loss_giou': tensor(0.4796, device='cuda:0'), 'validation_cardinality_error': tensor(0.5556, device='cuda:0')}
{'training_loss': tensor(0.3683, device='cuda:0'), 'train_loss_ce': tensor(0.0455, device='cuda:0'), 'train_loss_bbox': tensor(0.0216, device='cuda:0'), 'train_loss_giou': tensor(0.1074, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.3707, device='cuda:0'), 'validation_loss_ce': tensor(0.7796, device='cuda:0'), 'validation_loss_bbox': tensor(0.1290, device='cuda:0'), 'validation_loss_giou': tensor(0.4730, device='cuda:0'), 'validation_cardinality_error': tensor(0.5859, device='cuda:0')}
{'training_loss': tensor(0.8786, device='cuda:0'), 'train_loss_ce': tensor(0.0895, device='cuda:0'), 'train_loss_bbox': tensor(0.0302, device='cuda:0'), 'train_loss_giou': tensor(0.3191, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.3858, device='cuda:0'), 'validation_loss_ce': tensor(0.7638, device='cuda:0'), 'validation_loss_bbox': tensor(0.1305, device='cuda:0'), 'validation_loss_giou': tensor(0.4849, device='cuda:0'), 'validation_cardinality_error': tensor(0.6768, device='cuda:0')}
{'training_loss': tensor(0.5381, device='cuda:0'), 'train_loss_ce': tensor(0.0579, device='cuda:0'), 'train_loss_bbox': tensor(0.0201, device='cuda:0'), 'train_loss_giou': tensor(0.1898, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.3771, device='cuda:0'), 'validation_loss_ce': tensor(0.7741, device='cuda:0'), 'validation_loss_bbox': tensor(0.1269, device='cuda:0'), 'validation_loss_giou': tensor(0.4843, device='cuda:0'), 'validation_cardinality_error': tensor(0.5556, device='cuda:0')}
{'training_loss': tensor(0.3425, device='cuda:0'), 'train_loss_ce': tensor(0.0280, device='cuda:0'), 'train_loss_bbox': tensor(0.0137, device='cuda:0'), 'train_loss_giou': tensor(0.1229, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.4137, device='cuda:0'), 'validation_loss_ce': tensor(0.8267, device='cuda:0'), 'validation_loss_bbox': tensor(0.1283, device='cuda:0'), 'validation_loss_giou': tensor(0.4727, device='cuda:0'), 'validation_cardinality_error': tensor(0.6061, device='cuda:0')}
{'training_loss': tensor(0.3264, device='cuda:0'), 'train_loss_ce': tensor(0.0251, device='cuda:0'), 'train_loss_bbox': tensor(0.0189, device='cuda:0'), 'train_loss_giou': tensor(0.1034, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.4486, device='cuda:0'), 'validation_loss_ce': tensor(0.8427, device='cuda:0'), 'validation_loss_bbox': tensor(0.1307, device='cuda:0'), 'validation_loss_giou': tensor(0.4763, device='cuda:0'), 'validation_cardinality_error': tensor(0.5556, device='cuda:0')}
{'training_loss': tensor(0.4150, device='cuda:0'), 'train_loss_ce': tensor(0.0499, device='cuda:0'), 'train_loss_bbox': tensor(0.0222, device='cuda:0'), 'train_loss_giou': tensor(0.1272, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.4264, device='cuda:0'), 'validation_loss_ce': tensor(0.8304, device='cuda:0'), 'validation_loss_bbox': tensor(0.1272, device='cuda:0'), 'validation_loss_giou': tensor(0.4801, device='cuda:0'), 'validation_cardinality_error': tensor(0.7071, device='cuda:0')}
{'training_loss': tensor(0.3309, device='cuda:0'), 'train_loss_ce': tensor(0.0403, device='cuda:0'), 'train_loss_bbox': tensor(0.0202, device='cuda:0'), 'train_loss_giou': tensor(0.0947, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.4973, device='cuda:0'), 'validation_loss_ce': tensor(0.8628, device='cuda:0'), 'validation_loss_bbox': tensor(0.1321, device='cuda:0'), 'validation_loss_giou': tensor(0.4870, device='cuda:0'), 'validation_cardinality_error': tensor(0.5859, device='cuda:0')}
{'training_loss': tensor(0.5216, device='cuda:0'), 'train_loss_ce': tensor(0.0377, device='cuda:0'), 'train_loss_bbox': tensor(0.0277, device='cuda:0'), 'train_loss_giou': tensor(0.1727, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.4107, device='cuda:0'), 'validation_loss_ce': tensor(0.8152, device='cuda:0'), 'validation_loss_bbox': tensor(0.1277, device='cuda:0'), 'validation_loss_giou': tensor(0.4786, device='cuda:0'), 'validation_cardinality_error': tensor(0.5455, device='cuda:0')}
{'training_loss': tensor(0.3794, device='cuda:0'), 'train_loss_ce': tensor(0.0305, device='cuda:0'), 'train_loss_bbox': tensor(0.0184, device='cuda:0'), 'train_loss_giou': tensor(0.1285, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.4459, device='cuda:0'), 'validation_loss_ce': tensor(0.8267, device='cuda:0'), 'validation_loss_bbox': tensor(0.1273, device='cuda:0'), 'validation_loss_giou': tensor(0.4914, device='cuda:0'), 'validation_cardinality_error': tensor(0.6364, device='cuda:0')}
{'training_loss': tensor(0.3670, device='cuda:0'), 'train_loss_ce': tensor(0.0465, device='cuda:0'), 'train_loss_bbox': tensor(0.0211, device='cuda:0'), 'train_loss_giou': tensor(0.1076, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.4394, device='cuda:0'), 'validation_loss_ce': tensor(0.8348, device='cuda:0'), 'validation_loss_bbox': tensor(0.1269, device='cuda:0'), 'validation_loss_giou': tensor(0.4850, device='cuda:0'), 'validation_cardinality_error': tensor(0.5859, device='cuda:0')}
{'training_loss': tensor(0.2747, device='cuda:0'), 'train_loss_ce': tensor(0.0282, device='cuda:0'), 'train_loss_bbox': tensor(0.0192, device='cuda:0'), 'train_loss_giou': tensor(0.0753, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(2.4289, device='cuda:0'), 'validation_loss_ce': tensor(0.7875, device='cuda:0'), 'validation_loss_bbox': tensor(0.1327, device='cuda:0'), 'validation_loss_giou': tensor(0.4889, device='cuda:0'), 'validation_cardinality_error': tensor(0.7172, device='cuda:0')}
{'training_loss': tensor(0.2209, device='cuda:0'), 'train_loss_ce': tensor(0.0266, device='cuda:0'), 'train_loss_bbox': tensor(0.0175, device='cuda:0'), 'train_loss_giou': tensor(0.0534, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.4022, device='cuda:0'), 'validation_loss_ce': tensor(0.7982, device='cuda:0'), 'validation_loss_bbox': tensor(0.1293, device='cuda:0'), 'validation_loss_giou': tensor(0.4788, device='cuda:0'), 'validation_cardinality_error': tensor(0.5758, device='cuda:0')}
{'training_loss': tensor(0.4501, device='cuda:0'), 'train_loss_ce': tensor(0.0544, device='cuda:0'), 'train_loss_bbox': tensor(0.0199, device='cuda:0'), 'train_loss_giou': tensor(0.1482, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.4863, device='cuda:0'), 'validation_loss_ce': tensor(0.8623, device='cuda:0'), 'validation_loss_bbox': tensor(0.1318, device='cuda:0'), 'validation_loss_giou': tensor(0.4825, device='cuda:0'), 'validation_cardinality_error': tensor(0.6263, device='cuda:0')}
{'training_loss': tensor(0.3663, device='cuda:0'), 'train_loss_ce': tensor(0.0370, device='cuda:0'), 'train_loss_bbox': tensor(0.0202, device='cuda:0'), 'train_loss_giou': tensor(0.1140, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.4366, device='cuda:0'), 'validation_loss_ce': tensor(0.8465, device='cuda:0'), 'validation_loss_bbox': tensor(0.1294, device='cuda:0'), 'validation_loss_giou': tensor(0.4715, device='cuda:0'), 'validation_cardinality_error': tensor(0.5960, device='cuda:0')}
{'training_loss': tensor(0.2806, device='cuda:0'), 'train_loss_ce': tensor(0.0305, device='cuda:0'), 'train_loss_bbox': tensor(0.0176, device='cuda:0'), 'train_loss_giou': tensor(0.0809, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.4155, device='cuda:0'), 'validation_loss_ce': tensor(0.8336, device='cuda:0'), 'validation_loss_bbox': tensor(0.1285, device='cuda:0'), 'validation_loss_giou': tensor(0.4696, device='cuda:0'), 'validation_cardinality_error': tensor(0.5758, device='cuda:0')}
{'training_loss': tensor(0.4170, device='cuda:0'), 'train_loss_ce': tensor(0.1157, device='cuda:0'), 'train_loss_bbox': tensor(0.0188, device='cuda:0'), 'train_loss_giou': tensor(0.1037, device='cuda:0'), 'train_cardinality_error': tensor(4.2000, device='cuda:0'), 'validation_loss': tensor(2.3642, device='cuda:0'), 'validation_loss_ce': tensor(0.7664, device='cuda:0'), 'validation_loss_bbox': tensor(0.1284, device='cuda:0'), 'validation_loss_giou': tensor(0.4780, device='cuda:0'), 'validation_cardinality_error': tensor(1.8182, device='cuda:0')}
{'training_loss': tensor(0.5038, device='cuda:0'), 'train_loss_ce': tensor(0.0796, device='cuda:0'), 'train_loss_bbox': tensor(0.0316, device='cuda:0'), 'train_loss_giou': tensor(0.1332, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3778, device='cuda:0'), 'validation_loss_ce': tensor(0.7656, device='cuda:0'), 'validation_loss_bbox': tensor(0.1297, device='cuda:0'), 'validation_loss_giou': tensor(0.4818, device='cuda:0'), 'validation_cardinality_error': tensor(0.7980, device='cuda:0')}
{'training_loss': tensor(0.2356, device='cuda:0'), 'train_loss_ce': tensor(0.0310, device='cuda:0'), 'train_loss_bbox': tensor(0.0142, device='cuda:0'), 'train_loss_giou': tensor(0.0668, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.3665, device='cuda:0'), 'validation_loss_ce': tensor(0.7694, device='cuda:0'), 'validation_loss_bbox': tensor(0.1275, device='cuda:0'), 'validation_loss_giou': tensor(0.4799, device='cuda:0'), 'validation_cardinality_error': tensor(0.8081, device='cuda:0')}
{'training_loss': tensor(0.5017, device='cuda:0'), 'train_loss_ce': tensor(0.0627, device='cuda:0'), 'train_loss_bbox': tensor(0.0330, device='cuda:0'), 'train_loss_giou': tensor(0.1371, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.4277, device='cuda:0'), 'validation_loss_ce': tensor(0.8344, device='cuda:0'), 'validation_loss_bbox': tensor(0.1288, device='cuda:0'), 'validation_loss_giou': tensor(0.4748, device='cuda:0'), 'validation_cardinality_error': tensor(0.6970, device='cuda:0')}
{'training_loss': tensor(0.3319, device='cuda:0'), 'train_loss_ce': tensor(0.0543, device='cuda:0'), 'train_loss_bbox': tensor(0.0175, device='cuda:0'), 'train_loss_giou': tensor(0.0950, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.4504, device='cuda:0'), 'validation_loss_ce': tensor(0.8507, device='cuda:0'), 'validation_loss_bbox': tensor(0.1285, device='cuda:0'), 'validation_loss_giou': tensor(0.4785, device='cuda:0'), 'validation_cardinality_error': tensor(0.6364, device='cuda:0')}
{'training_loss': tensor(0.3508, device='cuda:0'), 'train_loss_ce': tensor(0.0750, device='cuda:0'), 'train_loss_bbox': tensor(0.0212, device='cuda:0'), 'train_loss_giou': tensor(0.0849, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.4595, device='cuda:0'), 'validation_loss_ce': tensor(0.8676, device='cuda:0'), 'validation_loss_bbox': tensor(0.1268, device='cuda:0'), 'validation_loss_giou': tensor(0.4788, device='cuda:0'), 'validation_cardinality_error': tensor(0.6364, device='cuda:0')}
{'training_loss': tensor(0.5368, device='cuda:0'), 'train_loss_ce': tensor(0.0399, device='cuda:0'), 'train_loss_bbox': tensor(0.0345, device='cuda:0'), 'train_loss_giou': tensor(0.1622, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.4603, device='cuda:0'), 'validation_loss_ce': tensor(0.8832, device='cuda:0'), 'validation_loss_bbox': tensor(0.1301, device='cuda:0'), 'validation_loss_giou': tensor(0.4632, device='cuda:0'), 'validation_cardinality_error': tensor(0.6162, device='cuda:0')}
{'training_loss': tensor(0.2802, device='cuda:0'), 'train_loss_ce': tensor(0.0318, device='cuda:0'), 'train_loss_bbox': tensor(0.0197, device='cuda:0'), 'train_loss_giou': tensor(0.0750, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(2.4560, device='cuda:0'), 'validation_loss_ce': tensor(0.8832, device='cuda:0'), 'validation_loss_bbox': tensor(0.1261, device='cuda:0'), 'validation_loss_giou': tensor(0.4711, device='cuda:0'), 'validation_cardinality_error': tensor(0.7778, device='cuda:0')}
{'training_loss': tensor(0.3189, device='cuda:0'), 'train_loss_ce': tensor(0.0521, device='cuda:0'), 'train_loss_bbox': tensor(0.0147, device='cuda:0'), 'train_loss_giou': tensor(0.0967, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.4731, device='cuda:0'), 'validation_loss_ce': tensor(0.9120, device='cuda:0'), 'validation_loss_bbox': tensor(0.1288, device='cuda:0'), 'validation_loss_giou': tensor(0.4586, device='cuda:0'), 'validation_cardinality_error': tensor(0.5556, device='cuda:0')}
{'training_loss': tensor(0.4147, device='cuda:0'), 'train_loss_ce': tensor(0.0718, device='cuda:0'), 'train_loss_bbox': tensor(0.0194, device='cuda:0'), 'train_loss_giou': tensor(0.1231, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.4641, device='cuda:0'), 'validation_loss_ce': tensor(0.8829, device='cuda:0'), 'validation_loss_bbox': tensor(0.1273, device='cuda:0'), 'validation_loss_giou': tensor(0.4724, device='cuda:0'), 'validation_cardinality_error': tensor(0.5455, device='cuda:0')}
{'training_loss': tensor(0.3062, device='cuda:0'), 'train_loss_ce': tensor(0.0498, device='cuda:0'), 'train_loss_bbox': tensor(0.0131, device='cuda:0'), 'train_loss_giou': tensor(0.0955, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.4525, device='cuda:0'), 'validation_loss_ce': tensor(0.8571, device='cuda:0'), 'validation_loss_bbox': tensor(0.1282, device='cuda:0'), 'validation_loss_giou': tensor(0.4773, device='cuda:0'), 'validation_cardinality_error': tensor(0.6667, device='cuda:0')}
{'training_loss': tensor(0.3737, device='cuda:0'), 'train_loss_ce': tensor(0.0420, device='cuda:0'), 'train_loss_bbox': tensor(0.0234, device='cuda:0'), 'train_loss_giou': tensor(0.1074, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.4891, device='cuda:0'), 'validation_loss_ce': tensor(0.9065, device='cuda:0'), 'validation_loss_bbox': tensor(0.1276, device='cuda:0'), 'validation_loss_giou': tensor(0.4722, device='cuda:0'), 'validation_cardinality_error': tensor(0.6364, device='cuda:0')}
{'training_loss': tensor(0.1928, device='cuda:0'), 'train_loss_ce': tensor(0.0322, device='cuda:0'), 'train_loss_bbox': tensor(0.0154, device='cuda:0'), 'train_loss_giou': tensor(0.0418, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.5550, device='cuda:0'), 'validation_loss_ce': tensor(0.9567, device='cuda:0'), 'validation_loss_bbox': tensor(0.1290, device='cuda:0'), 'validation_loss_giou': tensor(0.4766, device='cuda:0'), 'validation_cardinality_error': tensor(0.6869, device='cuda:0')}
{'training_loss': tensor(0.5658, device='cuda:0'), 'train_loss_ce': tensor(0.0421, device='cuda:0'), 'train_loss_bbox': tensor(0.0229, device='cuda:0'), 'train_loss_giou': tensor(0.2045, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.4333, device='cuda:0'), 'validation_loss_ce': tensor(0.8591, device='cuda:0'), 'validation_loss_bbox': tensor(0.1267, device='cuda:0'), 'validation_loss_giou': tensor(0.4704, device='cuda:0'), 'validation_cardinality_error': tensor(0.5859, device='cuda:0')}
{'training_loss': tensor(0.1504, device='cuda:0'), 'train_loss_ce': tensor(0.0074, device='cuda:0'), 'train_loss_bbox': tensor(0.0127, device='cuda:0'), 'train_loss_giou': tensor(0.0399, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(2.5681, device='cuda:0'), 'validation_loss_ce': tensor(0.9680, device='cuda:0'), 'validation_loss_bbox': tensor(0.1295, device='cuda:0'), 'validation_loss_giou': tensor(0.4764, device='cuda:0'), 'validation_cardinality_error': tensor(0.6667, device='cuda:0')}
{'training_loss': tensor(0.4557, device='cuda:0'), 'train_loss_ce': tensor(0.0463, device='cuda:0'), 'train_loss_bbox': tensor(0.0248, device='cuda:0'), 'train_loss_giou': tensor(0.1426, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.5227, device='cuda:0'), 'validation_loss_ce': tensor(0.9433, device='cuda:0'), 'validation_loss_bbox': tensor(0.1252, device='cuda:0'), 'validation_loss_giou': tensor(0.4767, device='cuda:0'), 'validation_cardinality_error': tensor(0.6566, device='cuda:0')}
{'training_loss': tensor(0.3700, device='cuda:0'), 'train_loss_ce': tensor(0.0771, device='cuda:0'), 'train_loss_bbox': tensor(0.0233, device='cuda:0'), 'train_loss_giou': tensor(0.0881, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.5514, device='cuda:0'), 'validation_loss_ce': tensor(0.9609, device='cuda:0'), 'validation_loss_bbox': tensor(0.1297, device='cuda:0'), 'validation_loss_giou': tensor(0.4709, device='cuda:0'), 'validation_cardinality_error': tensor(0.6869, device='cuda:0')}
{'training_loss': tensor(0.4542, device='cuda:0'), 'train_loss_ce': tensor(0.0374, device='cuda:0'), 'train_loss_bbox': tensor(0.0268, device='cuda:0'), 'train_loss_giou': tensor(0.1413, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.5181, device='cuda:0'), 'validation_loss_ce': tensor(0.9373, device='cuda:0'), 'validation_loss_bbox': tensor(0.1257, device='cuda:0'), 'validation_loss_giou': tensor(0.4762, device='cuda:0'), 'validation_cardinality_error': tensor(0.5758, device='cuda:0')}
{'training_loss': tensor(0.2987, device='cuda:0'), 'train_loss_ce': tensor(0.0298, device='cuda:0'), 'train_loss_bbox': tensor(0.0124, device='cuda:0'), 'train_loss_giou': tensor(0.1036, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.5664, device='cuda:0'), 'validation_loss_ce': tensor(0.9474, device='cuda:0'), 'validation_loss_bbox': tensor(0.1322, device='cuda:0'), 'validation_loss_giou': tensor(0.4789, device='cuda:0'), 'validation_cardinality_error': tensor(0.6263, device='cuda:0')}
{'training_loss': tensor(0.3804, device='cuda:0'), 'train_loss_ce': tensor(0.0333, device='cuda:0'), 'train_loss_bbox': tensor(0.0182, device='cuda:0'), 'train_loss_giou': tensor(0.1281, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.5518, device='cuda:0'), 'validation_loss_ce': tensor(0.9508, device='cuda:0'), 'validation_loss_bbox': tensor(0.1274, device='cuda:0'), 'validation_loss_giou': tensor(0.4820, device='cuda:0'), 'validation_cardinality_error': tensor(0.7071, device='cuda:0')}
{'training_loss': tensor(0.4919, device='cuda:0'), 'train_loss_ce': tensor(0.0140, device='cuda:0'), 'train_loss_bbox': tensor(0.0172, device='cuda:0'), 'train_loss_giou': tensor(0.1960, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(2.4854, device='cuda:0'), 'validation_loss_ce': tensor(0.8931, device='cuda:0'), 'validation_loss_bbox': tensor(0.1307, device='cuda:0'), 'validation_loss_giou': tensor(0.4694, device='cuda:0'), 'validation_cardinality_error': tensor(0.5253, device='cuda:0')}
{'training_loss': tensor(0.5409, device='cuda:0'), 'train_loss_ce': tensor(0.0394, device='cuda:0'), 'train_loss_bbox': tensor(0.0179, device='cuda:0'), 'train_loss_giou': tensor(0.2059, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.5318, device='cuda:0'), 'validation_loss_ce': tensor(0.9287, device='cuda:0'), 'validation_loss_bbox': tensor(0.1300, device='cuda:0'), 'validation_loss_giou': tensor(0.4765, device='cuda:0'), 'validation_cardinality_error': tensor(0.6061, device='cuda:0')}
{'training_loss': tensor(0.3172, device='cuda:0'), 'train_loss_ce': tensor(0.0284, device='cuda:0'), 'train_loss_bbox': tensor(0.0163, device='cuda:0'), 'train_loss_giou': tensor(0.1037, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.4768, device='cuda:0'), 'validation_loss_ce': tensor(0.9045, device='cuda:0'), 'validation_loss_bbox': tensor(0.1265, device='cuda:0'), 'validation_loss_giou': tensor(0.4699, device='cuda:0'), 'validation_cardinality_error': tensor(0.6768, device='cuda:0')}
{'training_loss': tensor(0.2777, device='cuda:0'), 'train_loss_ce': tensor(0.0170, device='cuda:0'), 'train_loss_bbox': tensor(0.0143, device='cuda:0'), 'train_loss_giou': tensor(0.0946, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.5278, device='cuda:0'), 'validation_loss_ce': tensor(0.9268, device='cuda:0'), 'validation_loss_bbox': tensor(0.1292, device='cuda:0'), 'validation_loss_giou': tensor(0.4774, device='cuda:0'), 'validation_cardinality_error': tensor(0.5960, device='cuda:0')}
{'training_loss': tensor(0.2483, device='cuda:0'), 'train_loss_ce': tensor(0.0280, device='cuda:0'), 'train_loss_bbox': tensor(0.0137, device='cuda:0'), 'train_loss_giou': tensor(0.0759, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.4995, device='cuda:0'), 'validation_loss_ce': tensor(0.9166, device='cuda:0'), 'validation_loss_bbox': tensor(0.1275, device='cuda:0'), 'validation_loss_giou': tensor(0.4728, device='cuda:0'), 'validation_cardinality_error': tensor(0.6263, device='cuda:0')}
{'training_loss': tensor(0.2275, device='cuda:0'), 'train_loss_ce': tensor(0.0127, device='cuda:0'), 'train_loss_bbox': tensor(0.0160, device='cuda:0'), 'train_loss_giou': tensor(0.0675, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.5538, device='cuda:0'), 'validation_loss_ce': tensor(0.9663, device='cuda:0'), 'validation_loss_bbox': tensor(0.1232, device='cuda:0'), 'validation_loss_giou': tensor(0.4856, device='cuda:0'), 'validation_cardinality_error': tensor(0.5859, device='cuda:0')}
{'training_loss': tensor(0.1882, device='cuda:0'), 'train_loss_ce': tensor(0.0200, device='cuda:0'), 'train_loss_bbox': tensor(0.0159, device='cuda:0'), 'train_loss_giou': tensor(0.0442, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.5924, device='cuda:0'), 'validation_loss_ce': tensor(1.0187, device='cuda:0'), 'validation_loss_bbox': tensor(0.1245, device='cuda:0'), 'validation_loss_giou': tensor(0.4757, device='cuda:0'), 'validation_cardinality_error': tensor(0.5455, device='cuda:0')}
{'training_loss': tensor(0.3351, device='cuda:0'), 'train_loss_ce': tensor(0.0278, device='cuda:0'), 'train_loss_bbox': tensor(0.0223, device='cuda:0'), 'train_loss_giou': tensor(0.0978, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.5313, device='cuda:0'), 'validation_loss_ce': tensor(0.9392, device='cuda:0'), 'validation_loss_bbox': tensor(0.1283, device='cuda:0'), 'validation_loss_giou': tensor(0.4754, device='cuda:0'), 'validation_cardinality_error': tensor(0.6061, device='cuda:0')}
{'training_loss': tensor(0.2727, device='cuda:0'), 'train_loss_ce': tensor(0.0149, device='cuda:0'), 'train_loss_bbox': tensor(0.0200, device='cuda:0'), 'train_loss_giou': tensor(0.0788, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.5352, device='cuda:0'), 'validation_loss_ce': tensor(0.9397, device='cuda:0'), 'validation_loss_bbox': tensor(0.1248, device='cuda:0'), 'validation_loss_giou': tensor(0.4858, device='cuda:0'), 'validation_cardinality_error': tensor(0.6061, device='cuda:0')}
{'training_loss': tensor(0.2780, device='cuda:0'), 'train_loss_ce': tensor(0.0237, device='cuda:0'), 'train_loss_bbox': tensor(0.0156, device='cuda:0'), 'train_loss_giou': tensor(0.0882, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.5623, device='cuda:0'), 'validation_loss_ce': tensor(0.9815, device='cuda:0'), 'validation_loss_bbox': tensor(0.1290, device='cuda:0'), 'validation_loss_giou': tensor(0.4679, device='cuda:0'), 'validation_cardinality_error': tensor(0.5657, device='cuda:0')}
{'training_loss': tensor(0.3068, device='cuda:0'), 'train_loss_ce': tensor(0.0311, device='cuda:0'), 'train_loss_bbox': tensor(0.0145, device='cuda:0'), 'train_loss_giou': tensor(0.1017, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.5787, device='cuda:0'), 'validation_loss_ce': tensor(0.9729, device='cuda:0'), 'validation_loss_bbox': tensor(0.1285, device='cuda:0'), 'validation_loss_giou': tensor(0.4817, device='cuda:0'), 'validation_cardinality_error': tensor(0.5354, device='cuda:0')}
{'training_loss': tensor(0.2869, device='cuda:0'), 'train_loss_ce': tensor(0.0331, device='cuda:0'), 'train_loss_bbox': tensor(0.0209, device='cuda:0'), 'train_loss_giou': tensor(0.0747, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.5191, device='cuda:0'), 'validation_loss_ce': tensor(0.9568, device='cuda:0'), 'validation_loss_bbox': tensor(0.1239, device='cuda:0'), 'validation_loss_giou': tensor(0.4714, device='cuda:0'), 'validation_cardinality_error': tensor(0.6566, device='cuda:0')}
{'training_loss': tensor(0.2525, device='cuda:0'), 'train_loss_ce': tensor(0.0213, device='cuda:0'), 'train_loss_bbox': tensor(0.0204, device='cuda:0'), 'train_loss_giou': tensor(0.0646, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.5848, device='cuda:0'), 'validation_loss_ce': tensor(0.9987, device='cuda:0'), 'validation_loss_bbox': tensor(0.1267, device='cuda:0'), 'validation_loss_giou': tensor(0.4762, device='cuda:0'), 'validation_cardinality_error': tensor(0.5354, device='cuda:0')}
{'training_loss': tensor(0.2374, device='cuda:0'), 'train_loss_ce': tensor(0.0187, device='cuda:0'), 'train_loss_bbox': tensor(0.0176, device='cuda:0'), 'train_loss_giou': tensor(0.0654, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.5349, device='cuda:0'), 'validation_loss_ce': tensor(0.9461, device='cuda:0'), 'validation_loss_bbox': tensor(0.1266, device='cuda:0'), 'validation_loss_giou': tensor(0.4778, device='cuda:0'), 'validation_cardinality_error': tensor(0.6364, device='cuda:0')}
{'training_loss': tensor(0.2824, device='cuda:0'), 'train_loss_ce': tensor(0.0218, device='cuda:0'), 'train_loss_bbox': tensor(0.0139, device='cuda:0'), 'train_loss_giou': tensor(0.0954, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.6179, device='cuda:0'), 'validation_loss_ce': tensor(1.0161, device='cuda:0'), 'validation_loss_bbox': tensor(0.1285, device='cuda:0'), 'validation_loss_giou': tensor(0.4797, device='cuda:0'), 'validation_cardinality_error': tensor(0.6061, device='cuda:0')}
{'training_loss': tensor(0.4987, device='cuda:0'), 'train_loss_ce': tensor(0.0246, device='cuda:0'), 'train_loss_bbox': tensor(0.0231, device='cuda:0'), 'train_loss_giou': tensor(0.1793, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.5809, device='cuda:0'), 'validation_loss_ce': tensor(0.9610, device='cuda:0'), 'validation_loss_bbox': tensor(0.1330, device='cuda:0'), 'validation_loss_giou': tensor(0.4774, device='cuda:0'), 'validation_cardinality_error': tensor(0.5657, device='cuda:0')}
{'training_loss': tensor(0.4071, device='cuda:0'), 'train_loss_ce': tensor(0.0505, device='cuda:0'), 'train_loss_bbox': tensor(0.0257, device='cuda:0'), 'train_loss_giou': tensor(0.1139, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.5970, device='cuda:0'), 'validation_loss_ce': tensor(1.0049, device='cuda:0'), 'validation_loss_bbox': tensor(0.1286, device='cuda:0'), 'validation_loss_giou': tensor(0.4745, device='cuda:0'), 'validation_cardinality_error': tensor(0.6869, device='cuda:0')}
{'training_loss': tensor(0.3219, device='cuda:0'), 'train_loss_ce': tensor(0.0240, device='cuda:0'), 'train_loss_bbox': tensor(0.0158, device='cuda:0'), 'train_loss_giou': tensor(0.1095, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.5879, device='cuda:0'), 'validation_loss_ce': tensor(0.9885, device='cuda:0'), 'validation_loss_bbox': tensor(0.1309, device='cuda:0'), 'validation_loss_giou': tensor(0.4725, device='cuda:0'), 'validation_cardinality_error': tensor(0.6768, device='cuda:0')}
{'training_loss': tensor(0.3193, device='cuda:0'), 'train_loss_ce': tensor(0.0295, device='cuda:0'), 'train_loss_bbox': tensor(0.0151, device='cuda:0'), 'train_loss_giou': tensor(0.1070, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.7080, device='cuda:0'), 'validation_loss_ce': tensor(1.1057, device='cuda:0'), 'validation_loss_bbox': tensor(0.1309, device='cuda:0'), 'validation_loss_giou': tensor(0.4739, device='cuda:0'), 'validation_cardinality_error': tensor(0.5758, device='cuda:0')}
{'training_loss': tensor(0.2161, device='cuda:0'), 'train_loss_ce': tensor(0.0585, device='cuda:0'), 'train_loss_bbox': tensor(0.0134, device='cuda:0'), 'train_loss_giou': tensor(0.0452, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.6346, device='cuda:0'), 'validation_loss_ce': tensor(1.0380, device='cuda:0'), 'validation_loss_bbox': tensor(0.1295, device='cuda:0'), 'validation_loss_giou': tensor(0.4745, device='cuda:0'), 'validation_cardinality_error': tensor(0.6162, device='cuda:0')}
{'training_loss': tensor(0.3516, device='cuda:0'), 'train_loss_ce': tensor(0.0458, device='cuda:0'), 'train_loss_bbox': tensor(0.0168, device='cuda:0'), 'train_loss_giou': tensor(0.1110, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.5364, device='cuda:0'), 'validation_loss_ce': tensor(0.9651, device='cuda:0'), 'validation_loss_bbox': tensor(0.1277, device='cuda:0'), 'validation_loss_giou': tensor(0.4663, device='cuda:0'), 'validation_cardinality_error': tensor(0.5455, device='cuda:0')}
{'training_loss': tensor(0.3453, device='cuda:0'), 'train_loss_ce': tensor(0.0309, device='cuda:0'), 'train_loss_bbox': tensor(0.0149, device='cuda:0'), 'train_loss_giou': tensor(0.1199, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.6089, device='cuda:0'), 'validation_loss_ce': tensor(1.0256, device='cuda:0'), 'validation_loss_bbox': tensor(0.1263, device='cuda:0'), 'validation_loss_giou': tensor(0.4761, device='cuda:0'), 'validation_cardinality_error': tensor(0.6263, device='cuda:0')}
{'training_loss': tensor(0.2810, device='cuda:0'), 'train_loss_ce': tensor(0.0295, device='cuda:0'), 'train_loss_bbox': tensor(0.0208, device='cuda:0'), 'train_loss_giou': tensor(0.0737, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(2.6469, device='cuda:0'), 'validation_loss_ce': tensor(1.0581, device='cuda:0'), 'validation_loss_bbox': tensor(0.1239, device='cuda:0'), 'validation_loss_giou': tensor(0.4846, device='cuda:0'), 'validation_cardinality_error': tensor(0.6566, device='cuda:0')}
{'training_loss': tensor(0.2788, device='cuda:0'), 'train_loss_ce': tensor(0.0153, device='cuda:0'), 'train_loss_bbox': tensor(0.0146, device='cuda:0'), 'train_loss_giou': tensor(0.0953, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.6282, device='cuda:0'), 'validation_loss_ce': tensor(1.0368, device='cuda:0'), 'validation_loss_bbox': tensor(0.1293, device='cuda:0'), 'validation_loss_giou': tensor(0.4723, device='cuda:0'), 'validation_cardinality_error': tensor(0.5758, device='cuda:0')}
{'training_loss': tensor(0.2390, device='cuda:0'), 'train_loss_ce': tensor(0.0411, device='cuda:0'), 'train_loss_bbox': tensor(0.0119, device='cuda:0'), 'train_loss_giou': tensor(0.0691, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.6160, device='cuda:0'), 'validation_loss_ce': tensor(1.0087, device='cuda:0'), 'validation_loss_bbox': tensor(0.1298, device='cuda:0'), 'validation_loss_giou': tensor(0.4791, device='cuda:0'), 'validation_cardinality_error': tensor(0.6263, device='cuda:0')}
{'training_loss': tensor(0.3785, device='cuda:0'), 'train_loss_ce': tensor(0.0070, device='cuda:0'), 'train_loss_bbox': tensor(0.0211, device='cuda:0'), 'train_loss_giou': tensor(0.1331, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.5838, device='cuda:0'), 'validation_loss_ce': tensor(0.9994, device='cuda:0'), 'validation_loss_bbox': tensor(0.1282, device='cuda:0'), 'validation_loss_giou': tensor(0.4717, device='cuda:0'), 'validation_cardinality_error': tensor(0.5859, device='cuda:0')}
{'training_loss': tensor(0.3077, device='cuda:0'), 'train_loss_ce': tensor(0.0299, device='cuda:0'), 'train_loss_bbox': tensor(0.0133, device='cuda:0'), 'train_loss_giou': tensor(0.1056, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.6008, device='cuda:0'), 'validation_loss_ce': tensor(0.9920, device='cuda:0'), 'validation_loss_bbox': tensor(0.1338, device='cuda:0'), 'validation_loss_giou': tensor(0.4699, device='cuda:0'), 'validation_cardinality_error': tensor(0.5556, device='cuda:0')}
{'training_loss': tensor(0.3627, device='cuda:0'), 'train_loss_ce': tensor(0.0270, device='cuda:0'), 'train_loss_bbox': tensor(0.0172, device='cuda:0'), 'train_loss_giou': tensor(0.1247, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.6748, device='cuda:0'), 'validation_loss_ce': tensor(1.0848, device='cuda:0'), 'validation_loss_bbox': tensor(0.1284, device='cuda:0'), 'validation_loss_giou': tensor(0.4739, device='cuda:0'), 'validation_cardinality_error': tensor(0.6162, device='cuda:0')}
{'training_loss': tensor(0.2148, device='cuda:0'), 'train_loss_ce': tensor(0.0384, device='cuda:0'), 'train_loss_bbox': tensor(0.0118, device='cuda:0'), 'train_loss_giou': tensor(0.0587, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.6203, device='cuda:0'), 'validation_loss_ce': tensor(1.0131, device='cuda:0'), 'validation_loss_bbox': tensor(0.1274, device='cuda:0'), 'validation_loss_giou': tensor(0.4851, device='cuda:0'), 'validation_cardinality_error': tensor(0.6970, device='cuda:0')}
{'training_loss': tensor(0.3246, device='cuda:0'), 'train_loss_ce': tensor(0.0136, device='cuda:0'), 'train_loss_bbox': tensor(0.0135, device='cuda:0'), 'train_loss_giou': tensor(0.1218, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.6257, device='cuda:0'), 'validation_loss_ce': tensor(1.0634, device='cuda:0'), 'validation_loss_bbox': tensor(0.1255, device='cuda:0'), 'validation_loss_giou': tensor(0.4673, device='cuda:0'), 'validation_cardinality_error': tensor(0.5253, device='cuda:0')}
{'training_loss': tensor(0.2757, device='cuda:0'), 'train_loss_ce': tensor(0.0144, device='cuda:0'), 'train_loss_bbox': tensor(0.0159, device='cuda:0'), 'train_loss_giou': tensor(0.0909, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.5884, device='cuda:0'), 'validation_loss_ce': tensor(1.0067, device='cuda:0'), 'validation_loss_bbox': tensor(0.1253, device='cuda:0'), 'validation_loss_giou': tensor(0.4777, device='cuda:0'), 'validation_cardinality_error': tensor(0.6566, device='cuda:0')}
{'training_loss': tensor(0.3413, device='cuda:0'), 'train_loss_ce': tensor(0.0100, device='cuda:0'), 'train_loss_bbox': tensor(0.0169, device='cuda:0'), 'train_loss_giou': tensor(0.1235, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(2.6455, device='cuda:0'), 'validation_loss_ce': tensor(1.0632, device='cuda:0'), 'validation_loss_bbox': tensor(0.1284, device='cuda:0'), 'validation_loss_giou': tensor(0.4703, device='cuda:0'), 'validation_cardinality_error': tensor(0.6364, device='cuda:0')}
{'training_loss': tensor(0.4338, device='cuda:0'), 'train_loss_ce': tensor(0.0385, device='cuda:0'), 'train_loss_bbox': tensor(0.0167, device='cuda:0'), 'train_loss_giou': tensor(0.1559, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.6822, device='cuda:0'), 'validation_loss_ce': tensor(1.0787, device='cuda:0'), 'validation_loss_bbox': tensor(0.1300, device='cuda:0'), 'validation_loss_giou': tensor(0.4768, device='cuda:0'), 'validation_cardinality_error': tensor(0.6162, device='cuda:0')}
{'training_loss': tensor(0.2708, device='cuda:0'), 'train_loss_ce': tensor(0.0258, device='cuda:0'), 'train_loss_bbox': tensor(0.0232, device='cuda:0'), 'train_loss_giou': tensor(0.0645, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.5837, device='cuda:0'), 'validation_loss_ce': tensor(0.9570, device='cuda:0'), 'validation_loss_bbox': tensor(0.1319, device='cuda:0'), 'validation_loss_giou': tensor(0.4837, device='cuda:0'), 'validation_cardinality_error': tensor(0.7778, device='cuda:0')}
{'training_loss': tensor(0.3192, device='cuda:0'), 'train_loss_ce': tensor(0.0213, device='cuda:0'), 'train_loss_bbox': tensor(0.0166, device='cuda:0'), 'train_loss_giou': tensor(0.1074, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.6474, device='cuda:0'), 'validation_loss_ce': tensor(1.0507, device='cuda:0'), 'validation_loss_bbox': tensor(0.1297, device='cuda:0'), 'validation_loss_giou': tensor(0.4741, device='cuda:0'), 'validation_cardinality_error': tensor(0.6364, device='cuda:0')}
{'training_loss': tensor(0.5360, device='cuda:0'), 'train_loss_ce': tensor(0.2081, device='cuda:0'), 'train_loss_bbox': tensor(0.0244, device='cuda:0'), 'train_loss_giou': tensor(0.1029, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.5728, device='cuda:0'), 'validation_loss_ce': tensor(0.9947, device='cuda:0'), 'validation_loss_bbox': tensor(0.1239, device='cuda:0'), 'validation_loss_giou': tensor(0.4794, device='cuda:0'), 'validation_cardinality_error': tensor(0.6364, device='cuda:0')}
{'training_loss': tensor(0.4048, device='cuda:0'), 'train_loss_ce': tensor(0.0280, device='cuda:0'), 'train_loss_bbox': tensor(0.0176, device='cuda:0'), 'train_loss_giou': tensor(0.1445, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.5772, device='cuda:0'), 'validation_loss_ce': tensor(1.0213, device='cuda:0'), 'validation_loss_bbox': tensor(0.1235, device='cuda:0'), 'validation_loss_giou': tensor(0.4693, device='cuda:0'), 'validation_cardinality_error': tensor(0.5758, device='cuda:0')}
{'training_loss': tensor(0.1823, device='cuda:0'), 'train_loss_ce': tensor(0.0075, device='cuda:0'), 'train_loss_bbox': tensor(0.0126, device='cuda:0'), 'train_loss_giou': tensor(0.0557, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(2.5389, device='cuda:0'), 'validation_loss_ce': tensor(0.9689, device='cuda:0'), 'validation_loss_bbox': tensor(0.1278, device='cuda:0'), 'validation_loss_giou': tensor(0.4655, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.1495, device='cuda:0'), 'train_loss_ce': tensor(0.0060, device='cuda:0'), 'train_loss_bbox': tensor(0.0118, device='cuda:0'), 'train_loss_giou': tensor(0.0422, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(2.6347, device='cuda:0'), 'validation_loss_ce': tensor(1.0403, device='cuda:0'), 'validation_loss_bbox': tensor(0.1282, device='cuda:0'), 'validation_loss_giou': tensor(0.4767, device='cuda:0'), 'validation_cardinality_error': tensor(0.5758, device='cuda:0')}
{'training_loss': tensor(0.2676, device='cuda:0'), 'train_loss_ce': tensor(0.0148, device='cuda:0'), 'train_loss_bbox': tensor(0.0184, device='cuda:0'), 'train_loss_giou': tensor(0.0804, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.6207, device='cuda:0'), 'validation_loss_ce': tensor(1.0187, device='cuda:0'), 'validation_loss_bbox': tensor(0.1300, device='cuda:0'), 'validation_loss_giou': tensor(0.4759, device='cuda:0'), 'validation_cardinality_error': tensor(0.6465, device='cuda:0')}
{'training_loss': tensor(0.2675, device='cuda:0'), 'train_loss_ce': tensor(0.0184, device='cuda:0'), 'train_loss_bbox': tensor(0.0159, device='cuda:0'), 'train_loss_giou': tensor(0.0847, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.6938, device='cuda:0'), 'validation_loss_ce': tensor(1.0985, device='cuda:0'), 'validation_loss_bbox': tensor(0.1298, device='cuda:0'), 'validation_loss_giou': tensor(0.4732, device='cuda:0'), 'validation_cardinality_error': tensor(0.6162, device='cuda:0')}
{'training_loss': tensor(0.3595, device='cuda:0'), 'train_loss_ce': tensor(0.0236, device='cuda:0'), 'train_loss_bbox': tensor(0.0210, device='cuda:0'), 'train_loss_giou': tensor(0.1156, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.6529, device='cuda:0'), 'validation_loss_ce': tensor(1.0644, device='cuda:0'), 'validation_loss_bbox': tensor(0.1301, device='cuda:0'), 'validation_loss_giou': tensor(0.4690, device='cuda:0'), 'validation_cardinality_error': tensor(0.5859, device='cuda:0')}
{'training_loss': tensor(0.3078, device='cuda:0'), 'train_loss_ce': tensor(0.0203, device='cuda:0'), 'train_loss_bbox': tensor(0.0168, device='cuda:0'), 'train_loss_giou': tensor(0.1017, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.6650, device='cuda:0'), 'validation_loss_ce': tensor(1.0812, device='cuda:0'), 'validation_loss_bbox': tensor(0.1282, device='cuda:0'), 'validation_loss_giou': tensor(0.4714, device='cuda:0'), 'validation_cardinality_error': tensor(0.6263, device='cuda:0')}
{'training_loss': tensor(0.3596, device='cuda:0'), 'train_loss_ce': tensor(0.0198, device='cuda:0'), 'train_loss_bbox': tensor(0.0167, device='cuda:0'), 'train_loss_giou': tensor(0.1283, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.6980, device='cuda:0'), 'validation_loss_ce': tensor(1.1194, device='cuda:0'), 'validation_loss_bbox': tensor(0.1276, device='cuda:0'), 'validation_loss_giou': tensor(0.4703, device='cuda:0'), 'validation_cardinality_error': tensor(0.6364, device='cuda:0')}
{'training_loss': tensor(0.1977, device='cuda:0'), 'train_loss_ce': tensor(0.0173, device='cuda:0'), 'train_loss_bbox': tensor(0.0156, device='cuda:0'), 'train_loss_giou': tensor(0.0511, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.5996, device='cuda:0'), 'validation_loss_ce': tensor(1.0173, device='cuda:0'), 'validation_loss_bbox': tensor(0.1271, device='cuda:0'), 'validation_loss_giou': tensor(0.4734, device='cuda:0'), 'validation_cardinality_error': tensor(0.6566, device='cuda:0')}
{'training_loss': tensor(0.2774, device='cuda:0'), 'train_loss_ce': tensor(0.0074, device='cuda:0'), 'train_loss_bbox': tensor(0.0193, device='cuda:0'), 'train_loss_giou': tensor(0.0868, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.6420, device='cuda:0'), 'validation_loss_ce': tensor(1.0491, device='cuda:0'), 'validation_loss_bbox': tensor(0.1295, device='cuda:0'), 'validation_loss_giou': tensor(0.4728, device='cuda:0'), 'validation_cardinality_error': tensor(0.6162, device='cuda:0')}
{'training_loss': tensor(0.2247, device='cuda:0'), 'train_loss_ce': tensor(0.0170, device='cuda:0'), 'train_loss_bbox': tensor(0.0141, device='cuda:0'), 'train_loss_giou': tensor(0.0687, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.6213, device='cuda:0'), 'validation_loss_ce': tensor(0.9984, device='cuda:0'), 'validation_loss_bbox': tensor(0.1304, device='cuda:0'), 'validation_loss_giou': tensor(0.4855, device='cuda:0'), 'validation_cardinality_error': tensor(0.5556, device='cuda:0')}
{'training_loss': tensor(0.4333, device='cuda:0'), 'train_loss_ce': tensor(0.0187, device='cuda:0'), 'train_loss_bbox': tensor(0.0165, device='cuda:0'), 'train_loss_giou': tensor(0.1661, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.6650, device='cuda:0'), 'validation_loss_ce': tensor(1.0726, device='cuda:0'), 'validation_loss_bbox': tensor(0.1280, device='cuda:0'), 'validation_loss_giou': tensor(0.4762, device='cuda:0'), 'validation_cardinality_error': tensor(0.6061, device='cuda:0')}
{'training_loss': tensor(0.2787, device='cuda:0'), 'train_loss_ce': tensor(0.0088, device='cuda:0'), 'train_loss_bbox': tensor(0.0217, device='cuda:0'), 'train_loss_giou': tensor(0.0806, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.6841, device='cuda:0'), 'validation_loss_ce': tensor(1.0708, device='cuda:0'), 'validation_loss_bbox': tensor(0.1343, device='cuda:0'), 'validation_loss_giou': tensor(0.4709, device='cuda:0'), 'validation_cardinality_error': tensor(0.6162, device='cuda:0')}
{'training_loss': tensor(0.2062, device='cuda:0'), 'train_loss_ce': tensor(0.0132, device='cuda:0'), 'train_loss_bbox': tensor(0.0106, device='cuda:0'), 'train_loss_giou': tensor(0.0701, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(2.6858, device='cuda:0'), 'validation_loss_ce': tensor(1.1130, device='cuda:0'), 'validation_loss_bbox': tensor(0.1273, device='cuda:0'), 'validation_loss_giou': tensor(0.4681, device='cuda:0'), 'validation_cardinality_error': tensor(0.5556, device='cuda:0')}
{'training_loss': tensor(0.2068, device='cuda:0'), 'train_loss_ce': tensor(0.0406, device='cuda:0'), 'train_loss_bbox': tensor(0.0130, device='cuda:0'), 'train_loss_giou': tensor(0.0505, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.7074, device='cuda:0'), 'validation_loss_ce': tensor(1.1161, device='cuda:0'), 'validation_loss_bbox': tensor(0.1279, device='cuda:0'), 'validation_loss_giou': tensor(0.4760, device='cuda:0'), 'validation_cardinality_error': tensor(0.5354, device='cuda:0')}
{'training_loss': tensor(0.4069, device='cuda:0'), 'train_loss_ce': tensor(0.0209, device='cuda:0'), 'train_loss_bbox': tensor(0.0218, device='cuda:0'), 'train_loss_giou': tensor(0.1385, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.6848, device='cuda:0'), 'validation_loss_ce': tensor(1.0661, device='cuda:0'), 'validation_loss_bbox': tensor(0.1305, device='cuda:0'), 'validation_loss_giou': tensor(0.4831, device='cuda:0'), 'validation_cardinality_error': tensor(0.6869, device='cuda:0')}
{'training_loss': tensor(0.3041, device='cuda:0'), 'train_loss_ce': tensor(0.0029, device='cuda:0'), 'train_loss_bbox': tensor(0.0116, device='cuda:0'), 'train_loss_giou': tensor(0.1215, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.7376, device='cuda:0'), 'validation_loss_ce': tensor(1.1461, device='cuda:0'), 'validation_loss_bbox': tensor(0.1302, device='cuda:0'), 'validation_loss_giou': tensor(0.4703, device='cuda:0'), 'validation_cardinality_error': tensor(0.5960, device='cuda:0')}
{'training_loss': tensor(0.3142, device='cuda:0'), 'train_loss_ce': tensor(0.0070, device='cuda:0'), 'train_loss_bbox': tensor(0.0146, device='cuda:0'), 'train_loss_giou': tensor(0.1172, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.6885, device='cuda:0'), 'validation_loss_ce': tensor(1.1088, device='cuda:0'), 'validation_loss_bbox': tensor(0.1281, device='cuda:0'), 'validation_loss_giou': tensor(0.4695, device='cuda:0'), 'validation_cardinality_error': tensor(0.5758, device='cuda:0')}
{'training_loss': tensor(0.2394, device='cuda:0'), 'train_loss_ce': tensor(0.0141, device='cuda:0'), 'train_loss_bbox': tensor(0.0133, device='cuda:0'), 'train_loss_giou': tensor(0.0793, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.6745, device='cuda:0'), 'validation_loss_ce': tensor(1.0608, device='cuda:0'), 'validation_loss_bbox': tensor(0.1291, device='cuda:0'), 'validation_loss_giou': tensor(0.4840, device='cuda:0'), 'validation_cardinality_error': tensor(0.6263, device='cuda:0')}
```
## Examples
{'size': tensor([800, 800]), 'image_id': tensor([1]), 'class_labels': tensor([4]), 'boxes': tensor([[0.2622, 0.5729, 0.0847, 0.0773]]), 'area': tensor([4194.1973]), 'iscrowd': tensor([0]), 'orig_size': tensor([1024, 1024])}

|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
MedicalVision/detr_nih_200ep
|
## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.007
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.012
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.012
```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.014
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.032
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.017
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.017
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.014
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.077
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.135
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.168
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.061
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.168
```
## Config
- dataset: NIH
- original model: facebook/detr-resnet-50
- lr: 0.0001
- max_epochs: 200
## Logging
### Training process
```
{'validation_loss': tensor(6.4207, device='cuda:0'), 'validation_loss_ce': tensor(2.0609, device='cuda:0'), 'validation_loss_bbox': tensor(0.5410, device='cuda:0'), 'validation_loss_giou': tensor(0.8274, device='cuda:0'), 'validation_cardinality_error': tensor(84.9688, device='cuda:0')}
{'training_loss': tensor(2.3578, device='cuda:0'), 'train_loss_ce': tensor(0.5497, device='cuda:0'), 'train_loss_bbox': tensor(0.1655, device='cuda:0'), 'train_loss_giou': tensor(0.4904, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(3.0166, device='cuda:0'), 'validation_loss_ce': tensor(0.5406, device='cuda:0'), 'validation_loss_bbox': tensor(0.2461, device='cuda:0'), 'validation_loss_giou': tensor(0.6227, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6157, device='cuda:0'), 'train_loss_ce': tensor(0.4145, device='cuda:0'), 'train_loss_bbox': tensor(0.2141, device='cuda:0'), 'train_loss_giou': tensor(0.5653, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6287, device='cuda:0'), 'validation_loss_ce': tensor(0.4480, device='cuda:0'), 'validation_loss_bbox': tensor(0.1945, device='cuda:0'), 'validation_loss_giou': tensor(0.6040, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.7792, device='cuda:0'), 'train_loss_ce': tensor(0.4003, device='cuda:0'), 'train_loss_bbox': tensor(0.1783, device='cuda:0'), 'train_loss_giou': tensor(0.7436, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.4423, device='cuda:0'), 'validation_loss_ce': tensor(0.4439, device='cuda:0'), 'validation_loss_bbox': tensor(0.1715, device='cuda:0'), 'validation_loss_giou': tensor(0.5705, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(3.0499, device='cuda:0'), 'train_loss_ce': tensor(0.4943, device='cuda:0'), 'train_loss_bbox': tensor(0.2466, device='cuda:0'), 'train_loss_giou': tensor(0.6613, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3473, device='cuda:0'), 'validation_loss_ce': tensor(0.4454, device='cuda:0'), 'validation_loss_bbox': tensor(0.1586, device='cuda:0'), 'validation_loss_giou': tensor(0.5544, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5991, device='cuda:0'), 'train_loss_ce': tensor(0.4014, device='cuda:0'), 'train_loss_bbox': tensor(0.1607, device='cuda:0'), 'train_loss_giou': tensor(0.6971, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2988, device='cuda:0'), 'validation_loss_ce': tensor(0.4328, device='cuda:0'), 'validation_loss_bbox': tensor(0.1548, device='cuda:0'), 'validation_loss_giou': tensor(0.5460, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6833, device='cuda:0'), 'train_loss_ce': tensor(0.4014, device='cuda:0'), 'train_loss_bbox': tensor(0.1728, device='cuda:0'), 'train_loss_giou': tensor(0.7090, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6458, device='cuda:0'), 'validation_loss_ce': tensor(0.4345, device='cuda:0'), 'validation_loss_bbox': tensor(0.1837, device='cuda:0'), 'validation_loss_giou': tensor(0.6464, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2738, device='cuda:0'), 'train_loss_ce': tensor(0.4427, device='cuda:0'), 'train_loss_bbox': tensor(0.1527, device='cuda:0'), 'train_loss_giou': tensor(0.5337, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3650, device='cuda:0'), 'validation_loss_ce': tensor(0.4310, device='cuda:0'), 'validation_loss_bbox': tensor(0.1683, device='cuda:0'), 'validation_loss_giou': tensor(0.5463, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2507, device='cuda:0'), 'train_loss_ce': tensor(0.4785, device='cuda:0'), 'train_loss_bbox': tensor(0.1342, device='cuda:0'), 'train_loss_giou': tensor(0.5507, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3450, device='cuda:0'), 'validation_loss_ce': tensor(0.4320, device='cuda:0'), 'validation_loss_bbox': tensor(0.1631, device='cuda:0'), 'validation_loss_giou': tensor(0.5487, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3232, device='cuda:0'), 'train_loss_ce': tensor(0.4610, device='cuda:0'), 'train_loss_bbox': tensor(0.1449, device='cuda:0'), 'train_loss_giou': tensor(0.5689, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2947, device='cuda:0'), 'validation_loss_ce': tensor(0.4268, device='cuda:0'), 'validation_loss_bbox': tensor(0.1617, device='cuda:0'), 'validation_loss_giou': tensor(0.5297, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2340, device='cuda:0'), 'train_loss_ce': tensor(0.3145, device='cuda:0'), 'train_loss_bbox': tensor(0.1381, device='cuda:0'), 'train_loss_giou': tensor(0.6146, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2105, device='cuda:0'), 'validation_loss_ce': tensor(0.4265, device='cuda:0'), 'validation_loss_bbox': tensor(0.1485, device='cuda:0'), 'validation_loss_giou': tensor(0.5208, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0645, device='cuda:0'), 'train_loss_ce': tensor(0.4596, device='cuda:0'), 'train_loss_bbox': tensor(0.1629, device='cuda:0'), 'train_loss_giou': tensor(0.3953, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2883, device='cuda:0'), 'validation_loss_ce': tensor(0.4253, device='cuda:0'), 'validation_loss_bbox': tensor(0.1578, device='cuda:0'), 'validation_loss_giou': tensor(0.5371, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.8043, device='cuda:0'), 'train_loss_ce': tensor(0.3768, device='cuda:0'), 'train_loss_bbox': tensor(0.1945, device='cuda:0'), 'train_loss_giou': tensor(0.7276, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1758, device='cuda:0'), 'validation_loss_ce': tensor(0.4248, device='cuda:0'), 'validation_loss_bbox': tensor(0.1513, device='cuda:0'), 'validation_loss_giou': tensor(0.4972, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2134, device='cuda:0'), 'train_loss_ce': tensor(0.4331, device='cuda:0'), 'train_loss_bbox': tensor(0.1372, device='cuda:0'), 'train_loss_giou': tensor(0.5471, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1775, device='cuda:0'), 'validation_loss_ce': tensor(0.4161, device='cuda:0'), 'validation_loss_bbox': tensor(0.1526, device='cuda:0'), 'validation_loss_giou': tensor(0.4992, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1333, device='cuda:0'), 'train_loss_ce': tensor(0.3773, device='cuda:0'), 'train_loss_bbox': tensor(0.1440, device='cuda:0'), 'train_loss_giou': tensor(0.5179, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1012, device='cuda:0'), 'validation_loss_ce': tensor(0.4169, device='cuda:0'), 'validation_loss_bbox': tensor(0.1385, device='cuda:0'), 'validation_loss_giou': tensor(0.4959, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4124, device='cuda:0'), 'train_loss_ce': tensor(0.4025, device='cuda:0'), 'train_loss_bbox': tensor(0.1789, device='cuda:0'), 'train_loss_giou': tensor(0.5578, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2371, device='cuda:0'), 'validation_loss_ce': tensor(0.4126, device='cuda:0'), 'validation_loss_bbox': tensor(0.1522, device='cuda:0'), 'validation_loss_giou': tensor(0.5318, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1650, device='cuda:0'), 'train_loss_ce': tensor(0.3995, device='cuda:0'), 'train_loss_bbox': tensor(0.1454, device='cuda:0'), 'train_loss_giou': tensor(0.5193, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2030, device='cuda:0'), 'validation_loss_ce': tensor(0.4070, device='cuda:0'), 'validation_loss_bbox': tensor(0.1507, device='cuda:0'), 'validation_loss_giou': tensor(0.5213, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2143, device='cuda:0'), 'train_loss_ce': tensor(0.4463, device='cuda:0'), 'train_loss_bbox': tensor(0.1359, device='cuda:0'), 'train_loss_giou': tensor(0.5442, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2106, device='cuda:0'), 'validation_loss_ce': tensor(0.4053, device='cuda:0'), 'validation_loss_bbox': tensor(0.1550, device='cuda:0'), 'validation_loss_giou': tensor(0.5152, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8531, device='cuda:0'), 'train_loss_ce': tensor(0.4354, device='cuda:0'), 'train_loss_bbox': tensor(0.1192, device='cuda:0'), 'train_loss_giou': tensor(0.4108, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1812, device='cuda:0'), 'validation_loss_ce': tensor(0.4000, device='cuda:0'), 'validation_loss_bbox': tensor(0.1538, device='cuda:0'), 'validation_loss_giou': tensor(0.5062, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5801, device='cuda:0'), 'train_loss_ce': tensor(0.4596, device='cuda:0'), 'train_loss_bbox': tensor(0.1541, device='cuda:0'), 'train_loss_giou': tensor(0.6750, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2652, device='cuda:0'), 'validation_loss_ce': tensor(0.3940, device='cuda:0'), 'validation_loss_bbox': tensor(0.1571, device='cuda:0'), 'validation_loss_giou': tensor(0.5429, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1687, device='cuda:0'), 'train_loss_ce': tensor(0.3731, device='cuda:0'), 'train_loss_bbox': tensor(0.1890, device='cuda:0'), 'train_loss_giou': tensor(0.4254, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2785, device='cuda:0'), 'validation_loss_ce': tensor(0.3951, device='cuda:0'), 'validation_loss_bbox': tensor(0.1596, device='cuda:0'), 'validation_loss_giou': tensor(0.5426, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5849, device='cuda:0'), 'train_loss_ce': tensor(0.4550, device='cuda:0'), 'train_loss_bbox': tensor(0.2161, device='cuda:0'), 'train_loss_giou': tensor(0.5247, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2627, device='cuda:0'), 'validation_loss_ce': tensor(0.4030, device='cuda:0'), 'validation_loss_bbox': tensor(0.1602, device='cuda:0'), 'validation_loss_giou': tensor(0.5294, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8324, device='cuda:0'), 'train_loss_ce': tensor(0.3951, device='cuda:0'), 'train_loss_bbox': tensor(0.1107, device='cuda:0'), 'train_loss_giou': tensor(0.4419, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2350, device='cuda:0'), 'validation_loss_ce': tensor(0.3877, device='cuda:0'), 'validation_loss_bbox': tensor(0.1567, device='cuda:0'), 'validation_loss_giou': tensor(0.5319, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5153, device='cuda:0'), 'train_loss_ce': tensor(0.3981, device='cuda:0'), 'train_loss_bbox': tensor(0.1651, device='cuda:0'), 'train_loss_giou': tensor(0.6459, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2184, device='cuda:0'), 'validation_loss_ce': tensor(0.3921, device='cuda:0'), 'validation_loss_bbox': tensor(0.1549, device='cuda:0'), 'validation_loss_giou': tensor(0.5259, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.8913, device='cuda:0'), 'train_loss_ce': tensor(0.3863, device='cuda:0'), 'train_loss_bbox': tensor(0.1970, device='cuda:0'), 'train_loss_giou': tensor(0.7600, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2018, device='cuda:0'), 'validation_loss_ce': tensor(0.4079, device='cuda:0'), 'validation_loss_bbox': tensor(0.1532, device='cuda:0'), 'validation_loss_giou': tensor(0.5139, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(3.2672, device='cuda:0'), 'train_loss_ce': tensor(0.4708, device='cuda:0'), 'train_loss_bbox': tensor(0.2473, device='cuda:0'), 'train_loss_giou': tensor(0.7799, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3791, device='cuda:0'), 'validation_loss_ce': tensor(0.3954, device='cuda:0'), 'validation_loss_bbox': tensor(0.1719, device='cuda:0'), 'validation_loss_giou': tensor(0.5621, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4053, device='cuda:0'), 'train_loss_ce': tensor(0.3162, device='cuda:0'), 'train_loss_bbox': tensor(0.1707, device='cuda:0'), 'train_loss_giou': tensor(0.6179, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2616, device='cuda:0'), 'validation_loss_ce': tensor(0.3821, device='cuda:0'), 'validation_loss_bbox': tensor(0.1597, device='cuda:0'), 'validation_loss_giou': tensor(0.5404, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6625, device='cuda:0'), 'train_loss_ce': tensor(0.4407, device='cuda:0'), 'train_loss_bbox': tensor(0.2101, device='cuda:0'), 'train_loss_giou': tensor(0.5857, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3330, device='cuda:0'), 'validation_loss_ce': tensor(0.3909, device='cuda:0'), 'validation_loss_bbox': tensor(0.1704, device='cuda:0'), 'validation_loss_giou': tensor(0.5451, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8683, device='cuda:0'), 'train_loss_ce': tensor(0.2295, device='cuda:0'), 'train_loss_bbox': tensor(0.1461, device='cuda:0'), 'train_loss_giou': tensor(0.4542, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3991, device='cuda:0'), 'validation_loss_ce': tensor(0.3920, device='cuda:0'), 'validation_loss_bbox': tensor(0.1781, device='cuda:0'), 'validation_loss_giou': tensor(0.5584, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3198, device='cuda:0'), 'train_loss_ce': tensor(0.4286, device='cuda:0'), 'train_loss_bbox': tensor(0.1645, device='cuda:0'), 'train_loss_giou': tensor(0.5344, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2652, device='cuda:0'), 'validation_loss_ce': tensor(0.3846, device='cuda:0'), 'validation_loss_bbox': tensor(0.1617, device='cuda:0'), 'validation_loss_giou': tensor(0.5360, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4912, device='cuda:0'), 'train_loss_ce': tensor(0.3936, device='cuda:0'), 'train_loss_bbox': tensor(0.1765, device='cuda:0'), 'train_loss_giou': tensor(0.6075, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3270, device='cuda:0'), 'validation_loss_ce': tensor(0.4098, device='cuda:0'), 'validation_loss_bbox': tensor(0.1633, device='cuda:0'), 'validation_loss_giou': tensor(0.5503, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0515, device='cuda:0'), 'train_loss_ce': tensor(0.3302, device='cuda:0'), 'train_loss_bbox': tensor(0.1430, device='cuda:0'), 'train_loss_giou': tensor(0.5031, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2206, device='cuda:0'), 'validation_loss_ce': tensor(0.3968, device='cuda:0'), 'validation_loss_bbox': tensor(0.1541, device='cuda:0'), 'validation_loss_giou': tensor(0.5268, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8191, device='cuda:0'), 'train_loss_ce': tensor(0.3706, device='cuda:0'), 'train_loss_bbox': tensor(0.1308, device='cuda:0'), 'train_loss_giou': tensor(0.3971, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2383, device='cuda:0'), 'validation_loss_ce': tensor(0.3955, device='cuda:0'), 'validation_loss_bbox': tensor(0.1572, device='cuda:0'), 'validation_loss_giou': tensor(0.5284, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(3.0484, device='cuda:0'), 'train_loss_ce': tensor(0.4571, device='cuda:0'), 'train_loss_bbox': tensor(0.2060, device='cuda:0'), 'train_loss_giou': tensor(0.7808, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2333, device='cuda:0'), 'validation_loss_ce': tensor(0.3967, device='cuda:0'), 'validation_loss_bbox': tensor(0.1533, device='cuda:0'), 'validation_loss_giou': tensor(0.5350, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6799, device='cuda:0'), 'train_loss_ce': tensor(0.4602, device='cuda:0'), 'train_loss_bbox': tensor(0.1791, device='cuda:0'), 'train_loss_giou': tensor(0.6622, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2382, device='cuda:0'), 'validation_loss_ce': tensor(0.3924, device='cuda:0'), 'validation_loss_bbox': tensor(0.1492, device='cuda:0'), 'validation_loss_giou': tensor(0.5498, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4502, device='cuda:0'), 'train_loss_ce': tensor(0.3789, device='cuda:0'), 'train_loss_bbox': tensor(0.1498, device='cuda:0'), 'train_loss_giou': tensor(0.6612, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2263, device='cuda:0'), 'validation_loss_ce': tensor(0.3878, device='cuda:0'), 'validation_loss_bbox': tensor(0.1587, device='cuda:0'), 'validation_loss_giou': tensor(0.5225, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2216, device='cuda:0'), 'train_loss_ce': tensor(0.3818, device='cuda:0'), 'train_loss_bbox': tensor(0.0762, device='cuda:0'), 'train_loss_giou': tensor(0.2295, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3319, device='cuda:0'), 'validation_loss_ce': tensor(0.3970, device='cuda:0'), 'validation_loss_bbox': tensor(0.1730, device='cuda:0'), 'validation_loss_giou': tensor(0.5350, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5640, device='cuda:0'), 'train_loss_ce': tensor(0.4546, device='cuda:0'), 'train_loss_bbox': tensor(0.1603, device='cuda:0'), 'train_loss_giou': tensor(0.6539, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3079, device='cuda:0'), 'validation_loss_ce': tensor(0.3998, device='cuda:0'), 'validation_loss_bbox': tensor(0.1661, device='cuda:0'), 'validation_loss_giou': tensor(0.5387, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2581, device='cuda:0'), 'train_loss_ce': tensor(0.3363, device='cuda:0'), 'train_loss_bbox': tensor(0.1403, device='cuda:0'), 'train_loss_giou': tensor(0.6101, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2111, device='cuda:0'), 'validation_loss_ce': tensor(0.3751, device='cuda:0'), 'validation_loss_bbox': tensor(0.1607, device='cuda:0'), 'validation_loss_giou': tensor(0.5162, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3485, device='cuda:0'), 'train_loss_ce': tensor(0.4494, device='cuda:0'), 'train_loss_bbox': tensor(0.1812, device='cuda:0'), 'train_loss_giou': tensor(0.4966, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3130, device='cuda:0'), 'validation_loss_ce': tensor(0.3876, device='cuda:0'), 'validation_loss_bbox': tensor(0.1718, device='cuda:0'), 'validation_loss_giou': tensor(0.5332, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.7878, device='cuda:0'), 'train_loss_ce': tensor(0.3782, device='cuda:0'), 'train_loss_bbox': tensor(0.1877, device='cuda:0'), 'train_loss_giou': tensor(0.7356, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1594, device='cuda:0'), 'validation_loss_ce': tensor(0.3933, device='cuda:0'), 'validation_loss_bbox': tensor(0.1517, device='cuda:0'), 'validation_loss_giou': tensor(0.5037, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1905, device='cuda:0'), 'train_loss_ce': tensor(0.2605, device='cuda:0'), 'train_loss_bbox': tensor(0.1417, device='cuda:0'), 'train_loss_giou': tensor(0.6108, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2161, device='cuda:0'), 'validation_loss_ce': tensor(0.3799, device='cuda:0'), 'validation_loss_bbox': tensor(0.1564, device='cuda:0'), 'validation_loss_giou': tensor(0.5270, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5982, device='cuda:0'), 'train_loss_ce': tensor(0.4285, device='cuda:0'), 'train_loss_bbox': tensor(0.1972, device='cuda:0'), 'train_loss_giou': tensor(0.5918, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1477, device='cuda:0'), 'validation_loss_ce': tensor(0.3791, device='cuda:0'), 'validation_loss_bbox': tensor(0.1489, device='cuda:0'), 'validation_loss_giou': tensor(0.5121, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2489, device='cuda:0'), 'train_loss_ce': tensor(0.3138, device='cuda:0'), 'train_loss_bbox': tensor(0.1319, device='cuda:0'), 'train_loss_giou': tensor(0.6379, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2376, device='cuda:0'), 'validation_loss_ce': tensor(0.4022, device='cuda:0'), 'validation_loss_bbox': tensor(0.1534, device='cuda:0'), 'validation_loss_giou': tensor(0.5341, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7796, device='cuda:0'), 'train_loss_ce': tensor(0.3809, device='cuda:0'), 'train_loss_bbox': tensor(0.1062, device='cuda:0'), 'train_loss_giou': tensor(0.4339, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2223, device='cuda:0'), 'validation_loss_ce': tensor(0.3936, device='cuda:0'), 'validation_loss_bbox': tensor(0.1566, device='cuda:0'), 'validation_loss_giou': tensor(0.5229, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0844, device='cuda:0'), 'train_loss_ce': tensor(0.2970, device='cuda:0'), 'train_loss_bbox': tensor(0.1476, device='cuda:0'), 'train_loss_giou': tensor(0.5246, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1623, device='cuda:0'), 'validation_loss_ce': tensor(0.3797, device='cuda:0'), 'validation_loss_bbox': tensor(0.1451, device='cuda:0'), 'validation_loss_giou': tensor(0.5286, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1617, device='cuda:0'), 'train_loss_ce': tensor(0.3508, device='cuda:0'), 'train_loss_bbox': tensor(0.1475, device='cuda:0'), 'train_loss_giou': tensor(0.5367, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1541, device='cuda:0'), 'validation_loss_ce': tensor(0.3888, device='cuda:0'), 'validation_loss_bbox': tensor(0.1460, device='cuda:0'), 'validation_loss_giou': tensor(0.5177, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1195, device='cuda:0'), 'train_loss_ce': tensor(0.3391, device='cuda:0'), 'train_loss_bbox': tensor(0.1411, device='cuda:0'), 'train_loss_giou': tensor(0.5375, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0961, device='cuda:0'), 'validation_loss_ce': tensor(0.3807, device='cuda:0'), 'validation_loss_bbox': tensor(0.1461, device='cuda:0'), 'validation_loss_giou': tensor(0.4924, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0537, device='cuda:0'), 'train_loss_ce': tensor(0.4099, device='cuda:0'), 'train_loss_bbox': tensor(0.1412, device='cuda:0'), 'train_loss_giou': tensor(0.4690, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2206, device='cuda:0'), 'validation_loss_ce': tensor(0.3853, device='cuda:0'), 'validation_loss_bbox': tensor(0.1556, device='cuda:0'), 'validation_loss_giou': tensor(0.5286, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2331, device='cuda:0'), 'train_loss_ce': tensor(0.3940, device='cuda:0'), 'train_loss_bbox': tensor(0.1487, device='cuda:0'), 'train_loss_giou': tensor(0.5478, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3169, device='cuda:0'), 'validation_loss_ce': tensor(0.3960, device='cuda:0'), 'validation_loss_bbox': tensor(0.1633, device='cuda:0'), 'validation_loss_giou': tensor(0.5522, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7015, device='cuda:0'), 'train_loss_ce': tensor(0.3067, device='cuda:0'), 'train_loss_bbox': tensor(0.1144, device='cuda:0'), 'train_loss_giou': tensor(0.4114, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(2.2544, device='cuda:0'), 'validation_loss_ce': tensor(0.3830, device='cuda:0'), 'validation_loss_bbox': tensor(0.1545, device='cuda:0'), 'validation_loss_giou': tensor(0.5494, device='cuda:0'), 'validation_cardinality_error': tensor(0.1717, device='cuda:0')}
{'training_loss': tensor(1.9921, device='cuda:0'), 'train_loss_ce': tensor(0.4313, device='cuda:0'), 'train_loss_bbox': tensor(0.1303, device='cuda:0'), 'train_loss_giou': tensor(0.4547, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2080, device='cuda:0'), 'validation_loss_ce': tensor(0.3818, device='cuda:0'), 'validation_loss_bbox': tensor(0.1514, device='cuda:0'), 'validation_loss_giou': tensor(0.5346, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7522, device='cuda:0'), 'train_loss_ce': tensor(0.3303, device='cuda:0'), 'train_loss_bbox': tensor(0.0997, device='cuda:0'), 'train_loss_giou': tensor(0.4617, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(2.1990, device='cuda:0'), 'validation_loss_ce': tensor(0.3722, device='cuda:0'), 'validation_loss_bbox': tensor(0.1559, device='cuda:0'), 'validation_loss_giou': tensor(0.5236, device='cuda:0'), 'validation_cardinality_error': tensor(0.1212, device='cuda:0')}
{'training_loss': tensor(1.6958, device='cuda:0'), 'train_loss_ce': tensor(0.3758, device='cuda:0'), 'train_loss_bbox': tensor(0.1014, device='cuda:0'), 'train_loss_giou': tensor(0.4065, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0929, device='cuda:0'), 'validation_loss_ce': tensor(0.3831, device='cuda:0'), 'validation_loss_bbox': tensor(0.1436, device='cuda:0'), 'validation_loss_giou': tensor(0.4958, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4735, device='cuda:0'), 'train_loss_ce': tensor(0.4604, device='cuda:0'), 'train_loss_bbox': tensor(0.1699, device='cuda:0'), 'train_loss_giou': tensor(0.5818, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0941, device='cuda:0'), 'validation_loss_ce': tensor(0.3828, device='cuda:0'), 'validation_loss_bbox': tensor(0.1429, device='cuda:0'), 'validation_loss_giou': tensor(0.4984, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8317, device='cuda:0'), 'train_loss_ce': tensor(0.3630, device='cuda:0'), 'train_loss_bbox': tensor(0.1309, device='cuda:0'), 'train_loss_giou': tensor(0.4070, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0163, device='cuda:0'), 'validation_loss_ce': tensor(0.3738, device='cuda:0'), 'validation_loss_bbox': tensor(0.1378, device='cuda:0'), 'validation_loss_giou': tensor(0.4768, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1291, device='cuda:0'), 'train_loss_ce': tensor(0.3411, device='cuda:0'), 'train_loss_bbox': tensor(0.1622, device='cuda:0'), 'train_loss_giou': tensor(0.4885, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0822, device='cuda:0'), 'validation_loss_ce': tensor(0.3766, device='cuda:0'), 'validation_loss_bbox': tensor(0.1372, device='cuda:0'), 'validation_loss_giou': tensor(0.5099, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1475, device='cuda:0'), 'train_loss_ce': tensor(0.2555, device='cuda:0'), 'train_loss_bbox': tensor(0.0771, device='cuda:0'), 'train_loss_giou': tensor(0.2533, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0884, device='cuda:0'), 'validation_loss_ce': tensor(0.3793, device='cuda:0'), 'validation_loss_bbox': tensor(0.1359, device='cuda:0'), 'validation_loss_giou': tensor(0.5148, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1778, device='cuda:0'), 'train_loss_ce': tensor(0.3597, device='cuda:0'), 'train_loss_bbox': tensor(0.1520, device='cuda:0'), 'train_loss_giou': tensor(0.5291, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1174, device='cuda:0'), 'validation_loss_ce': tensor(0.3754, device='cuda:0'), 'validation_loss_bbox': tensor(0.1414, device='cuda:0'), 'validation_loss_giou': tensor(0.5176, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5285, device='cuda:0'), 'train_loss_ce': tensor(0.2532, device='cuda:0'), 'train_loss_bbox': tensor(0.0970, device='cuda:0'), 'train_loss_giou': tensor(0.3951, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1707, device='cuda:0'), 'validation_loss_ce': tensor(0.3801, device='cuda:0'), 'validation_loss_bbox': tensor(0.1459, device='cuda:0'), 'validation_loss_giou': tensor(0.5305, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7647, device='cuda:0'), 'train_loss_ce': tensor(0.3222, device='cuda:0'), 'train_loss_bbox': tensor(0.1121, device='cuda:0'), 'train_loss_giou': tensor(0.4410, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0906, device='cuda:0'), 'validation_loss_ce': tensor(0.3806, device='cuda:0'), 'validation_loss_bbox': tensor(0.1404, device='cuda:0'), 'validation_loss_giou': tensor(0.5041, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7061, device='cuda:0'), 'train_loss_ce': tensor(0.3497, device='cuda:0'), 'train_loss_bbox': tensor(0.1160, device='cuda:0'), 'train_loss_giou': tensor(0.3883, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1237, device='cuda:0'), 'validation_loss_ce': tensor(0.3767, device='cuda:0'), 'validation_loss_bbox': tensor(0.1440, device='cuda:0'), 'validation_loss_giou': tensor(0.5136, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1208, device='cuda:0'), 'train_loss_ce': tensor(0.3082, device='cuda:0'), 'train_loss_bbox': tensor(0.1357, device='cuda:0'), 'train_loss_giou': tensor(0.5669, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1288, device='cuda:0'), 'validation_loss_ce': tensor(0.3704, device='cuda:0'), 'validation_loss_bbox': tensor(0.1472, device='cuda:0'), 'validation_loss_giou': tensor(0.5111, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9974, device='cuda:0'), 'train_loss_ce': tensor(0.3391, device='cuda:0'), 'train_loss_bbox': tensor(0.1176, device='cuda:0'), 'train_loss_giou': tensor(0.5351, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0523, device='cuda:0'), 'validation_loss_ce': tensor(0.3743, device='cuda:0'), 'validation_loss_bbox': tensor(0.1355, device='cuda:0'), 'validation_loss_giou': tensor(0.5002, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(1.9094, device='cuda:0'), 'train_loss_ce': tensor(0.4019, device='cuda:0'), 'train_loss_bbox': tensor(0.1284, device='cuda:0'), 'train_loss_giou': tensor(0.4328, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1164, device='cuda:0'), 'validation_loss_ce': tensor(0.3724, device='cuda:0'), 'validation_loss_bbox': tensor(0.1428, device='cuda:0'), 'validation_loss_giou': tensor(0.5151, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9381, device='cuda:0'), 'train_loss_ce': tensor(0.3301, device='cuda:0'), 'train_loss_bbox': tensor(0.1607, device='cuda:0'), 'train_loss_giou': tensor(0.4022, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.1851, device='cuda:0'), 'validation_loss_ce': tensor(0.3780, device='cuda:0'), 'validation_loss_bbox': tensor(0.1534, device='cuda:0'), 'validation_loss_giou': tensor(0.5200, device='cuda:0'), 'validation_cardinality_error': tensor(0.7071, device='cuda:0')}
{'training_loss': tensor(2.0970, device='cuda:0'), 'train_loss_ce': tensor(0.3394, device='cuda:0'), 'train_loss_bbox': tensor(0.1539, device='cuda:0'), 'train_loss_giou': tensor(0.4940, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1079, device='cuda:0'), 'validation_loss_ce': tensor(0.3702, device='cuda:0'), 'validation_loss_bbox': tensor(0.1408, device='cuda:0'), 'validation_loss_giou': tensor(0.5169, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(1.5947, device='cuda:0'), 'train_loss_ce': tensor(0.3617, device='cuda:0'), 'train_loss_bbox': tensor(0.1123, device='cuda:0'), 'train_loss_giou': tensor(0.3358, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0782, device='cuda:0'), 'validation_loss_ce': tensor(0.3757, device='cuda:0'), 'validation_loss_bbox': tensor(0.1377, device='cuda:0'), 'validation_loss_giou': tensor(0.5071, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6625, device='cuda:0'), 'train_loss_ce': tensor(0.3055, device='cuda:0'), 'train_loss_bbox': tensor(0.1079, device='cuda:0'), 'train_loss_giou': tensor(0.4087, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1064, device='cuda:0'), 'validation_loss_ce': tensor(0.3804, device='cuda:0'), 'validation_loss_bbox': tensor(0.1428, device='cuda:0'), 'validation_loss_giou': tensor(0.5059, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1994, device='cuda:0'), 'train_loss_ce': tensor(0.3416, device='cuda:0'), 'train_loss_bbox': tensor(0.0818, device='cuda:0'), 'train_loss_giou': tensor(0.2243, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0933, device='cuda:0'), 'validation_loss_ce': tensor(0.3714, device='cuda:0'), 'validation_loss_bbox': tensor(0.1417, device='cuda:0'), 'validation_loss_giou': tensor(0.5067, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2140, device='cuda:0'), 'train_loss_ce': tensor(0.4918, device='cuda:0'), 'train_loss_bbox': tensor(0.1717, device='cuda:0'), 'train_loss_giou': tensor(0.4318, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(3.0028, device='cuda:0'), 'validation_loss_ce': tensor(0.4401, device='cuda:0'), 'validation_loss_bbox': tensor(0.2323, device='cuda:0'), 'validation_loss_giou': tensor(0.7005, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3652, device='cuda:0'), 'train_loss_ce': tensor(0.3701, device='cuda:0'), 'train_loss_bbox': tensor(0.1418, device='cuda:0'), 'train_loss_giou': tensor(0.6430, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(2.2226, device='cuda:0'), 'validation_loss_ce': tensor(0.3744, device='cuda:0'), 'validation_loss_bbox': tensor(0.1570, device='cuda:0'), 'validation_loss_giou': tensor(0.5316, device='cuda:0'), 'validation_cardinality_error': tensor(0.0606, device='cuda:0')}
{'training_loss': tensor(2.3508, device='cuda:0'), 'train_loss_ce': tensor(0.3382, device='cuda:0'), 'train_loss_bbox': tensor(0.1864, device='cuda:0'), 'train_loss_giou': tensor(0.5403, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(2.1722, device='cuda:0'), 'validation_loss_ce': tensor(0.3650, device='cuda:0'), 'validation_loss_bbox': tensor(0.1532, device='cuda:0'), 'validation_loss_giou': tensor(0.5206, device='cuda:0'), 'validation_cardinality_error': tensor(0.0101, device='cuda:0')}
{'training_loss': tensor(2.0235, device='cuda:0'), 'train_loss_ce': tensor(0.3052, device='cuda:0'), 'train_loss_bbox': tensor(0.1501, device='cuda:0'), 'train_loss_giou': tensor(0.4839, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(2.1489, device='cuda:0'), 'validation_loss_ce': tensor(0.3624, device='cuda:0'), 'validation_loss_bbox': tensor(0.1510, device='cuda:0'), 'validation_loss_giou': tensor(0.5158, device='cuda:0'), 'validation_cardinality_error': tensor(0.0101, device='cuda:0')}
{'training_loss': tensor(1.9064, device='cuda:0'), 'train_loss_ce': tensor(0.2462, device='cuda:0'), 'train_loss_bbox': tensor(0.1373, device='cuda:0'), 'train_loss_giou': tensor(0.4869, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.1829, device='cuda:0'), 'validation_loss_ce': tensor(0.3587, device='cuda:0'), 'validation_loss_bbox': tensor(0.1503, device='cuda:0'), 'validation_loss_giou': tensor(0.5364, device='cuda:0'), 'validation_cardinality_error': tensor(0.0909, device='cuda:0')}
{'training_loss': tensor(2.4615, device='cuda:0'), 'train_loss_ce': tensor(0.4180, device='cuda:0'), 'train_loss_bbox': tensor(0.1491, device='cuda:0'), 'train_loss_giou': tensor(0.6489, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.1167, device='cuda:0'), 'validation_loss_ce': tensor(0.3661, device='cuda:0'), 'validation_loss_bbox': tensor(0.1460, device='cuda:0'), 'validation_loss_giou': tensor(0.5103, device='cuda:0'), 'validation_cardinality_error': tensor(0.0303, device='cuda:0')}
{'training_loss': tensor(2.1492, device='cuda:0'), 'train_loss_ce': tensor(0.4065, device='cuda:0'), 'train_loss_bbox': tensor(0.1639, device='cuda:0'), 'train_loss_giou': tensor(0.4617, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1249, device='cuda:0'), 'validation_loss_ce': tensor(0.3711, device='cuda:0'), 'validation_loss_bbox': tensor(0.1459, device='cuda:0'), 'validation_loss_giou': tensor(0.5123, device='cuda:0'), 'validation_cardinality_error': tensor(0.5152, device='cuda:0')}
{'training_loss': tensor(1.7120, device='cuda:0'), 'train_loss_ce': tensor(0.4459, device='cuda:0'), 'train_loss_bbox': tensor(0.0954, device='cuda:0'), 'train_loss_giou': tensor(0.3944, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0487, device='cuda:0'), 'validation_loss_ce': tensor(0.3638, device='cuda:0'), 'validation_loss_bbox': tensor(0.1371, device='cuda:0'), 'validation_loss_giou': tensor(0.4997, device='cuda:0'), 'validation_cardinality_error': tensor(0.4444, device='cuda:0')}
{'training_loss': tensor(1.3853, device='cuda:0'), 'train_loss_ce': tensor(0.3027, device='cuda:0'), 'train_loss_bbox': tensor(0.1027, device='cuda:0'), 'train_loss_giou': tensor(0.2845, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1056, device='cuda:0'), 'validation_loss_ce': tensor(0.3815, device='cuda:0'), 'validation_loss_bbox': tensor(0.1383, device='cuda:0'), 'validation_loss_giou': tensor(0.5163, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(3.0036, device='cuda:0'), 'train_loss_ce': tensor(0.3714, device='cuda:0'), 'train_loss_bbox': tensor(0.2074, device='cuda:0'), 'train_loss_giou': tensor(0.7976, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.4140, device='cuda:0'), 'validation_loss_ce': tensor(0.3710, device='cuda:0'), 'validation_loss_bbox': tensor(0.1714, device='cuda:0'), 'validation_loss_giou': tensor(0.5930, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2128, device='cuda:0'), 'train_loss_ce': tensor(0.3221, device='cuda:0'), 'train_loss_bbox': tensor(0.1677, device='cuda:0'), 'train_loss_giou': tensor(0.5262, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.2166, device='cuda:0'), 'validation_loss_ce': tensor(0.3988, device='cuda:0'), 'validation_loss_bbox': tensor(0.1541, device='cuda:0'), 'validation_loss_giou': tensor(0.5235, device='cuda:0'), 'validation_cardinality_error': tensor(0.8283, device='cuda:0')}
{'training_loss': tensor(2.1880, device='cuda:0'), 'train_loss_ce': tensor(0.3684, device='cuda:0'), 'train_loss_bbox': tensor(0.1355, device='cuda:0'), 'train_loss_giou': tensor(0.5711, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7215, device='cuda:0'), 'validation_loss_ce': tensor(0.4208, device='cuda:0'), 'validation_loss_bbox': tensor(0.2124, device='cuda:0'), 'validation_loss_giou': tensor(0.6194, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(3.1576, device='cuda:0'), 'train_loss_ce': tensor(0.3905, device='cuda:0'), 'train_loss_bbox': tensor(0.2959, device='cuda:0'), 'train_loss_giou': tensor(0.6439, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.9462, device='cuda:0'), 'validation_loss_ce': tensor(0.4210, device='cuda:0'), 'validation_loss_bbox': tensor(0.2334, device='cuda:0'), 'validation_loss_giou': tensor(0.6792, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0168, device='cuda:0'), 'train_loss_ce': tensor(0.2936, device='cuda:0'), 'train_loss_bbox': tensor(0.1926, device='cuda:0'), 'train_loss_giou': tensor(0.3802, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3305, device='cuda:0'), 'validation_loss_ce': tensor(0.3945, device='cuda:0'), 'validation_loss_bbox': tensor(0.1682, device='cuda:0'), 'validation_loss_giou': tensor(0.5476, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3849, device='cuda:0'), 'train_loss_ce': tensor(0.4588, device='cuda:0'), 'train_loss_bbox': tensor(0.1356, device='cuda:0'), 'train_loss_giou': tensor(0.6240, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.2256, device='cuda:0'), 'validation_loss_ce': tensor(0.3925, device='cuda:0'), 'validation_loss_bbox': tensor(0.1570, device='cuda:0'), 'validation_loss_giou': tensor(0.5240, device='cuda:0'), 'validation_cardinality_error': tensor(0.1313, device='cuda:0')}
{'training_loss': tensor(2.4421, device='cuda:0'), 'train_loss_ce': tensor(0.4108, device='cuda:0'), 'train_loss_bbox': tensor(0.1633, device='cuda:0'), 'train_loss_giou': tensor(0.6073, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3896, device='cuda:0'), 'validation_loss_ce': tensor(0.4171, device='cuda:0'), 'validation_loss_bbox': tensor(0.1679, device='cuda:0'), 'validation_loss_giou': tensor(0.5665, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5144, device='cuda:0'), 'train_loss_ce': tensor(0.2612, device='cuda:0'), 'train_loss_bbox': tensor(0.1710, device='cuda:0'), 'train_loss_giou': tensor(0.6991, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.5473, device='cuda:0'), 'validation_loss_ce': tensor(0.3983, device='cuda:0'), 'validation_loss_bbox': tensor(0.1879, device='cuda:0'), 'validation_loss_giou': tensor(0.6046, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(2.8832, device='cuda:0'), 'train_loss_ce': tensor(0.4733, device='cuda:0'), 'train_loss_bbox': tensor(0.1874, device='cuda:0'), 'train_loss_giou': tensor(0.7364, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3074, device='cuda:0'), 'validation_loss_ce': tensor(0.3879, device='cuda:0'), 'validation_loss_bbox': tensor(0.1606, device='cuda:0'), 'validation_loss_giou': tensor(0.5582, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(2.0220, device='cuda:0'), 'train_loss_ce': tensor(0.2581, device='cuda:0'), 'train_loss_bbox': tensor(0.1283, device='cuda:0'), 'train_loss_giou': tensor(0.5612, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3775, device='cuda:0'), 'validation_loss_ce': tensor(0.4068, device='cuda:0'), 'validation_loss_bbox': tensor(0.1682, device='cuda:0'), 'validation_loss_giou': tensor(0.5649, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1240, device='cuda:0'), 'train_loss_ce': tensor(0.2668, device='cuda:0'), 'train_loss_bbox': tensor(0.1617, device='cuda:0'), 'train_loss_giou': tensor(0.5242, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3027, device='cuda:0'), 'validation_loss_ce': tensor(0.3944, device='cuda:0'), 'validation_loss_bbox': tensor(0.1620, device='cuda:0'), 'validation_loss_giou': tensor(0.5492, device='cuda:0'), 'validation_cardinality_error': tensor(0.8081, device='cuda:0')}
{'training_loss': tensor(2.1202, device='cuda:0'), 'train_loss_ce': tensor(0.4236, device='cuda:0'), 'train_loss_bbox': tensor(0.1357, device='cuda:0'), 'train_loss_giou': tensor(0.5091, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1988, device='cuda:0'), 'validation_loss_ce': tensor(0.3963, device='cuda:0'), 'validation_loss_bbox': tensor(0.1522, device='cuda:0'), 'validation_loss_giou': tensor(0.5207, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1767, device='cuda:0'), 'train_loss_ce': tensor(0.4498, device='cuda:0'), 'train_loss_bbox': tensor(0.1329, device='cuda:0'), 'train_loss_giou': tensor(0.5313, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.3264, device='cuda:0'), 'validation_loss_ce': tensor(0.3915, device='cuda:0'), 'validation_loss_bbox': tensor(0.1682, device='cuda:0'), 'validation_loss_giou': tensor(0.5470, device='cuda:0'), 'validation_cardinality_error': tensor(0.2323, device='cuda:0')}
{'training_loss': tensor(1.6625, device='cuda:0'), 'train_loss_ce': tensor(0.2990, device='cuda:0'), 'train_loss_bbox': tensor(0.1250, device='cuda:0'), 'train_loss_giou': tensor(0.3693, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2000, device='cuda:0'), 'validation_loss_ce': tensor(0.3956, device='cuda:0'), 'validation_loss_bbox': tensor(0.1503, device='cuda:0'), 'validation_loss_giou': tensor(0.5266, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3330, device='cuda:0'), 'train_loss_ce': tensor(0.4157, device='cuda:0'), 'train_loss_bbox': tensor(0.0679, device='cuda:0'), 'train_loss_giou': tensor(0.2889, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1428, device='cuda:0'), 'validation_loss_ce': tensor(0.3849, device='cuda:0'), 'validation_loss_bbox': tensor(0.1441, device='cuda:0'), 'validation_loss_giou': tensor(0.5186, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5827, device='cuda:0'), 'train_loss_ce': tensor(0.4320, device='cuda:0'), 'train_loss_bbox': tensor(0.2153, device='cuda:0'), 'train_loss_giou': tensor(0.5370, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1884, device='cuda:0'), 'validation_loss_ce': tensor(0.3920, device='cuda:0'), 'validation_loss_bbox': tensor(0.1456, device='cuda:0'), 'validation_loss_giou': tensor(0.5343, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3586, device='cuda:0'), 'train_loss_ce': tensor(0.3777, device='cuda:0'), 'train_loss_bbox': tensor(0.1445, device='cuda:0'), 'train_loss_giou': tensor(0.6291, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0950, device='cuda:0'), 'validation_loss_ce': tensor(0.3848, device='cuda:0'), 'validation_loss_bbox': tensor(0.1405, device='cuda:0'), 'validation_loss_giou': tensor(0.5038, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5607, device='cuda:0'), 'train_loss_ce': tensor(0.3083, device='cuda:0'), 'train_loss_bbox': tensor(0.1094, device='cuda:0'), 'train_loss_giou': tensor(0.3527, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1312, device='cuda:0'), 'validation_loss_ce': tensor(0.3759, device='cuda:0'), 'validation_loss_bbox': tensor(0.1476, device='cuda:0'), 'validation_loss_giou': tensor(0.5088, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5241, device='cuda:0'), 'train_loss_ce': tensor(0.4341, device='cuda:0'), 'train_loss_bbox': tensor(0.2152, device='cuda:0'), 'train_loss_giou': tensor(0.5070, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0959, device='cuda:0'), 'validation_loss_ce': tensor(0.3779, device='cuda:0'), 'validation_loss_bbox': tensor(0.1398, device='cuda:0'), 'validation_loss_giou': tensor(0.5094, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5148, device='cuda:0'), 'train_loss_ce': tensor(0.3878, device='cuda:0'), 'train_loss_bbox': tensor(0.0914, device='cuda:0'), 'train_loss_giou': tensor(0.3350, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0975, device='cuda:0'), 'validation_loss_ce': tensor(0.3868, device='cuda:0'), 'validation_loss_bbox': tensor(0.1372, device='cuda:0'), 'validation_loss_giou': tensor(0.5123, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1956, device='cuda:0'), 'train_loss_ce': tensor(0.3555, device='cuda:0'), 'train_loss_bbox': tensor(0.1473, device='cuda:0'), 'train_loss_giou': tensor(0.5518, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1822, device='cuda:0'), 'validation_loss_ce': tensor(0.3829, device='cuda:0'), 'validation_loss_bbox': tensor(0.1461, device='cuda:0'), 'validation_loss_giou': tensor(0.5343, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1623, device='cuda:0'), 'train_loss_ce': tensor(0.3684, device='cuda:0'), 'train_loss_bbox': tensor(0.1780, device='cuda:0'), 'train_loss_giou': tensor(0.4519, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2048, device='cuda:0'), 'validation_loss_ce': tensor(0.3851, device='cuda:0'), 'validation_loss_bbox': tensor(0.1507, device='cuda:0'), 'validation_loss_giou': tensor(0.5330, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9515, device='cuda:0'), 'train_loss_ce': tensor(0.3260, device='cuda:0'), 'train_loss_bbox': tensor(0.1499, device='cuda:0'), 'train_loss_giou': tensor(0.4380, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2259, device='cuda:0'), 'validation_loss_ce': tensor(0.3918, device='cuda:0'), 'validation_loss_bbox': tensor(0.1524, device='cuda:0'), 'validation_loss_giou': tensor(0.5360, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8880, device='cuda:0'), 'train_loss_ce': tensor(0.5083, device='cuda:0'), 'train_loss_bbox': tensor(0.0910, device='cuda:0'), 'train_loss_giou': tensor(0.4624, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2389, device='cuda:0'), 'validation_loss_ce': tensor(0.3937, device='cuda:0'), 'validation_loss_bbox': tensor(0.1508, device='cuda:0'), 'validation_loss_giou': tensor(0.5456, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(2.5108, device='cuda:0'), 'train_loss_ce': tensor(0.4191, device='cuda:0'), 'train_loss_bbox': tensor(0.1420, device='cuda:0'), 'train_loss_giou': tensor(0.6908, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1315, device='cuda:0'), 'validation_loss_ce': tensor(0.3802, device='cuda:0'), 'validation_loss_bbox': tensor(0.1466, device='cuda:0'), 'validation_loss_giou': tensor(0.5092, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7699, device='cuda:0'), 'train_loss_ce': tensor(0.2523, device='cuda:0'), 'train_loss_bbox': tensor(0.1222, device='cuda:0'), 'train_loss_giou': tensor(0.4534, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1441, device='cuda:0'), 'validation_loss_ce': tensor(0.3816, device='cuda:0'), 'validation_loss_bbox': tensor(0.1451, device='cuda:0'), 'validation_loss_giou': tensor(0.5184, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(1.8454, device='cuda:0'), 'train_loss_ce': tensor(0.4394, device='cuda:0'), 'train_loss_bbox': tensor(0.1201, device='cuda:0'), 'train_loss_giou': tensor(0.4029, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0517, device='cuda:0'), 'validation_loss_ce': tensor(0.3748, device='cuda:0'), 'validation_loss_bbox': tensor(0.1377, device='cuda:0'), 'validation_loss_giou': tensor(0.4942, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5712, device='cuda:0'), 'train_loss_ce': tensor(0.3187, device='cuda:0'), 'train_loss_bbox': tensor(0.1122, device='cuda:0'), 'train_loss_giou': tensor(0.3458, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0726, device='cuda:0'), 'validation_loss_ce': tensor(0.3802, device='cuda:0'), 'validation_loss_bbox': tensor(0.1375, device='cuda:0'), 'validation_loss_giou': tensor(0.5024, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8205, device='cuda:0'), 'train_loss_ce': tensor(0.3500, device='cuda:0'), 'train_loss_bbox': tensor(0.0948, device='cuda:0'), 'train_loss_giou': tensor(0.4984, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0776, device='cuda:0'), 'validation_loss_ce': tensor(0.3849, device='cuda:0'), 'validation_loss_bbox': tensor(0.1378, device='cuda:0'), 'validation_loss_giou': tensor(0.5018, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7677, device='cuda:0'), 'train_loss_ce': tensor(0.4415, device='cuda:0'), 'train_loss_bbox': tensor(0.0998, device='cuda:0'), 'train_loss_giou': tensor(0.4137, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0276, device='cuda:0'), 'validation_loss_ce': tensor(0.3808, device='cuda:0'), 'validation_loss_bbox': tensor(0.1331, device='cuda:0'), 'validation_loss_giou': tensor(0.4906, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6025, device='cuda:0'), 'train_loss_ce': tensor(0.3762, device='cuda:0'), 'train_loss_bbox': tensor(0.1006, device='cuda:0'), 'train_loss_giou': tensor(0.3617, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0798, device='cuda:0'), 'validation_loss_ce': tensor(0.3793, device='cuda:0'), 'validation_loss_bbox': tensor(0.1403, device='cuda:0'), 'validation_loss_giou': tensor(0.4996, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6255, device='cuda:0'), 'train_loss_ce': tensor(0.4087, device='cuda:0'), 'train_loss_bbox': tensor(0.0960, device='cuda:0'), 'train_loss_giou': tensor(0.3684, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0551, device='cuda:0'), 'validation_loss_ce': tensor(0.3730, device='cuda:0'), 'validation_loss_bbox': tensor(0.1342, device='cuda:0'), 'validation_loss_giou': tensor(0.5055, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5463, device='cuda:0'), 'train_loss_ce': tensor(0.3398, device='cuda:0'), 'train_loss_bbox': tensor(0.1127, device='cuda:0'), 'train_loss_giou': tensor(0.3215, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0334, device='cuda:0'), 'validation_loss_ce': tensor(0.3804, device='cuda:0'), 'validation_loss_bbox': tensor(0.1321, device='cuda:0'), 'validation_loss_giou': tensor(0.4962, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1309, device='cuda:0'), 'train_loss_ce': tensor(0.4364, device='cuda:0'), 'train_loss_bbox': tensor(0.1219, device='cuda:0'), 'train_loss_giou': tensor(0.5425, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0430, device='cuda:0'), 'validation_loss_ce': tensor(0.3715, device='cuda:0'), 'validation_loss_bbox': tensor(0.1345, device='cuda:0'), 'validation_loss_giou': tensor(0.4994, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7552, device='cuda:0'), 'train_loss_ce': tensor(0.1811, device='cuda:0'), 'train_loss_bbox': tensor(0.1479, device='cuda:0'), 'train_loss_giou': tensor(0.4174, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0159, device='cuda:0'), 'validation_loss_ce': tensor(0.3697, device='cuda:0'), 'validation_loss_bbox': tensor(0.1320, device='cuda:0'), 'validation_loss_giou': tensor(0.4930, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7767, device='cuda:0'), 'train_loss_ce': tensor(0.3698, device='cuda:0'), 'train_loss_bbox': tensor(0.1285, device='cuda:0'), 'train_loss_giou': tensor(0.3821, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0765, device='cuda:0'), 'validation_loss_ce': tensor(0.3782, device='cuda:0'), 'validation_loss_bbox': tensor(0.1428, device='cuda:0'), 'validation_loss_giou': tensor(0.4922, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9135, device='cuda:0'), 'train_loss_ce': tensor(0.3699, device='cuda:0'), 'train_loss_bbox': tensor(0.1208, device='cuda:0'), 'train_loss_giou': tensor(0.4698, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0370, device='cuda:0'), 'validation_loss_ce': tensor(0.3760, device='cuda:0'), 'validation_loss_bbox': tensor(0.1318, device='cuda:0'), 'validation_loss_giou': tensor(0.5010, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1530, device='cuda:0'), 'train_loss_ce': tensor(0.3370, device='cuda:0'), 'train_loss_bbox': tensor(0.0631, device='cuda:0'), 'train_loss_giou': tensor(0.2503, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0676, device='cuda:0'), 'validation_loss_ce': tensor(0.3747, device='cuda:0'), 'validation_loss_bbox': tensor(0.1359, device='cuda:0'), 'validation_loss_giou': tensor(0.5066, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6572, device='cuda:0'), 'train_loss_ce': tensor(0.3985, device='cuda:0'), 'train_loss_bbox': tensor(0.1029, device='cuda:0'), 'train_loss_giou': tensor(0.3721, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0755, device='cuda:0'), 'validation_loss_ce': tensor(0.3761, device='cuda:0'), 'validation_loss_bbox': tensor(0.1374, device='cuda:0'), 'validation_loss_giou': tensor(0.5061, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1817, device='cuda:0'), 'train_loss_ce': tensor(0.3301, device='cuda:0'), 'train_loss_bbox': tensor(0.1515, device='cuda:0'), 'train_loss_giou': tensor(0.5471, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1153, device='cuda:0'), 'validation_loss_ce': tensor(0.3764, device='cuda:0'), 'validation_loss_bbox': tensor(0.1349, device='cuda:0'), 'validation_loss_giou': tensor(0.5321, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7134, device='cuda:0'), 'train_loss_ce': tensor(0.3496, device='cuda:0'), 'train_loss_bbox': tensor(0.0963, device='cuda:0'), 'train_loss_giou': tensor(0.4412, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0938, device='cuda:0'), 'validation_loss_ce': tensor(0.3788, device='cuda:0'), 'validation_loss_bbox': tensor(0.1422, device='cuda:0'), 'validation_loss_giou': tensor(0.5021, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2566, device='cuda:0'), 'train_loss_ce': tensor(0.4153, device='cuda:0'), 'train_loss_bbox': tensor(0.1463, device='cuda:0'), 'train_loss_giou': tensor(0.5548, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1329, device='cuda:0'), 'validation_loss_ce': tensor(0.3797, device='cuda:0'), 'validation_loss_bbox': tensor(0.1438, device='cuda:0'), 'validation_loss_giou': tensor(0.5172, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8617, device='cuda:0'), 'train_loss_ce': tensor(0.3685, device='cuda:0'), 'train_loss_bbox': tensor(0.1115, device='cuda:0'), 'train_loss_giou': tensor(0.4678, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0908, device='cuda:0'), 'validation_loss_ce': tensor(0.3776, device='cuda:0'), 'validation_loss_bbox': tensor(0.1401, device='cuda:0'), 'validation_loss_giou': tensor(0.5064, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4286, device='cuda:0'), 'train_loss_ce': tensor(0.3426, device='cuda:0'), 'train_loss_bbox': tensor(0.1811, device='cuda:0'), 'train_loss_giou': tensor(0.5903, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0508, device='cuda:0'), 'validation_loss_ce': tensor(0.3818, device='cuda:0'), 'validation_loss_bbox': tensor(0.1383, device='cuda:0'), 'validation_loss_giou': tensor(0.4888, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0475, device='cuda:0'), 'train_loss_ce': tensor(0.4181, device='cuda:0'), 'train_loss_bbox': tensor(0.1169, device='cuda:0'), 'train_loss_giou': tensor(0.5225, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0498, device='cuda:0'), 'validation_loss_ce': tensor(0.3809, device='cuda:0'), 'validation_loss_bbox': tensor(0.1386, device='cuda:0'), 'validation_loss_giou': tensor(0.4880, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7942, device='cuda:0'), 'train_loss_ce': tensor(0.4045, device='cuda:0'), 'train_loss_bbox': tensor(0.1089, device='cuda:0'), 'train_loss_giou': tensor(0.4226, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9969, device='cuda:0'), 'validation_loss_ce': tensor(0.3733, device='cuda:0'), 'validation_loss_bbox': tensor(0.1323, device='cuda:0'), 'validation_loss_giou': tensor(0.4811, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3933, device='cuda:0'), 'train_loss_ce': tensor(0.2577, device='cuda:0'), 'train_loss_bbox': tensor(0.1010, device='cuda:0'), 'train_loss_giou': tensor(0.3152, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0079, device='cuda:0'), 'validation_loss_ce': tensor(0.3717, device='cuda:0'), 'validation_loss_bbox': tensor(0.1349, device='cuda:0'), 'validation_loss_giou': tensor(0.4808, device='cuda:0'), 'validation_cardinality_error': tensor(0.6768, device='cuda:0')}
{'training_loss': tensor(1.4245, device='cuda:0'), 'train_loss_ce': tensor(0.3443, device='cuda:0'), 'train_loss_bbox': tensor(0.0918, device='cuda:0'), 'train_loss_giou': tensor(0.3105, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0025, device='cuda:0'), 'validation_loss_ce': tensor(0.3705, device='cuda:0'), 'validation_loss_bbox': tensor(0.1325, device='cuda:0'), 'validation_loss_giou': tensor(0.4847, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6405, device='cuda:0'), 'train_loss_ce': tensor(0.3286, device='cuda:0'), 'train_loss_bbox': tensor(0.1115, device='cuda:0'), 'train_loss_giou': tensor(0.3773, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0514, device='cuda:0'), 'validation_loss_ce': tensor(0.3696, device='cuda:0'), 'validation_loss_bbox': tensor(0.1370, device='cuda:0'), 'validation_loss_giou': tensor(0.4985, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(1.9239, device='cuda:0'), 'train_loss_ce': tensor(0.4195, device='cuda:0'), 'train_loss_bbox': tensor(0.1145, device='cuda:0'), 'train_loss_giou': tensor(0.4660, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0625, device='cuda:0'), 'validation_loss_ce': tensor(0.3737, device='cuda:0'), 'validation_loss_bbox': tensor(0.1391, device='cuda:0'), 'validation_loss_giou': tensor(0.4966, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(1.6408, device='cuda:0'), 'train_loss_ce': tensor(0.2577, device='cuda:0'), 'train_loss_bbox': tensor(0.1386, device='cuda:0'), 'train_loss_giou': tensor(0.3451, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0308, device='cuda:0'), 'validation_loss_ce': tensor(0.3692, device='cuda:0'), 'validation_loss_bbox': tensor(0.1367, device='cuda:0'), 'validation_loss_giou': tensor(0.4891, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(1.5239, device='cuda:0'), 'train_loss_ce': tensor(0.3173, device='cuda:0'), 'train_loss_bbox': tensor(0.1112, device='cuda:0'), 'train_loss_giou': tensor(0.3253, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0036, device='cuda:0'), 'validation_loss_ce': tensor(0.3720, device='cuda:0'), 'validation_loss_bbox': tensor(0.1319, device='cuda:0'), 'validation_loss_giou': tensor(0.4861, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(2.0564, device='cuda:0'), 'train_loss_ce': tensor(0.2469, device='cuda:0'), 'train_loss_bbox': tensor(0.1303, device='cuda:0'), 'train_loss_giou': tensor(0.5790, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0768, device='cuda:0'), 'validation_loss_ce': tensor(0.3709, device='cuda:0'), 'validation_loss_bbox': tensor(0.1379, device='cuda:0'), 'validation_loss_giou': tensor(0.5081, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(1.2032, device='cuda:0'), 'train_loss_ce': tensor(0.4306, device='cuda:0'), 'train_loss_bbox': tensor(0.0692, device='cuda:0'), 'train_loss_giou': tensor(0.2133, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0751, device='cuda:0'), 'validation_loss_ce': tensor(0.3693, device='cuda:0'), 'validation_loss_bbox': tensor(0.1397, device='cuda:0'), 'validation_loss_giou': tensor(0.5038, device='cuda:0'), 'validation_cardinality_error': tensor(0.7475, device='cuda:0')}
{'training_loss': tensor(1.6234, device='cuda:0'), 'train_loss_ce': tensor(0.3418, device='cuda:0'), 'train_loss_bbox': tensor(0.0969, device='cuda:0'), 'train_loss_giou': tensor(0.3984, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(1.9768, device='cuda:0'), 'validation_loss_ce': tensor(0.3701, device='cuda:0'), 'validation_loss_bbox': tensor(0.1304, device='cuda:0'), 'validation_loss_giou': tensor(0.4774, device='cuda:0'), 'validation_cardinality_error': tensor(0.8485, device='cuda:0')}
{'training_loss': tensor(1.9852, device='cuda:0'), 'train_loss_ce': tensor(0.3431, device='cuda:0'), 'train_loss_bbox': tensor(0.1347, device='cuda:0'), 'train_loss_giou': tensor(0.4844, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0698, device='cuda:0'), 'validation_loss_ce': tensor(0.3741, device='cuda:0'), 'validation_loss_bbox': tensor(0.1392, device='cuda:0'), 'validation_loss_giou': tensor(0.4999, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(2.0289, device='cuda:0'), 'train_loss_ce': tensor(0.3950, device='cuda:0'), 'train_loss_bbox': tensor(0.1119, device='cuda:0'), 'train_loss_giou': tensor(0.5373, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0139, device='cuda:0'), 'validation_loss_ce': tensor(0.3761, device='cuda:0'), 'validation_loss_bbox': tensor(0.1355, device='cuda:0'), 'validation_loss_giou': tensor(0.4801, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(2.0294, device='cuda:0'), 'train_loss_ce': tensor(0.4464, device='cuda:0'), 'train_loss_bbox': tensor(0.1116, device='cuda:0'), 'train_loss_giou': tensor(0.5124, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0391, device='cuda:0'), 'validation_loss_ce': tensor(0.3694, device='cuda:0'), 'validation_loss_bbox': tensor(0.1385, device='cuda:0'), 'validation_loss_giou': tensor(0.4886, device='cuda:0'), 'validation_cardinality_error': tensor(0.5051, device='cuda:0')}
{'training_loss': tensor(1.6683, device='cuda:0'), 'train_loss_ce': tensor(0.3733, device='cuda:0'), 'train_loss_bbox': tensor(0.0974, device='cuda:0'), 'train_loss_giou': tensor(0.4040, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0222, device='cuda:0'), 'validation_loss_ce': tensor(0.3661, device='cuda:0'), 'validation_loss_bbox': tensor(0.1337, device='cuda:0'), 'validation_loss_giou': tensor(0.4937, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(1.7937, device='cuda:0'), 'train_loss_ce': tensor(0.3951, device='cuda:0'), 'train_loss_bbox': tensor(0.0845, device='cuda:0'), 'train_loss_giou': tensor(0.4882, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0226, device='cuda:0'), 'validation_loss_ce': tensor(0.3671, device='cuda:0'), 'validation_loss_bbox': tensor(0.1346, device='cuda:0'), 'validation_loss_giou': tensor(0.4914, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(1.5368, device='cuda:0'), 'train_loss_ce': tensor(0.4172, device='cuda:0'), 'train_loss_bbox': tensor(0.0680, device='cuda:0'), 'train_loss_giou': tensor(0.3899, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0370, device='cuda:0'), 'validation_loss_ce': tensor(0.3687, device='cuda:0'), 'validation_loss_bbox': tensor(0.1375, device='cuda:0'), 'validation_loss_giou': tensor(0.4904, device='cuda:0'), 'validation_cardinality_error': tensor(0.7071, device='cuda:0')}
{'training_loss': tensor(1.1693, device='cuda:0'), 'train_loss_ce': tensor(0.3236, device='cuda:0'), 'train_loss_bbox': tensor(0.0728, device='cuda:0'), 'train_loss_giou': tensor(0.2407, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0530, device='cuda:0'), 'validation_loss_ce': tensor(0.3633, device='cuda:0'), 'validation_loss_bbox': tensor(0.1368, device='cuda:0'), 'validation_loss_giou': tensor(0.5028, device='cuda:0'), 'validation_cardinality_error': tensor(0.7879, device='cuda:0')}
{'training_loss': tensor(1.8877, device='cuda:0'), 'train_loss_ce': tensor(0.3100, device='cuda:0'), 'train_loss_bbox': tensor(0.1431, device='cuda:0'), 'train_loss_giou': tensor(0.4310, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0324, device='cuda:0'), 'validation_loss_ce': tensor(0.3712, device='cuda:0'), 'validation_loss_bbox': tensor(0.1353, device='cuda:0'), 'validation_loss_giou': tensor(0.4924, device='cuda:0'), 'validation_cardinality_error': tensor(0.8384, device='cuda:0')}
{'training_loss': tensor(1.3969, device='cuda:0'), 'train_loss_ce': tensor(0.3681, device='cuda:0'), 'train_loss_bbox': tensor(0.0662, device='cuda:0'), 'train_loss_giou': tensor(0.3489, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0081, device='cuda:0'), 'validation_loss_ce': tensor(0.3715, device='cuda:0'), 'validation_loss_bbox': tensor(0.1315, device='cuda:0'), 'validation_loss_giou': tensor(0.4896, device='cuda:0'), 'validation_cardinality_error': tensor(0.8384, device='cuda:0')}
{'training_loss': tensor(1.5283, device='cuda:0'), 'train_loss_ce': tensor(0.4087, device='cuda:0'), 'train_loss_bbox': tensor(0.0867, device='cuda:0'), 'train_loss_giou': tensor(0.3430, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0126, device='cuda:0'), 'validation_loss_ce': tensor(0.3673, device='cuda:0'), 'validation_loss_bbox': tensor(0.1335, device='cuda:0'), 'validation_loss_giou': tensor(0.4889, device='cuda:0'), 'validation_cardinality_error': tensor(0.7576, device='cuda:0')}
{'training_loss': tensor(1.3007, device='cuda:0'), 'train_loss_ce': tensor(0.3974, device='cuda:0'), 'train_loss_bbox': tensor(0.0502, device='cuda:0'), 'train_loss_giou': tensor(0.3261, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0107, device='cuda:0'), 'validation_loss_ce': tensor(0.3713, device='cuda:0'), 'validation_loss_bbox': tensor(0.1340, device='cuda:0'), 'validation_loss_giou': tensor(0.4846, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(2.8167, device='cuda:0'), 'train_loss_ce': tensor(0.5165, device='cuda:0'), 'train_loss_bbox': tensor(0.1695, device='cuda:0'), 'train_loss_giou': tensor(0.7265, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0403, device='cuda:0'), 'validation_loss_ce': tensor(0.3676, device='cuda:0'), 'validation_loss_bbox': tensor(0.1334, device='cuda:0'), 'validation_loss_giou': tensor(0.5029, device='cuda:0'), 'validation_cardinality_error': tensor(0.6364, device='cuda:0')}
{'training_loss': tensor(1.4482, device='cuda:0'), 'train_loss_ce': tensor(0.3133, device='cuda:0'), 'train_loss_bbox': tensor(0.0904, device='cuda:0'), 'train_loss_giou': tensor(0.3413, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0456, device='cuda:0'), 'validation_loss_ce': tensor(0.3725, device='cuda:0'), 'validation_loss_bbox': tensor(0.1331, device='cuda:0'), 'validation_loss_giou': tensor(0.5038, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(1.3578, device='cuda:0'), 'train_loss_ce': tensor(0.3783, device='cuda:0'), 'train_loss_bbox': tensor(0.0718, device='cuda:0'), 'train_loss_giou': tensor(0.3103, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9812, device='cuda:0'), 'validation_loss_ce': tensor(0.3678, device='cuda:0'), 'validation_loss_bbox': tensor(0.1303, device='cuda:0'), 'validation_loss_giou': tensor(0.4810, device='cuda:0'), 'validation_cardinality_error': tensor(0.7273, device='cuda:0')}
{'training_loss': tensor(1.3614, device='cuda:0'), 'train_loss_ce': tensor(0.3157, device='cuda:0'), 'train_loss_bbox': tensor(0.0697, device='cuda:0'), 'train_loss_giou': tensor(0.3486, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0496, device='cuda:0'), 'validation_loss_ce': tensor(0.3651, device='cuda:0'), 'validation_loss_bbox': tensor(0.1354, device='cuda:0'), 'validation_loss_giou': tensor(0.5038, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(1.6756, device='cuda:0'), 'train_loss_ce': tensor(0.4161, device='cuda:0'), 'train_loss_bbox': tensor(0.0913, device='cuda:0'), 'train_loss_giou': tensor(0.4015, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0195, device='cuda:0'), 'validation_loss_ce': tensor(0.3655, device='cuda:0'), 'validation_loss_bbox': tensor(0.1344, device='cuda:0'), 'validation_loss_giou': tensor(0.4910, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(1.6801, device='cuda:0'), 'train_loss_ce': tensor(0.3193, device='cuda:0'), 'train_loss_bbox': tensor(0.1133, device='cuda:0'), 'train_loss_giou': tensor(0.3972, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.9846, device='cuda:0'), 'validation_loss_ce': tensor(0.3769, device='cuda:0'), 'validation_loss_bbox': tensor(0.1360, device='cuda:0'), 'validation_loss_giou': tensor(0.4639, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(1.3511, device='cuda:0'), 'train_loss_ce': tensor(0.3211, device='cuda:0'), 'train_loss_bbox': tensor(0.0827, device='cuda:0'), 'train_loss_giou': tensor(0.3083, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0306, device='cuda:0'), 'validation_loss_ce': tensor(0.3683, device='cuda:0'), 'validation_loss_bbox': tensor(0.1345, device='cuda:0'), 'validation_loss_giou': tensor(0.4949, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.8928, device='cuda:0'), 'train_loss_ce': tensor(0.2617, device='cuda:0'), 'train_loss_bbox': tensor(0.0491, device='cuda:0'), 'train_loss_giou': tensor(0.1928, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0265, device='cuda:0'), 'validation_loss_ce': tensor(0.3758, device='cuda:0'), 'validation_loss_bbox': tensor(0.1318, device='cuda:0'), 'validation_loss_giou': tensor(0.4958, device='cuda:0'), 'validation_cardinality_error': tensor(0.7576, device='cuda:0')}
{'training_loss': tensor(0.9551, device='cuda:0'), 'train_loss_ce': tensor(0.3025, device='cuda:0'), 'train_loss_bbox': tensor(0.0564, device='cuda:0'), 'train_loss_giou': tensor(0.1853, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0176, device='cuda:0'), 'validation_loss_ce': tensor(0.3678, device='cuda:0'), 'validation_loss_bbox': tensor(0.1326, device='cuda:0'), 'validation_loss_giou': tensor(0.4933, device='cuda:0'), 'validation_cardinality_error': tensor(0.8283, device='cuda:0')}
{'training_loss': tensor(1.6240, device='cuda:0'), 'train_loss_ce': tensor(0.3242, device='cuda:0'), 'train_loss_bbox': tensor(0.1071, device='cuda:0'), 'train_loss_giou': tensor(0.3821, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0830, device='cuda:0'), 'validation_loss_ce': tensor(0.3734, device='cuda:0'), 'validation_loss_bbox': tensor(0.1372, device='cuda:0'), 'validation_loss_giou': tensor(0.5118, device='cuda:0'), 'validation_cardinality_error': tensor(0.7778, device='cuda:0')}
{'training_loss': tensor(1.2023, device='cuda:0'), 'train_loss_ce': tensor(0.3952, device='cuda:0'), 'train_loss_bbox': tensor(0.0552, device='cuda:0'), 'train_loss_giou': tensor(0.2656, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0514, device='cuda:0'), 'validation_loss_ce': tensor(0.3781, device='cuda:0'), 'validation_loss_bbox': tensor(0.1395, device='cuda:0'), 'validation_loss_giou': tensor(0.4879, device='cuda:0'), 'validation_cardinality_error': tensor(0.8485, device='cuda:0')}
{'training_loss': tensor(1.7589, device='cuda:0'), 'train_loss_ce': tensor(0.3906, device='cuda:0'), 'train_loss_bbox': tensor(0.0926, device='cuda:0'), 'train_loss_giou': tensor(0.4526, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1904, device='cuda:0'), 'validation_loss_ce': tensor(0.4071, device='cuda:0'), 'validation_loss_bbox': tensor(0.1424, device='cuda:0'), 'validation_loss_giou': tensor(0.5357, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(1.6338, device='cuda:0'), 'train_loss_ce': tensor(0.3116, device='cuda:0'), 'train_loss_bbox': tensor(0.1142, device='cuda:0'), 'train_loss_giou': tensor(0.3757, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0618, device='cuda:0'), 'validation_loss_ce': tensor(0.3848, device='cuda:0'), 'validation_loss_bbox': tensor(0.1339, device='cuda:0'), 'validation_loss_giou': tensor(0.5038, device='cuda:0'), 'validation_cardinality_error': tensor(0.7071, device='cuda:0')}
{'training_loss': tensor(1.6626, device='cuda:0'), 'train_loss_ce': tensor(0.3561, device='cuda:0'), 'train_loss_bbox': tensor(0.1057, device='cuda:0'), 'train_loss_giou': tensor(0.3890, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0711, device='cuda:0'), 'validation_loss_ce': tensor(0.3853, device='cuda:0'), 'validation_loss_bbox': tensor(0.1405, device='cuda:0'), 'validation_loss_giou': tensor(0.4916, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9912, device='cuda:0'), 'train_loss_ce': tensor(0.3359, device='cuda:0'), 'train_loss_bbox': tensor(0.1197, device='cuda:0'), 'train_loss_giou': tensor(0.5283, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0706, device='cuda:0'), 'validation_loss_ce': tensor(0.3790, device='cuda:0'), 'validation_loss_bbox': tensor(0.1407, device='cuda:0'), 'validation_loss_giou': tensor(0.4941, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(1.5314, device='cuda:0'), 'train_loss_ce': tensor(0.3425, device='cuda:0'), 'train_loss_bbox': tensor(0.0984, device='cuda:0'), 'train_loss_giou': tensor(0.3484, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0742, device='cuda:0'), 'validation_loss_ce': tensor(0.3799, device='cuda:0'), 'validation_loss_bbox': tensor(0.1398, device='cuda:0'), 'validation_loss_giou': tensor(0.4975, device='cuda:0'), 'validation_cardinality_error': tensor(0.7172, device='cuda:0')}
{'training_loss': tensor(1.8234, device='cuda:0'), 'train_loss_ce': tensor(0.3064, device='cuda:0'), 'train_loss_bbox': tensor(0.0795, device='cuda:0'), 'train_loss_giou': tensor(0.5598, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0609, device='cuda:0'), 'validation_loss_ce': tensor(0.3841, device='cuda:0'), 'validation_loss_bbox': tensor(0.1355, device='cuda:0'), 'validation_loss_giou': tensor(0.4997, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(1.5711, device='cuda:0'), 'train_loss_ce': tensor(0.3672, device='cuda:0'), 'train_loss_bbox': tensor(0.0908, device='cuda:0'), 'train_loss_giou': tensor(0.3748, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0064, device='cuda:0'), 'validation_loss_ce': tensor(0.3678, device='cuda:0'), 'validation_loss_bbox': tensor(0.1305, device='cuda:0'), 'validation_loss_giou': tensor(0.4930, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(1.3946, device='cuda:0'), 'train_loss_ce': tensor(0.2988, device='cuda:0'), 'train_loss_bbox': tensor(0.1021, device='cuda:0'), 'train_loss_giou': tensor(0.2926, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0454, device='cuda:0'), 'validation_loss_ce': tensor(0.3750, device='cuda:0'), 'validation_loss_bbox': tensor(0.1367, device='cuda:0'), 'validation_loss_giou': tensor(0.4934, device='cuda:0'), 'validation_cardinality_error': tensor(0.8889, device='cuda:0')}
{'training_loss': tensor(1.6097, device='cuda:0'), 'train_loss_ce': tensor(0.3180, device='cuda:0'), 'train_loss_bbox': tensor(0.0919, device='cuda:0'), 'train_loss_giou': tensor(0.4161, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0011, device='cuda:0'), 'validation_loss_ce': tensor(0.3637, device='cuda:0'), 'validation_loss_bbox': tensor(0.1324, device='cuda:0'), 'validation_loss_giou': tensor(0.4876, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(1.2863, device='cuda:0'), 'train_loss_ce': tensor(0.2656, device='cuda:0'), 'train_loss_bbox': tensor(0.0626, device='cuda:0'), 'train_loss_giou': tensor(0.3540, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0265, device='cuda:0'), 'validation_loss_ce': tensor(0.3659, device='cuda:0'), 'validation_loss_bbox': tensor(0.1359, device='cuda:0'), 'validation_loss_giou': tensor(0.4905, device='cuda:0'), 'validation_cardinality_error': tensor(0.7172, device='cuda:0')}
{'training_loss': tensor(1.5041, device='cuda:0'), 'train_loss_ce': tensor(0.2169, device='cuda:0'), 'train_loss_bbox': tensor(0.0773, device='cuda:0'), 'train_loss_giou': tensor(0.4502, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0506, device='cuda:0'), 'validation_loss_ce': tensor(0.3781, device='cuda:0'), 'validation_loss_bbox': tensor(0.1371, device='cuda:0'), 'validation_loss_giou': tensor(0.4936, device='cuda:0'), 'validation_cardinality_error': tensor(0.7273, device='cuda:0')}
{'training_loss': tensor(1.5515, device='cuda:0'), 'train_loss_ce': tensor(0.3211, device='cuda:0'), 'train_loss_bbox': tensor(0.0987, device='cuda:0'), 'train_loss_giou': tensor(0.3686, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0286, device='cuda:0'), 'validation_loss_ce': tensor(0.3653, device='cuda:0'), 'validation_loss_bbox': tensor(0.1341, device='cuda:0'), 'validation_loss_giou': tensor(0.4964, device='cuda:0'), 'validation_cardinality_error': tensor(0.6465, device='cuda:0')}
{'training_loss': tensor(0.9658, device='cuda:0'), 'train_loss_ce': tensor(0.2247, device='cuda:0'), 'train_loss_bbox': tensor(0.0559, device='cuda:0'), 'train_loss_giou': tensor(0.2308, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0246, device='cuda:0'), 'validation_loss_ce': tensor(0.3689, device='cuda:0'), 'validation_loss_bbox': tensor(0.1344, device='cuda:0'), 'validation_loss_giou': tensor(0.4919, device='cuda:0'), 'validation_cardinality_error': tensor(0.6970, device='cuda:0')}
{'training_loss': tensor(1.6102, device='cuda:0'), 'train_loss_ce': tensor(0.3527, device='cuda:0'), 'train_loss_bbox': tensor(0.0802, device='cuda:0'), 'train_loss_giou': tensor(0.4282, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.9869, device='cuda:0'), 'validation_loss_ce': tensor(0.3601, device='cuda:0'), 'validation_loss_bbox': tensor(0.1332, device='cuda:0'), 'validation_loss_giou': tensor(0.4804, device='cuda:0'), 'validation_cardinality_error': tensor(0.8384, device='cuda:0')}
{'training_loss': tensor(0.8293, device='cuda:0'), 'train_loss_ce': tensor(0.3667, device='cuda:0'), 'train_loss_bbox': tensor(0.0336, device='cuda:0'), 'train_loss_giou': tensor(0.1472, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0029, device='cuda:0'), 'validation_loss_ce': tensor(0.3685, device='cuda:0'), 'validation_loss_bbox': tensor(0.1329, device='cuda:0'), 'validation_loss_giou': tensor(0.4850, device='cuda:0'), 'validation_cardinality_error': tensor(0.8687, device='cuda:0')}
{'training_loss': tensor(1.2613, device='cuda:0'), 'train_loss_ce': tensor(0.2985, device='cuda:0'), 'train_loss_bbox': tensor(0.0584, device='cuda:0'), 'train_loss_giou': tensor(0.3355, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0469, device='cuda:0'), 'validation_loss_ce': tensor(0.3687, device='cuda:0'), 'validation_loss_bbox': tensor(0.1374, device='cuda:0'), 'validation_loss_giou': tensor(0.4958, device='cuda:0'), 'validation_cardinality_error': tensor(0.7071, device='cuda:0')}
{'training_loss': tensor(1.4385, device='cuda:0'), 'train_loss_ce': tensor(0.3210, device='cuda:0'), 'train_loss_bbox': tensor(0.0780, device='cuda:0'), 'train_loss_giou': tensor(0.3638, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0439, device='cuda:0'), 'validation_loss_ce': tensor(0.3690, device='cuda:0'), 'validation_loss_bbox': tensor(0.1375, device='cuda:0'), 'validation_loss_giou': tensor(0.4938, device='cuda:0'), 'validation_cardinality_error': tensor(0.6061, device='cuda:0')}
{'training_loss': tensor(1.5010, device='cuda:0'), 'train_loss_ce': tensor(0.2817, device='cuda:0'), 'train_loss_bbox': tensor(0.1023, device='cuda:0'), 'train_loss_giou': tensor(0.3538, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0702, device='cuda:0'), 'validation_loss_ce': tensor(0.3848, device='cuda:0'), 'validation_loss_bbox': tensor(0.1381, device='cuda:0'), 'validation_loss_giou': tensor(0.4973, device='cuda:0'), 'validation_cardinality_error': tensor(0.8182, device='cuda:0')}
{'training_loss': tensor(0.9336, device='cuda:0'), 'train_loss_ce': tensor(0.3102, device='cuda:0'), 'train_loss_bbox': tensor(0.0551, device='cuda:0'), 'train_loss_giou': tensor(0.1739, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0492, device='cuda:0'), 'validation_loss_ce': tensor(0.3723, device='cuda:0'), 'validation_loss_bbox': tensor(0.1380, device='cuda:0'), 'validation_loss_giou': tensor(0.4935, device='cuda:0'), 'validation_cardinality_error': tensor(0.7879, device='cuda:0')}
{'training_loss': tensor(0.9589, device='cuda:0'), 'train_loss_ce': tensor(0.3349, device='cuda:0'), 'train_loss_bbox': tensor(0.0381, device='cuda:0'), 'train_loss_giou': tensor(0.2166, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0522, device='cuda:0'), 'validation_loss_ce': tensor(0.3733, device='cuda:0'), 'validation_loss_bbox': tensor(0.1367, device='cuda:0'), 'validation_loss_giou': tensor(0.4976, device='cuda:0'), 'validation_cardinality_error': tensor(0.7980, device='cuda:0')}
{'training_loss': tensor(0.9695, device='cuda:0'), 'train_loss_ce': tensor(0.2990, device='cuda:0'), 'train_loss_bbox': tensor(0.0499, device='cuda:0'), 'train_loss_giou': tensor(0.2106, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.0497, device='cuda:0'), 'validation_loss_ce': tensor(0.3766, device='cuda:0'), 'validation_loss_bbox': tensor(0.1365, device='cuda:0'), 'validation_loss_giou': tensor(0.4954, device='cuda:0'), 'validation_cardinality_error': tensor(0.7879, device='cuda:0')}
{'training_loss': tensor(1.0092, device='cuda:0'), 'train_loss_ce': tensor(0.2770, device='cuda:0'), 'train_loss_bbox': tensor(0.0396, device='cuda:0'), 'train_loss_giou': tensor(0.2672, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0275, device='cuda:0'), 'validation_loss_ce': tensor(0.3734, device='cuda:0'), 'validation_loss_bbox': tensor(0.1350, device='cuda:0'), 'validation_loss_giou': tensor(0.4896, device='cuda:0'), 'validation_cardinality_error': tensor(0.8384, device='cuda:0')}
{'training_loss': tensor(1.7717, device='cuda:0'), 'train_loss_ce': tensor(0.4357, device='cuda:0'), 'train_loss_bbox': tensor(0.0811, device='cuda:0'), 'train_loss_giou': tensor(0.4652, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0388, device='cuda:0'), 'validation_loss_ce': tensor(0.3780, device='cuda:0'), 'validation_loss_bbox': tensor(0.1365, device='cuda:0'), 'validation_loss_giou': tensor(0.4891, device='cuda:0'), 'validation_cardinality_error': tensor(0.7879, device='cuda:0')}
{'training_loss': tensor(0.8905, device='cuda:0'), 'train_loss_ce': tensor(0.2696, device='cuda:0'), 'train_loss_bbox': tensor(0.0490, device='cuda:0'), 'train_loss_giou': tensor(0.1880, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0068, device='cuda:0'), 'validation_loss_ce': tensor(0.3878, device='cuda:0'), 'validation_loss_bbox': tensor(0.1287, device='cuda:0'), 'validation_loss_giou': tensor(0.4877, device='cuda:0'), 'validation_cardinality_error': tensor(0.6768, device='cuda:0')}
{'training_loss': tensor(1.3453, device='cuda:0'), 'train_loss_ce': tensor(0.2989, device='cuda:0'), 'train_loss_bbox': tensor(0.0575, device='cuda:0'), 'train_loss_giou': tensor(0.3795, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0433, device='cuda:0'), 'validation_loss_ce': tensor(0.3818, device='cuda:0'), 'validation_loss_bbox': tensor(0.1339, device='cuda:0'), 'validation_loss_giou': tensor(0.4961, device='cuda:0'), 'validation_cardinality_error': tensor(0.8283, device='cuda:0')}
{'training_loss': tensor(1.1174, device='cuda:0'), 'train_loss_ce': tensor(0.2904, device='cuda:0'), 'train_loss_bbox': tensor(0.0552, device='cuda:0'), 'train_loss_giou': tensor(0.2756, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0402, device='cuda:0'), 'validation_loss_ce': tensor(0.3736, device='cuda:0'), 'validation_loss_bbox': tensor(0.1305, device='cuda:0'), 'validation_loss_giou': tensor(0.5071, device='cuda:0'), 'validation_cardinality_error': tensor(0.8687, device='cuda:0')}
{'training_loss': tensor(1.1777, device='cuda:0'), 'train_loss_ce': tensor(0.2943, device='cuda:0'), 'train_loss_bbox': tensor(0.0897, device='cuda:0'), 'train_loss_giou': tensor(0.2174, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0739, device='cuda:0'), 'validation_loss_ce': tensor(0.3834, device='cuda:0'), 'validation_loss_bbox': tensor(0.1380, device='cuda:0'), 'validation_loss_giou': tensor(0.5003, device='cuda:0'), 'validation_cardinality_error': tensor(0.8889, device='cuda:0')}
{'training_loss': tensor(1.0801, device='cuda:0'), 'train_loss_ce': tensor(0.3115, device='cuda:0'), 'train_loss_bbox': tensor(0.0472, device='cuda:0'), 'train_loss_giou': tensor(0.2662, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0576, device='cuda:0'), 'validation_loss_ce': tensor(0.3829, device='cuda:0'), 'validation_loss_bbox': tensor(0.1372, device='cuda:0'), 'validation_loss_giou': tensor(0.4943, device='cuda:0'), 'validation_cardinality_error': tensor(0.7172, device='cuda:0')}
{'training_loss': tensor(0.9092, device='cuda:0'), 'train_loss_ce': tensor(0.2379, device='cuda:0'), 'train_loss_bbox': tensor(0.0440, device='cuda:0'), 'train_loss_giou': tensor(0.2258, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0061, device='cuda:0'), 'validation_loss_ce': tensor(0.3780, device='cuda:0'), 'validation_loss_bbox': tensor(0.1307, device='cuda:0'), 'validation_loss_giou': tensor(0.4874, device='cuda:0'), 'validation_cardinality_error': tensor(0.8182, device='cuda:0')}
{'training_loss': tensor(1.2130, device='cuda:0'), 'train_loss_ce': tensor(0.3552, device='cuda:0'), 'train_loss_bbox': tensor(0.0553, device='cuda:0'), 'train_loss_giou': tensor(0.2906, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0623, device='cuda:0'), 'validation_loss_ce': tensor(0.3811, device='cuda:0'), 'validation_loss_bbox': tensor(0.1372, device='cuda:0'), 'validation_loss_giou': tensor(0.4977, device='cuda:0'), 'validation_cardinality_error': tensor(0.8283, device='cuda:0')}
{'training_loss': tensor(1.0573, device='cuda:0'), 'train_loss_ce': tensor(0.3493, device='cuda:0'), 'train_loss_bbox': tensor(0.0351, device='cuda:0'), 'train_loss_giou': tensor(0.2661, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0450, device='cuda:0'), 'validation_loss_ce': tensor(0.3690, device='cuda:0'), 'validation_loss_bbox': tensor(0.1386, device='cuda:0'), 'validation_loss_giou': tensor(0.4914, device='cuda:0'), 'validation_cardinality_error': tensor(0.7576, device='cuda:0')}
{'training_loss': tensor(1.1170, device='cuda:0'), 'train_loss_ce': tensor(0.2601, device='cuda:0'), 'train_loss_bbox': tensor(0.0692, device='cuda:0'), 'train_loss_giou': tensor(0.2556, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0609, device='cuda:0'), 'validation_loss_ce': tensor(0.3713, device='cuda:0'), 'validation_loss_bbox': tensor(0.1393, device='cuda:0'), 'validation_loss_giou': tensor(0.4965, device='cuda:0'), 'validation_cardinality_error': tensor(0.7172, device='cuda:0')}
{'training_loss': tensor(1.1077, device='cuda:0'), 'train_loss_ce': tensor(0.3730, device='cuda:0'), 'train_loss_bbox': tensor(0.0513, device='cuda:0'), 'train_loss_giou': tensor(0.2391, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0361, device='cuda:0'), 'validation_loss_ce': tensor(0.3763, device='cuda:0'), 'validation_loss_bbox': tensor(0.1360, device='cuda:0'), 'validation_loss_giou': tensor(0.4899, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(1.2486, device='cuda:0'), 'train_loss_ce': tensor(0.2552, device='cuda:0'), 'train_loss_bbox': tensor(0.0623, device='cuda:0'), 'train_loss_giou': tensor(0.3409, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0606, device='cuda:0'), 'validation_loss_ce': tensor(0.3756, device='cuda:0'), 'validation_loss_bbox': tensor(0.1335, device='cuda:0'), 'validation_loss_giou': tensor(0.5087, device='cuda:0'), 'validation_cardinality_error': tensor(0.8687, device='cuda:0')}
{'training_loss': tensor(1.0862, device='cuda:0'), 'train_loss_ce': tensor(0.3821, device='cuda:0'), 'train_loss_bbox': tensor(0.0458, device='cuda:0'), 'train_loss_giou': tensor(0.2377, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0367, device='cuda:0'), 'validation_loss_ce': tensor(0.3755, device='cuda:0'), 'validation_loss_bbox': tensor(0.1329, device='cuda:0'), 'validation_loss_giou': tensor(0.4983, device='cuda:0'), 'validation_cardinality_error': tensor(0.8384, device='cuda:0')}
{'training_loss': tensor(0.7575, device='cuda:0'), 'train_loss_ce': tensor(0.2794, device='cuda:0'), 'train_loss_bbox': tensor(0.0307, device='cuda:0'), 'train_loss_giou': tensor(0.1624, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0644, device='cuda:0'), 'validation_loss_ce': tensor(0.3817, device='cuda:0'), 'validation_loss_bbox': tensor(0.1349, device='cuda:0'), 'validation_loss_giou': tensor(0.5040, device='cuda:0'), 'validation_cardinality_error': tensor(0.6162, device='cuda:0')}
{'training_loss': tensor(0.8394, device='cuda:0'), 'train_loss_ce': tensor(0.3417, device='cuda:0'), 'train_loss_bbox': tensor(0.0309, device='cuda:0'), 'train_loss_giou': tensor(0.1715, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0163, device='cuda:0'), 'validation_loss_ce': tensor(0.3792, device='cuda:0'), 'validation_loss_bbox': tensor(0.1344, device='cuda:0'), 'validation_loss_giou': tensor(0.4824, device='cuda:0'), 'validation_cardinality_error': tensor(0.7475, device='cuda:0')}
{'training_loss': tensor(0.9239, device='cuda:0'), 'train_loss_ce': tensor(0.3277, device='cuda:0'), 'train_loss_bbox': tensor(0.0394, device='cuda:0'), 'train_loss_giou': tensor(0.1996, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0224, device='cuda:0'), 'validation_loss_ce': tensor(0.3814, device='cuda:0'), 'validation_loss_bbox': tensor(0.1331, device='cuda:0'), 'validation_loss_giou': tensor(0.4877, device='cuda:0'), 'validation_cardinality_error': tensor(0.8081, device='cuda:0')}
{'training_loss': tensor(1.0900, device='cuda:0'), 'train_loss_ce': tensor(0.3131, device='cuda:0'), 'train_loss_bbox': tensor(0.0615, device='cuda:0'), 'train_loss_giou': tensor(0.2347, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0227, device='cuda:0'), 'validation_loss_ce': tensor(0.3734, device='cuda:0'), 'validation_loss_bbox': tensor(0.1333, device='cuda:0'), 'validation_loss_giou': tensor(0.4914, device='cuda:0'), 'validation_cardinality_error': tensor(0.8384, device='cuda:0')}
{'training_loss': tensor(0.8662, device='cuda:0'), 'train_loss_ce': tensor(0.2183, device='cuda:0'), 'train_loss_bbox': tensor(0.0566, device='cuda:0'), 'train_loss_giou': tensor(0.1824, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0409, device='cuda:0'), 'validation_loss_ce': tensor(0.3932, device='cuda:0'), 'validation_loss_bbox': tensor(0.1340, device='cuda:0'), 'validation_loss_giou': tensor(0.4888, device='cuda:0'), 'validation_cardinality_error': tensor(0.8081, device='cuda:0')}
{'training_loss': tensor(0.9546, device='cuda:0'), 'train_loss_ce': tensor(0.3155, device='cuda:0'), 'train_loss_bbox': tensor(0.0557, device='cuda:0'), 'train_loss_giou': tensor(0.1803, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0506, device='cuda:0'), 'validation_loss_ce': tensor(0.3951, device='cuda:0'), 'validation_loss_bbox': tensor(0.1354, device='cuda:0'), 'validation_loss_giou': tensor(0.4894, device='cuda:0'), 'validation_cardinality_error': tensor(0.8182, device='cuda:0')}
{'training_loss': tensor(0.8441, device='cuda:0'), 'train_loss_ce': tensor(0.2460, device='cuda:0'), 'train_loss_bbox': tensor(0.0441, device='cuda:0'), 'train_loss_giou': tensor(0.1888, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0364, device='cuda:0'), 'validation_loss_ce': tensor(0.3846, device='cuda:0'), 'validation_loss_bbox': tensor(0.1363, device='cuda:0'), 'validation_loss_giou': tensor(0.4852, device='cuda:0'), 'validation_cardinality_error': tensor(0.8182, device='cuda:0')}
{'training_loss': tensor(1.2376, device='cuda:0'), 'train_loss_ce': tensor(0.4452, device='cuda:0'), 'train_loss_bbox': tensor(0.0654, device='cuda:0'), 'train_loss_giou': tensor(0.2328, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0154, device='cuda:0'), 'validation_loss_ce': tensor(0.3802, device='cuda:0'), 'validation_loss_bbox': tensor(0.1307, device='cuda:0'), 'validation_loss_giou': tensor(0.4909, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(1.0079, device='cuda:0'), 'train_loss_ce': tensor(0.1552, device='cuda:0'), 'train_loss_bbox': tensor(0.0418, device='cuda:0'), 'train_loss_giou': tensor(0.3218, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0421, device='cuda:0'), 'validation_loss_ce': tensor(0.3847, device='cuda:0'), 'validation_loss_bbox': tensor(0.1331, device='cuda:0'), 'validation_loss_giou': tensor(0.4960, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(0.9804, device='cuda:0'), 'train_loss_ce': tensor(0.3195, device='cuda:0'), 'train_loss_bbox': tensor(0.0394, device='cuda:0'), 'train_loss_giou': tensor(0.2318, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0393, device='cuda:0'), 'validation_loss_ce': tensor(0.3833, device='cuda:0'), 'validation_loss_bbox': tensor(0.1363, device='cuda:0'), 'validation_loss_giou': tensor(0.4871, device='cuda:0'), 'validation_cardinality_error': tensor(0.7778, device='cuda:0')}
```
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
farhanishraq/table_tr-finetuned-bs-2.0
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"no object",
"table row",
"table column"
] |
MedicalVision/detr_nih_50ep_raise
|
## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.001
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.015
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.016
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.016
```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.005
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.015
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.004
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.005
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.046
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.119
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.134
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.144
```
## Config
- dataset: NIH
- original model: facebook/detr-resnet-50
- lr: 0.0001
- dropout_rate: 0.3
- weight_decay: 0.01
- max_epochs: 50
## Logging
### Training process
```
{'validation_loss': tensor(6.1640, device='cuda:0'), 'validation_loss_ce': tensor(2.3579, device='cuda:0'), 'validation_loss_bbox': tensor(0.4592, device='cuda:0'), 'validation_loss_giou': tensor(0.7551, device='cuda:0'), 'validation_cardinality_error': tensor(99., device='cuda:0')}
{'training_loss': tensor(2.5012, device='cuda:0'), 'train_loss_ce': tensor(0.4724, device='cuda:0'), 'train_loss_bbox': tensor(0.2203, device='cuda:0'), 'train_loss_giou': tensor(0.4637, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5773, device='cuda:0'), 'validation_loss_ce': tensor(0.4940, device='cuda:0'), 'validation_loss_bbox': tensor(0.1985, device='cuda:0'), 'validation_loss_giou': tensor(0.5455, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5154, device='cuda:0'), 'train_loss_ce': tensor(0.5113, device='cuda:0'), 'train_loss_bbox': tensor(0.1683, device='cuda:0'), 'train_loss_giou': tensor(0.5813, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.8801, device='cuda:0'), 'validation_loss_ce': tensor(0.5555, device='cuda:0'), 'validation_loss_bbox': tensor(0.2172, device='cuda:0'), 'validation_loss_giou': tensor(0.6192, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0469, device='cuda:0'), 'train_loss_ce': tensor(0.4756, device='cuda:0'), 'train_loss_bbox': tensor(0.1356, device='cuda:0'), 'train_loss_giou': tensor(0.4466, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2915, device='cuda:0'), 'validation_loss_ce': tensor(0.4524, device='cuda:0'), 'validation_loss_bbox': tensor(0.1640, device='cuda:0'), 'validation_loss_giou': tensor(0.5096, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3943, device='cuda:0'), 'train_loss_ce': tensor(0.4142, device='cuda:0'), 'train_loss_bbox': tensor(0.1636, device='cuda:0'), 'train_loss_giou': tensor(0.5811, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2868, device='cuda:0'), 'validation_loss_ce': tensor(0.4460, device='cuda:0'), 'validation_loss_bbox': tensor(0.1624, device='cuda:0'), 'validation_loss_giou': tensor(0.5145, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5273, device='cuda:0'), 'train_loss_ce': tensor(0.4767, device='cuda:0'), 'train_loss_bbox': tensor(0.1770, device='cuda:0'), 'train_loss_giou': tensor(0.5829, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2147, device='cuda:0'), 'validation_loss_ce': tensor(0.4427, device='cuda:0'), 'validation_loss_bbox': tensor(0.1484, device='cuda:0'), 'validation_loss_giou': tensor(0.5149, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4827, device='cuda:0'), 'train_loss_ce': tensor(0.4289, device='cuda:0'), 'train_loss_bbox': tensor(0.1703, device='cuda:0'), 'train_loss_giou': tensor(0.6011, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2678, device='cuda:0'), 'validation_loss_ce': tensor(0.4398, device='cuda:0'), 'validation_loss_bbox': tensor(0.1587, device='cuda:0'), 'validation_loss_giou': tensor(0.5174, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9188, device='cuda:0'), 'train_loss_ce': tensor(0.4719, device='cuda:0'), 'train_loss_bbox': tensor(0.1112, device='cuda:0'), 'train_loss_giou': tensor(0.4454, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1029, device='cuda:0'), 'validation_loss_ce': tensor(0.4342, device='cuda:0'), 'validation_loss_bbox': tensor(0.1393, device='cuda:0'), 'validation_loss_giou': tensor(0.4862, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1726, device='cuda:0'), 'train_loss_ce': tensor(0.3913, device='cuda:0'), 'train_loss_bbox': tensor(0.1488, device='cuda:0'), 'train_loss_giou': tensor(0.5187, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1978, device='cuda:0'), 'validation_loss_ce': tensor(0.4290, device='cuda:0'), 'validation_loss_bbox': tensor(0.1498, device='cuda:0'), 'validation_loss_giou': tensor(0.5099, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9089, device='cuda:0'), 'train_loss_ce': tensor(0.3796, device='cuda:0'), 'train_loss_bbox': tensor(0.1238, device='cuda:0'), 'train_loss_giou': tensor(0.4551, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1008, device='cuda:0'), 'validation_loss_ce': tensor(0.4223, device='cuda:0'), 'validation_loss_bbox': tensor(0.1397, device='cuda:0'), 'validation_loss_giou': tensor(0.4901, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5439, device='cuda:0'), 'train_loss_ce': tensor(0.4430, device='cuda:0'), 'train_loss_bbox': tensor(0.1633, device='cuda:0'), 'train_loss_giou': tensor(0.6422, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2259, device='cuda:0'), 'validation_loss_ce': tensor(0.4223, device='cuda:0'), 'validation_loss_bbox': tensor(0.1489, device='cuda:0'), 'validation_loss_giou': tensor(0.5297, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3302, device='cuda:0'), 'train_loss_ce': tensor(0.4776, device='cuda:0'), 'train_loss_bbox': tensor(0.1556, device='cuda:0'), 'train_loss_giou': tensor(0.5373, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1065, device='cuda:0'), 'validation_loss_ce': tensor(0.4252, device='cuda:0'), 'validation_loss_bbox': tensor(0.1390, device='cuda:0'), 'validation_loss_giou': tensor(0.4932, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1398, device='cuda:0'), 'train_loss_ce': tensor(0.5075, device='cuda:0'), 'train_loss_bbox': tensor(0.1335, device='cuda:0'), 'train_loss_giou': tensor(0.4824, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1445, device='cuda:0'), 'validation_loss_ce': tensor(0.4139, device='cuda:0'), 'validation_loss_bbox': tensor(0.1501, device='cuda:0'), 'validation_loss_giou': tensor(0.4900, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1887, device='cuda:0'), 'train_loss_ce': tensor(0.4217, device='cuda:0'), 'train_loss_bbox': tensor(0.1795, device='cuda:0'), 'train_loss_giou': tensor(0.4347, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3315, device='cuda:0'), 'validation_loss_ce': tensor(0.4187, device='cuda:0'), 'validation_loss_bbox': tensor(0.1654, device='cuda:0'), 'validation_loss_giou': tensor(0.5431, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2062, device='cuda:0'), 'train_loss_ce': tensor(0.4076, device='cuda:0'), 'train_loss_bbox': tensor(0.1169, device='cuda:0'), 'train_loss_giou': tensor(0.6070, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1468, device='cuda:0'), 'validation_loss_ce': tensor(0.3972, device='cuda:0'), 'validation_loss_bbox': tensor(0.1463, device='cuda:0'), 'validation_loss_giou': tensor(0.5090, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8832, device='cuda:0'), 'train_loss_ce': tensor(0.4271, device='cuda:0'), 'train_loss_bbox': tensor(0.1041, device='cuda:0'), 'train_loss_giou': tensor(0.4677, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0993, device='cuda:0'), 'validation_loss_ce': tensor(0.4163, device='cuda:0'), 'validation_loss_bbox': tensor(0.1366, device='cuda:0'), 'validation_loss_giou': tensor(0.4999, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4581, device='cuda:0'), 'train_loss_ce': tensor(0.4431, device='cuda:0'), 'train_loss_bbox': tensor(0.1646, device='cuda:0'), 'train_loss_giou': tensor(0.5961, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1039, device='cuda:0'), 'validation_loss_ce': tensor(0.4058, device='cuda:0'), 'validation_loss_bbox': tensor(0.1386, device='cuda:0'), 'validation_loss_giou': tensor(0.5025, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5800, device='cuda:0'), 'train_loss_ce': tensor(0.4083, device='cuda:0'), 'train_loss_bbox': tensor(0.1037, device='cuda:0'), 'train_loss_giou': tensor(0.3266, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2610, device='cuda:0'), 'validation_loss_ce': tensor(0.4097, device='cuda:0'), 'validation_loss_bbox': tensor(0.1609, device='cuda:0'), 'validation_loss_giou': tensor(0.5235, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1973, device='cuda:0'), 'train_loss_ce': tensor(0.3197, device='cuda:0'), 'train_loss_bbox': tensor(0.1813, device='cuda:0'), 'train_loss_giou': tensor(0.4854, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0723, device='cuda:0'), 'validation_loss_ce': tensor(0.4049, device='cuda:0'), 'validation_loss_bbox': tensor(0.1411, device='cuda:0'), 'validation_loss_giou': tensor(0.4810, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2071, device='cuda:0'), 'train_loss_ce': tensor(0.3585, device='cuda:0'), 'train_loss_bbox': tensor(0.1437, device='cuda:0'), 'train_loss_giou': tensor(0.5650, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0872, device='cuda:0'), 'validation_loss_ce': tensor(0.4076, device='cuda:0'), 'validation_loss_bbox': tensor(0.1370, device='cuda:0'), 'validation_loss_giou': tensor(0.4973, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0057, device='cuda:0'), 'train_loss_ce': tensor(0.3216, device='cuda:0'), 'train_loss_bbox': tensor(0.1447, device='cuda:0'), 'train_loss_giou': tensor(0.4802, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0882, device='cuda:0'), 'validation_loss_ce': tensor(0.3940, device='cuda:0'), 'validation_loss_bbox': tensor(0.1410, device='cuda:0'), 'validation_loss_giou': tensor(0.4947, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2207, device='cuda:0'), 'train_loss_ce': tensor(0.4783, device='cuda:0'), 'train_loss_bbox': tensor(0.1521, device='cuda:0'), 'train_loss_giou': tensor(0.4910, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0525, device='cuda:0'), 'validation_loss_ce': tensor(0.3939, device='cuda:0'), 'validation_loss_bbox': tensor(0.1337, device='cuda:0'), 'validation_loss_giou': tensor(0.4950, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0346, device='cuda:0'), 'train_loss_ce': tensor(0.3853, device='cuda:0'), 'train_loss_bbox': tensor(0.1412, device='cuda:0'), 'train_loss_giou': tensor(0.4717, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9823, device='cuda:0'), 'validation_loss_ce': tensor(0.3958, device='cuda:0'), 'validation_loss_bbox': tensor(0.1272, device='cuda:0'), 'validation_loss_giou': tensor(0.4752, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6690, device='cuda:0'), 'train_loss_ce': tensor(0.4342, device='cuda:0'), 'train_loss_bbox': tensor(0.1134, device='cuda:0'), 'train_loss_giou': tensor(0.3340, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9776, device='cuda:0'), 'validation_loss_ce': tensor(0.3931, device='cuda:0'), 'validation_loss_bbox': tensor(0.1266, device='cuda:0'), 'validation_loss_giou': tensor(0.4758, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3649, device='cuda:0'), 'train_loss_ce': tensor(0.4440, device='cuda:0'), 'train_loss_bbox': tensor(0.1662, device='cuda:0'), 'train_loss_giou': tensor(0.5448, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1280, device='cuda:0'), 'validation_loss_ce': tensor(0.3865, device='cuda:0'), 'validation_loss_bbox': tensor(0.1415, device='cuda:0'), 'validation_loss_giou': tensor(0.5171, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7902, device='cuda:0'), 'train_loss_ce': tensor(0.4198, device='cuda:0'), 'train_loss_bbox': tensor(0.1162, device='cuda:0'), 'train_loss_giou': tensor(0.3948, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0824, device='cuda:0'), 'validation_loss_ce': tensor(0.3995, device='cuda:0'), 'validation_loss_bbox': tensor(0.1363, device='cuda:0'), 'validation_loss_giou': tensor(0.5006, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6075, device='cuda:0'), 'train_loss_ce': tensor(0.3179, device='cuda:0'), 'train_loss_bbox': tensor(0.1335, device='cuda:0'), 'train_loss_giou': tensor(0.3111, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0013, device='cuda:0'), 'validation_loss_ce': tensor(0.3906, device='cuda:0'), 'validation_loss_bbox': tensor(0.1329, device='cuda:0'), 'validation_loss_giou': tensor(0.4732, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3555, device='cuda:0'), 'train_loss_ce': tensor(0.3328, device='cuda:0'), 'train_loss_bbox': tensor(0.1481, device='cuda:0'), 'train_loss_giou': tensor(0.6411, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.4579, device='cuda:0'), 'validation_loss_ce': tensor(0.4127, device='cuda:0'), 'validation_loss_bbox': tensor(0.1690, device='cuda:0'), 'validation_loss_giou': tensor(0.6000, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1152, device='cuda:0'), 'train_loss_ce': tensor(0.3413, device='cuda:0'), 'train_loss_bbox': tensor(0.1326, device='cuda:0'), 'train_loss_giou': tensor(0.5554, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2993, device='cuda:0'), 'validation_loss_ce': tensor(0.4124, device='cuda:0'), 'validation_loss_bbox': tensor(0.1615, device='cuda:0'), 'validation_loss_giou': tensor(0.5396, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9825, device='cuda:0'), 'train_loss_ce': tensor(0.3400, device='cuda:0'), 'train_loss_bbox': tensor(0.1429, device='cuda:0'), 'train_loss_giou': tensor(0.4642, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2102, device='cuda:0'), 'validation_loss_ce': tensor(0.3878, device='cuda:0'), 'validation_loss_bbox': tensor(0.1523, device='cuda:0'), 'validation_loss_giou': tensor(0.5306, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6589, device='cuda:0'), 'train_loss_ce': tensor(0.3617, device='cuda:0'), 'train_loss_bbox': tensor(0.1531, device='cuda:0'), 'train_loss_giou': tensor(0.7660, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2398, device='cuda:0'), 'validation_loss_ce': tensor(0.3987, device='cuda:0'), 'validation_loss_bbox': tensor(0.1506, device='cuda:0'), 'validation_loss_giou': tensor(0.5440, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1258, device='cuda:0'), 'train_loss_ce': tensor(0.3308, device='cuda:0'), 'train_loss_bbox': tensor(0.1240, device='cuda:0'), 'train_loss_giou': tensor(0.5875, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2911, device='cuda:0'), 'validation_loss_ce': tensor(0.3962, device='cuda:0'), 'validation_loss_bbox': tensor(0.1593, device='cuda:0'), 'validation_loss_giou': tensor(0.5493, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5479, device='cuda:0'), 'train_loss_ce': tensor(0.3155, device='cuda:0'), 'train_loss_bbox': tensor(0.1927, device='cuda:0'), 'train_loss_giou': tensor(0.6345, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.3226, device='cuda:0'), 'validation_loss_ce': tensor(0.3773, device='cuda:0'), 'validation_loss_bbox': tensor(0.1629, device='cuda:0'), 'validation_loss_giou': tensor(0.5653, device='cuda:0'), 'validation_cardinality_error': tensor(0.5859, device='cuda:0')}
{'training_loss': tensor(2.5620, device='cuda:0'), 'train_loss_ce': tensor(0.4515, device='cuda:0'), 'train_loss_bbox': tensor(0.1527, device='cuda:0'), 'train_loss_giou': tensor(0.6736, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.1497, device='cuda:0'), 'validation_loss_ce': tensor(0.3689, device='cuda:0'), 'validation_loss_bbox': tensor(0.1470, device='cuda:0'), 'validation_loss_giou': tensor(0.5230, device='cuda:0'), 'validation_cardinality_error': tensor(0.4141, device='cuda:0')}
{'training_loss': tensor(2.5146, device='cuda:0'), 'train_loss_ce': tensor(0.3962, device='cuda:0'), 'train_loss_bbox': tensor(0.1918, device='cuda:0'), 'train_loss_giou': tensor(0.5796, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5146, device='cuda:0'), 'validation_loss_ce': tensor(0.3989, device='cuda:0'), 'validation_loss_bbox': tensor(0.1821, device='cuda:0'), 'validation_loss_giou': tensor(0.6027, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8231, device='cuda:0'), 'train_loss_ce': tensor(0.4103, device='cuda:0'), 'train_loss_bbox': tensor(0.1066, device='cuda:0'), 'train_loss_giou': tensor(0.4399, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2608, device='cuda:0'), 'validation_loss_ce': tensor(0.3951, device='cuda:0'), 'validation_loss_bbox': tensor(0.1601, device='cuda:0'), 'validation_loss_giou': tensor(0.5325, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0888, device='cuda:0'), 'train_loss_ce': tensor(0.4642, device='cuda:0'), 'train_loss_bbox': tensor(0.1357, device='cuda:0'), 'train_loss_giou': tensor(0.4729, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2711, device='cuda:0'), 'validation_loss_ce': tensor(0.3976, device='cuda:0'), 'validation_loss_bbox': tensor(0.1558, device='cuda:0'), 'validation_loss_giou': tensor(0.5472, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0932, device='cuda:0'), 'train_loss_ce': tensor(0.3924, device='cuda:0'), 'train_loss_bbox': tensor(0.1468, device='cuda:0'), 'train_loss_giou': tensor(0.4834, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3666, device='cuda:0'), 'validation_loss_ce': tensor(0.3975, device='cuda:0'), 'validation_loss_bbox': tensor(0.1651, device='cuda:0'), 'validation_loss_giou': tensor(0.5717, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0294, device='cuda:0'), 'train_loss_ce': tensor(0.3249, device='cuda:0'), 'train_loss_bbox': tensor(0.1636, device='cuda:0'), 'train_loss_giou': tensor(0.4433, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2411, device='cuda:0'), 'validation_loss_ce': tensor(0.3884, device='cuda:0'), 'validation_loss_bbox': tensor(0.1540, device='cuda:0'), 'validation_loss_giou': tensor(0.5413, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0426, device='cuda:0'), 'train_loss_ce': tensor(0.3186, device='cuda:0'), 'train_loss_bbox': tensor(0.1670, device='cuda:0'), 'train_loss_giou': tensor(0.4445, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2531, device='cuda:0'), 'validation_loss_ce': tensor(0.3957, device='cuda:0'), 'validation_loss_bbox': tensor(0.1546, device='cuda:0'), 'validation_loss_giou': tensor(0.5422, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4282, device='cuda:0'), 'train_loss_ce': tensor(0.4977, device='cuda:0'), 'train_loss_bbox': tensor(0.1670, device='cuda:0'), 'train_loss_giou': tensor(0.5478, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2792, device='cuda:0'), 'validation_loss_ce': tensor(0.3941, device='cuda:0'), 'validation_loss_bbox': tensor(0.1566, device='cuda:0'), 'validation_loss_giou': tensor(0.5510, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2052, device='cuda:0'), 'train_loss_ce': tensor(0.3754, device='cuda:0'), 'train_loss_bbox': tensor(0.1486, device='cuda:0'), 'train_loss_giou': tensor(0.5433, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1271, device='cuda:0'), 'validation_loss_ce': tensor(0.3892, device='cuda:0'), 'validation_loss_bbox': tensor(0.1433, device='cuda:0'), 'validation_loss_giou': tensor(0.5106, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2586, device='cuda:0'), 'train_loss_ce': tensor(0.4292, device='cuda:0'), 'train_loss_bbox': tensor(0.1760, device='cuda:0'), 'train_loss_giou': tensor(0.4746, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1532, device='cuda:0'), 'validation_loss_ce': tensor(0.3864, device='cuda:0'), 'validation_loss_bbox': tensor(0.1486, device='cuda:0'), 'validation_loss_giou': tensor(0.5119, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0014, device='cuda:0'), 'train_loss_ce': tensor(0.3572, device='cuda:0'), 'train_loss_bbox': tensor(0.1214, device='cuda:0'), 'train_loss_giou': tensor(0.5187, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2039, device='cuda:0'), 'validation_loss_ce': tensor(0.3885, device='cuda:0'), 'validation_loss_bbox': tensor(0.1511, device='cuda:0'), 'validation_loss_giou': tensor(0.5298, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3735, device='cuda:0'), 'train_loss_ce': tensor(0.2071, device='cuda:0'), 'train_loss_bbox': tensor(0.1674, device='cuda:0'), 'train_loss_giou': tensor(0.6646, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2320, device='cuda:0'), 'validation_loss_ce': tensor(0.3813, device='cuda:0'), 'validation_loss_bbox': tensor(0.1592, device='cuda:0'), 'validation_loss_giou': tensor(0.5275, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3102, device='cuda:0'), 'train_loss_ce': tensor(0.3596, device='cuda:0'), 'train_loss_bbox': tensor(0.2168, device='cuda:0'), 'train_loss_giou': tensor(0.4333, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1842, device='cuda:0'), 'validation_loss_ce': tensor(0.3829, device='cuda:0'), 'validation_loss_bbox': tensor(0.1542, device='cuda:0'), 'validation_loss_giou': tensor(0.5153, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0276, device='cuda:0'), 'train_loss_ce': tensor(0.3274, device='cuda:0'), 'train_loss_bbox': tensor(0.1404, device='cuda:0'), 'train_loss_giou': tensor(0.4991, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1944, device='cuda:0'), 'validation_loss_ce': tensor(0.3800, device='cuda:0'), 'validation_loss_bbox': tensor(0.1547, device='cuda:0'), 'validation_loss_giou': tensor(0.5204, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1904, device='cuda:0'), 'train_loss_ce': tensor(0.3682, device='cuda:0'), 'train_loss_bbox': tensor(0.1408, device='cuda:0'), 'train_loss_giou': tensor(0.5591, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2061, device='cuda:0'), 'validation_loss_ce': tensor(0.3785, device='cuda:0'), 'validation_loss_bbox': tensor(0.1545, device='cuda:0'), 'validation_loss_giou': tensor(0.5276, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2407, device='cuda:0'), 'train_loss_ce': tensor(0.2918, device='cuda:0'), 'train_loss_bbox': tensor(0.1871, device='cuda:0'), 'train_loss_giou': tensor(0.5066, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1732, device='cuda:0'), 'validation_loss_ce': tensor(0.3773, device='cuda:0'), 'validation_loss_bbox': tensor(0.1579, device='cuda:0'), 'validation_loss_giou': tensor(0.5032, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0560, device='cuda:0'), 'train_loss_ce': tensor(0.3344, device='cuda:0'), 'train_loss_bbox': tensor(0.1066, device='cuda:0'), 'train_loss_giou': tensor(0.5942, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(2.1830, device='cuda:0'), 'validation_loss_ce': tensor(0.3757, device='cuda:0'), 'validation_loss_bbox': tensor(0.1534, device='cuda:0'), 'validation_loss_giou': tensor(0.5201, device='cuda:0'), 'validation_cardinality_error': tensor(0.0303, device='cuda:0')}
{'training_loss': tensor(2.3304, device='cuda:0'), 'train_loss_ce': tensor(0.4064, device='cuda:0'), 'train_loss_bbox': tensor(0.1459, device='cuda:0'), 'train_loss_giou': tensor(0.5972, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2106, device='cuda:0'), 'validation_loss_ce': tensor(0.3762, device='cuda:0'), 'validation_loss_bbox': tensor(0.1587, device='cuda:0'), 'validation_loss_giou': tensor(0.5205, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
```
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
MedicalVision/detr_nih_100ep_raise
|
## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.011
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.011
```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.005
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.018
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.001
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.005
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.036
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.131
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.141
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.145
```
## Config
- dataset: NIH
- original model: facebook/detr-resnet-50
- lr: 0.0001
- dropout_rate: 0.3
- weight_decay: 0.01
- max_epochs: 100
## Logging
### Training process
```
{'validation_loss': tensor(5.9922, device='cuda:0'), 'validation_loss_ce': tensor(1.9217, device='cuda:0'), 'validation_loss_bbox': tensor(0.4632, device='cuda:0'), 'validation_loss_giou': tensor(0.8772, device='cuda:0'), 'validation_cardinality_error': tensor(40.3438, device='cuda:0')}
{'training_loss': tensor(3.1585, device='cuda:0'), 'train_loss_ce': tensor(0.5599, device='cuda:0'), 'train_loss_bbox': tensor(0.2764, device='cuda:0'), 'train_loss_giou': tensor(0.6083, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7145, device='cuda:0'), 'validation_loss_ce': tensor(0.5435, device='cuda:0'), 'validation_loss_bbox': tensor(0.1939, device='cuda:0'), 'validation_loss_giou': tensor(0.6009, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5024, device='cuda:0'), 'train_loss_ce': tensor(0.4082, device='cuda:0'), 'train_loss_bbox': tensor(0.1870, device='cuda:0'), 'train_loss_giou': tensor(0.5797, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3204, device='cuda:0'), 'validation_loss_ce': tensor(0.4753, device='cuda:0'), 'validation_loss_bbox': tensor(0.1581, device='cuda:0'), 'validation_loss_giou': tensor(0.5273, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9285, device='cuda:0'), 'train_loss_ce': tensor(0.4730, device='cuda:0'), 'train_loss_bbox': tensor(0.1512, device='cuda:0'), 'train_loss_giou': tensor(0.3496, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3177, device='cuda:0'), 'validation_loss_ce': tensor(0.4526, device='cuda:0'), 'validation_loss_bbox': tensor(0.1578, device='cuda:0'), 'validation_loss_giou': tensor(0.5381, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3199, device='cuda:0'), 'train_loss_ce': tensor(0.5028, device='cuda:0'), 'train_loss_bbox': tensor(0.1363, device='cuda:0'), 'train_loss_giou': tensor(0.5678, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3181, device='cuda:0'), 'validation_loss_ce': tensor(0.4481, device='cuda:0'), 'validation_loss_bbox': tensor(0.1617, device='cuda:0'), 'validation_loss_giou': tensor(0.5307, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1901, device='cuda:0'), 'train_loss_ce': tensor(0.4650, device='cuda:0'), 'train_loss_bbox': tensor(0.1622, device='cuda:0'), 'train_loss_giou': tensor(0.4570, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2432, device='cuda:0'), 'validation_loss_ce': tensor(0.4404, device='cuda:0'), 'validation_loss_bbox': tensor(0.1573, device='cuda:0'), 'validation_loss_giou': tensor(0.5082, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0616, device='cuda:0'), 'train_loss_ce': tensor(0.4577, device='cuda:0'), 'train_loss_bbox': tensor(0.1421, device='cuda:0'), 'train_loss_giou': tensor(0.4467, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2807, device='cuda:0'), 'validation_loss_ce': tensor(0.4421, device='cuda:0'), 'validation_loss_bbox': tensor(0.1580, device='cuda:0'), 'validation_loss_giou': tensor(0.5242, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2789, device='cuda:0'), 'train_loss_ce': tensor(0.4960, device='cuda:0'), 'train_loss_bbox': tensor(0.1681, device='cuda:0'), 'train_loss_giou': tensor(0.4712, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2138, device='cuda:0'), 'validation_loss_ce': tensor(0.4347, device='cuda:0'), 'validation_loss_bbox': tensor(0.1486, device='cuda:0'), 'validation_loss_giou': tensor(0.5181, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9775, device='cuda:0'), 'train_loss_ce': tensor(0.4219, device='cuda:0'), 'train_loss_bbox': tensor(0.1393, device='cuda:0'), 'train_loss_giou': tensor(0.4297, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3134, device='cuda:0'), 'validation_loss_ce': tensor(0.4302, device='cuda:0'), 'validation_loss_bbox': tensor(0.1644, device='cuda:0'), 'validation_loss_giou': tensor(0.5307, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7083, device='cuda:0'), 'train_loss_ce': tensor(0.4728, device='cuda:0'), 'train_loss_bbox': tensor(0.1055, device='cuda:0'), 'train_loss_giou': tensor(0.3539, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2964, device='cuda:0'), 'validation_loss_ce': tensor(0.4320, device='cuda:0'), 'validation_loss_bbox': tensor(0.1584, device='cuda:0'), 'validation_loss_giou': tensor(0.5362, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2199, device='cuda:0'), 'train_loss_ce': tensor(0.3609, device='cuda:0'), 'train_loss_bbox': tensor(0.1701, device='cuda:0'), 'train_loss_giou': tensor(0.5041, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2740, device='cuda:0'), 'validation_loss_ce': tensor(0.4260, device='cuda:0'), 'validation_loss_bbox': tensor(0.1623, device='cuda:0'), 'validation_loss_giou': tensor(0.5182, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5320, device='cuda:0'), 'train_loss_ce': tensor(0.3962, device='cuda:0'), 'train_loss_bbox': tensor(0.1901, device='cuda:0'), 'train_loss_giou': tensor(0.5926, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1716, device='cuda:0'), 'validation_loss_ce': tensor(0.4206, device='cuda:0'), 'validation_loss_bbox': tensor(0.1498, device='cuda:0'), 'validation_loss_giou': tensor(0.5009, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8947, device='cuda:0'), 'train_loss_ce': tensor(0.3639, device='cuda:0'), 'train_loss_bbox': tensor(0.1444, device='cuda:0'), 'train_loss_giou': tensor(0.4044, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2001, device='cuda:0'), 'validation_loss_ce': tensor(0.4262, device='cuda:0'), 'validation_loss_bbox': tensor(0.1507, device='cuda:0'), 'validation_loss_giou': tensor(0.5101, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1039, device='cuda:0'), 'train_loss_ce': tensor(0.4785, device='cuda:0'), 'train_loss_bbox': tensor(0.1239, device='cuda:0'), 'train_loss_giou': tensor(0.5030, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1841, device='cuda:0'), 'validation_loss_ce': tensor(0.4133, device='cuda:0'), 'validation_loss_bbox': tensor(0.1467, device='cuda:0'), 'validation_loss_giou': tensor(0.5186, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4880, device='cuda:0'), 'train_loss_ce': tensor(0.4607, device='cuda:0'), 'train_loss_bbox': tensor(0.1564, device='cuda:0'), 'train_loss_giou': tensor(0.6227, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3479, device='cuda:0'), 'validation_loss_ce': tensor(0.4191, device='cuda:0'), 'validation_loss_bbox': tensor(0.1716, device='cuda:0'), 'validation_loss_giou': tensor(0.5355, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0206, device='cuda:0'), 'train_loss_ce': tensor(0.3709, device='cuda:0'), 'train_loss_bbox': tensor(0.1387, device='cuda:0'), 'train_loss_giou': tensor(0.4780, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1861, device='cuda:0'), 'validation_loss_ce': tensor(0.4140, device='cuda:0'), 'validation_loss_bbox': tensor(0.1535, device='cuda:0'), 'validation_loss_giou': tensor(0.5023, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0864, device='cuda:0'), 'train_loss_ce': tensor(0.4814, device='cuda:0'), 'train_loss_bbox': tensor(0.1503, device='cuda:0'), 'train_loss_giou': tensor(0.4269, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2221, device='cuda:0'), 'validation_loss_ce': tensor(0.4118, device='cuda:0'), 'validation_loss_bbox': tensor(0.1502, device='cuda:0'), 'validation_loss_giou': tensor(0.5296, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2339, device='cuda:0'), 'train_loss_ce': tensor(0.2700, device='cuda:0'), 'train_loss_bbox': tensor(0.1505, device='cuda:0'), 'train_loss_giou': tensor(0.6056, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1954, device='cuda:0'), 'validation_loss_ce': tensor(0.4094, device='cuda:0'), 'validation_loss_bbox': tensor(0.1499, device='cuda:0'), 'validation_loss_giou': tensor(0.5183, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5445, device='cuda:0'), 'train_loss_ce': tensor(0.3648, device='cuda:0'), 'train_loss_bbox': tensor(0.0959, device='cuda:0'), 'train_loss_giou': tensor(0.3501, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2570, device='cuda:0'), 'validation_loss_ce': tensor(0.4029, device='cuda:0'), 'validation_loss_bbox': tensor(0.1562, device='cuda:0'), 'validation_loss_giou': tensor(0.5364, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1753, device='cuda:0'), 'train_loss_ce': tensor(0.3664, device='cuda:0'), 'train_loss_bbox': tensor(0.1394, device='cuda:0'), 'train_loss_giou': tensor(0.5559, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2393, device='cuda:0'), 'validation_loss_ce': tensor(0.4080, device='cuda:0'), 'validation_loss_bbox': tensor(0.1534, device='cuda:0'), 'validation_loss_giou': tensor(0.5322, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3731, device='cuda:0'), 'train_loss_ce': tensor(0.4317, device='cuda:0'), 'train_loss_bbox': tensor(0.1566, device='cuda:0'), 'train_loss_giou': tensor(0.5791, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2051, device='cuda:0'), 'validation_loss_ce': tensor(0.4055, device='cuda:0'), 'validation_loss_bbox': tensor(0.1489, device='cuda:0'), 'validation_loss_giou': tensor(0.5274, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4002, device='cuda:0'), 'train_loss_ce': tensor(0.4197, device='cuda:0'), 'train_loss_bbox': tensor(0.1609, device='cuda:0'), 'train_loss_giou': tensor(0.5880, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1683, device='cuda:0'), 'validation_loss_ce': tensor(0.3984, device='cuda:0'), 'validation_loss_bbox': tensor(0.1494, device='cuda:0'), 'validation_loss_giou': tensor(0.5114, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4413, device='cuda:0'), 'train_loss_ce': tensor(0.4171, device='cuda:0'), 'train_loss_bbox': tensor(0.1139, device='cuda:0'), 'train_loss_giou': tensor(0.7273, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1565, device='cuda:0'), 'validation_loss_ce': tensor(0.4021, device='cuda:0'), 'validation_loss_bbox': tensor(0.1477, device='cuda:0'), 'validation_loss_giou': tensor(0.5079, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0818, device='cuda:0'), 'train_loss_ce': tensor(0.4256, device='cuda:0'), 'train_loss_bbox': tensor(0.1373, device='cuda:0'), 'train_loss_giou': tensor(0.4847, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1993, device='cuda:0'), 'validation_loss_ce': tensor(0.3999, device='cuda:0'), 'validation_loss_bbox': tensor(0.1551, device='cuda:0'), 'validation_loss_giou': tensor(0.5118, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8499, device='cuda:0'), 'train_loss_ce': tensor(0.4293, device='cuda:0'), 'train_loss_bbox': tensor(0.1320, device='cuda:0'), 'train_loss_giou': tensor(0.3803, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2884, device='cuda:0'), 'validation_loss_ce': tensor(0.4017, device='cuda:0'), 'validation_loss_bbox': tensor(0.1593, device='cuda:0'), 'validation_loss_giou': tensor(0.5450, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8121, device='cuda:0'), 'train_loss_ce': tensor(0.3446, device='cuda:0'), 'train_loss_bbox': tensor(0.1191, device='cuda:0'), 'train_loss_giou': tensor(0.4360, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1234, device='cuda:0'), 'validation_loss_ce': tensor(0.3951, device='cuda:0'), 'validation_loss_bbox': tensor(0.1443, device='cuda:0'), 'validation_loss_giou': tensor(0.5035, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1141, device='cuda:0'), 'train_loss_ce': tensor(0.3000, device='cuda:0'), 'train_loss_bbox': tensor(0.1522, device='cuda:0'), 'train_loss_giou': tensor(0.5265, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1656, device='cuda:0'), 'validation_loss_ce': tensor(0.3921, device='cuda:0'), 'validation_loss_bbox': tensor(0.1466, device='cuda:0'), 'validation_loss_giou': tensor(0.5201, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9847, device='cuda:0'), 'train_loss_ce': tensor(0.3244, device='cuda:0'), 'train_loss_bbox': tensor(0.1367, device='cuda:0'), 'train_loss_giou': tensor(0.4884, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1330, device='cuda:0'), 'validation_loss_ce': tensor(0.3942, device='cuda:0'), 'validation_loss_bbox': tensor(0.1478, device='cuda:0'), 'validation_loss_giou': tensor(0.4998, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5460, device='cuda:0'), 'train_loss_ce': tensor(0.3988, device='cuda:0'), 'train_loss_bbox': tensor(0.1542, device='cuda:0'), 'train_loss_giou': tensor(0.6881, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1561, device='cuda:0'), 'validation_loss_ce': tensor(0.3935, device='cuda:0'), 'validation_loss_bbox': tensor(0.1469, device='cuda:0'), 'validation_loss_giou': tensor(0.5139, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8464, device='cuda:0'), 'train_loss_ce': tensor(0.2836, device='cuda:0'), 'train_loss_bbox': tensor(0.1276, device='cuda:0'), 'train_loss_giou': tensor(0.4623, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1226, device='cuda:0'), 'validation_loss_ce': tensor(0.3882, device='cuda:0'), 'validation_loss_bbox': tensor(0.1451, device='cuda:0'), 'validation_loss_giou': tensor(0.5043, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4527, device='cuda:0'), 'train_loss_ce': tensor(0.4172, device='cuda:0'), 'train_loss_bbox': tensor(0.1752, device='cuda:0'), 'train_loss_giou': tensor(0.5797, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1037, device='cuda:0'), 'validation_loss_ce': tensor(0.3896, device='cuda:0'), 'validation_loss_bbox': tensor(0.1421, device='cuda:0'), 'validation_loss_giou': tensor(0.5019, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8856, device='cuda:0'), 'train_loss_ce': tensor(0.3332, device='cuda:0'), 'train_loss_bbox': tensor(0.1328, device='cuda:0'), 'train_loss_giou': tensor(0.4441, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1537, device='cuda:0'), 'validation_loss_ce': tensor(0.3891, device='cuda:0'), 'validation_loss_bbox': tensor(0.1466, device='cuda:0'), 'validation_loss_giou': tensor(0.5159, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6333, device='cuda:0'), 'train_loss_ce': tensor(0.3565, device='cuda:0'), 'train_loss_bbox': tensor(0.1063, device='cuda:0'), 'train_loss_giou': tensor(0.3727, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0909, device='cuda:0'), 'validation_loss_ce': tensor(0.3881, device='cuda:0'), 'validation_loss_bbox': tensor(0.1418, device='cuda:0'), 'validation_loss_giou': tensor(0.4969, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3508, device='cuda:0'), 'train_loss_ce': tensor(0.4198, device='cuda:0'), 'train_loss_bbox': tensor(0.1620, device='cuda:0'), 'train_loss_giou': tensor(0.5604, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1124, device='cuda:0'), 'validation_loss_ce': tensor(0.3879, device='cuda:0'), 'validation_loss_bbox': tensor(0.1431, device='cuda:0'), 'validation_loss_giou': tensor(0.5046, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9618, device='cuda:0'), 'train_loss_ce': tensor(0.4041, device='cuda:0'), 'train_loss_bbox': tensor(0.1510, device='cuda:0'), 'train_loss_giou': tensor(0.4015, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0773, device='cuda:0'), 'validation_loss_ce': tensor(0.3807, device='cuda:0'), 'validation_loss_bbox': tensor(0.1397, device='cuda:0'), 'validation_loss_giou': tensor(0.4991, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7017, device='cuda:0'), 'train_loss_ce': tensor(0.4166, device='cuda:0'), 'train_loss_bbox': tensor(0.1304, device='cuda:0'), 'train_loss_giou': tensor(0.3166, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0984, device='cuda:0'), 'validation_loss_ce': tensor(0.3896, device='cuda:0'), 'validation_loss_bbox': tensor(0.1404, device='cuda:0'), 'validation_loss_giou': tensor(0.5034, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3735, device='cuda:0'), 'train_loss_ce': tensor(0.4548, device='cuda:0'), 'train_loss_bbox': tensor(0.1768, device='cuda:0'), 'train_loss_giou': tensor(0.5173, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3632, device='cuda:0'), 'validation_loss_ce': tensor(0.3965, device='cuda:0'), 'validation_loss_bbox': tensor(0.1657, device='cuda:0'), 'validation_loss_giou': tensor(0.5690, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3079, device='cuda:0'), 'train_loss_ce': tensor(0.2706, device='cuda:0'), 'train_loss_bbox': tensor(0.0826, device='cuda:0'), 'train_loss_giou': tensor(0.3122, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2601, device='cuda:0'), 'validation_loss_ce': tensor(0.3922, device='cuda:0'), 'validation_loss_bbox': tensor(0.1548, device='cuda:0'), 'validation_loss_giou': tensor(0.5470, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.8252, device='cuda:0'), 'train_loss_ce': tensor(0.3762, device='cuda:0'), 'train_loss_bbox': tensor(0.2220, device='cuda:0'), 'train_loss_giou': tensor(0.6695, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2968, device='cuda:0'), 'validation_loss_ce': tensor(0.3830, device='cuda:0'), 'validation_loss_bbox': tensor(0.1612, device='cuda:0'), 'validation_loss_giou': tensor(0.5540, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8611, device='cuda:0'), 'train_loss_ce': tensor(0.3391, device='cuda:0'), 'train_loss_bbox': tensor(0.1060, device='cuda:0'), 'train_loss_giou': tensor(0.4961, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2591, device='cuda:0'), 'validation_loss_ce': tensor(0.3903, device='cuda:0'), 'validation_loss_bbox': tensor(0.1556, device='cuda:0'), 'validation_loss_giou': tensor(0.5455, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1597, device='cuda:0'), 'train_loss_ce': tensor(0.3436, device='cuda:0'), 'train_loss_bbox': tensor(0.1736, device='cuda:0'), 'train_loss_giou': tensor(0.4740, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3239, device='cuda:0'), 'validation_loss_ce': tensor(0.3910, device='cuda:0'), 'validation_loss_bbox': tensor(0.1690, device='cuda:0'), 'validation_loss_giou': tensor(0.5441, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1617, device='cuda:0'), 'train_loss_ce': tensor(0.3271, device='cuda:0'), 'train_loss_bbox': tensor(0.1527, device='cuda:0'), 'train_loss_giou': tensor(0.5356, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2507, device='cuda:0'), 'validation_loss_ce': tensor(0.3840, device='cuda:0'), 'validation_loss_bbox': tensor(0.1617, device='cuda:0'), 'validation_loss_giou': tensor(0.5291, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7241, device='cuda:0'), 'train_loss_ce': tensor(0.3539, device='cuda:0'), 'train_loss_bbox': tensor(0.1142, device='cuda:0'), 'train_loss_giou': tensor(0.3996, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2363, device='cuda:0'), 'validation_loss_ce': tensor(0.3952, device='cuda:0'), 'validation_loss_bbox': tensor(0.1550, device='cuda:0'), 'validation_loss_giou': tensor(0.5330, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0634, device='cuda:0'), 'train_loss_ce': tensor(0.4071, device='cuda:0'), 'train_loss_bbox': tensor(0.1248, device='cuda:0'), 'train_loss_giou': tensor(0.5162, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1644, device='cuda:0'), 'validation_loss_ce': tensor(0.3900, device='cuda:0'), 'validation_loss_bbox': tensor(0.1508, device='cuda:0'), 'validation_loss_giou': tensor(0.5103, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6997, device='cuda:0'), 'train_loss_ce': tensor(0.4129, device='cuda:0'), 'train_loss_bbox': tensor(0.1807, device='cuda:0'), 'train_loss_giou': tensor(0.6917, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2791, device='cuda:0'), 'validation_loss_ce': tensor(0.4049, device='cuda:0'), 'validation_loss_bbox': tensor(0.1665, device='cuda:0'), 'validation_loss_giou': tensor(0.5209, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9458, device='cuda:0'), 'train_loss_ce': tensor(0.3765, device='cuda:0'), 'train_loss_bbox': tensor(0.1404, device='cuda:0'), 'train_loss_giou': tensor(0.4336, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1931, device='cuda:0'), 'validation_loss_ce': tensor(0.3904, device='cuda:0'), 'validation_loss_bbox': tensor(0.1503, device='cuda:0'), 'validation_loss_giou': tensor(0.5257, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9269, device='cuda:0'), 'train_loss_ce': tensor(0.4099, device='cuda:0'), 'train_loss_bbox': tensor(0.1275, device='cuda:0'), 'train_loss_giou': tensor(0.4397, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1903, device='cuda:0'), 'validation_loss_ce': tensor(0.3879, device='cuda:0'), 'validation_loss_bbox': tensor(0.1489, device='cuda:0'), 'validation_loss_giou': tensor(0.5290, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9057, device='cuda:0'), 'train_loss_ce': tensor(0.4524, device='cuda:0'), 'train_loss_bbox': tensor(0.1142, device='cuda:0'), 'train_loss_giou': tensor(0.4411, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0911, device='cuda:0'), 'validation_loss_ce': tensor(0.3805, device='cuda:0'), 'validation_loss_bbox': tensor(0.1396, device='cuda:0'), 'validation_loss_giou': tensor(0.5063, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0923, device='cuda:0'), 'train_loss_ce': tensor(0.4072, device='cuda:0'), 'train_loss_bbox': tensor(0.1287, device='cuda:0'), 'train_loss_giou': tensor(0.5208, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1969, device='cuda:0'), 'validation_loss_ce': tensor(0.3828, device='cuda:0'), 'validation_loss_bbox': tensor(0.1566, device='cuda:0'), 'validation_loss_giou': tensor(0.5156, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4672, device='cuda:0'), 'train_loss_ce': tensor(0.5280, device='cuda:0'), 'train_loss_bbox': tensor(0.1690, device='cuda:0'), 'train_loss_giou': tensor(0.5471, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0974, device='cuda:0'), 'validation_loss_ce': tensor(0.3946, device='cuda:0'), 'validation_loss_bbox': tensor(0.1437, device='cuda:0'), 'validation_loss_giou': tensor(0.4922, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5963, device='cuda:0'), 'train_loss_ce': tensor(0.4014, device='cuda:0'), 'train_loss_bbox': tensor(0.1816, device='cuda:0'), 'train_loss_giou': tensor(0.6435, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1513, device='cuda:0'), 'validation_loss_ce': tensor(0.3863, device='cuda:0'), 'validation_loss_bbox': tensor(0.1443, device='cuda:0'), 'validation_loss_giou': tensor(0.5216, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9654, device='cuda:0'), 'train_loss_ce': tensor(0.3026, device='cuda:0'), 'train_loss_bbox': tensor(0.1365, device='cuda:0'), 'train_loss_giou': tensor(0.4902, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2314, device='cuda:0'), 'validation_loss_ce': tensor(0.3877, device='cuda:0'), 'validation_loss_bbox': tensor(0.1528, device='cuda:0'), 'validation_loss_giou': tensor(0.5398, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9687, device='cuda:0'), 'train_loss_ce': tensor(0.3729, device='cuda:0'), 'train_loss_bbox': tensor(0.1622, device='cuda:0'), 'train_loss_giou': tensor(0.3923, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1475, device='cuda:0'), 'validation_loss_ce': tensor(0.3767, device='cuda:0'), 'validation_loss_bbox': tensor(0.1491, device='cuda:0'), 'validation_loss_giou': tensor(0.5126, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4296, device='cuda:0'), 'train_loss_ce': tensor(0.2140, device='cuda:0'), 'train_loss_bbox': tensor(0.1756, device='cuda:0'), 'train_loss_giou': tensor(0.6689, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1328, device='cuda:0'), 'validation_loss_ce': tensor(0.3888, device='cuda:0'), 'validation_loss_bbox': tensor(0.1481, device='cuda:0'), 'validation_loss_giou': tensor(0.5019, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8702, device='cuda:0'), 'train_loss_ce': tensor(0.2695, device='cuda:0'), 'train_loss_bbox': tensor(0.1544, device='cuda:0'), 'train_loss_giou': tensor(0.4144, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1586, device='cuda:0'), 'validation_loss_ce': tensor(0.3828, device='cuda:0'), 'validation_loss_bbox': tensor(0.1482, device='cuda:0'), 'validation_loss_giou': tensor(0.5174, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0132, device='cuda:0'), 'train_loss_ce': tensor(0.3941, device='cuda:0'), 'train_loss_bbox': tensor(0.1352, device='cuda:0'), 'train_loss_giou': tensor(0.4715, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1175, device='cuda:0'), 'validation_loss_ce': tensor(0.3849, device='cuda:0'), 'validation_loss_bbox': tensor(0.1429, device='cuda:0'), 'validation_loss_giou': tensor(0.5089, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6630, device='cuda:0'), 'train_loss_ce': tensor(0.3180, device='cuda:0'), 'train_loss_bbox': tensor(0.1049, device='cuda:0'), 'train_loss_giou': tensor(0.4103, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1341, device='cuda:0'), 'validation_loss_ce': tensor(0.3842, device='cuda:0'), 'validation_loss_bbox': tensor(0.1491, device='cuda:0'), 'validation_loss_giou': tensor(0.5022, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9227, device='cuda:0'), 'train_loss_ce': tensor(0.4113, device='cuda:0'), 'train_loss_bbox': tensor(0.1152, device='cuda:0'), 'train_loss_giou': tensor(0.4676, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0356, device='cuda:0'), 'validation_loss_ce': tensor(0.3717, device='cuda:0'), 'validation_loss_bbox': tensor(0.1374, device='cuda:0'), 'validation_loss_giou': tensor(0.4884, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3076, device='cuda:0'), 'train_loss_ce': tensor(0.3604, device='cuda:0'), 'train_loss_bbox': tensor(0.1494, device='cuda:0'), 'train_loss_giou': tensor(0.6001, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1031, device='cuda:0'), 'validation_loss_ce': tensor(0.3780, device='cuda:0'), 'validation_loss_bbox': tensor(0.1395, device='cuda:0'), 'validation_loss_giou': tensor(0.5138, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9373, device='cuda:0'), 'train_loss_ce': tensor(0.3131, device='cuda:0'), 'train_loss_bbox': tensor(0.1459, device='cuda:0'), 'train_loss_giou': tensor(0.4473, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0742, device='cuda:0'), 'validation_loss_ce': tensor(0.3749, device='cuda:0'), 'validation_loss_bbox': tensor(0.1400, device='cuda:0'), 'validation_loss_giou': tensor(0.4996, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8095, device='cuda:0'), 'train_loss_ce': tensor(0.3213, device='cuda:0'), 'train_loss_bbox': tensor(0.1515, device='cuda:0'), 'train_loss_giou': tensor(0.3653, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1071, device='cuda:0'), 'validation_loss_ce': tensor(0.3784, device='cuda:0'), 'validation_loss_bbox': tensor(0.1437, device='cuda:0'), 'validation_loss_giou': tensor(0.5051, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6178, device='cuda:0'), 'train_loss_ce': tensor(0.4203, device='cuda:0'), 'train_loss_bbox': tensor(0.1502, device='cuda:0'), 'train_loss_giou': tensor(0.7231, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0622, device='cuda:0'), 'validation_loss_ce': tensor(0.3770, device='cuda:0'), 'validation_loss_bbox': tensor(0.1399, device='cuda:0'), 'validation_loss_giou': tensor(0.4929, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9998, device='cuda:0'), 'train_loss_ce': tensor(0.3468, device='cuda:0'), 'train_loss_bbox': tensor(0.1001, device='cuda:0'), 'train_loss_giou': tensor(0.5764, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1441, device='cuda:0'), 'validation_loss_ce': tensor(0.3831, device='cuda:0'), 'validation_loss_bbox': tensor(0.1456, device='cuda:0'), 'validation_loss_giou': tensor(0.5164, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9782, device='cuda:0'), 'train_loss_ce': tensor(0.4054, device='cuda:0'), 'train_loss_bbox': tensor(0.1321, device='cuda:0'), 'train_loss_giou': tensor(0.4561, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1425, device='cuda:0'), 'validation_loss_ce': tensor(0.3847, device='cuda:0'), 'validation_loss_bbox': tensor(0.1464, device='cuda:0'), 'validation_loss_giou': tensor(0.5129, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9136, device='cuda:0'), 'train_loss_ce': tensor(0.4279, device='cuda:0'), 'train_loss_bbox': tensor(0.1374, device='cuda:0'), 'train_loss_giou': tensor(0.3995, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1101, device='cuda:0'), 'validation_loss_ce': tensor(0.3910, device='cuda:0'), 'validation_loss_bbox': tensor(0.1424, device='cuda:0'), 'validation_loss_giou': tensor(0.5036, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8926, device='cuda:0'), 'train_loss_ce': tensor(0.3420, device='cuda:0'), 'train_loss_bbox': tensor(0.1447, device='cuda:0'), 'train_loss_giou': tensor(0.4135, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1459, device='cuda:0'), 'validation_loss_ce': tensor(0.3866, device='cuda:0'), 'validation_loss_bbox': tensor(0.1443, device='cuda:0'), 'validation_loss_giou': tensor(0.5188, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0064, device='cuda:0'), 'train_loss_ce': tensor(0.3268, device='cuda:0'), 'train_loss_bbox': tensor(0.1296, device='cuda:0'), 'train_loss_giou': tensor(0.5159, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2298, device='cuda:0'), 'validation_loss_ce': tensor(0.3862, device='cuda:0'), 'validation_loss_bbox': tensor(0.1531, device='cuda:0'), 'validation_loss_giou': tensor(0.5390, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7424, device='cuda:0'), 'train_loss_ce': tensor(0.3838, device='cuda:0'), 'train_loss_bbox': tensor(0.1051, device='cuda:0'), 'train_loss_giou': tensor(0.4167, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1152, device='cuda:0'), 'validation_loss_ce': tensor(0.3900, device='cuda:0'), 'validation_loss_bbox': tensor(0.1398, device='cuda:0'), 'validation_loss_giou': tensor(0.5131, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3007, device='cuda:0'), 'train_loss_ce': tensor(0.3842, device='cuda:0'), 'train_loss_bbox': tensor(0.1599, device='cuda:0'), 'train_loss_giou': tensor(0.5585, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0910, device='cuda:0'), 'validation_loss_ce': tensor(0.3870, device='cuda:0'), 'validation_loss_bbox': tensor(0.1410, device='cuda:0'), 'validation_loss_giou': tensor(0.4994, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7670, device='cuda:0'), 'train_loss_ce': tensor(0.4240, device='cuda:0'), 'train_loss_bbox': tensor(0.1228, device='cuda:0'), 'train_loss_giou': tensor(0.3645, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1181, device='cuda:0'), 'validation_loss_ce': tensor(0.3888, device='cuda:0'), 'validation_loss_bbox': tensor(0.1418, device='cuda:0'), 'validation_loss_giou': tensor(0.5101, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7135, device='cuda:0'), 'train_loss_ce': tensor(0.3542, device='cuda:0'), 'train_loss_bbox': tensor(0.1194, device='cuda:0'), 'train_loss_giou': tensor(0.3813, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1441, device='cuda:0'), 'validation_loss_ce': tensor(0.3948, device='cuda:0'), 'validation_loss_bbox': tensor(0.1464, device='cuda:0'), 'validation_loss_giou': tensor(0.5087, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0617, device='cuda:0'), 'train_loss_ce': tensor(0.3049, device='cuda:0'), 'train_loss_bbox': tensor(0.1232, device='cuda:0'), 'train_loss_giou': tensor(0.5704, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0647, device='cuda:0'), 'validation_loss_ce': tensor(0.3746, device='cuda:0'), 'validation_loss_bbox': tensor(0.1383, device='cuda:0'), 'validation_loss_giou': tensor(0.4995, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3113, device='cuda:0'), 'train_loss_ce': tensor(0.3726, device='cuda:0'), 'train_loss_bbox': tensor(0.1478, device='cuda:0'), 'train_loss_giou': tensor(0.5998, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0895, device='cuda:0'), 'validation_loss_ce': tensor(0.3840, device='cuda:0'), 'validation_loss_bbox': tensor(0.1399, device='cuda:0'), 'validation_loss_giou': tensor(0.5030, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6955, device='cuda:0'), 'train_loss_ce': tensor(0.3359, device='cuda:0'), 'train_loss_bbox': tensor(0.1047, device='cuda:0'), 'train_loss_giou': tensor(0.4181, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0781, device='cuda:0'), 'validation_loss_ce': tensor(0.3824, device='cuda:0'), 'validation_loss_bbox': tensor(0.1402, device='cuda:0'), 'validation_loss_giou': tensor(0.4973, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0612, device='cuda:0'), 'train_loss_ce': tensor(0.4501, device='cuda:0'), 'train_loss_bbox': tensor(0.1447, device='cuda:0'), 'train_loss_giou': tensor(0.4437, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0666, device='cuda:0'), 'validation_loss_ce': tensor(0.3823, device='cuda:0'), 'validation_loss_bbox': tensor(0.1380, device='cuda:0'), 'validation_loss_giou': tensor(0.4971, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1554, device='cuda:0'), 'train_loss_ce': tensor(0.3281, device='cuda:0'), 'train_loss_bbox': tensor(0.1632, device='cuda:0'), 'train_loss_giou': tensor(0.5056, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0265, device='cuda:0'), 'validation_loss_ce': tensor(0.3866, device='cuda:0'), 'validation_loss_bbox': tensor(0.1341, device='cuda:0'), 'validation_loss_giou': tensor(0.4847, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1641, device='cuda:0'), 'train_loss_ce': tensor(0.2473, device='cuda:0'), 'train_loss_bbox': tensor(0.1654, device='cuda:0'), 'train_loss_giou': tensor(0.5449, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1640, device='cuda:0'), 'validation_loss_ce': tensor(0.3883, device='cuda:0'), 'validation_loss_bbox': tensor(0.1466, device='cuda:0'), 'validation_loss_giou': tensor(0.5214, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4207, device='cuda:0'), 'train_loss_ce': tensor(0.4055, device='cuda:0'), 'train_loss_bbox': tensor(0.1700, device='cuda:0'), 'train_loss_giou': tensor(0.5826, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1271, device='cuda:0'), 'validation_loss_ce': tensor(0.3914, device='cuda:0'), 'validation_loss_bbox': tensor(0.1436, device='cuda:0'), 'validation_loss_giou': tensor(0.5087, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7412, device='cuda:0'), 'train_loss_ce': tensor(0.3063, device='cuda:0'), 'train_loss_bbox': tensor(0.1244, device='cuda:0'), 'train_loss_giou': tensor(0.4065, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1272, device='cuda:0'), 'validation_loss_ce': tensor(0.3834, device='cuda:0'), 'validation_loss_bbox': tensor(0.1448, device='cuda:0'), 'validation_loss_giou': tensor(0.5098, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9508, device='cuda:0'), 'train_loss_ce': tensor(0.3791, device='cuda:0'), 'train_loss_bbox': tensor(0.1437, device='cuda:0'), 'train_loss_giou': tensor(0.4267, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1190, device='cuda:0'), 'validation_loss_ce': tensor(0.3838, device='cuda:0'), 'validation_loss_bbox': tensor(0.1432, device='cuda:0'), 'validation_loss_giou': tensor(0.5095, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2006, device='cuda:0'), 'train_loss_ce': tensor(0.3864, device='cuda:0'), 'train_loss_bbox': tensor(0.1780, device='cuda:0'), 'train_loss_giou': tensor(0.4620, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1253, device='cuda:0'), 'validation_loss_ce': tensor(0.3810, device='cuda:0'), 'validation_loss_bbox': tensor(0.1439, device='cuda:0'), 'validation_loss_giou': tensor(0.5124, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4256, device='cuda:0'), 'train_loss_ce': tensor(0.5020, device='cuda:0'), 'train_loss_bbox': tensor(0.1734, device='cuda:0'), 'train_loss_giou': tensor(0.5282, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0987, device='cuda:0'), 'validation_loss_ce': tensor(0.3872, device='cuda:0'), 'validation_loss_bbox': tensor(0.1418, device='cuda:0'), 'validation_loss_giou': tensor(0.5012, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2453, device='cuda:0'), 'train_loss_ce': tensor(0.4289, device='cuda:0'), 'train_loss_bbox': tensor(0.1498, device='cuda:0'), 'train_loss_giou': tensor(0.5338, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0983, device='cuda:0'), 'validation_loss_ce': tensor(0.3799, device='cuda:0'), 'validation_loss_bbox': tensor(0.1412, device='cuda:0'), 'validation_loss_giou': tensor(0.5062, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4796, device='cuda:0'), 'train_loss_ce': tensor(0.2681, device='cuda:0'), 'train_loss_bbox': tensor(0.1205, device='cuda:0'), 'train_loss_giou': tensor(0.3044, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1008, device='cuda:0'), 'validation_loss_ce': tensor(0.3861, device='cuda:0'), 'validation_loss_bbox': tensor(0.1391, device='cuda:0'), 'validation_loss_giou': tensor(0.5096, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3822, device='cuda:0'), 'train_loss_ce': tensor(0.3696, device='cuda:0'), 'train_loss_bbox': tensor(0.0844, device='cuda:0'), 'train_loss_giou': tensor(0.2953, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1172, device='cuda:0'), 'validation_loss_ce': tensor(0.3801, device='cuda:0'), 'validation_loss_bbox': tensor(0.1435, device='cuda:0'), 'validation_loss_giou': tensor(0.5099, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1159, device='cuda:0'), 'train_loss_ce': tensor(0.2532, device='cuda:0'), 'train_loss_bbox': tensor(0.0669, device='cuda:0'), 'train_loss_giou': tensor(0.2641, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0887, device='cuda:0'), 'validation_loss_ce': tensor(0.3829, device='cuda:0'), 'validation_loss_bbox': tensor(0.1407, device='cuda:0'), 'validation_loss_giou': tensor(0.5012, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.8004, device='cuda:0'), 'train_loss_ce': tensor(0.4254, device='cuda:0'), 'train_loss_bbox': tensor(0.2034, device='cuda:0'), 'train_loss_giou': tensor(0.6789, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2491, device='cuda:0'), 'validation_loss_ce': tensor(0.3978, device='cuda:0'), 'validation_loss_bbox': tensor(0.1568, device='cuda:0'), 'validation_loss_giou': tensor(0.5335, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8112, device='cuda:0'), 'train_loss_ce': tensor(0.3750, device='cuda:0'), 'train_loss_bbox': tensor(0.1182, device='cuda:0'), 'train_loss_giou': tensor(0.4225, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1480, device='cuda:0'), 'validation_loss_ce': tensor(0.3834, device='cuda:0'), 'validation_loss_bbox': tensor(0.1427, device='cuda:0'), 'validation_loss_giou': tensor(0.5256, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4008, device='cuda:0'), 'train_loss_ce': tensor(0.3449, device='cuda:0'), 'train_loss_bbox': tensor(0.1503, device='cuda:0'), 'train_loss_giou': tensor(0.6523, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0899, device='cuda:0'), 'validation_loss_ce': tensor(0.3876, device='cuda:0'), 'validation_loss_bbox': tensor(0.1400, device='cuda:0'), 'validation_loss_giou': tensor(0.5012, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(3.1745, device='cuda:0'), 'train_loss_ce': tensor(0.4971, device='cuda:0'), 'train_loss_bbox': tensor(0.2124, device='cuda:0'), 'train_loss_giou': tensor(0.8078, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1329, device='cuda:0'), 'validation_loss_ce': tensor(0.3873, device='cuda:0'), 'validation_loss_bbox': tensor(0.1438, device='cuda:0'), 'validation_loss_giou': tensor(0.5133, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0606, device='cuda:0'), 'train_loss_ce': tensor(0.3543, device='cuda:0'), 'train_loss_bbox': tensor(0.1164, device='cuda:0'), 'train_loss_giou': tensor(0.5622, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1552, device='cuda:0'), 'validation_loss_ce': tensor(0.3898, device='cuda:0'), 'validation_loss_bbox': tensor(0.1427, device='cuda:0'), 'validation_loss_giou': tensor(0.5259, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9711, device='cuda:0'), 'train_loss_ce': tensor(0.4405, device='cuda:0'), 'train_loss_bbox': tensor(0.1290, device='cuda:0'), 'train_loss_giou': tensor(0.4428, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0661, device='cuda:0'), 'validation_loss_ce': tensor(0.3795, device='cuda:0'), 'validation_loss_bbox': tensor(0.1382, device='cuda:0'), 'validation_loss_giou': tensor(0.4979, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5544, device='cuda:0'), 'train_loss_ce': tensor(0.3512, device='cuda:0'), 'train_loss_bbox': tensor(0.0953, device='cuda:0'), 'train_loss_giou': tensor(0.3635, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1638, device='cuda:0'), 'validation_loss_ce': tensor(0.3920, device='cuda:0'), 'validation_loss_bbox': tensor(0.1418, device='cuda:0'), 'validation_loss_giou': tensor(0.5314, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8749, device='cuda:0'), 'train_loss_ce': tensor(0.2948, device='cuda:0'), 'train_loss_bbox': tensor(0.1171, device='cuda:0'), 'train_loss_giou': tensor(0.4974, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1265, device='cuda:0'), 'validation_loss_ce': tensor(0.3888, device='cuda:0'), 'validation_loss_bbox': tensor(0.1444, device='cuda:0'), 'validation_loss_giou': tensor(0.5078, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1892, device='cuda:0'), 'train_loss_ce': tensor(0.4731, device='cuda:0'), 'train_loss_bbox': tensor(0.1667, device='cuda:0'), 'train_loss_giou': tensor(0.4413, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1397, device='cuda:0'), 'validation_loss_ce': tensor(0.3913, device='cuda:0'), 'validation_loss_bbox': tensor(0.1409, device='cuda:0'), 'validation_loss_giou': tensor(0.5219, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6873, device='cuda:0'), 'train_loss_ce': tensor(0.2624, device='cuda:0'), 'train_loss_bbox': tensor(0.0988, device='cuda:0'), 'train_loss_giou': tensor(0.4655, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1196, device='cuda:0'), 'validation_loss_ce': tensor(0.3859, device='cuda:0'), 'validation_loss_bbox': tensor(0.1396, device='cuda:0'), 'validation_loss_giou': tensor(0.5178, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6725, device='cuda:0'), 'train_loss_ce': tensor(0.2990, device='cuda:0'), 'train_loss_bbox': tensor(0.1056, device='cuda:0'), 'train_loss_giou': tensor(0.4227, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0944, device='cuda:0'), 'validation_loss_ce': tensor(0.3873, device='cuda:0'), 'validation_loss_bbox': tensor(0.1395, device='cuda:0'), 'validation_loss_giou': tensor(0.5047, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9737, device='cuda:0'), 'train_loss_ce': tensor(0.3862, device='cuda:0'), 'train_loss_bbox': tensor(0.1393, device='cuda:0'), 'train_loss_giou': tensor(0.4454, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1188, device='cuda:0'), 'validation_loss_ce': tensor(0.3850, device='cuda:0'), 'validation_loss_bbox': tensor(0.1409, device='cuda:0'), 'validation_loss_giou': tensor(0.5148, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9090, device='cuda:0'), 'train_loss_ce': tensor(0.3899, device='cuda:0'), 'train_loss_bbox': tensor(0.1334, device='cuda:0'), 'train_loss_giou': tensor(0.4259, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1303, device='cuda:0'), 'validation_loss_ce': tensor(0.3922, device='cuda:0'), 'validation_loss_bbox': tensor(0.1415, device='cuda:0'), 'validation_loss_giou': tensor(0.5154, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7123, device='cuda:0'), 'train_loss_ce': tensor(0.3532, device='cuda:0'), 'train_loss_bbox': tensor(0.1297, device='cuda:0'), 'train_loss_giou': tensor(0.3552, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1428, device='cuda:0'), 'validation_loss_ce': tensor(0.3844, device='cuda:0'), 'validation_loss_bbox': tensor(0.1410, device='cuda:0'), 'validation_loss_giou': tensor(0.5268, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5493, device='cuda:0'), 'train_loss_ce': tensor(0.3313, device='cuda:0'), 'train_loss_bbox': tensor(0.1282, device='cuda:0'), 'train_loss_giou': tensor(0.2885, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1454, device='cuda:0'), 'validation_loss_ce': tensor(0.3884, device='cuda:0'), 'validation_loss_bbox': tensor(0.1415, device='cuda:0'), 'validation_loss_giou': tensor(0.5247, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
```
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
MedicalVision/detr_test_overfitting
|
## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 1.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 1.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 1.000
```
## Config
- dataset: NIH
- original model: facebook/detr-resnet-50
- lr: 0.0001
- dropout_rate: 0.1
- weight_decay: 0.0001
- max_epochs: 300
- train samples: 2
## Logging
### Training process
```
{'validation_loss': tensor(6.0724, device='cuda:0'), 'validation_loss_ce': tensor(2.5304, device='cuda:0'), 'validation_loss_bbox': tensor(0.4019, device='cuda:0'), 'validation_loss_giou': tensor(0.7663, device='cuda:0'), 'validation_cardinality_error': tensor(98.5000, device='cuda:0')}
{'training_loss': tensor(6.0724, device='cuda:0'), 'train_loss_ce': tensor(2.5304, device='cuda:0'), 'train_loss_bbox': tensor(0.4019, device='cuda:0'), 'train_loss_giou': tensor(0.7663, device='cuda:0'), 'train_cardinality_error': tensor(98.5000, device='cuda:0'), 'validation_loss': tensor(4.4364, device='cuda:0'), 'validation_loss_ce': tensor(2.4148, device='cuda:0'), 'validation_loss_bbox': tensor(0.1521, device='cuda:0'), 'validation_loss_giou': tensor(0.6306, device='cuda:0'), 'validation_cardinality_error': tensor(99., device='cuda:0')}
{'training_loss': tensor(4.4364, device='cuda:0'), 'train_loss_ce': tensor(2.4148, device='cuda:0'), 'train_loss_bbox': tensor(0.1521, device='cuda:0'), 'train_loss_giou': tensor(0.6306, device='cuda:0'), 'train_cardinality_error': tensor(99., device='cuda:0'), 'validation_loss': tensor(4.2163, device='cuda:0'), 'validation_loss_ce': tensor(2.1667, device='cuda:0'), 'validation_loss_bbox': tensor(0.1160, device='cuda:0'), 'validation_loss_giou': tensor(0.7347, device='cuda:0'), 'validation_cardinality_error': tensor(95.5000, device='cuda:0')}
{'training_loss': tensor(4.2163, device='cuda:0'), 'train_loss_ce': tensor(2.1667, device='cuda:0'), 'train_loss_bbox': tensor(0.1160, device='cuda:0'), 'train_loss_giou': tensor(0.7347, device='cuda:0'), 'train_cardinality_error': tensor(95.5000, device='cuda:0'), 'validation_loss': tensor(4.3139, device='cuda:0'), 'validation_loss_ce': tensor(2.2651, device='cuda:0'), 'validation_loss_bbox': tensor(0.1605, device='cuda:0'), 'validation_loss_giou': tensor(0.6232, device='cuda:0'), 'validation_cardinality_error': tensor(99., device='cuda:0')}
{'training_loss': tensor(4.3139, device='cuda:0'), 'train_loss_ce': tensor(2.2651, device='cuda:0'), 'train_loss_bbox': tensor(0.1605, device='cuda:0'), 'train_loss_giou': tensor(0.6232, device='cuda:0'), 'train_cardinality_error': tensor(99., device='cuda:0'), 'validation_loss': tensor(4.0517, device='cuda:0'), 'validation_loss_ce': tensor(2.2360, device='cuda:0'), 'validation_loss_bbox': tensor(0.1019, device='cuda:0'), 'validation_loss_giou': tensor(0.6532, device='cuda:0'), 'validation_cardinality_error': tensor(99., device='cuda:0')}
{'training_loss': tensor(4.0517, device='cuda:0'), 'train_loss_ce': tensor(2.2360, device='cuda:0'), 'train_loss_bbox': tensor(0.1019, device='cuda:0'), 'train_loss_giou': tensor(0.6532, device='cuda:0'), 'train_cardinality_error': tensor(99., device='cuda:0'), 'validation_loss': tensor(4.1543, device='cuda:0'), 'validation_loss_ce': tensor(2.3049, device='cuda:0'), 'validation_loss_bbox': tensor(0.1445, device='cuda:0'), 'validation_loss_giou': tensor(0.5635, device='cuda:0'), 'validation_cardinality_error': tensor(99., device='cuda:0')}
{'training_loss': tensor(4.1543, device='cuda:0'), 'train_loss_ce': tensor(2.3049, device='cuda:0'), 'train_loss_bbox': tensor(0.1445, device='cuda:0'), 'train_loss_giou': tensor(0.5635, device='cuda:0'), 'train_cardinality_error': tensor(99., device='cuda:0'), 'validation_loss': tensor(4.0321, device='cuda:0'), 'validation_loss_ce': tensor(2.1293, device='cuda:0'), 'validation_loss_bbox': tensor(0.1266, device='cuda:0'), 'validation_loss_giou': tensor(0.6349, device='cuda:0'), 'validation_cardinality_error': tensor(98., device='cuda:0')}
{'training_loss': tensor(4.0321, device='cuda:0'), 'train_loss_ce': tensor(2.1293, device='cuda:0'), 'train_loss_bbox': tensor(0.1266, device='cuda:0'), 'train_loss_giou': tensor(0.6349, device='cuda:0'), 'train_cardinality_error': tensor(98., device='cuda:0'), 'validation_loss': tensor(3.7961, device='cuda:0'), 'validation_loss_ce': tensor(1.9775, device='cuda:0'), 'validation_loss_bbox': tensor(0.1105, device='cuda:0'), 'validation_loss_giou': tensor(0.6330, device='cuda:0'), 'validation_cardinality_error': tensor(73.5000, device='cuda:0')}
{'training_loss': tensor(3.7961, device='cuda:0'), 'train_loss_ce': tensor(1.9775, device='cuda:0'), 'train_loss_bbox': tensor(0.1105, device='cuda:0'), 'train_loss_giou': tensor(0.6330, device='cuda:0'), 'train_cardinality_error': tensor(73.5000, device='cuda:0'), 'validation_loss': tensor(3.3682, device='cuda:0'), 'validation_loss_ce': tensor(1.8778, device='cuda:0'), 'validation_loss_bbox': tensor(0.0882, device='cuda:0'), 'validation_loss_giou': tensor(0.5246, device='cuda:0'), 'validation_cardinality_error': tensor(3., device='cuda:0')}
{'training_loss': tensor(3.3682, device='cuda:0'), 'train_loss_ce': tensor(1.8778, device='cuda:0'), 'train_loss_bbox': tensor(0.0882, device='cuda:0'), 'train_loss_giou': tensor(0.5246, device='cuda:0'), 'train_cardinality_error': tensor(3., device='cuda:0'), 'validation_loss': tensor(4.0830, device='cuda:0'), 'validation_loss_ce': tensor(1.8439, device='cuda:0'), 'validation_loss_bbox': tensor(0.1652, device='cuda:0'), 'validation_loss_giou': tensor(0.7066, device='cuda:0'), 'validation_cardinality_error': tensor(37.5000, device='cuda:0')}
{'training_loss': tensor(4.0830, device='cuda:0'), 'train_loss_ce': tensor(1.8439, device='cuda:0'), 'train_loss_bbox': tensor(0.1652, device='cuda:0'), 'train_loss_giou': tensor(0.7066, device='cuda:0'), 'train_cardinality_error': tensor(37.5000, device='cuda:0'), 'validation_loss': tensor(3.3435, device='cuda:0'), 'validation_loss_ce': tensor(1.7878, device='cuda:0'), 'validation_loss_bbox': tensor(0.1154, device='cuda:0'), 'validation_loss_giou': tensor(0.4894, device='cuda:0'), 'validation_cardinality_error': tensor(10.5000, device='cuda:0')}
{'training_loss': tensor(3.3435, device='cuda:0'), 'train_loss_ce': tensor(1.7878, device='cuda:0'), 'train_loss_bbox': tensor(0.1154, device='cuda:0'), 'train_loss_giou': tensor(0.4894, device='cuda:0'), 'train_cardinality_error': tensor(10.5000, device='cuda:0'), 'validation_loss': tensor(3.0064, device='cuda:0'), 'validation_loss_ce': tensor(1.7197, device='cuda:0'), 'validation_loss_bbox': tensor(0.0903, device='cuda:0'), 'validation_loss_giou': tensor(0.4177, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(3.0064, device='cuda:0'), 'train_loss_ce': tensor(1.7197, device='cuda:0'), 'train_loss_bbox': tensor(0.0903, device='cuda:0'), 'train_loss_giou': tensor(0.4177, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.8776, device='cuda:0'), 'validation_loss_ce': tensor(1.6209, device='cuda:0'), 'validation_loss_bbox': tensor(0.0858, device='cuda:0'), 'validation_loss_giou': tensor(0.4139, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.8776, device='cuda:0'), 'train_loss_ce': tensor(1.6209, device='cuda:0'), 'train_loss_bbox': tensor(0.0858, device='cuda:0'), 'train_loss_giou': tensor(0.4139, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7422, device='cuda:0'), 'validation_loss_ce': tensor(1.5565, device='cuda:0'), 'validation_loss_bbox': tensor(0.0775, device='cuda:0'), 'validation_loss_giou': tensor(0.3992, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.7422, device='cuda:0'), 'train_loss_ce': tensor(1.5565, device='cuda:0'), 'train_loss_bbox': tensor(0.0775, device='cuda:0'), 'train_loss_giou': tensor(0.3992, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6407, device='cuda:0'), 'validation_loss_ce': tensor(1.4684, device='cuda:0'), 'validation_loss_bbox': tensor(0.0729, device='cuda:0'), 'validation_loss_giou': tensor(0.4038, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6407, device='cuda:0'), 'train_loss_ce': tensor(1.4684, device='cuda:0'), 'train_loss_bbox': tensor(0.0729, device='cuda:0'), 'train_loss_giou': tensor(0.4038, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3350, device='cuda:0'), 'validation_loss_ce': tensor(1.3320, device='cuda:0'), 'validation_loss_bbox': tensor(0.0539, device='cuda:0'), 'validation_loss_giou': tensor(0.3667, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3350, device='cuda:0'), 'train_loss_ce': tensor(1.3320, device='cuda:0'), 'train_loss_bbox': tensor(0.0539, device='cuda:0'), 'train_loss_giou': tensor(0.3667, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0097, device='cuda:0'), 'validation_loss_ce': tensor(1.2899, device='cuda:0'), 'validation_loss_bbox': tensor(0.0385, device='cuda:0'), 'validation_loss_giou': tensor(0.2637, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0097, device='cuda:0'), 'train_loss_ce': tensor(1.2899, device='cuda:0'), 'train_loss_bbox': tensor(0.0385, device='cuda:0'), 'train_loss_giou': tensor(0.2637, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2817, device='cuda:0'), 'validation_loss_ce': tensor(1.2335, device='cuda:0'), 'validation_loss_bbox': tensor(0.0443, device='cuda:0'), 'validation_loss_giou': tensor(0.4133, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2817, device='cuda:0'), 'train_loss_ce': tensor(1.2335, device='cuda:0'), 'train_loss_bbox': tensor(0.0443, device='cuda:0'), 'train_loss_giou': tensor(0.4133, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1365, device='cuda:0'), 'validation_loss_ce': tensor(1.1976, device='cuda:0'), 'validation_loss_bbox': tensor(0.0490, device='cuda:0'), 'validation_loss_giou': tensor(0.3470, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1365, device='cuda:0'), 'train_loss_ce': tensor(1.1976, device='cuda:0'), 'train_loss_bbox': tensor(0.0490, device='cuda:0'), 'train_loss_giou': tensor(0.3470, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0568, device='cuda:0'), 'validation_loss_ce': tensor(1.1241, device='cuda:0'), 'validation_loss_bbox': tensor(0.0534, device='cuda:0'), 'validation_loss_giou': tensor(0.3329, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0568, device='cuda:0'), 'train_loss_ce': tensor(1.1241, device='cuda:0'), 'train_loss_bbox': tensor(0.0534, device='cuda:0'), 'train_loss_giou': tensor(0.3329, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1829, device='cuda:0'), 'validation_loss_ce': tensor(1.0364, device='cuda:0'), 'validation_loss_bbox': tensor(0.0661, device='cuda:0'), 'validation_loss_giou': tensor(0.4080, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1829, device='cuda:0'), 'train_loss_ce': tensor(1.0364, device='cuda:0'), 'train_loss_bbox': tensor(0.0661, device='cuda:0'), 'train_loss_giou': tensor(0.4080, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.4566, device='cuda:0'), 'validation_loss_ce': tensor(0.9901, device='cuda:0'), 'validation_loss_bbox': tensor(0.0861, device='cuda:0'), 'validation_loss_giou': tensor(0.5179, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4566, device='cuda:0'), 'train_loss_ce': tensor(0.9901, device='cuda:0'), 'train_loss_bbox': tensor(0.0861, device='cuda:0'), 'train_loss_giou': tensor(0.5179, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(3.0824, device='cuda:0'), 'validation_loss_ce': tensor(0.9594, device='cuda:0'), 'validation_loss_bbox': tensor(0.1229, device='cuda:0'), 'validation_loss_giou': tensor(0.7543, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(3.0824, device='cuda:0'), 'train_loss_ce': tensor(0.9594, device='cuda:0'), 'train_loss_bbox': tensor(0.1229, device='cuda:0'), 'train_loss_giou': tensor(0.7543, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.7480, device='cuda:0'), 'validation_loss_ce': tensor(0.9064, device='cuda:0'), 'validation_loss_bbox': tensor(0.0501, device='cuda:0'), 'validation_loss_giou': tensor(0.2955, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7480, device='cuda:0'), 'train_loss_ce': tensor(0.9064, device='cuda:0'), 'train_loss_bbox': tensor(0.0501, device='cuda:0'), 'train_loss_giou': tensor(0.2955, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9928, device='cuda:0'), 'validation_loss_ce': tensor(0.8835, device='cuda:0'), 'validation_loss_bbox': tensor(0.0699, device='cuda:0'), 'validation_loss_giou': tensor(0.3799, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9928, device='cuda:0'), 'train_loss_ce': tensor(0.8835, device='cuda:0'), 'train_loss_bbox': tensor(0.0699, device='cuda:0'), 'train_loss_giou': tensor(0.3799, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.8209, device='cuda:0'), 'validation_loss_ce': tensor(0.8614, device='cuda:0'), 'validation_loss_bbox': tensor(0.0645, device='cuda:0'), 'validation_loss_giou': tensor(0.3185, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8209, device='cuda:0'), 'train_loss_ce': tensor(0.8614, device='cuda:0'), 'train_loss_bbox': tensor(0.0645, device='cuda:0'), 'train_loss_giou': tensor(0.3185, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.7882, device='cuda:0'), 'validation_loss_ce': tensor(0.8372, device='cuda:0'), 'validation_loss_bbox': tensor(0.0630, device='cuda:0'), 'validation_loss_giou': tensor(0.3181, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7882, device='cuda:0'), 'train_loss_ce': tensor(0.8372, device='cuda:0'), 'train_loss_bbox': tensor(0.0630, device='cuda:0'), 'train_loss_giou': tensor(0.3181, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.6084, device='cuda:0'), 'validation_loss_ce': tensor(0.8170, device='cuda:0'), 'validation_loss_bbox': tensor(0.0527, device='cuda:0'), 'validation_loss_giou': tensor(0.2639, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6084, device='cuda:0'), 'train_loss_ce': tensor(0.8170, device='cuda:0'), 'train_loss_bbox': tensor(0.0527, device='cuda:0'), 'train_loss_giou': tensor(0.2639, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.4716, device='cuda:0'), 'validation_loss_ce': tensor(0.7919, device='cuda:0'), 'validation_loss_bbox': tensor(0.0438, device='cuda:0'), 'validation_loss_giou': tensor(0.2303, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4716, device='cuda:0'), 'train_loss_ce': tensor(0.7919, device='cuda:0'), 'train_loss_bbox': tensor(0.0438, device='cuda:0'), 'train_loss_giou': tensor(0.2303, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.3381, device='cuda:0'), 'validation_loss_ce': tensor(0.7607, device='cuda:0'), 'validation_loss_bbox': tensor(0.0337, device='cuda:0'), 'validation_loss_giou': tensor(0.2045, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3381, device='cuda:0'), 'train_loss_ce': tensor(0.7607, device='cuda:0'), 'train_loss_bbox': tensor(0.0337, device='cuda:0'), 'train_loss_giou': tensor(0.2045, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.0932, device='cuda:0'), 'validation_loss_ce': tensor(0.7372, device='cuda:0'), 'validation_loss_bbox': tensor(0.0208, device='cuda:0'), 'validation_loss_giou': tensor(0.1259, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0932, device='cuda:0'), 'train_loss_ce': tensor(0.7372, device='cuda:0'), 'train_loss_bbox': tensor(0.0208, device='cuda:0'), 'train_loss_giou': tensor(0.1259, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.2333, device='cuda:0'), 'validation_loss_ce': tensor(0.7166, device='cuda:0'), 'validation_loss_bbox': tensor(0.0211, device='cuda:0'), 'validation_loss_giou': tensor(0.2057, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2333, device='cuda:0'), 'train_loss_ce': tensor(0.7166, device='cuda:0'), 'train_loss_bbox': tensor(0.0211, device='cuda:0'), 'train_loss_giou': tensor(0.2057, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.1423, device='cuda:0'), 'validation_loss_ce': tensor(0.6923, device='cuda:0'), 'validation_loss_bbox': tensor(0.0267, device='cuda:0'), 'validation_loss_giou': tensor(0.1582, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1423, device='cuda:0'), 'train_loss_ce': tensor(0.6923, device='cuda:0'), 'train_loss_bbox': tensor(0.0267, device='cuda:0'), 'train_loss_giou': tensor(0.1582, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.3445, device='cuda:0'), 'validation_loss_ce': tensor(0.6753, device='cuda:0'), 'validation_loss_bbox': tensor(0.0324, device='cuda:0'), 'validation_loss_giou': tensor(0.2536, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3445, device='cuda:0'), 'train_loss_ce': tensor(0.6753, device='cuda:0'), 'train_loss_bbox': tensor(0.0324, device='cuda:0'), 'train_loss_giou': tensor(0.2536, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.2053, device='cuda:0'), 'validation_loss_ce': tensor(0.6609, device='cuda:0'), 'validation_loss_bbox': tensor(0.0266, device='cuda:0'), 'validation_loss_giou': tensor(0.2058, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2053, device='cuda:0'), 'train_loss_ce': tensor(0.6609, device='cuda:0'), 'train_loss_bbox': tensor(0.0266, device='cuda:0'), 'train_loss_giou': tensor(0.2058, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.1093, device='cuda:0'), 'validation_loss_ce': tensor(0.6471, device='cuda:0'), 'validation_loss_bbox': tensor(0.0224, device='cuda:0'), 'validation_loss_giou': tensor(0.1751, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1093, device='cuda:0'), 'train_loss_ce': tensor(0.6471, device='cuda:0'), 'train_loss_bbox': tensor(0.0224, device='cuda:0'), 'train_loss_giou': tensor(0.1751, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.0894, device='cuda:0'), 'validation_loss_ce': tensor(0.6271, device='cuda:0'), 'validation_loss_bbox': tensor(0.0236, device='cuda:0'), 'validation_loss_giou': tensor(0.1721, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0894, device='cuda:0'), 'train_loss_ce': tensor(0.6271, device='cuda:0'), 'train_loss_bbox': tensor(0.0236, device='cuda:0'), 'train_loss_giou': tensor(0.1721, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.0849, device='cuda:0'), 'validation_loss_ce': tensor(0.6109, device='cuda:0'), 'validation_loss_bbox': tensor(0.0177, device='cuda:0'), 'validation_loss_giou': tensor(0.1928, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0849, device='cuda:0'), 'train_loss_ce': tensor(0.6109, device='cuda:0'), 'train_loss_bbox': tensor(0.0177, device='cuda:0'), 'train_loss_giou': tensor(0.1928, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9802, device='cuda:0'), 'validation_loss_ce': tensor(0.5983, device='cuda:0'), 'validation_loss_bbox': tensor(0.0177, device='cuda:0'), 'validation_loss_giou': tensor(0.1467, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9802, device='cuda:0'), 'train_loss_ce': tensor(0.5983, device='cuda:0'), 'train_loss_bbox': tensor(0.0177, device='cuda:0'), 'train_loss_giou': tensor(0.1467, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.0032, device='cuda:0'), 'validation_loss_ce': tensor(0.5900, device='cuda:0'), 'validation_loss_bbox': tensor(0.0170, device='cuda:0'), 'validation_loss_giou': tensor(0.1641, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0032, device='cuda:0'), 'train_loss_ce': tensor(0.5900, device='cuda:0'), 'train_loss_bbox': tensor(0.0170, device='cuda:0'), 'train_loss_giou': tensor(0.1641, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9085, device='cuda:0'), 'validation_loss_ce': tensor(0.5820, device='cuda:0'), 'validation_loss_bbox': tensor(0.0163, device='cuda:0'), 'validation_loss_giou': tensor(0.1226, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9085, device='cuda:0'), 'train_loss_ce': tensor(0.5820, device='cuda:0'), 'train_loss_bbox': tensor(0.0163, device='cuda:0'), 'train_loss_giou': tensor(0.1226, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8738, device='cuda:0'), 'validation_loss_ce': tensor(0.5734, device='cuda:0'), 'validation_loss_bbox': tensor(0.0147, device='cuda:0'), 'validation_loss_giou': tensor(0.1136, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8738, device='cuda:0'), 'train_loss_ce': tensor(0.5734, device='cuda:0'), 'train_loss_bbox': tensor(0.0147, device='cuda:0'), 'train_loss_giou': tensor(0.1136, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7995, device='cuda:0'), 'validation_loss_ce': tensor(0.5632, device='cuda:0'), 'validation_loss_bbox': tensor(0.0101, device='cuda:0'), 'validation_loss_giou': tensor(0.0929, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7995, device='cuda:0'), 'train_loss_ce': tensor(0.5632, device='cuda:0'), 'train_loss_bbox': tensor(0.0101, device='cuda:0'), 'train_loss_giou': tensor(0.0929, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7420, device='cuda:0'), 'validation_loss_ce': tensor(0.5540, device='cuda:0'), 'validation_loss_bbox': tensor(0.0091, device='cuda:0'), 'validation_loss_giou': tensor(0.0713, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7420, device='cuda:0'), 'train_loss_ce': tensor(0.5540, device='cuda:0'), 'train_loss_bbox': tensor(0.0091, device='cuda:0'), 'train_loss_giou': tensor(0.0713, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7460, device='cuda:0'), 'validation_loss_ce': tensor(0.5454, device='cuda:0'), 'validation_loss_bbox': tensor(0.0094, device='cuda:0'), 'validation_loss_giou': tensor(0.0767, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7460, device='cuda:0'), 'train_loss_ce': tensor(0.5454, device='cuda:0'), 'train_loss_bbox': tensor(0.0094, device='cuda:0'), 'train_loss_giou': tensor(0.0767, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7336, device='cuda:0'), 'validation_loss_ce': tensor(0.5364, device='cuda:0'), 'validation_loss_bbox': tensor(0.0101, device='cuda:0'), 'validation_loss_giou': tensor(0.0733, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7336, device='cuda:0'), 'train_loss_ce': tensor(0.5364, device='cuda:0'), 'train_loss_bbox': tensor(0.0101, device='cuda:0'), 'train_loss_giou': tensor(0.0733, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8201, device='cuda:0'), 'validation_loss_ce': tensor(0.5283, device='cuda:0'), 'validation_loss_bbox': tensor(0.0155, device='cuda:0'), 'validation_loss_giou': tensor(0.1072, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8201, device='cuda:0'), 'train_loss_ce': tensor(0.5283, device='cuda:0'), 'train_loss_bbox': tensor(0.0155, device='cuda:0'), 'train_loss_giou': tensor(0.1072, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7426, device='cuda:0'), 'validation_loss_ce': tensor(0.5211, device='cuda:0'), 'validation_loss_bbox': tensor(0.0095, device='cuda:0'), 'validation_loss_giou': tensor(0.0869, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7426, device='cuda:0'), 'train_loss_ce': tensor(0.5211, device='cuda:0'), 'train_loss_bbox': tensor(0.0095, device='cuda:0'), 'train_loss_giou': tensor(0.0869, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9311, device='cuda:0'), 'validation_loss_ce': tensor(0.5151, device='cuda:0'), 'validation_loss_bbox': tensor(0.0209, device='cuda:0'), 'validation_loss_giou': tensor(0.1558, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9311, device='cuda:0'), 'train_loss_ce': tensor(0.5151, device='cuda:0'), 'train_loss_bbox': tensor(0.0209, device='cuda:0'), 'train_loss_giou': tensor(0.1558, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7859, device='cuda:0'), 'validation_loss_ce': tensor(0.5081, device='cuda:0'), 'validation_loss_bbox': tensor(0.0119, device='cuda:0'), 'validation_loss_giou': tensor(0.1093, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7859, device='cuda:0'), 'train_loss_ce': tensor(0.5081, device='cuda:0'), 'train_loss_bbox': tensor(0.0119, device='cuda:0'), 'train_loss_giou': tensor(0.1093, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7943, device='cuda:0'), 'validation_loss_ce': tensor(0.5001, device='cuda:0'), 'validation_loss_bbox': tensor(0.0142, device='cuda:0'), 'validation_loss_giou': tensor(0.1116, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7943, device='cuda:0'), 'train_loss_ce': tensor(0.5001, device='cuda:0'), 'train_loss_bbox': tensor(0.0142, device='cuda:0'), 'train_loss_giou': tensor(0.1116, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8137, device='cuda:0'), 'validation_loss_ce': tensor(0.4933, device='cuda:0'), 'validation_loss_bbox': tensor(0.0162, device='cuda:0'), 'validation_loss_giou': tensor(0.1198, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8137, device='cuda:0'), 'train_loss_ce': tensor(0.4933, device='cuda:0'), 'train_loss_bbox': tensor(0.0162, device='cuda:0'), 'train_loss_giou': tensor(0.1198, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6198, device='cuda:0'), 'validation_loss_ce': tensor(0.4884, device='cuda:0'), 'validation_loss_bbox': tensor(0.0057, device='cuda:0'), 'validation_loss_giou': tensor(0.0515, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6198, device='cuda:0'), 'train_loss_ce': tensor(0.4884, device='cuda:0'), 'train_loss_bbox': tensor(0.0057, device='cuda:0'), 'train_loss_giou': tensor(0.0515, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7397, device='cuda:0'), 'validation_loss_ce': tensor(0.4824, device='cuda:0'), 'validation_loss_bbox': tensor(0.0144, device='cuda:0'), 'validation_loss_giou': tensor(0.0928, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7397, device='cuda:0'), 'train_loss_ce': tensor(0.4824, device='cuda:0'), 'train_loss_bbox': tensor(0.0144, device='cuda:0'), 'train_loss_giou': tensor(0.0928, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7439, device='cuda:0'), 'validation_loss_ce': tensor(0.4778, device='cuda:0'), 'validation_loss_bbox': tensor(0.0164, device='cuda:0'), 'validation_loss_giou': tensor(0.0920, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7439, device='cuda:0'), 'train_loss_ce': tensor(0.4778, device='cuda:0'), 'train_loss_bbox': tensor(0.0164, device='cuda:0'), 'train_loss_giou': tensor(0.0920, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6863, device='cuda:0'), 'validation_loss_ce': tensor(0.4731, device='cuda:0'), 'validation_loss_bbox': tensor(0.0137, device='cuda:0'), 'validation_loss_giou': tensor(0.0723, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6863, device='cuda:0'), 'train_loss_ce': tensor(0.4731, device='cuda:0'), 'train_loss_bbox': tensor(0.0137, device='cuda:0'), 'train_loss_giou': tensor(0.0723, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5783, device='cuda:0'), 'validation_loss_ce': tensor(0.4684, device='cuda:0'), 'validation_loss_bbox': tensor(0.0056, device='cuda:0'), 'validation_loss_giou': tensor(0.0409, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5783, device='cuda:0'), 'train_loss_ce': tensor(0.4684, device='cuda:0'), 'train_loss_bbox': tensor(0.0056, device='cuda:0'), 'train_loss_giou': tensor(0.0409, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7336, device='cuda:0'), 'validation_loss_ce': tensor(0.4646, device='cuda:0'), 'validation_loss_bbox': tensor(0.0156, device='cuda:0'), 'validation_loss_giou': tensor(0.0955, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7336, device='cuda:0'), 'train_loss_ce': tensor(0.4646, device='cuda:0'), 'train_loss_bbox': tensor(0.0156, device='cuda:0'), 'train_loss_giou': tensor(0.0955, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7865, device='cuda:0'), 'validation_loss_ce': tensor(0.4611, device='cuda:0'), 'validation_loss_bbox': tensor(0.0188, device='cuda:0'), 'validation_loss_giou': tensor(0.1158, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7865, device='cuda:0'), 'train_loss_ce': tensor(0.4611, device='cuda:0'), 'train_loss_bbox': tensor(0.0188, device='cuda:0'), 'train_loss_giou': tensor(0.1158, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7471, device='cuda:0'), 'validation_loss_ce': tensor(0.4577, device='cuda:0'), 'validation_loss_bbox': tensor(0.0162, device='cuda:0'), 'validation_loss_giou': tensor(0.1043, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7471, device='cuda:0'), 'train_loss_ce': tensor(0.4577, device='cuda:0'), 'train_loss_bbox': tensor(0.0162, device='cuda:0'), 'train_loss_giou': tensor(0.1043, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7239, device='cuda:0'), 'validation_loss_ce': tensor(0.4535, device='cuda:0'), 'validation_loss_bbox': tensor(0.0134, device='cuda:0'), 'validation_loss_giou': tensor(0.1016, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7239, device='cuda:0'), 'train_loss_ce': tensor(0.4535, device='cuda:0'), 'train_loss_bbox': tensor(0.0134, device='cuda:0'), 'train_loss_giou': tensor(0.1016, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6834, device='cuda:0'), 'validation_loss_ce': tensor(0.4501, device='cuda:0'), 'validation_loss_bbox': tensor(0.0089, device='cuda:0'), 'validation_loss_giou': tensor(0.0944, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6834, device='cuda:0'), 'train_loss_ce': tensor(0.4501, device='cuda:0'), 'train_loss_bbox': tensor(0.0089, device='cuda:0'), 'train_loss_giou': tensor(0.0944, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6503, device='cuda:0'), 'validation_loss_ce': tensor(0.4482, device='cuda:0'), 'validation_loss_bbox': tensor(0.0104, device='cuda:0'), 'validation_loss_giou': tensor(0.0751, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6503, device='cuda:0'), 'train_loss_ce': tensor(0.4482, device='cuda:0'), 'train_loss_bbox': tensor(0.0104, device='cuda:0'), 'train_loss_giou': tensor(0.0751, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6792, device='cuda:0'), 'validation_loss_ce': tensor(0.4462, device='cuda:0'), 'validation_loss_bbox': tensor(0.0104, device='cuda:0'), 'validation_loss_giou': tensor(0.0906, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6792, device='cuda:0'), 'train_loss_ce': tensor(0.4462, device='cuda:0'), 'train_loss_bbox': tensor(0.0104, device='cuda:0'), 'train_loss_giou': tensor(0.0906, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6487, device='cuda:0'), 'validation_loss_ce': tensor(0.4432, device='cuda:0'), 'validation_loss_bbox': tensor(0.0095, device='cuda:0'), 'validation_loss_giou': tensor(0.0791, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6487, device='cuda:0'), 'train_loss_ce': tensor(0.4432, device='cuda:0'), 'train_loss_bbox': tensor(0.0095, device='cuda:0'), 'train_loss_giou': tensor(0.0791, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6435, device='cuda:0'), 'validation_loss_ce': tensor(0.4401, device='cuda:0'), 'validation_loss_bbox': tensor(0.0094, device='cuda:0'), 'validation_loss_giou': tensor(0.0781, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6435, device='cuda:0'), 'train_loss_ce': tensor(0.4401, device='cuda:0'), 'train_loss_bbox': tensor(0.0094, device='cuda:0'), 'train_loss_giou': tensor(0.0781, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5562, device='cuda:0'), 'validation_loss_ce': tensor(0.4375, device='cuda:0'), 'validation_loss_bbox': tensor(0.0054, device='cuda:0'), 'validation_loss_giou': tensor(0.0457, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5562, device='cuda:0'), 'train_loss_ce': tensor(0.4375, device='cuda:0'), 'train_loss_bbox': tensor(0.0054, device='cuda:0'), 'train_loss_giou': tensor(0.0457, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6985, device='cuda:0'), 'validation_loss_ce': tensor(0.4352, device='cuda:0'), 'validation_loss_bbox': tensor(0.0106, device='cuda:0'), 'validation_loss_giou': tensor(0.1052, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6985, device='cuda:0'), 'train_loss_ce': tensor(0.4352, device='cuda:0'), 'train_loss_bbox': tensor(0.0106, device='cuda:0'), 'train_loss_giou': tensor(0.1052, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6578, device='cuda:0'), 'validation_loss_ce': tensor(0.4332, device='cuda:0'), 'validation_loss_bbox': tensor(0.0101, device='cuda:0'), 'validation_loss_giou': tensor(0.0870, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6578, device='cuda:0'), 'train_loss_ce': tensor(0.4332, device='cuda:0'), 'train_loss_bbox': tensor(0.0101, device='cuda:0'), 'train_loss_giou': tensor(0.0870, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5535, device='cuda:0'), 'validation_loss_ce': tensor(0.4310, device='cuda:0'), 'validation_loss_bbox': tensor(0.0068, device='cuda:0'), 'validation_loss_giou': tensor(0.0442, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5535, device='cuda:0'), 'train_loss_ce': tensor(0.4310, device='cuda:0'), 'train_loss_bbox': tensor(0.0068, device='cuda:0'), 'train_loss_giou': tensor(0.0442, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5946, device='cuda:0'), 'validation_loss_ce': tensor(0.4288, device='cuda:0'), 'validation_loss_bbox': tensor(0.0088, device='cuda:0'), 'validation_loss_giou': tensor(0.0610, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5946, device='cuda:0'), 'train_loss_ce': tensor(0.4288, device='cuda:0'), 'train_loss_bbox': tensor(0.0088, device='cuda:0'), 'train_loss_giou': tensor(0.0610, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5798, device='cuda:0'), 'validation_loss_ce': tensor(0.4263, device='cuda:0'), 'validation_loss_bbox': tensor(0.0079, device='cuda:0'), 'validation_loss_giou': tensor(0.0569, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5798, device='cuda:0'), 'train_loss_ce': tensor(0.4263, device='cuda:0'), 'train_loss_bbox': tensor(0.0079, device='cuda:0'), 'train_loss_giou': tensor(0.0569, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5673, device='cuda:0'), 'validation_loss_ce': tensor(0.4246, device='cuda:0'), 'validation_loss_bbox': tensor(0.0075, device='cuda:0'), 'validation_loss_giou': tensor(0.0527, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5673, device='cuda:0'), 'train_loss_ce': tensor(0.4246, device='cuda:0'), 'train_loss_bbox': tensor(0.0075, device='cuda:0'), 'train_loss_giou': tensor(0.0527, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5364, device='cuda:0'), 'validation_loss_ce': tensor(0.4225, device='cuda:0'), 'validation_loss_bbox': tensor(0.0069, device='cuda:0'), 'validation_loss_giou': tensor(0.0398, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5364, device='cuda:0'), 'train_loss_ce': tensor(0.4225, device='cuda:0'), 'train_loss_bbox': tensor(0.0069, device='cuda:0'), 'train_loss_giou': tensor(0.0398, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5505, device='cuda:0'), 'validation_loss_ce': tensor(0.4203, device='cuda:0'), 'validation_loss_bbox': tensor(0.0067, device='cuda:0'), 'validation_loss_giou': tensor(0.0483, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5505, device='cuda:0'), 'train_loss_ce': tensor(0.4203, device='cuda:0'), 'train_loss_bbox': tensor(0.0067, device='cuda:0'), 'train_loss_giou': tensor(0.0483, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5930, device='cuda:0'), 'validation_loss_ce': tensor(0.4191, device='cuda:0'), 'validation_loss_bbox': tensor(0.0064, device='cuda:0'), 'validation_loss_giou': tensor(0.0709, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5930, device='cuda:0'), 'train_loss_ce': tensor(0.4191, device='cuda:0'), 'train_loss_bbox': tensor(0.0064, device='cuda:0'), 'train_loss_giou': tensor(0.0709, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6474, device='cuda:0'), 'validation_loss_ce': tensor(0.4175, device='cuda:0'), 'validation_loss_bbox': tensor(0.0102, device='cuda:0'), 'validation_loss_giou': tensor(0.0895, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6474, device='cuda:0'), 'train_loss_ce': tensor(0.4175, device='cuda:0'), 'train_loss_bbox': tensor(0.0102, device='cuda:0'), 'train_loss_giou': tensor(0.0895, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5477, device='cuda:0'), 'validation_loss_ce': tensor(0.4153, device='cuda:0'), 'validation_loss_bbox': tensor(0.0076, device='cuda:0'), 'validation_loss_giou': tensor(0.0473, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5477, device='cuda:0'), 'train_loss_ce': tensor(0.4153, device='cuda:0'), 'train_loss_bbox': tensor(0.0076, device='cuda:0'), 'train_loss_giou': tensor(0.0473, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5724, device='cuda:0'), 'validation_loss_ce': tensor(0.4134, device='cuda:0'), 'validation_loss_bbox': tensor(0.0077, device='cuda:0'), 'validation_loss_giou': tensor(0.0604, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5724, device='cuda:0'), 'train_loss_ce': tensor(0.4134, device='cuda:0'), 'train_loss_bbox': tensor(0.0077, device='cuda:0'), 'train_loss_giou': tensor(0.0604, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6027, device='cuda:0'), 'validation_loss_ce': tensor(0.4123, device='cuda:0'), 'validation_loss_bbox': tensor(0.0108, device='cuda:0'), 'validation_loss_giou': tensor(0.0682, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6027, device='cuda:0'), 'train_loss_ce': tensor(0.4123, device='cuda:0'), 'train_loss_bbox': tensor(0.0108, device='cuda:0'), 'train_loss_giou': tensor(0.0682, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5131, device='cuda:0'), 'validation_loss_ce': tensor(0.4103, device='cuda:0'), 'validation_loss_bbox': tensor(0.0055, device='cuda:0'), 'validation_loss_giou': tensor(0.0376, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5131, device='cuda:0'), 'train_loss_ce': tensor(0.4103, device='cuda:0'), 'train_loss_bbox': tensor(0.0055, device='cuda:0'), 'train_loss_giou': tensor(0.0376, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6039, device='cuda:0'), 'validation_loss_ce': tensor(0.4080, device='cuda:0'), 'validation_loss_bbox': tensor(0.0117, device='cuda:0'), 'validation_loss_giou': tensor(0.0687, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6039, device='cuda:0'), 'train_loss_ce': tensor(0.4080, device='cuda:0'), 'train_loss_bbox': tensor(0.0117, device='cuda:0'), 'train_loss_giou': tensor(0.0687, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6280, device='cuda:0'), 'validation_loss_ce': tensor(0.4063, device='cuda:0'), 'validation_loss_bbox': tensor(0.0127, device='cuda:0'), 'validation_loss_giou': tensor(0.0792, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6280, device='cuda:0'), 'train_loss_ce': tensor(0.4063, device='cuda:0'), 'train_loss_bbox': tensor(0.0127, device='cuda:0'), 'train_loss_giou': tensor(0.0792, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4995, device='cuda:0'), 'validation_loss_ce': tensor(0.4052, device='cuda:0'), 'validation_loss_bbox': tensor(0.0058, device='cuda:0'), 'validation_loss_giou': tensor(0.0326, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4995, device='cuda:0'), 'train_loss_ce': tensor(0.4052, device='cuda:0'), 'train_loss_bbox': tensor(0.0058, device='cuda:0'), 'train_loss_giou': tensor(0.0326, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6073, device='cuda:0'), 'validation_loss_ce': tensor(0.4042, device='cuda:0'), 'validation_loss_bbox': tensor(0.0122, device='cuda:0'), 'validation_loss_giou': tensor(0.0710, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6073, device='cuda:0'), 'train_loss_ce': tensor(0.4042, device='cuda:0'), 'train_loss_bbox': tensor(0.0122, device='cuda:0'), 'train_loss_giou': tensor(0.0710, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5893, device='cuda:0'), 'validation_loss_ce': tensor(0.4025, device='cuda:0'), 'validation_loss_bbox': tensor(0.0101, device='cuda:0'), 'validation_loss_giou': tensor(0.0681, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5893, device='cuda:0'), 'train_loss_ce': tensor(0.4025, device='cuda:0'), 'train_loss_bbox': tensor(0.0101, device='cuda:0'), 'train_loss_giou': tensor(0.0681, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5829, device='cuda:0'), 'validation_loss_ce': tensor(0.4000, device='cuda:0'), 'validation_loss_bbox': tensor(0.0113, device='cuda:0'), 'validation_loss_giou': tensor(0.0633, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5829, device='cuda:0'), 'train_loss_ce': tensor(0.4000, device='cuda:0'), 'train_loss_bbox': tensor(0.0113, device='cuda:0'), 'train_loss_giou': tensor(0.0633, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5664, device='cuda:0'), 'validation_loss_ce': tensor(0.3983, device='cuda:0'), 'validation_loss_bbox': tensor(0.0094, device='cuda:0'), 'validation_loss_giou': tensor(0.0606, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5664, device='cuda:0'), 'train_loss_ce': tensor(0.3983, device='cuda:0'), 'train_loss_bbox': tensor(0.0094, device='cuda:0'), 'train_loss_giou': tensor(0.0606, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5343, device='cuda:0'), 'validation_loss_ce': tensor(0.3970, device='cuda:0'), 'validation_loss_bbox': tensor(0.0084, device='cuda:0'), 'validation_loss_giou': tensor(0.0477, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5343, device='cuda:0'), 'train_loss_ce': tensor(0.3970, device='cuda:0'), 'train_loss_bbox': tensor(0.0084, device='cuda:0'), 'train_loss_giou': tensor(0.0477, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5027, device='cuda:0'), 'validation_loss_ce': tensor(0.3959, device='cuda:0'), 'validation_loss_bbox': tensor(0.0048, device='cuda:0'), 'validation_loss_giou': tensor(0.0415, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5027, device='cuda:0'), 'train_loss_ce': tensor(0.3959, device='cuda:0'), 'train_loss_bbox': tensor(0.0048, device='cuda:0'), 'train_loss_giou': tensor(0.0415, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5760, device='cuda:0'), 'validation_loss_ce': tensor(0.3953, device='cuda:0'), 'validation_loss_bbox': tensor(0.0096, device='cuda:0'), 'validation_loss_giou': tensor(0.0663, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5760, device='cuda:0'), 'train_loss_ce': tensor(0.3953, device='cuda:0'), 'train_loss_bbox': tensor(0.0096, device='cuda:0'), 'train_loss_giou': tensor(0.0663, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6300, device='cuda:0'), 'validation_loss_ce': tensor(0.3941, device='cuda:0'), 'validation_loss_bbox': tensor(0.0128, device='cuda:0'), 'validation_loss_giou': tensor(0.0859, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6300, device='cuda:0'), 'train_loss_ce': tensor(0.3941, device='cuda:0'), 'train_loss_bbox': tensor(0.0128, device='cuda:0'), 'train_loss_giou': tensor(0.0859, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5873, device='cuda:0'), 'validation_loss_ce': tensor(0.3924, device='cuda:0'), 'validation_loss_bbox': tensor(0.0108, device='cuda:0'), 'validation_loss_giou': tensor(0.0705, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5873, device='cuda:0'), 'train_loss_ce': tensor(0.3924, device='cuda:0'), 'train_loss_bbox': tensor(0.0108, device='cuda:0'), 'train_loss_giou': tensor(0.0705, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5444, device='cuda:0'), 'validation_loss_ce': tensor(0.3908, device='cuda:0'), 'validation_loss_bbox': tensor(0.0083, device='cuda:0'), 'validation_loss_giou': tensor(0.0560, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5444, device='cuda:0'), 'train_loss_ce': tensor(0.3908, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.0560, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5060, device='cuda:0'), 'validation_loss_ce': tensor(0.3890, device='cuda:0'), 'validation_loss_bbox': tensor(0.0059, device='cuda:0'), 'validation_loss_giou': tensor(0.0436, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5060, device='cuda:0'), 'train_loss_ce': tensor(0.3890, device='cuda:0'), 'train_loss_bbox': tensor(0.0059, device='cuda:0'), 'train_loss_giou': tensor(0.0436, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5983, device='cuda:0'), 'validation_loss_ce': tensor(0.3879, device='cuda:0'), 'validation_loss_bbox': tensor(0.0118, device='cuda:0'), 'validation_loss_giou': tensor(0.0756, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5983, device='cuda:0'), 'train_loss_ce': tensor(0.3879, device='cuda:0'), 'train_loss_bbox': tensor(0.0118, device='cuda:0'), 'train_loss_giou': tensor(0.0756, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5683, device='cuda:0'), 'validation_loss_ce': tensor(0.3867, device='cuda:0'), 'validation_loss_bbox': tensor(0.0104, device='cuda:0'), 'validation_loss_giou': tensor(0.0648, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5683, device='cuda:0'), 'train_loss_ce': tensor(0.3867, device='cuda:0'), 'train_loss_bbox': tensor(0.0104, device='cuda:0'), 'train_loss_giou': tensor(0.0648, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5155, device='cuda:0'), 'validation_loss_ce': tensor(0.3856, device='cuda:0'), 'validation_loss_bbox': tensor(0.0078, device='cuda:0'), 'validation_loss_giou': tensor(0.0454, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5155, device='cuda:0'), 'train_loss_ce': tensor(0.3856, device='cuda:0'), 'train_loss_bbox': tensor(0.0078, device='cuda:0'), 'train_loss_giou': tensor(0.0454, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5677, device='cuda:0'), 'validation_loss_ce': tensor(0.3846, device='cuda:0'), 'validation_loss_bbox': tensor(0.0101, device='cuda:0'), 'validation_loss_giou': tensor(0.0662, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5677, device='cuda:0'), 'train_loss_ce': tensor(0.3846, device='cuda:0'), 'train_loss_bbox': tensor(0.0101, device='cuda:0'), 'train_loss_giou': tensor(0.0662, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5828, device='cuda:0'), 'validation_loss_ce': tensor(0.3832, device='cuda:0'), 'validation_loss_bbox': tensor(0.0118, device='cuda:0'), 'validation_loss_giou': tensor(0.0703, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5828, device='cuda:0'), 'train_loss_ce': tensor(0.3832, device='cuda:0'), 'train_loss_bbox': tensor(0.0118, device='cuda:0'), 'train_loss_giou': tensor(0.0703, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5123, device='cuda:0'), 'validation_loss_ce': tensor(0.3821, device='cuda:0'), 'validation_loss_bbox': tensor(0.0057, device='cuda:0'), 'validation_loss_giou': tensor(0.0508, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5123, device='cuda:0'), 'train_loss_ce': tensor(0.3821, device='cuda:0'), 'train_loss_bbox': tensor(0.0057, device='cuda:0'), 'train_loss_giou': tensor(0.0508, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5412, device='cuda:0'), 'validation_loss_ce': tensor(0.3809, device='cuda:0'), 'validation_loss_bbox': tensor(0.0071, device='cuda:0'), 'validation_loss_giou': tensor(0.0624, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5412, device='cuda:0'), 'train_loss_ce': tensor(0.3809, device='cuda:0'), 'train_loss_bbox': tensor(0.0071, device='cuda:0'), 'train_loss_giou': tensor(0.0624, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5445, device='cuda:0'), 'validation_loss_ce': tensor(0.3793, device='cuda:0'), 'validation_loss_bbox': tensor(0.0079, device='cuda:0'), 'validation_loss_giou': tensor(0.0629, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5445, device='cuda:0'), 'train_loss_ce': tensor(0.3793, device='cuda:0'), 'train_loss_bbox': tensor(0.0079, device='cuda:0'), 'train_loss_giou': tensor(0.0629, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5407, device='cuda:0'), 'validation_loss_ce': tensor(0.3780, device='cuda:0'), 'validation_loss_bbox': tensor(0.0072, device='cuda:0'), 'validation_loss_giou': tensor(0.0633, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5407, device='cuda:0'), 'train_loss_ce': tensor(0.3780, device='cuda:0'), 'train_loss_bbox': tensor(0.0072, device='cuda:0'), 'train_loss_giou': tensor(0.0633, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5196, device='cuda:0'), 'validation_loss_ce': tensor(0.3772, device='cuda:0'), 'validation_loss_bbox': tensor(0.0074, device='cuda:0'), 'validation_loss_giou': tensor(0.0526, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5196, device='cuda:0'), 'train_loss_ce': tensor(0.3772, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.0526, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4815, device='cuda:0'), 'validation_loss_ce': tensor(0.3767, device='cuda:0'), 'validation_loss_bbox': tensor(0.0057, device='cuda:0'), 'validation_loss_giou': tensor(0.0381, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4815, device='cuda:0'), 'train_loss_ce': tensor(0.3767, device='cuda:0'), 'train_loss_bbox': tensor(0.0057, device='cuda:0'), 'train_loss_giou': tensor(0.0381, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4992, device='cuda:0'), 'validation_loss_ce': tensor(0.3756, device='cuda:0'), 'validation_loss_bbox': tensor(0.0066, device='cuda:0'), 'validation_loss_giou': tensor(0.0453, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4992, device='cuda:0'), 'train_loss_ce': tensor(0.3756, device='cuda:0'), 'train_loss_bbox': tensor(0.0066, device='cuda:0'), 'train_loss_giou': tensor(0.0453, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4779, device='cuda:0'), 'validation_loss_ce': tensor(0.3740, device='cuda:0'), 'validation_loss_bbox': tensor(0.0051, device='cuda:0'), 'validation_loss_giou': tensor(0.0392, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4779, device='cuda:0'), 'train_loss_ce': tensor(0.3740, device='cuda:0'), 'train_loss_bbox': tensor(0.0051, device='cuda:0'), 'train_loss_giou': tensor(0.0392, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5003, device='cuda:0'), 'validation_loss_ce': tensor(0.3722, device='cuda:0'), 'validation_loss_bbox': tensor(0.0053, device='cuda:0'), 'validation_loss_giou': tensor(0.0508, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5003, device='cuda:0'), 'train_loss_ce': tensor(0.3722, device='cuda:0'), 'train_loss_bbox': tensor(0.0053, device='cuda:0'), 'train_loss_giou': tensor(0.0508, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5062, device='cuda:0'), 'validation_loss_ce': tensor(0.3710, device='cuda:0'), 'validation_loss_bbox': tensor(0.0075, device='cuda:0'), 'validation_loss_giou': tensor(0.0489, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5062, device='cuda:0'), 'train_loss_ce': tensor(0.3710, device='cuda:0'), 'train_loss_bbox': tensor(0.0075, device='cuda:0'), 'train_loss_giou': tensor(0.0489, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5147, device='cuda:0'), 'validation_loss_ce': tensor(0.3704, device='cuda:0'), 'validation_loss_bbox': tensor(0.0063, device='cuda:0'), 'validation_loss_giou': tensor(0.0565, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5147, device='cuda:0'), 'train_loss_ce': tensor(0.3704, device='cuda:0'), 'train_loss_bbox': tensor(0.0063, device='cuda:0'), 'train_loss_giou': tensor(0.0565, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4789, device='cuda:0'), 'validation_loss_ce': tensor(0.3697, device='cuda:0'), 'validation_loss_bbox': tensor(0.0055, device='cuda:0'), 'validation_loss_giou': tensor(0.0409, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4789, device='cuda:0'), 'train_loss_ce': tensor(0.3697, device='cuda:0'), 'train_loss_bbox': tensor(0.0055, device='cuda:0'), 'train_loss_giou': tensor(0.0409, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5313, device='cuda:0'), 'validation_loss_ce': tensor(0.3691, device='cuda:0'), 'validation_loss_bbox': tensor(0.0075, device='cuda:0'), 'validation_loss_giou': tensor(0.0623, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5313, device='cuda:0'), 'train_loss_ce': tensor(0.3691, device='cuda:0'), 'train_loss_bbox': tensor(0.0075, device='cuda:0'), 'train_loss_giou': tensor(0.0623, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5128, device='cuda:0'), 'validation_loss_ce': tensor(0.3682, device='cuda:0'), 'validation_loss_bbox': tensor(0.0083, device='cuda:0'), 'validation_loss_giou': tensor(0.0516, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5128, device='cuda:0'), 'train_loss_ce': tensor(0.3682, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.0516, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5444, device='cuda:0'), 'validation_loss_ce': tensor(0.3669, device='cuda:0'), 'validation_loss_bbox': tensor(0.0095, device='cuda:0'), 'validation_loss_giou': tensor(0.0651, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5444, device='cuda:0'), 'train_loss_ce': tensor(0.3669, device='cuda:0'), 'train_loss_bbox': tensor(0.0095, device='cuda:0'), 'train_loss_giou': tensor(0.0651, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4858, device='cuda:0'), 'validation_loss_ce': tensor(0.3654, device='cuda:0'), 'validation_loss_bbox': tensor(0.0047, device='cuda:0'), 'validation_loss_giou': tensor(0.0486, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4858, device='cuda:0'), 'train_loss_ce': tensor(0.3654, device='cuda:0'), 'train_loss_bbox': tensor(0.0047, device='cuda:0'), 'train_loss_giou': tensor(0.0486, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5220, device='cuda:0'), 'validation_loss_ce': tensor(0.3638, device='cuda:0'), 'validation_loss_bbox': tensor(0.0093, device='cuda:0'), 'validation_loss_giou': tensor(0.0559, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5220, device='cuda:0'), 'train_loss_ce': tensor(0.3638, device='cuda:0'), 'train_loss_bbox': tensor(0.0093, device='cuda:0'), 'train_loss_giou': tensor(0.0559, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5438, device='cuda:0'), 'validation_loss_ce': tensor(0.3625, device='cuda:0'), 'validation_loss_bbox': tensor(0.0095, device='cuda:0'), 'validation_loss_giou': tensor(0.0670, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5438, device='cuda:0'), 'train_loss_ce': tensor(0.3625, device='cuda:0'), 'train_loss_bbox': tensor(0.0095, device='cuda:0'), 'train_loss_giou': tensor(0.0670, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4769, device='cuda:0'), 'validation_loss_ce': tensor(0.3615, device='cuda:0'), 'validation_loss_bbox': tensor(0.0061, device='cuda:0'), 'validation_loss_giou': tensor(0.0424, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4769, device='cuda:0'), 'train_loss_ce': tensor(0.3615, device='cuda:0'), 'train_loss_bbox': tensor(0.0061, device='cuda:0'), 'train_loss_giou': tensor(0.0424, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6089, device='cuda:0'), 'validation_loss_ce': tensor(0.3607, device='cuda:0'), 'validation_loss_bbox': tensor(0.0114, device='cuda:0'), 'validation_loss_giou': tensor(0.0955, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6089, device='cuda:0'), 'train_loss_ce': tensor(0.3607, device='cuda:0'), 'train_loss_bbox': tensor(0.0114, device='cuda:0'), 'train_loss_giou': tensor(0.0955, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5538, device='cuda:0'), 'validation_loss_ce': tensor(0.3599, device='cuda:0'), 'validation_loss_bbox': tensor(0.0089, device='cuda:0'), 'validation_loss_giou': tensor(0.0746, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5538, device='cuda:0'), 'train_loss_ce': tensor(0.3599, device='cuda:0'), 'train_loss_bbox': tensor(0.0089, device='cuda:0'), 'train_loss_giou': tensor(0.0746, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5310, device='cuda:0'), 'validation_loss_ce': tensor(0.3590, device='cuda:0'), 'validation_loss_bbox': tensor(0.0064, device='cuda:0'), 'validation_loss_giou': tensor(0.0701, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5310, device='cuda:0'), 'train_loss_ce': tensor(0.3590, device='cuda:0'), 'train_loss_bbox': tensor(0.0064, device='cuda:0'), 'train_loss_giou': tensor(0.0701, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6359, device='cuda:0'), 'validation_loss_ce': tensor(0.3580, device='cuda:0'), 'validation_loss_bbox': tensor(0.0107, device='cuda:0'), 'validation_loss_giou': tensor(0.1123, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6359, device='cuda:0'), 'train_loss_ce': tensor(0.3580, device='cuda:0'), 'train_loss_bbox': tensor(0.0107, device='cuda:0'), 'train_loss_giou': tensor(0.1123, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5613, device='cuda:0'), 'validation_loss_ce': tensor(0.3574, device='cuda:0'), 'validation_loss_bbox': tensor(0.0074, device='cuda:0'), 'validation_loss_giou': tensor(0.0834, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5613, device='cuda:0'), 'train_loss_ce': tensor(0.3574, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.0834, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4645, device='cuda:0'), 'validation_loss_ce': tensor(0.3569, device='cuda:0'), 'validation_loss_bbox': tensor(0.0045, device='cuda:0'), 'validation_loss_giou': tensor(0.0426, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4645, device='cuda:0'), 'train_loss_ce': tensor(0.3569, device='cuda:0'), 'train_loss_bbox': tensor(0.0045, device='cuda:0'), 'train_loss_giou': tensor(0.0426, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5101, device='cuda:0'), 'validation_loss_ce': tensor(0.3561, device='cuda:0'), 'validation_loss_bbox': tensor(0.0055, device='cuda:0'), 'validation_loss_giou': tensor(0.0632, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5101, device='cuda:0'), 'train_loss_ce': tensor(0.3561, device='cuda:0'), 'train_loss_bbox': tensor(0.0055, device='cuda:0'), 'train_loss_giou': tensor(0.0632, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4707, device='cuda:0'), 'validation_loss_ce': tensor(0.3550, device='cuda:0'), 'validation_loss_bbox': tensor(0.0058, device='cuda:0'), 'validation_loss_giou': tensor(0.0433, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4707, device='cuda:0'), 'train_loss_ce': tensor(0.3550, device='cuda:0'), 'train_loss_bbox': tensor(0.0058, device='cuda:0'), 'train_loss_giou': tensor(0.0433, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4804, device='cuda:0'), 'validation_loss_ce': tensor(0.3542, device='cuda:0'), 'validation_loss_bbox': tensor(0.0060, device='cuda:0'), 'validation_loss_giou': tensor(0.0481, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4804, device='cuda:0'), 'train_loss_ce': tensor(0.3542, device='cuda:0'), 'train_loss_bbox': tensor(0.0060, device='cuda:0'), 'train_loss_giou': tensor(0.0481, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4762, device='cuda:0'), 'validation_loss_ce': tensor(0.3532, device='cuda:0'), 'validation_loss_bbox': tensor(0.0066, device='cuda:0'), 'validation_loss_giou': tensor(0.0450, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4762, device='cuda:0'), 'train_loss_ce': tensor(0.3532, device='cuda:0'), 'train_loss_bbox': tensor(0.0066, device='cuda:0'), 'train_loss_giou': tensor(0.0450, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5302, device='cuda:0'), 'validation_loss_ce': tensor(0.3525, device='cuda:0'), 'validation_loss_bbox': tensor(0.0096, device='cuda:0'), 'validation_loss_giou': tensor(0.0649, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5302, device='cuda:0'), 'train_loss_ce': tensor(0.3525, device='cuda:0'), 'train_loss_bbox': tensor(0.0096, device='cuda:0'), 'train_loss_giou': tensor(0.0649, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4863, device='cuda:0'), 'validation_loss_ce': tensor(0.3519, device='cuda:0'), 'validation_loss_bbox': tensor(0.0065, device='cuda:0'), 'validation_loss_giou': tensor(0.0510, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4863, device='cuda:0'), 'train_loss_ce': tensor(0.3519, device='cuda:0'), 'train_loss_bbox': tensor(0.0065, device='cuda:0'), 'train_loss_giou': tensor(0.0510, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4838, device='cuda:0'), 'validation_loss_ce': tensor(0.3515, device='cuda:0'), 'validation_loss_bbox': tensor(0.0071, device='cuda:0'), 'validation_loss_giou': tensor(0.0483, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4838, device='cuda:0'), 'train_loss_ce': tensor(0.3515, device='cuda:0'), 'train_loss_bbox': tensor(0.0071, device='cuda:0'), 'train_loss_giou': tensor(0.0483, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5011, device='cuda:0'), 'validation_loss_ce': tensor(0.3508, device='cuda:0'), 'validation_loss_bbox': tensor(0.0087, device='cuda:0'), 'validation_loss_giou': tensor(0.0536, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5011, device='cuda:0'), 'train_loss_ce': tensor(0.3508, device='cuda:0'), 'train_loss_bbox': tensor(0.0087, device='cuda:0'), 'train_loss_giou': tensor(0.0536, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4349, device='cuda:0'), 'validation_loss_ce': tensor(0.3495, device='cuda:0'), 'validation_loss_bbox': tensor(0.0041, device='cuda:0'), 'validation_loss_giou': tensor(0.0323, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4349, device='cuda:0'), 'train_loss_ce': tensor(0.3495, device='cuda:0'), 'train_loss_bbox': tensor(0.0041, device='cuda:0'), 'train_loss_giou': tensor(0.0323, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5060, device='cuda:0'), 'validation_loss_ce': tensor(0.3480, device='cuda:0'), 'validation_loss_bbox': tensor(0.0079, device='cuda:0'), 'validation_loss_giou': tensor(0.0594, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5060, device='cuda:0'), 'train_loss_ce': tensor(0.3480, device='cuda:0'), 'train_loss_bbox': tensor(0.0079, device='cuda:0'), 'train_loss_giou': tensor(0.0594, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5637, device='cuda:0'), 'validation_loss_ce': tensor(0.3467, device='cuda:0'), 'validation_loss_bbox': tensor(0.0111, device='cuda:0'), 'validation_loss_giou': tensor(0.0807, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5637, device='cuda:0'), 'train_loss_ce': tensor(0.3467, device='cuda:0'), 'train_loss_bbox': tensor(0.0111, device='cuda:0'), 'train_loss_giou': tensor(0.0807, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5259, device='cuda:0'), 'validation_loss_ce': tensor(0.3458, device='cuda:0'), 'validation_loss_bbox': tensor(0.0091, device='cuda:0'), 'validation_loss_giou': tensor(0.0673, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5259, device='cuda:0'), 'train_loss_ce': tensor(0.3458, device='cuda:0'), 'train_loss_bbox': tensor(0.0091, device='cuda:0'), 'train_loss_giou': tensor(0.0673, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4904, device='cuda:0'), 'validation_loss_ce': tensor(0.3455, device='cuda:0'), 'validation_loss_bbox': tensor(0.0060, device='cuda:0'), 'validation_loss_giou': tensor(0.0575, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4904, device='cuda:0'), 'train_loss_ce': tensor(0.3455, device='cuda:0'), 'train_loss_bbox': tensor(0.0060, device='cuda:0'), 'train_loss_giou': tensor(0.0575, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5367, device='cuda:0'), 'validation_loss_ce': tensor(0.3449, device='cuda:0'), 'validation_loss_bbox': tensor(0.0085, device='cuda:0'), 'validation_loss_giou': tensor(0.0747, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5367, device='cuda:0'), 'train_loss_ce': tensor(0.3449, device='cuda:0'), 'train_loss_bbox': tensor(0.0085, device='cuda:0'), 'train_loss_giou': tensor(0.0747, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5127, device='cuda:0'), 'validation_loss_ce': tensor(0.3445, device='cuda:0'), 'validation_loss_bbox': tensor(0.0089, device='cuda:0'), 'validation_loss_giou': tensor(0.0618, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5127, device='cuda:0'), 'train_loss_ce': tensor(0.3445, device='cuda:0'), 'train_loss_bbox': tensor(0.0089, device='cuda:0'), 'train_loss_giou': tensor(0.0618, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5614, device='cuda:0'), 'validation_loss_ce': tensor(0.3438, device='cuda:0'), 'validation_loss_bbox': tensor(0.0099, device='cuda:0'), 'validation_loss_giou': tensor(0.0840, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5614, device='cuda:0'), 'train_loss_ce': tensor(0.3438, device='cuda:0'), 'train_loss_bbox': tensor(0.0099, device='cuda:0'), 'train_loss_giou': tensor(0.0840, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5776, device='cuda:0'), 'validation_loss_ce': tensor(0.3428, device='cuda:0'), 'validation_loss_bbox': tensor(0.0090, device='cuda:0'), 'validation_loss_giou': tensor(0.0948, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5776, device='cuda:0'), 'train_loss_ce': tensor(0.3428, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0948, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4415, device='cuda:0'), 'validation_loss_ce': tensor(0.3418, device='cuda:0'), 'validation_loss_bbox': tensor(0.0043, device='cuda:0'), 'validation_loss_giou': tensor(0.0391, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4415, device='cuda:0'), 'train_loss_ce': tensor(0.3418, device='cuda:0'), 'train_loss_bbox': tensor(0.0043, device='cuda:0'), 'train_loss_giou': tensor(0.0391, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5592, device='cuda:0'), 'validation_loss_ce': tensor(0.3407, device='cuda:0'), 'validation_loss_bbox': tensor(0.0096, device='cuda:0'), 'validation_loss_giou': tensor(0.0853, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5592, device='cuda:0'), 'train_loss_ce': tensor(0.3407, device='cuda:0'), 'train_loss_bbox': tensor(0.0096, device='cuda:0'), 'train_loss_giou': tensor(0.0853, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5843, device='cuda:0'), 'validation_loss_ce': tensor(0.3397, device='cuda:0'), 'validation_loss_bbox': tensor(0.0115, device='cuda:0'), 'validation_loss_giou': tensor(0.0935, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5843, device='cuda:0'), 'train_loss_ce': tensor(0.3397, device='cuda:0'), 'train_loss_bbox': tensor(0.0115, device='cuda:0'), 'train_loss_giou': tensor(0.0935, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4996, device='cuda:0'), 'validation_loss_ce': tensor(0.3386, device='cuda:0'), 'validation_loss_bbox': tensor(0.0095, device='cuda:0'), 'validation_loss_giou': tensor(0.0566, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4996, device='cuda:0'), 'train_loss_ce': tensor(0.3386, device='cuda:0'), 'train_loss_bbox': tensor(0.0095, device='cuda:0'), 'train_loss_giou': tensor(0.0566, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5545, device='cuda:0'), 'validation_loss_ce': tensor(0.3383, device='cuda:0'), 'validation_loss_bbox': tensor(0.0104, device='cuda:0'), 'validation_loss_giou': tensor(0.0820, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5545, device='cuda:0'), 'train_loss_ce': tensor(0.3383, device='cuda:0'), 'train_loss_bbox': tensor(0.0104, device='cuda:0'), 'train_loss_giou': tensor(0.0820, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5429, device='cuda:0'), 'validation_loss_ce': tensor(0.3378, device='cuda:0'), 'validation_loss_bbox': tensor(0.0088, device='cuda:0'), 'validation_loss_giou': tensor(0.0804, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5429, device='cuda:0'), 'train_loss_ce': tensor(0.3378, device='cuda:0'), 'train_loss_bbox': tensor(0.0088, device='cuda:0'), 'train_loss_giou': tensor(0.0804, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3990, device='cuda:0'), 'validation_loss_ce': tensor(0.3370, device='cuda:0'), 'validation_loss_bbox': tensor(0.0032, device='cuda:0'), 'validation_loss_giou': tensor(0.0229, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3990, device='cuda:0'), 'train_loss_ce': tensor(0.3370, device='cuda:0'), 'train_loss_bbox': tensor(0.0032, device='cuda:0'), 'train_loss_giou': tensor(0.0229, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5147, device='cuda:0'), 'validation_loss_ce': tensor(0.3357, device='cuda:0'), 'validation_loss_bbox': tensor(0.0078, device='cuda:0'), 'validation_loss_giou': tensor(0.0700, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5147, device='cuda:0'), 'train_loss_ce': tensor(0.3357, device='cuda:0'), 'train_loss_bbox': tensor(0.0078, device='cuda:0'), 'train_loss_giou': tensor(0.0700, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4990, device='cuda:0'), 'validation_loss_ce': tensor(0.3343, device='cuda:0'), 'validation_loss_bbox': tensor(0.0076, device='cuda:0'), 'validation_loss_giou': tensor(0.0633, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4990, device='cuda:0'), 'train_loss_ce': tensor(0.3343, device='cuda:0'), 'train_loss_bbox': tensor(0.0076, device='cuda:0'), 'train_loss_giou': tensor(0.0633, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4901, device='cuda:0'), 'validation_loss_ce': tensor(0.3329, device='cuda:0'), 'validation_loss_bbox': tensor(0.0081, device='cuda:0'), 'validation_loss_giou': tensor(0.0583, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4901, device='cuda:0'), 'train_loss_ce': tensor(0.3329, device='cuda:0'), 'train_loss_bbox': tensor(0.0081, device='cuda:0'), 'train_loss_giou': tensor(0.0583, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4713, device='cuda:0'), 'validation_loss_ce': tensor(0.3322, device='cuda:0'), 'validation_loss_bbox': tensor(0.0074, device='cuda:0'), 'validation_loss_giou': tensor(0.0509, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4713, device='cuda:0'), 'train_loss_ce': tensor(0.3322, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.0509, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4148, device='cuda:0'), 'validation_loss_ce': tensor(0.3313, device='cuda:0'), 'validation_loss_bbox': tensor(0.0050, device='cuda:0'), 'validation_loss_giou': tensor(0.0293, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4148, device='cuda:0'), 'train_loss_ce': tensor(0.3313, device='cuda:0'), 'train_loss_bbox': tensor(0.0050, device='cuda:0'), 'train_loss_giou': tensor(0.0293, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4302, device='cuda:0'), 'validation_loss_ce': tensor(0.3313, device='cuda:0'), 'validation_loss_bbox': tensor(0.0041, device='cuda:0'), 'validation_loss_giou': tensor(0.0393, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4302, device='cuda:0'), 'train_loss_ce': tensor(0.3313, device='cuda:0'), 'train_loss_bbox': tensor(0.0041, device='cuda:0'), 'train_loss_giou': tensor(0.0393, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4510, device='cuda:0'), 'validation_loss_ce': tensor(0.3310, device='cuda:0'), 'validation_loss_bbox': tensor(0.0048, device='cuda:0'), 'validation_loss_giou': tensor(0.0481, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4510, device='cuda:0'), 'train_loss_ce': tensor(0.3310, device='cuda:0'), 'train_loss_bbox': tensor(0.0048, device='cuda:0'), 'train_loss_giou': tensor(0.0481, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4990, device='cuda:0'), 'validation_loss_ce': tensor(0.3298, device='cuda:0'), 'validation_loss_bbox': tensor(0.0059, device='cuda:0'), 'validation_loss_giou': tensor(0.0700, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4990, device='cuda:0'), 'train_loss_ce': tensor(0.3298, device='cuda:0'), 'train_loss_bbox': tensor(0.0059, device='cuda:0'), 'train_loss_giou': tensor(0.0700, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4483, device='cuda:0'), 'validation_loss_ce': tensor(0.3285, device='cuda:0'), 'validation_loss_bbox': tensor(0.0051, device='cuda:0'), 'validation_loss_giou': tensor(0.0471, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4483, device='cuda:0'), 'train_loss_ce': tensor(0.3285, device='cuda:0'), 'train_loss_bbox': tensor(0.0051, device='cuda:0'), 'train_loss_giou': tensor(0.0471, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4599, device='cuda:0'), 'validation_loss_ce': tensor(0.3275, device='cuda:0'), 'validation_loss_bbox': tensor(0.0062, device='cuda:0'), 'validation_loss_giou': tensor(0.0507, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4599, device='cuda:0'), 'train_loss_ce': tensor(0.3275, device='cuda:0'), 'train_loss_bbox': tensor(0.0062, device='cuda:0'), 'train_loss_giou': tensor(0.0507, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4998, device='cuda:0'), 'validation_loss_ce': tensor(0.3264, device='cuda:0'), 'validation_loss_bbox': tensor(0.0076, device='cuda:0'), 'validation_loss_giou': tensor(0.0676, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4998, device='cuda:0'), 'train_loss_ce': tensor(0.3264, device='cuda:0'), 'train_loss_bbox': tensor(0.0076, device='cuda:0'), 'train_loss_giou': tensor(0.0676, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4098, device='cuda:0'), 'validation_loss_ce': tensor(0.3256, device='cuda:0'), 'validation_loss_bbox': tensor(0.0039, device='cuda:0'), 'validation_loss_giou': tensor(0.0325, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4098, device='cuda:0'), 'train_loss_ce': tensor(0.3256, device='cuda:0'), 'train_loss_bbox': tensor(0.0039, device='cuda:0'), 'train_loss_giou': tensor(0.0325, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4957, device='cuda:0'), 'validation_loss_ce': tensor(0.3250, device='cuda:0'), 'validation_loss_bbox': tensor(0.0063, device='cuda:0'), 'validation_loss_giou': tensor(0.0695, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4957, device='cuda:0'), 'train_loss_ce': tensor(0.3250, device='cuda:0'), 'train_loss_bbox': tensor(0.0063, device='cuda:0'), 'train_loss_giou': tensor(0.0695, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5091, device='cuda:0'), 'validation_loss_ce': tensor(0.3242, device='cuda:0'), 'validation_loss_bbox': tensor(0.0081, device='cuda:0'), 'validation_loss_giou': tensor(0.0722, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5091, device='cuda:0'), 'train_loss_ce': tensor(0.3242, device='cuda:0'), 'train_loss_bbox': tensor(0.0081, device='cuda:0'), 'train_loss_giou': tensor(0.0722, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4725, device='cuda:0'), 'validation_loss_ce': tensor(0.3232, device='cuda:0'), 'validation_loss_bbox': tensor(0.0080, device='cuda:0'), 'validation_loss_giou': tensor(0.0547, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4725, device='cuda:0'), 'train_loss_ce': tensor(0.3232, device='cuda:0'), 'train_loss_bbox': tensor(0.0080, device='cuda:0'), 'train_loss_giou': tensor(0.0547, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4639, device='cuda:0'), 'validation_loss_ce': tensor(0.3219, device='cuda:0'), 'validation_loss_bbox': tensor(0.0061, device='cuda:0'), 'validation_loss_giou': tensor(0.0558, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4639, device='cuda:0'), 'train_loss_ce': tensor(0.3219, device='cuda:0'), 'train_loss_bbox': tensor(0.0061, device='cuda:0'), 'train_loss_giou': tensor(0.0558, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5028, device='cuda:0'), 'validation_loss_ce': tensor(0.3207, device='cuda:0'), 'validation_loss_bbox': tensor(0.0069, device='cuda:0'), 'validation_loss_giou': tensor(0.0738, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5028, device='cuda:0'), 'train_loss_ce': tensor(0.3207, device='cuda:0'), 'train_loss_bbox': tensor(0.0069, device='cuda:0'), 'train_loss_giou': tensor(0.0738, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4338, device='cuda:0'), 'validation_loss_ce': tensor(0.3197, device='cuda:0'), 'validation_loss_bbox': tensor(0.0054, device='cuda:0'), 'validation_loss_giou': tensor(0.0435, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4338, device='cuda:0'), 'train_loss_ce': tensor(0.3197, device='cuda:0'), 'train_loss_bbox': tensor(0.0054, device='cuda:0'), 'train_loss_giou': tensor(0.0435, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4862, device='cuda:0'), 'validation_loss_ce': tensor(0.3190, device='cuda:0'), 'validation_loss_bbox': tensor(0.0065, device='cuda:0'), 'validation_loss_giou': tensor(0.0674, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4862, device='cuda:0'), 'train_loss_ce': tensor(0.3190, device='cuda:0'), 'train_loss_bbox': tensor(0.0065, device='cuda:0'), 'train_loss_giou': tensor(0.0674, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5186, device='cuda:0'), 'validation_loss_ce': tensor(0.3182, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0819, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5186, device='cuda:0'), 'train_loss_ce': tensor(0.3182, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0819, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4435, device='cuda:0'), 'validation_loss_ce': tensor(0.3174, device='cuda:0'), 'validation_loss_bbox': tensor(0.0074, device='cuda:0'), 'validation_loss_giou': tensor(0.0446, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4435, device='cuda:0'), 'train_loss_ce': tensor(0.3174, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.0446, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4675, device='cuda:0'), 'validation_loss_ce': tensor(0.3167, device='cuda:0'), 'validation_loss_bbox': tensor(0.0064, device='cuda:0'), 'validation_loss_giou': tensor(0.0595, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4675, device='cuda:0'), 'train_loss_ce': tensor(0.3167, device='cuda:0'), 'train_loss_bbox': tensor(0.0064, device='cuda:0'), 'train_loss_giou': tensor(0.0595, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4807, device='cuda:0'), 'validation_loss_ce': tensor(0.3162, device='cuda:0'), 'validation_loss_bbox': tensor(0.0088, device='cuda:0'), 'validation_loss_giou': tensor(0.0604, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4807, device='cuda:0'), 'train_loss_ce': tensor(0.3162, device='cuda:0'), 'train_loss_bbox': tensor(0.0088, device='cuda:0'), 'train_loss_giou': tensor(0.0604, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5197, device='cuda:0'), 'validation_loss_ce': tensor(0.3156, device='cuda:0'), 'validation_loss_bbox': tensor(0.0122, device='cuda:0'), 'validation_loss_giou': tensor(0.0715, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5197, device='cuda:0'), 'train_loss_ce': tensor(0.3156, device='cuda:0'), 'train_loss_bbox': tensor(0.0122, device='cuda:0'), 'train_loss_giou': tensor(0.0715, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4975, device='cuda:0'), 'validation_loss_ce': tensor(0.3145, device='cuda:0'), 'validation_loss_bbox': tensor(0.0110, device='cuda:0'), 'validation_loss_giou': tensor(0.0640, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4975, device='cuda:0'), 'train_loss_ce': tensor(0.3145, device='cuda:0'), 'train_loss_bbox': tensor(0.0110, device='cuda:0'), 'train_loss_giou': tensor(0.0640, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4823, device='cuda:0'), 'validation_loss_ce': tensor(0.3132, device='cuda:0'), 'validation_loss_bbox': tensor(0.0063, device='cuda:0'), 'validation_loss_giou': tensor(0.0690, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4823, device='cuda:0'), 'train_loss_ce': tensor(0.3132, device='cuda:0'), 'train_loss_bbox': tensor(0.0063, device='cuda:0'), 'train_loss_giou': tensor(0.0690, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5132, device='cuda:0'), 'validation_loss_ce': tensor(0.3122, device='cuda:0'), 'validation_loss_bbox': tensor(0.0108, device='cuda:0'), 'validation_loss_giou': tensor(0.0734, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5132, device='cuda:0'), 'train_loss_ce': tensor(0.3122, device='cuda:0'), 'train_loss_bbox': tensor(0.0108, device='cuda:0'), 'train_loss_giou': tensor(0.0734, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5081, device='cuda:0'), 'validation_loss_ce': tensor(0.3111, device='cuda:0'), 'validation_loss_bbox': tensor(0.0116, device='cuda:0'), 'validation_loss_giou': tensor(0.0694, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5081, device='cuda:0'), 'train_loss_ce': tensor(0.3111, device='cuda:0'), 'train_loss_bbox': tensor(0.0116, device='cuda:0'), 'train_loss_giou': tensor(0.0694, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5210, device='cuda:0'), 'validation_loss_ce': tensor(0.3102, device='cuda:0'), 'validation_loss_bbox': tensor(0.0083, device='cuda:0'), 'validation_loss_giou': tensor(0.0846, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5210, device='cuda:0'), 'train_loss_ce': tensor(0.3102, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.0846, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5604, device='cuda:0'), 'validation_loss_ce': tensor(0.3097, device='cuda:0'), 'validation_loss_bbox': tensor(0.0101, device='cuda:0'), 'validation_loss_giou': tensor(0.1002, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5604, device='cuda:0'), 'train_loss_ce': tensor(0.3097, device='cuda:0'), 'train_loss_bbox': tensor(0.0101, device='cuda:0'), 'train_loss_giou': tensor(0.1002, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4524, device='cuda:0'), 'validation_loss_ce': tensor(0.3095, device='cuda:0'), 'validation_loss_bbox': tensor(0.0082, device='cuda:0'), 'validation_loss_giou': tensor(0.0509, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4524, device='cuda:0'), 'train_loss_ce': tensor(0.3095, device='cuda:0'), 'train_loss_bbox': tensor(0.0082, device='cuda:0'), 'train_loss_giou': tensor(0.0509, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5195, device='cuda:0'), 'validation_loss_ce': tensor(0.3090, device='cuda:0'), 'validation_loss_bbox': tensor(0.0088, device='cuda:0'), 'validation_loss_giou': tensor(0.0833, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5195, device='cuda:0'), 'train_loss_ce': tensor(0.3090, device='cuda:0'), 'train_loss_bbox': tensor(0.0088, device='cuda:0'), 'train_loss_giou': tensor(0.0833, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5585, device='cuda:0'), 'validation_loss_ce': tensor(0.3076, device='cuda:0'), 'validation_loss_bbox': tensor(0.0097, device='cuda:0'), 'validation_loss_giou': tensor(0.1012, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5585, device='cuda:0'), 'train_loss_ce': tensor(0.3076, device='cuda:0'), 'train_loss_bbox': tensor(0.0097, device='cuda:0'), 'train_loss_giou': tensor(0.1012, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5334, device='cuda:0'), 'validation_loss_ce': tensor(0.3060, device='cuda:0'), 'validation_loss_bbox': tensor(0.0088, device='cuda:0'), 'validation_loss_giou': tensor(0.0916, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5334, device='cuda:0'), 'train_loss_ce': tensor(0.3060, device='cuda:0'), 'train_loss_bbox': tensor(0.0088, device='cuda:0'), 'train_loss_giou': tensor(0.0916, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4601, device='cuda:0'), 'validation_loss_ce': tensor(0.3045, device='cuda:0'), 'validation_loss_bbox': tensor(0.0059, device='cuda:0'), 'validation_loss_giou': tensor(0.0629, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4601, device='cuda:0'), 'train_loss_ce': tensor(0.3045, device='cuda:0'), 'train_loss_bbox': tensor(0.0059, device='cuda:0'), 'train_loss_giou': tensor(0.0629, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5107, device='cuda:0'), 'validation_loss_ce': tensor(0.3031, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0857, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5107, device='cuda:0'), 'train_loss_ce': tensor(0.3031, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0857, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5709, device='cuda:0'), 'validation_loss_ce': tensor(0.3019, device='cuda:0'), 'validation_loss_bbox': tensor(0.0089, device='cuda:0'), 'validation_loss_giou': tensor(0.1123, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5709, device='cuda:0'), 'train_loss_ce': tensor(0.3019, device='cuda:0'), 'train_loss_bbox': tensor(0.0089, device='cuda:0'), 'train_loss_giou': tensor(0.1123, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5218, device='cuda:0'), 'validation_loss_ce': tensor(0.3012, device='cuda:0'), 'validation_loss_bbox': tensor(0.0084, device='cuda:0'), 'validation_loss_giou': tensor(0.0894, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5218, device='cuda:0'), 'train_loss_ce': tensor(0.3012, device='cuda:0'), 'train_loss_bbox': tensor(0.0084, device='cuda:0'), 'train_loss_giou': tensor(0.0894, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3918, device='cuda:0'), 'validation_loss_ce': tensor(0.3008, device='cuda:0'), 'validation_loss_bbox': tensor(0.0040, device='cuda:0'), 'validation_loss_giou': tensor(0.0355, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3918, device='cuda:0'), 'train_loss_ce': tensor(0.3008, device='cuda:0'), 'train_loss_bbox': tensor(0.0040, device='cuda:0'), 'train_loss_giou': tensor(0.0355, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5182, device='cuda:0'), 'validation_loss_ce': tensor(0.3008, device='cuda:0'), 'validation_loss_bbox': tensor(0.0083, device='cuda:0'), 'validation_loss_giou': tensor(0.0879, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5182, device='cuda:0'), 'train_loss_ce': tensor(0.3008, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.0879, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6322, device='cuda:0'), 'validation_loss_ce': tensor(0.3000, device='cuda:0'), 'validation_loss_bbox': tensor(0.0133, device='cuda:0'), 'validation_loss_giou': tensor(0.1328, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6322, device='cuda:0'), 'train_loss_ce': tensor(0.3000, device='cuda:0'), 'train_loss_bbox': tensor(0.0133, device='cuda:0'), 'train_loss_giou': tensor(0.1328, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5959, device='cuda:0'), 'validation_loss_ce': tensor(0.2988, device='cuda:0'), 'validation_loss_bbox': tensor(0.0121, device='cuda:0'), 'validation_loss_giou': tensor(0.1184, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5959, device='cuda:0'), 'train_loss_ce': tensor(0.2988, device='cuda:0'), 'train_loss_bbox': tensor(0.0121, device='cuda:0'), 'train_loss_giou': tensor(0.1184, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4310, device='cuda:0'), 'validation_loss_ce': tensor(0.2972, device='cuda:0'), 'validation_loss_bbox': tensor(0.0052, device='cuda:0'), 'validation_loss_giou': tensor(0.0540, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4310, device='cuda:0'), 'train_loss_ce': tensor(0.2972, device='cuda:0'), 'train_loss_bbox': tensor(0.0052, device='cuda:0'), 'train_loss_giou': tensor(0.0540, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3849, device='cuda:0'), 'validation_loss_ce': tensor(0.2959, device='cuda:0'), 'validation_loss_bbox': tensor(0.0035, device='cuda:0'), 'validation_loss_giou': tensor(0.0356, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3849, device='cuda:0'), 'train_loss_ce': tensor(0.2959, device='cuda:0'), 'train_loss_bbox': tensor(0.0035, device='cuda:0'), 'train_loss_giou': tensor(0.0356, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4390, device='cuda:0'), 'validation_loss_ce': tensor(0.2955, device='cuda:0'), 'validation_loss_bbox': tensor(0.0051, device='cuda:0'), 'validation_loss_giou': tensor(0.0590, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4390, device='cuda:0'), 'train_loss_ce': tensor(0.2955, device='cuda:0'), 'train_loss_bbox': tensor(0.0051, device='cuda:0'), 'train_loss_giou': tensor(0.0590, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4427, device='cuda:0'), 'validation_loss_ce': tensor(0.2951, device='cuda:0'), 'validation_loss_bbox': tensor(0.0060, device='cuda:0'), 'validation_loss_giou': tensor(0.0589, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4427, device='cuda:0'), 'train_loss_ce': tensor(0.2951, device='cuda:0'), 'train_loss_bbox': tensor(0.0060, device='cuda:0'), 'train_loss_giou': tensor(0.0589, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3783, device='cuda:0'), 'validation_loss_ce': tensor(0.2943, device='cuda:0'), 'validation_loss_bbox': tensor(0.0044, device='cuda:0'), 'validation_loss_giou': tensor(0.0309, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3783, device='cuda:0'), 'train_loss_ce': tensor(0.2943, device='cuda:0'), 'train_loss_bbox': tensor(0.0044, device='cuda:0'), 'train_loss_giou': tensor(0.0309, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4361, device='cuda:0'), 'validation_loss_ce': tensor(0.2925, device='cuda:0'), 'validation_loss_bbox': tensor(0.0064, device='cuda:0'), 'validation_loss_giou': tensor(0.0557, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4361, device='cuda:0'), 'train_loss_ce': tensor(0.2925, device='cuda:0'), 'train_loss_bbox': tensor(0.0064, device='cuda:0'), 'train_loss_giou': tensor(0.0557, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3960, device='cuda:0'), 'validation_loss_ce': tensor(0.2909, device='cuda:0'), 'validation_loss_bbox': tensor(0.0051, device='cuda:0'), 'validation_loss_giou': tensor(0.0397, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3960, device='cuda:0'), 'train_loss_ce': tensor(0.2909, device='cuda:0'), 'train_loss_bbox': tensor(0.0051, device='cuda:0'), 'train_loss_giou': tensor(0.0397, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3944, device='cuda:0'), 'validation_loss_ce': tensor(0.2893, device='cuda:0'), 'validation_loss_bbox': tensor(0.0062, device='cuda:0'), 'validation_loss_giou': tensor(0.0370, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3944, device='cuda:0'), 'train_loss_ce': tensor(0.2893, device='cuda:0'), 'train_loss_bbox': tensor(0.0062, device='cuda:0'), 'train_loss_giou': tensor(0.0370, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4746, device='cuda:0'), 'validation_loss_ce': tensor(0.2885, device='cuda:0'), 'validation_loss_bbox': tensor(0.0085, device='cuda:0'), 'validation_loss_giou': tensor(0.0718, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4746, device='cuda:0'), 'train_loss_ce': tensor(0.2885, device='cuda:0'), 'train_loss_bbox': tensor(0.0085, device='cuda:0'), 'train_loss_giou': tensor(0.0718, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4354, device='cuda:0'), 'validation_loss_ce': tensor(0.2881, device='cuda:0'), 'validation_loss_bbox': tensor(0.0062, device='cuda:0'), 'validation_loss_giou': tensor(0.0582, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4354, device='cuda:0'), 'train_loss_ce': tensor(0.2881, device='cuda:0'), 'train_loss_bbox': tensor(0.0062, device='cuda:0'), 'train_loss_giou': tensor(0.0582, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4086, device='cuda:0'), 'validation_loss_ce': tensor(0.2879, device='cuda:0'), 'validation_loss_bbox': tensor(0.0047, device='cuda:0'), 'validation_loss_giou': tensor(0.0487, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4086, device='cuda:0'), 'train_loss_ce': tensor(0.2879, device='cuda:0'), 'train_loss_bbox': tensor(0.0047, device='cuda:0'), 'train_loss_giou': tensor(0.0487, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5001, device='cuda:0'), 'validation_loss_ce': tensor(0.2872, device='cuda:0'), 'validation_loss_bbox': tensor(0.0071, device='cuda:0'), 'validation_loss_giou': tensor(0.0886, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5001, device='cuda:0'), 'train_loss_ce': tensor(0.2872, device='cuda:0'), 'train_loss_bbox': tensor(0.0071, device='cuda:0'), 'train_loss_giou': tensor(0.0886, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4857, device='cuda:0'), 'validation_loss_ce': tensor(0.2861, device='cuda:0'), 'validation_loss_bbox': tensor(0.0084, device='cuda:0'), 'validation_loss_giou': tensor(0.0788, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4857, device='cuda:0'), 'train_loss_ce': tensor(0.2861, device='cuda:0'), 'train_loss_bbox': tensor(0.0084, device='cuda:0'), 'train_loss_giou': tensor(0.0788, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3689, device='cuda:0'), 'validation_loss_ce': tensor(0.2847, device='cuda:0'), 'validation_loss_bbox': tensor(0.0039, device='cuda:0'), 'validation_loss_giou': tensor(0.0323, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3689, device='cuda:0'), 'train_loss_ce': tensor(0.2847, device='cuda:0'), 'train_loss_bbox': tensor(0.0039, device='cuda:0'), 'train_loss_giou': tensor(0.0323, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4527, device='cuda:0'), 'validation_loss_ce': tensor(0.2832, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0665, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4527, device='cuda:0'), 'train_loss_ce': tensor(0.2832, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0665, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4990, device='cuda:0'), 'validation_loss_ce': tensor(0.2820, device='cuda:0'), 'validation_loss_bbox': tensor(0.0109, device='cuda:0'), 'validation_loss_giou': tensor(0.0814, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4990, device='cuda:0'), 'train_loss_ce': tensor(0.2820, device='cuda:0'), 'train_loss_bbox': tensor(0.0109, device='cuda:0'), 'train_loss_giou': tensor(0.0814, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4642, device='cuda:0'), 'validation_loss_ce': tensor(0.2809, device='cuda:0'), 'validation_loss_bbox': tensor(0.0088, device='cuda:0'), 'validation_loss_giou': tensor(0.0695, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4642, device='cuda:0'), 'train_loss_ce': tensor(0.2809, device='cuda:0'), 'train_loss_bbox': tensor(0.0088, device='cuda:0'), 'train_loss_giou': tensor(0.0695, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4266, device='cuda:0'), 'validation_loss_ce': tensor(0.2799, device='cuda:0'), 'validation_loss_bbox': tensor(0.0047, device='cuda:0'), 'validation_loss_giou': tensor(0.0617, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4266, device='cuda:0'), 'train_loss_ce': tensor(0.2799, device='cuda:0'), 'train_loss_bbox': tensor(0.0047, device='cuda:0'), 'train_loss_giou': tensor(0.0617, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4283, device='cuda:0'), 'validation_loss_ce': tensor(0.2791, device='cuda:0'), 'validation_loss_bbox': tensor(0.0081, device='cuda:0'), 'validation_loss_giou': tensor(0.0543, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4283, device='cuda:0'), 'train_loss_ce': tensor(0.2791, device='cuda:0'), 'train_loss_bbox': tensor(0.0081, device='cuda:0'), 'train_loss_giou': tensor(0.0543, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4500, device='cuda:0'), 'validation_loss_ce': tensor(0.2782, device='cuda:0'), 'validation_loss_bbox': tensor(0.0089, device='cuda:0'), 'validation_loss_giou': tensor(0.0637, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4500, device='cuda:0'), 'train_loss_ce': tensor(0.2782, device='cuda:0'), 'train_loss_bbox': tensor(0.0089, device='cuda:0'), 'train_loss_giou': tensor(0.0637, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4250, device='cuda:0'), 'validation_loss_ce': tensor(0.2772, device='cuda:0'), 'validation_loss_bbox': tensor(0.0070, device='cuda:0'), 'validation_loss_giou': tensor(0.0563, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4250, device='cuda:0'), 'train_loss_ce': tensor(0.2772, device='cuda:0'), 'train_loss_bbox': tensor(0.0070, device='cuda:0'), 'train_loss_giou': tensor(0.0563, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3787, device='cuda:0'), 'validation_loss_ce': tensor(0.2762, device='cuda:0'), 'validation_loss_bbox': tensor(0.0048, device='cuda:0'), 'validation_loss_giou': tensor(0.0393, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3787, device='cuda:0'), 'train_loss_ce': tensor(0.2762, device='cuda:0'), 'train_loss_bbox': tensor(0.0048, device='cuda:0'), 'train_loss_giou': tensor(0.0393, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3979, device='cuda:0'), 'validation_loss_ce': tensor(0.2753, device='cuda:0'), 'validation_loss_bbox': tensor(0.0066, device='cuda:0'), 'validation_loss_giou': tensor(0.0448, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3979, device='cuda:0'), 'train_loss_ce': tensor(0.2753, device='cuda:0'), 'train_loss_bbox': tensor(0.0066, device='cuda:0'), 'train_loss_giou': tensor(0.0448, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4157, device='cuda:0'), 'validation_loss_ce': tensor(0.2747, device='cuda:0'), 'validation_loss_bbox': tensor(0.0075, device='cuda:0'), 'validation_loss_giou': tensor(0.0518, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4157, device='cuda:0'), 'train_loss_ce': tensor(0.2747, device='cuda:0'), 'train_loss_bbox': tensor(0.0075, device='cuda:0'), 'train_loss_giou': tensor(0.0518, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3471, device='cuda:0'), 'validation_loss_ce': tensor(0.2737, device='cuda:0'), 'validation_loss_bbox': tensor(0.0040, device='cuda:0'), 'validation_loss_giou': tensor(0.0267, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3471, device='cuda:0'), 'train_loss_ce': tensor(0.2737, device='cuda:0'), 'train_loss_bbox': tensor(0.0040, device='cuda:0'), 'train_loss_giou': tensor(0.0267, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3894, device='cuda:0'), 'validation_loss_ce': tensor(0.2722, device='cuda:0'), 'validation_loss_bbox': tensor(0.0046, device='cuda:0'), 'validation_loss_giou': tensor(0.0472, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3894, device='cuda:0'), 'train_loss_ce': tensor(0.2722, device='cuda:0'), 'train_loss_bbox': tensor(0.0046, device='cuda:0'), 'train_loss_giou': tensor(0.0472, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4082, device='cuda:0'), 'validation_loss_ce': tensor(0.2708, device='cuda:0'), 'validation_loss_bbox': tensor(0.0046, device='cuda:0'), 'validation_loss_giou': tensor(0.0572, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4082, device='cuda:0'), 'train_loss_ce': tensor(0.2708, device='cuda:0'), 'train_loss_bbox': tensor(0.0046, device='cuda:0'), 'train_loss_giou': tensor(0.0572, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4413, device='cuda:0'), 'validation_loss_ce': tensor(0.2697, device='cuda:0'), 'validation_loss_bbox': tensor(0.0070, device='cuda:0'), 'validation_loss_giou': tensor(0.0683, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4413, device='cuda:0'), 'train_loss_ce': tensor(0.2697, device='cuda:0'), 'train_loss_bbox': tensor(0.0070, device='cuda:0'), 'train_loss_giou': tensor(0.0683, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3898, device='cuda:0'), 'validation_loss_ce': tensor(0.2686, device='cuda:0'), 'validation_loss_bbox': tensor(0.0061, device='cuda:0'), 'validation_loss_giou': tensor(0.0454, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3898, device='cuda:0'), 'train_loss_ce': tensor(0.2686, device='cuda:0'), 'train_loss_bbox': tensor(0.0061, device='cuda:0'), 'train_loss_giou': tensor(0.0454, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4160, device='cuda:0'), 'validation_loss_ce': tensor(0.2675, device='cuda:0'), 'validation_loss_bbox': tensor(0.0057, device='cuda:0'), 'validation_loss_giou': tensor(0.0599, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4160, device='cuda:0'), 'train_loss_ce': tensor(0.2675, device='cuda:0'), 'train_loss_bbox': tensor(0.0057, device='cuda:0'), 'train_loss_giou': tensor(0.0599, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4001, device='cuda:0'), 'validation_loss_ce': tensor(0.2665, device='cuda:0'), 'validation_loss_bbox': tensor(0.0053, device='cuda:0'), 'validation_loss_giou': tensor(0.0535, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4001, device='cuda:0'), 'train_loss_ce': tensor(0.2665, device='cuda:0'), 'train_loss_bbox': tensor(0.0053, device='cuda:0'), 'train_loss_giou': tensor(0.0535, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3593, device='cuda:0'), 'validation_loss_ce': tensor(0.2649, device='cuda:0'), 'validation_loss_bbox': tensor(0.0034, device='cuda:0'), 'validation_loss_giou': tensor(0.0387, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3593, device='cuda:0'), 'train_loss_ce': tensor(0.2649, device='cuda:0'), 'train_loss_bbox': tensor(0.0034, device='cuda:0'), 'train_loss_giou': tensor(0.0387, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4760, device='cuda:0'), 'validation_loss_ce': tensor(0.2634, device='cuda:0'), 'validation_loss_bbox': tensor(0.0071, device='cuda:0'), 'validation_loss_giou': tensor(0.0885, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4760, device='cuda:0'), 'train_loss_ce': tensor(0.2634, device='cuda:0'), 'train_loss_bbox': tensor(0.0071, device='cuda:0'), 'train_loss_giou': tensor(0.0885, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4681, device='cuda:0'), 'validation_loss_ce': tensor(0.2623, device='cuda:0'), 'validation_loss_bbox': tensor(0.0069, device='cuda:0'), 'validation_loss_giou': tensor(0.0858, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4681, device='cuda:0'), 'train_loss_ce': tensor(0.2623, device='cuda:0'), 'train_loss_bbox': tensor(0.0069, device='cuda:0'), 'train_loss_giou': tensor(0.0858, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4227, device='cuda:0'), 'validation_loss_ce': tensor(0.2612, device='cuda:0'), 'validation_loss_bbox': tensor(0.0072, device='cuda:0'), 'validation_loss_giou': tensor(0.0627, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4227, device='cuda:0'), 'train_loss_ce': tensor(0.2612, device='cuda:0'), 'train_loss_bbox': tensor(0.0072, device='cuda:0'), 'train_loss_giou': tensor(0.0627, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4466, device='cuda:0'), 'validation_loss_ce': tensor(0.2603, device='cuda:0'), 'validation_loss_bbox': tensor(0.0092, device='cuda:0'), 'validation_loss_giou': tensor(0.0701, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4466, device='cuda:0'), 'train_loss_ce': tensor(0.2603, device='cuda:0'), 'train_loss_bbox': tensor(0.0092, device='cuda:0'), 'train_loss_giou': tensor(0.0701, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4047, device='cuda:0'), 'validation_loss_ce': tensor(0.2590, device='cuda:0'), 'validation_loss_bbox': tensor(0.0058, device='cuda:0'), 'validation_loss_giou': tensor(0.0582, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4047, device='cuda:0'), 'train_loss_ce': tensor(0.2590, device='cuda:0'), 'train_loss_bbox': tensor(0.0058, device='cuda:0'), 'train_loss_giou': tensor(0.0582, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3872, device='cuda:0'), 'validation_loss_ce': tensor(0.2582, device='cuda:0'), 'validation_loss_bbox': tensor(0.0069, device='cuda:0'), 'validation_loss_giou': tensor(0.0474, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3872, device='cuda:0'), 'train_loss_ce': tensor(0.2582, device='cuda:0'), 'train_loss_bbox': tensor(0.0069, device='cuda:0'), 'train_loss_giou': tensor(0.0474, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4716, device='cuda:0'), 'validation_loss_ce': tensor(0.2569, device='cuda:0'), 'validation_loss_bbox': tensor(0.0104, device='cuda:0'), 'validation_loss_giou': tensor(0.0813, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4716, device='cuda:0'), 'train_loss_ce': tensor(0.2569, device='cuda:0'), 'train_loss_bbox': tensor(0.0104, device='cuda:0'), 'train_loss_giou': tensor(0.0813, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4025, device='cuda:0'), 'validation_loss_ce': tensor(0.2553, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0553, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4025, device='cuda:0'), 'train_loss_ce': tensor(0.2553, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0553, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3857, device='cuda:0'), 'validation_loss_ce': tensor(0.2537, device='cuda:0'), 'validation_loss_bbox': tensor(0.0059, device='cuda:0'), 'validation_loss_giou': tensor(0.0513, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3857, device='cuda:0'), 'train_loss_ce': tensor(0.2537, device='cuda:0'), 'train_loss_bbox': tensor(0.0059, device='cuda:0'), 'train_loss_giou': tensor(0.0513, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4174, device='cuda:0'), 'validation_loss_ce': tensor(0.2521, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0645, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4174, device='cuda:0'), 'train_loss_ce': tensor(0.2521, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0645, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3627, device='cuda:0'), 'validation_loss_ce': tensor(0.2504, device='cuda:0'), 'validation_loss_bbox': tensor(0.0051, device='cuda:0'), 'validation_loss_giou': tensor(0.0434, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3627, device='cuda:0'), 'train_loss_ce': tensor(0.2504, device='cuda:0'), 'train_loss_bbox': tensor(0.0051, device='cuda:0'), 'train_loss_giou': tensor(0.0434, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3533, device='cuda:0'), 'validation_loss_ce': tensor(0.2492, device='cuda:0'), 'validation_loss_bbox': tensor(0.0052, device='cuda:0'), 'validation_loss_giou': tensor(0.0391, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3533, device='cuda:0'), 'train_loss_ce': tensor(0.2492, device='cuda:0'), 'train_loss_bbox': tensor(0.0052, device='cuda:0'), 'train_loss_giou': tensor(0.0391, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3393, device='cuda:0'), 'validation_loss_ce': tensor(0.2485, device='cuda:0'), 'validation_loss_bbox': tensor(0.0035, device='cuda:0'), 'validation_loss_giou': tensor(0.0366, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3393, device='cuda:0'), 'train_loss_ce': tensor(0.2485, device='cuda:0'), 'train_loss_bbox': tensor(0.0035, device='cuda:0'), 'train_loss_giou': tensor(0.0366, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4073, device='cuda:0'), 'validation_loss_ce': tensor(0.2485, device='cuda:0'), 'validation_loss_bbox': tensor(0.0052, device='cuda:0'), 'validation_loss_giou': tensor(0.0663, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4073, device='cuda:0'), 'train_loss_ce': tensor(0.2485, device='cuda:0'), 'train_loss_bbox': tensor(0.0052, device='cuda:0'), 'train_loss_giou': tensor(0.0663, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3686, device='cuda:0'), 'validation_loss_ce': tensor(0.2486, device='cuda:0'), 'validation_loss_bbox': tensor(0.0050, device='cuda:0'), 'validation_loss_giou': tensor(0.0474, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3686, device='cuda:0'), 'train_loss_ce': tensor(0.2486, device='cuda:0'), 'train_loss_bbox': tensor(0.0050, device='cuda:0'), 'train_loss_giou': tensor(0.0474, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3769, device='cuda:0'), 'validation_loss_ce': tensor(0.2481, device='cuda:0'), 'validation_loss_bbox': tensor(0.0055, device='cuda:0'), 'validation_loss_giou': tensor(0.0508, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3769, device='cuda:0'), 'train_loss_ce': tensor(0.2481, device='cuda:0'), 'train_loss_bbox': tensor(0.0055, device='cuda:0'), 'train_loss_giou': tensor(0.0508, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3593, device='cuda:0'), 'validation_loss_ce': tensor(0.2465, device='cuda:0'), 'validation_loss_bbox': tensor(0.0049, device='cuda:0'), 'validation_loss_giou': tensor(0.0442, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3593, device='cuda:0'), 'train_loss_ce': tensor(0.2465, device='cuda:0'), 'train_loss_bbox': tensor(0.0049, device='cuda:0'), 'train_loss_giou': tensor(0.0442, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3777, device='cuda:0'), 'validation_loss_ce': tensor(0.2445, device='cuda:0'), 'validation_loss_bbox': tensor(0.0077, device='cuda:0'), 'validation_loss_giou': tensor(0.0473, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3777, device='cuda:0'), 'train_loss_ce': tensor(0.2445, device='cuda:0'), 'train_loss_bbox': tensor(0.0077, device='cuda:0'), 'train_loss_giou': tensor(0.0473, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3804, device='cuda:0'), 'validation_loss_ce': tensor(0.2431, device='cuda:0'), 'validation_loss_bbox': tensor(0.0068, device='cuda:0'), 'validation_loss_giou': tensor(0.0517, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3804, device='cuda:0'), 'train_loss_ce': tensor(0.2431, device='cuda:0'), 'train_loss_bbox': tensor(0.0068, device='cuda:0'), 'train_loss_giou': tensor(0.0517, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3429, device='cuda:0'), 'validation_loss_ce': tensor(0.2415, device='cuda:0'), 'validation_loss_bbox': tensor(0.0053, device='cuda:0'), 'validation_loss_giou': tensor(0.0375, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3429, device='cuda:0'), 'train_loss_ce': tensor(0.2415, device='cuda:0'), 'train_loss_bbox': tensor(0.0053, device='cuda:0'), 'train_loss_giou': tensor(0.0375, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3346, device='cuda:0'), 'validation_loss_ce': tensor(0.2396, device='cuda:0'), 'validation_loss_bbox': tensor(0.0058, device='cuda:0'), 'validation_loss_giou': tensor(0.0329, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3346, device='cuda:0'), 'train_loss_ce': tensor(0.2396, device='cuda:0'), 'train_loss_bbox': tensor(0.0058, device='cuda:0'), 'train_loss_giou': tensor(0.0329, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3232, device='cuda:0'), 'validation_loss_ce': tensor(0.2373, device='cuda:0'), 'validation_loss_bbox': tensor(0.0034, device='cuda:0'), 'validation_loss_giou': tensor(0.0344, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3232, device='cuda:0'), 'train_loss_ce': tensor(0.2373, device='cuda:0'), 'train_loss_bbox': tensor(0.0034, device='cuda:0'), 'train_loss_giou': tensor(0.0344, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3549, device='cuda:0'), 'validation_loss_ce': tensor(0.2362, device='cuda:0'), 'validation_loss_bbox': tensor(0.0054, device='cuda:0'), 'validation_loss_giou': tensor(0.0457, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3549, device='cuda:0'), 'train_loss_ce': tensor(0.2362, device='cuda:0'), 'train_loss_bbox': tensor(0.0054, device='cuda:0'), 'train_loss_giou': tensor(0.0457, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2919, device='cuda:0'), 'validation_loss_ce': tensor(0.2355, device='cuda:0'), 'validation_loss_bbox': tensor(0.0034, device='cuda:0'), 'validation_loss_giou': tensor(0.0198, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2919, device='cuda:0'), 'train_loss_ce': tensor(0.2355, device='cuda:0'), 'train_loss_bbox': tensor(0.0034, device='cuda:0'), 'train_loss_giou': tensor(0.0198, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3144, device='cuda:0'), 'validation_loss_ce': tensor(0.2347, device='cuda:0'), 'validation_loss_bbox': tensor(0.0037, device='cuda:0'), 'validation_loss_giou': tensor(0.0306, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3144, device='cuda:0'), 'train_loss_ce': tensor(0.2347, device='cuda:0'), 'train_loss_bbox': tensor(0.0037, device='cuda:0'), 'train_loss_giou': tensor(0.0306, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3322, device='cuda:0'), 'validation_loss_ce': tensor(0.2331, device='cuda:0'), 'validation_loss_bbox': tensor(0.0044, device='cuda:0'), 'validation_loss_giou': tensor(0.0384, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3322, device='cuda:0'), 'train_loss_ce': tensor(0.2331, device='cuda:0'), 'train_loss_bbox': tensor(0.0044, device='cuda:0'), 'train_loss_giou': tensor(0.0384, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3025, device='cuda:0'), 'validation_loss_ce': tensor(0.2313, device='cuda:0'), 'validation_loss_bbox': tensor(0.0036, device='cuda:0'), 'validation_loss_giou': tensor(0.0266, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3025, device='cuda:0'), 'train_loss_ce': tensor(0.2313, device='cuda:0'), 'train_loss_bbox': tensor(0.0036, device='cuda:0'), 'train_loss_giou': tensor(0.0266, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3201, device='cuda:0'), 'validation_loss_ce': tensor(0.2288, device='cuda:0'), 'validation_loss_bbox': tensor(0.0044, device='cuda:0'), 'validation_loss_giou': tensor(0.0346, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3201, device='cuda:0'), 'train_loss_ce': tensor(0.2288, device='cuda:0'), 'train_loss_bbox': tensor(0.0044, device='cuda:0'), 'train_loss_giou': tensor(0.0346, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3176, device='cuda:0'), 'validation_loss_ce': tensor(0.2264, device='cuda:0'), 'validation_loss_bbox': tensor(0.0052, device='cuda:0'), 'validation_loss_giou': tensor(0.0327, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3176, device='cuda:0'), 'train_loss_ce': tensor(0.2264, device='cuda:0'), 'train_loss_bbox': tensor(0.0052, device='cuda:0'), 'train_loss_giou': tensor(0.0327, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3100, device='cuda:0'), 'validation_loss_ce': tensor(0.2247, device='cuda:0'), 'validation_loss_bbox': tensor(0.0051, device='cuda:0'), 'validation_loss_giou': tensor(0.0298, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3100, device='cuda:0'), 'train_loss_ce': tensor(0.2247, device='cuda:0'), 'train_loss_bbox': tensor(0.0051, device='cuda:0'), 'train_loss_giou': tensor(0.0298, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3312, device='cuda:0'), 'validation_loss_ce': tensor(0.2233, device='cuda:0'), 'validation_loss_bbox': tensor(0.0043, device='cuda:0'), 'validation_loss_giou': tensor(0.0432, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3312, device='cuda:0'), 'train_loss_ce': tensor(0.2233, device='cuda:0'), 'train_loss_bbox': tensor(0.0043, device='cuda:0'), 'train_loss_giou': tensor(0.0432, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3298, device='cuda:0'), 'validation_loss_ce': tensor(0.2224, device='cuda:0'), 'validation_loss_bbox': tensor(0.0046, device='cuda:0'), 'validation_loss_giou': tensor(0.0423, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3298, device='cuda:0'), 'train_loss_ce': tensor(0.2224, device='cuda:0'), 'train_loss_bbox': tensor(0.0046, device='cuda:0'), 'train_loss_giou': tensor(0.0423, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3175, device='cuda:0'), 'validation_loss_ce': tensor(0.2213, device='cuda:0'), 'validation_loss_bbox': tensor(0.0051, device='cuda:0'), 'validation_loss_giou': tensor(0.0353, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3175, device='cuda:0'), 'train_loss_ce': tensor(0.2213, device='cuda:0'), 'train_loss_bbox': tensor(0.0051, device='cuda:0'), 'train_loss_giou': tensor(0.0353, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2995, device='cuda:0'), 'validation_loss_ce': tensor(0.2200, device='cuda:0'), 'validation_loss_bbox': tensor(0.0043, device='cuda:0'), 'validation_loss_giou': tensor(0.0290, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2995, device='cuda:0'), 'train_loss_ce': tensor(0.2200, device='cuda:0'), 'train_loss_bbox': tensor(0.0043, device='cuda:0'), 'train_loss_giou': tensor(0.0290, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3216, device='cuda:0'), 'validation_loss_ce': tensor(0.2188, device='cuda:0'), 'validation_loss_bbox': tensor(0.0048, device='cuda:0'), 'validation_loss_giou': tensor(0.0393, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3216, device='cuda:0'), 'train_loss_ce': tensor(0.2188, device='cuda:0'), 'train_loss_bbox': tensor(0.0048, device='cuda:0'), 'train_loss_giou': tensor(0.0393, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3610, device='cuda:0'), 'validation_loss_ce': tensor(0.2181, device='cuda:0'), 'validation_loss_bbox': tensor(0.0056, device='cuda:0'), 'validation_loss_giou': tensor(0.0574, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3610, device='cuda:0'), 'train_loss_ce': tensor(0.2181, device='cuda:0'), 'train_loss_bbox': tensor(0.0056, device='cuda:0'), 'train_loss_giou': tensor(0.0574, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3186, device='cuda:0'), 'validation_loss_ce': tensor(0.2162, device='cuda:0'), 'validation_loss_bbox': tensor(0.0042, device='cuda:0'), 'validation_loss_giou': tensor(0.0408, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3186, device='cuda:0'), 'train_loss_ce': tensor(0.2162, device='cuda:0'), 'train_loss_bbox': tensor(0.0042, device='cuda:0'), 'train_loss_giou': tensor(0.0408, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2943, device='cuda:0'), 'validation_loss_ce': tensor(0.2137, device='cuda:0'), 'validation_loss_bbox': tensor(0.0029, device='cuda:0'), 'validation_loss_giou': tensor(0.0331, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2943, device='cuda:0'), 'train_loss_ce': tensor(0.2137, device='cuda:0'), 'train_loss_bbox': tensor(0.0029, device='cuda:0'), 'train_loss_giou': tensor(0.0331, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3326, device='cuda:0'), 'validation_loss_ce': tensor(0.2115, device='cuda:0'), 'validation_loss_bbox': tensor(0.0056, device='cuda:0'), 'validation_loss_giou': tensor(0.0465, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3326, device='cuda:0'), 'train_loss_ce': tensor(0.2115, device='cuda:0'), 'train_loss_bbox': tensor(0.0056, device='cuda:0'), 'train_loss_giou': tensor(0.0465, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3068, device='cuda:0'), 'validation_loss_ce': tensor(0.2103, device='cuda:0'), 'validation_loss_bbox': tensor(0.0053, device='cuda:0'), 'validation_loss_giou': tensor(0.0350, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3068, device='cuda:0'), 'train_loss_ce': tensor(0.2103, device='cuda:0'), 'train_loss_bbox': tensor(0.0053, device='cuda:0'), 'train_loss_giou': tensor(0.0350, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3291, device='cuda:0'), 'validation_loss_ce': tensor(0.2098, device='cuda:0'), 'validation_loss_bbox': tensor(0.0055, device='cuda:0'), 'validation_loss_giou': tensor(0.0458, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3291, device='cuda:0'), 'train_loss_ce': tensor(0.2098, device='cuda:0'), 'train_loss_bbox': tensor(0.0055, device='cuda:0'), 'train_loss_giou': tensor(0.0458, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3411, device='cuda:0'), 'validation_loss_ce': tensor(0.2086, device='cuda:0'), 'validation_loss_bbox': tensor(0.0066, device='cuda:0'), 'validation_loss_giou': tensor(0.0498, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3411, device='cuda:0'), 'train_loss_ce': tensor(0.2086, device='cuda:0'), 'train_loss_bbox': tensor(0.0066, device='cuda:0'), 'train_loss_giou': tensor(0.0498, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3067, device='cuda:0'), 'validation_loss_ce': tensor(0.2063, device='cuda:0'), 'validation_loss_bbox': tensor(0.0057, device='cuda:0'), 'validation_loss_giou': tensor(0.0359, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3067, device='cuda:0'), 'train_loss_ce': tensor(0.2063, device='cuda:0'), 'train_loss_bbox': tensor(0.0057, device='cuda:0'), 'train_loss_giou': tensor(0.0359, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3311, device='cuda:0'), 'validation_loss_ce': tensor(0.2039, device='cuda:0'), 'validation_loss_bbox': tensor(0.0057, device='cuda:0'), 'validation_loss_giou': tensor(0.0494, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3311, device='cuda:0'), 'train_loss_ce': tensor(0.2039, device='cuda:0'), 'train_loss_bbox': tensor(0.0057, device='cuda:0'), 'train_loss_giou': tensor(0.0494, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3862, device='cuda:0'), 'validation_loss_ce': tensor(0.2023, device='cuda:0'), 'validation_loss_bbox': tensor(0.0104, device='cuda:0'), 'validation_loss_giou': tensor(0.0660, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3862, device='cuda:0'), 'train_loss_ce': tensor(0.2023, device='cuda:0'), 'train_loss_bbox': tensor(0.0104, device='cuda:0'), 'train_loss_giou': tensor(0.0660, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4034, device='cuda:0'), 'validation_loss_ce': tensor(0.2006, device='cuda:0'), 'validation_loss_bbox': tensor(0.0113, device='cuda:0'), 'validation_loss_giou': tensor(0.0732, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4034, device='cuda:0'), 'train_loss_ce': tensor(0.2006, device='cuda:0'), 'train_loss_bbox': tensor(0.0113, device='cuda:0'), 'train_loss_giou': tensor(0.0732, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3321, device='cuda:0'), 'validation_loss_ce': tensor(0.1989, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0483, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3321, device='cuda:0'), 'train_loss_ce': tensor(0.1989, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0483, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3018, device='cuda:0'), 'validation_loss_ce': tensor(0.1972, device='cuda:0'), 'validation_loss_bbox': tensor(0.0049, device='cuda:0'), 'validation_loss_giou': tensor(0.0401, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3018, device='cuda:0'), 'train_loss_ce': tensor(0.1972, device='cuda:0'), 'train_loss_bbox': tensor(0.0049, device='cuda:0'), 'train_loss_giou': tensor(0.0401, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3346, device='cuda:0'), 'validation_loss_ce': tensor(0.1957, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0511, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3346, device='cuda:0'), 'train_loss_ce': tensor(0.1957, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0511, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3650, device='cuda:0'), 'validation_loss_ce': tensor(0.1933, device='cuda:0'), 'validation_loss_bbox': tensor(0.0082, device='cuda:0'), 'validation_loss_giou': tensor(0.0653, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3650, device='cuda:0'), 'train_loss_ce': tensor(0.1933, device='cuda:0'), 'train_loss_bbox': tensor(0.0082, device='cuda:0'), 'train_loss_giou': tensor(0.0653, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2731, device='cuda:0'), 'validation_loss_ce': tensor(0.1904, device='cuda:0'), 'validation_loss_bbox': tensor(0.0039, device='cuda:0'), 'validation_loss_giou': tensor(0.0316, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2731, device='cuda:0'), 'train_loss_ce': tensor(0.1904, device='cuda:0'), 'train_loss_bbox': tensor(0.0039, device='cuda:0'), 'train_loss_giou': tensor(0.0316, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3542, device='cuda:0'), 'validation_loss_ce': tensor(0.1879, device='cuda:0'), 'validation_loss_bbox': tensor(0.0070, device='cuda:0'), 'validation_loss_giou': tensor(0.0656, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3542, device='cuda:0'), 'train_loss_ce': tensor(0.1879, device='cuda:0'), 'train_loss_bbox': tensor(0.0070, device='cuda:0'), 'train_loss_giou': tensor(0.0656, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4084, device='cuda:0'), 'validation_loss_ce': tensor(0.1861, device='cuda:0'), 'validation_loss_bbox': tensor(0.0105, device='cuda:0'), 'validation_loss_giou': tensor(0.0850, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4084, device='cuda:0'), 'train_loss_ce': tensor(0.1861, device='cuda:0'), 'train_loss_bbox': tensor(0.0105, device='cuda:0'), 'train_loss_giou': tensor(0.0850, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3401, device='cuda:0'), 'validation_loss_ce': tensor(0.1846, device='cuda:0'), 'validation_loss_bbox': tensor(0.0098, device='cuda:0'), 'validation_loss_giou': tensor(0.0534, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3401, device='cuda:0'), 'train_loss_ce': tensor(0.1846, device='cuda:0'), 'train_loss_bbox': tensor(0.0098, device='cuda:0'), 'train_loss_giou': tensor(0.0534, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2958, device='cuda:0'), 'validation_loss_ce': tensor(0.1836, device='cuda:0'), 'validation_loss_bbox': tensor(0.0066, device='cuda:0'), 'validation_loss_giou': tensor(0.0396, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2958, device='cuda:0'), 'train_loss_ce': tensor(0.1836, device='cuda:0'), 'train_loss_bbox': tensor(0.0066, device='cuda:0'), 'train_loss_giou': tensor(0.0396, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3440, device='cuda:0'), 'validation_loss_ce': tensor(0.1827, device='cuda:0'), 'validation_loss_bbox': tensor(0.0066, device='cuda:0'), 'validation_loss_giou': tensor(0.0641, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3440, device='cuda:0'), 'train_loss_ce': tensor(0.1827, device='cuda:0'), 'train_loss_bbox': tensor(0.0066, device='cuda:0'), 'train_loss_giou': tensor(0.0641, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3299, device='cuda:0'), 'validation_loss_ce': tensor(0.1812, device='cuda:0'), 'validation_loss_bbox': tensor(0.0089, device='cuda:0'), 'validation_loss_giou': tensor(0.0522, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3299, device='cuda:0'), 'train_loss_ce': tensor(0.1812, device='cuda:0'), 'train_loss_bbox': tensor(0.0089, device='cuda:0'), 'train_loss_giou': tensor(0.0522, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3652, device='cuda:0'), 'validation_loss_ce': tensor(0.1794, device='cuda:0'), 'validation_loss_bbox': tensor(0.0091, device='cuda:0'), 'validation_loss_giou': tensor(0.0701, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3652, device='cuda:0'), 'train_loss_ce': tensor(0.1794, device='cuda:0'), 'train_loss_bbox': tensor(0.0091, device='cuda:0'), 'train_loss_giou': tensor(0.0701, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3382, device='cuda:0'), 'validation_loss_ce': tensor(0.1775, device='cuda:0'), 'validation_loss_bbox': tensor(0.0065, device='cuda:0'), 'validation_loss_giou': tensor(0.0640, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3382, device='cuda:0'), 'train_loss_ce': tensor(0.1775, device='cuda:0'), 'train_loss_bbox': tensor(0.0065, device='cuda:0'), 'train_loss_giou': tensor(0.0640, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3857, device='cuda:0'), 'validation_loss_ce': tensor(0.1761, device='cuda:0'), 'validation_loss_bbox': tensor(0.0083, device='cuda:0'), 'validation_loss_giou': tensor(0.0841, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3857, device='cuda:0'), 'train_loss_ce': tensor(0.1761, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.0841, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3404, device='cuda:0'), 'validation_loss_ce': tensor(0.1746, device='cuda:0'), 'validation_loss_bbox': tensor(0.0085, device='cuda:0'), 'validation_loss_giou': tensor(0.0617, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3404, device='cuda:0'), 'train_loss_ce': tensor(0.1746, device='cuda:0'), 'train_loss_bbox': tensor(0.0085, device='cuda:0'), 'train_loss_giou': tensor(0.0617, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3946, device='cuda:0'), 'validation_loss_ce': tensor(0.1733, device='cuda:0'), 'validation_loss_bbox': tensor(0.0106, device='cuda:0'), 'validation_loss_giou': tensor(0.0841, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3946, device='cuda:0'), 'train_loss_ce': tensor(0.1733, device='cuda:0'), 'train_loss_bbox': tensor(0.0106, device='cuda:0'), 'train_loss_giou': tensor(0.0841, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3954, device='cuda:0'), 'validation_loss_ce': tensor(0.1716, device='cuda:0'), 'validation_loss_bbox': tensor(0.0090, device='cuda:0'), 'validation_loss_giou': tensor(0.0893, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3954, device='cuda:0'), 'train_loss_ce': tensor(0.1716, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0893, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3079, device='cuda:0'), 'validation_loss_ce': tensor(0.1691, device='cuda:0'), 'validation_loss_bbox': tensor(0.0052, device='cuda:0'), 'validation_loss_giou': tensor(0.0564, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3079, device='cuda:0'), 'train_loss_ce': tensor(0.1691, device='cuda:0'), 'train_loss_bbox': tensor(0.0052, device='cuda:0'), 'train_loss_giou': tensor(0.0564, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2645, device='cuda:0'), 'validation_loss_ce': tensor(0.1671, device='cuda:0'), 'validation_loss_bbox': tensor(0.0049, device='cuda:0'), 'validation_loss_giou': tensor(0.0366, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2645, device='cuda:0'), 'train_loss_ce': tensor(0.1671, device='cuda:0'), 'train_loss_bbox': tensor(0.0049, device='cuda:0'), 'train_loss_giou': tensor(0.0366, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3412, device='cuda:0'), 'validation_loss_ce': tensor(0.1660, device='cuda:0'), 'validation_loss_bbox': tensor(0.0074, device='cuda:0'), 'validation_loss_giou': tensor(0.0690, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3412, device='cuda:0'), 'train_loss_ce': tensor(0.1660, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.0690, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3066, device='cuda:0'), 'validation_loss_ce': tensor(0.1650, device='cuda:0'), 'validation_loss_bbox': tensor(0.0061, device='cuda:0'), 'validation_loss_giou': tensor(0.0554, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3066, device='cuda:0'), 'train_loss_ce': tensor(0.1650, device='cuda:0'), 'train_loss_bbox': tensor(0.0061, device='cuda:0'), 'train_loss_giou': tensor(0.0554, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2413, device='cuda:0'), 'validation_loss_ce': tensor(0.1640, device='cuda:0'), 'validation_loss_bbox': tensor(0.0045, device='cuda:0'), 'validation_loss_giou': tensor(0.0274, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2413, device='cuda:0'), 'train_loss_ce': tensor(0.1640, device='cuda:0'), 'train_loss_bbox': tensor(0.0045, device='cuda:0'), 'train_loss_giou': tensor(0.0274, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2695, device='cuda:0'), 'validation_loss_ce': tensor(0.1624, device='cuda:0'), 'validation_loss_bbox': tensor(0.0040, device='cuda:0'), 'validation_loss_giou': tensor(0.0435, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2695, device='cuda:0'), 'train_loss_ce': tensor(0.1624, device='cuda:0'), 'train_loss_bbox': tensor(0.0040, device='cuda:0'), 'train_loss_giou': tensor(0.0435, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2887, device='cuda:0'), 'validation_loss_ce': tensor(0.1601, device='cuda:0'), 'validation_loss_bbox': tensor(0.0067, device='cuda:0'), 'validation_loss_giou': tensor(0.0476, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2887, device='cuda:0'), 'train_loss_ce': tensor(0.1601, device='cuda:0'), 'train_loss_bbox': tensor(0.0067, device='cuda:0'), 'train_loss_giou': tensor(0.0476, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2860, device='cuda:0'), 'validation_loss_ce': tensor(0.1577, device='cuda:0'), 'validation_loss_bbox': tensor(0.0063, device='cuda:0'), 'validation_loss_giou': tensor(0.0485, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2860, device='cuda:0'), 'train_loss_ce': tensor(0.1577, device='cuda:0'), 'train_loss_bbox': tensor(0.0063, device='cuda:0'), 'train_loss_giou': tensor(0.0485, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2240, device='cuda:0'), 'validation_loss_ce': tensor(0.1560, device='cuda:0'), 'validation_loss_bbox': tensor(0.0036, device='cuda:0'), 'validation_loss_giou': tensor(0.0250, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2240, device='cuda:0'), 'train_loss_ce': tensor(0.1560, device='cuda:0'), 'train_loss_bbox': tensor(0.0036, device='cuda:0'), 'train_loss_giou': tensor(0.0250, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2140, device='cuda:0'), 'validation_loss_ce': tensor(0.1546, device='cuda:0'), 'validation_loss_bbox': tensor(0.0028, device='cuda:0'), 'validation_loss_giou': tensor(0.0227, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2140, device='cuda:0'), 'train_loss_ce': tensor(0.1546, device='cuda:0'), 'train_loss_bbox': tensor(0.0028, device='cuda:0'), 'train_loss_giou': tensor(0.0227, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2635, device='cuda:0'), 'validation_loss_ce': tensor(0.1530, device='cuda:0'), 'validation_loss_bbox': tensor(0.0049, device='cuda:0'), 'validation_loss_giou': tensor(0.0430, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2635, device='cuda:0'), 'train_loss_ce': tensor(0.1530, device='cuda:0'), 'train_loss_bbox': tensor(0.0049, device='cuda:0'), 'train_loss_giou': tensor(0.0430, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2690, device='cuda:0'), 'validation_loss_ce': tensor(0.1504, device='cuda:0'), 'validation_loss_bbox': tensor(0.0053, device='cuda:0'), 'validation_loss_giou': tensor(0.0460, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2690, device='cuda:0'), 'train_loss_ce': tensor(0.1504, device='cuda:0'), 'train_loss_bbox': tensor(0.0053, device='cuda:0'), 'train_loss_giou': tensor(0.0460, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2354, device='cuda:0'), 'validation_loss_ce': tensor(0.1478, device='cuda:0'), 'validation_loss_bbox': tensor(0.0050, device='cuda:0'), 'validation_loss_giou': tensor(0.0313, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2354, device='cuda:0'), 'train_loss_ce': tensor(0.1478, device='cuda:0'), 'train_loss_bbox': tensor(0.0050, device='cuda:0'), 'train_loss_giou': tensor(0.0313, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2619, device='cuda:0'), 'validation_loss_ce': tensor(0.1454, device='cuda:0'), 'validation_loss_bbox': tensor(0.0062, device='cuda:0'), 'validation_loss_giou': tensor(0.0428, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2619, device='cuda:0'), 'train_loss_ce': tensor(0.1454, device='cuda:0'), 'train_loss_bbox': tensor(0.0062, device='cuda:0'), 'train_loss_giou': tensor(0.0428, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2330, device='cuda:0'), 'validation_loss_ce': tensor(0.1426, device='cuda:0'), 'validation_loss_bbox': tensor(0.0057, device='cuda:0'), 'validation_loss_giou': tensor(0.0310, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
```
## Examples
{'size': tensor([800, 800]), 'image_id': tensor([735]), 'class_labels': tensor([5]), 'boxes': tensor([[0.7651, 0.5307, 0.0952, 0.0942]]), 'area': tensor([5740.4888]), 'iscrowd': tensor([0]), 'orig_size': tensor([1024, 1024])}

|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
MedicalVision/yolos_tiny_test
|
## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.002
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.001
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.002
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.015
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.026
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.028
```
## Config
- dataset: NIH
- original model: hustvl/yolos-tiny
- lr: 0.0001
- dropout_rate: 0.1
- weight_decay: 0.001
- max_epochs: 1
- train samples: 885
## Logging
### Training process
```
{'validation_loss': tensor(7.2682, device='cuda:0'), 'validation_loss_ce': tensor(2.4654, device='cuda:0'), 'validation_loss_bbox': tensor(0.5599, device='cuda:0'), 'validation_loss_giou': tensor(1.0016, device='cuda:0'), 'validation_cardinality_error': tensor(99., device='cuda:0')}
{'training_loss': tensor(3.1491, device='cuda:0'), 'train_loss_ce': tensor(0.3927, device='cuda:0'), 'train_loss_bbox': tensor(0.2719, device='cuda:0'), 'train_loss_giou': tensor(0.6985, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2454, device='cuda:0'), 'validation_loss_ce': tensor(0.4346, device='cuda:0'), 'validation_loss_bbox': tensor(0.1519, device='cuda:0'), 'validation_loss_giou': tensor(0.5256, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
```
## Examples
{'size': tensor([512, 512]), 'image_id': tensor([1]), 'class_labels': tensor([4]), 'boxes': tensor([[0.2622, 0.5729, 0.0847, 0.0773]]), 'area': tensor([1717.9431]), 'iscrowd': tensor([0]), 'orig_size': tensor([1024, 1024])}

|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
MedicalVision/yolos_tiny_50ep
|
## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.007
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.008
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.008
```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.008
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.016
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.009
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.008
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.060
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.122
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.140
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.141
```
## Config
- dataset: NIH
- original model: hustvl/yolos-tiny
- lr: 1e-05
- dropout_rate: 0.1
- weight_decay: 0.05
- max_epochs: 50
- train samples: 885
## Logging
### Training process
```
{'validation_loss': tensor(7.0099, device='cuda:0'), 'validation_loss_ce': tensor(2.4436, device='cuda:0'), 'validation_loss_bbox': tensor(0.5540, device='cuda:0'), 'validation_loss_giou': tensor(0.8981, device='cuda:0'), 'validation_cardinality_error': tensor(99., device='cuda:0')}
{'training_loss': tensor(3.9420, device='cuda:0'), 'train_loss_ce': tensor(1.3197, device='cuda:0'), 'train_loss_bbox': tensor(0.2500, device='cuda:0'), 'train_loss_giou': tensor(0.6860, device='cuda:0'), 'train_cardinality_error': tensor(7., device='cuda:0'), 'validation_loss': tensor(3.3165, device='cuda:0'), 'validation_loss_ce': tensor(1.2489, device='cuda:0'), 'validation_loss_bbox': tensor(0.1881, device='cuda:0'), 'validation_loss_giou': tensor(0.5635, device='cuda:0'), 'validation_cardinality_error': tensor(4.0101, device='cuda:0')}
{'training_loss': tensor(3.3235, device='cuda:0'), 'train_loss_ce': tensor(0.6793, device='cuda:0'), 'train_loss_bbox': tensor(0.2541, device='cuda:0'), 'train_loss_giou': tensor(0.6867, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.4833, device='cuda:0'), 'validation_loss_ce': tensor(0.6021, device='cuda:0'), 'validation_loss_bbox': tensor(0.1646, device='cuda:0'), 'validation_loss_giou': tensor(0.5291, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3983, device='cuda:0'), 'train_loss_ce': tensor(0.5598, device='cuda:0'), 'train_loss_bbox': tensor(0.1766, device='cuda:0'), 'train_loss_giou': tensor(0.4778, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2504, device='cuda:0'), 'validation_loss_ce': tensor(0.4912, device='cuda:0'), 'validation_loss_bbox': tensor(0.1561, device='cuda:0'), 'validation_loss_giou': tensor(0.4895, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9965, device='cuda:0'), 'train_loss_ce': tensor(0.4444, device='cuda:0'), 'train_loss_bbox': tensor(0.1335, device='cuda:0'), 'train_loss_giou': tensor(0.4423, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2376, device='cuda:0'), 'validation_loss_ce': tensor(0.4733, device='cuda:0'), 'validation_loss_bbox': tensor(0.1545, device='cuda:0'), 'validation_loss_giou': tensor(0.4960, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3605, device='cuda:0'), 'train_loss_ce': tensor(0.3837, device='cuda:0'), 'train_loss_bbox': tensor(0.1640, device='cuda:0'), 'train_loss_giou': tensor(0.5785, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2257, device='cuda:0'), 'validation_loss_ce': tensor(0.4630, device='cuda:0'), 'validation_loss_bbox': tensor(0.1510, device='cuda:0'), 'validation_loss_giou': tensor(0.5039, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8496, device='cuda:0'), 'train_loss_ce': tensor(0.4450, device='cuda:0'), 'train_loss_bbox': tensor(0.1345, device='cuda:0'), 'train_loss_giou': tensor(0.3660, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0929, device='cuda:0'), 'validation_loss_ce': tensor(0.4594, device='cuda:0'), 'validation_loss_bbox': tensor(0.1348, device='cuda:0'), 'validation_loss_giou': tensor(0.4796, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8037, device='cuda:0'), 'train_loss_ce': tensor(0.4246, device='cuda:0'), 'train_loss_bbox': tensor(0.1193, device='cuda:0'), 'train_loss_giou': tensor(0.3912, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1036, device='cuda:0'), 'validation_loss_ce': tensor(0.4565, device='cuda:0'), 'validation_loss_bbox': tensor(0.1409, device='cuda:0'), 'validation_loss_giou': tensor(0.4713, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4431, device='cuda:0'), 'train_loss_ce': tensor(0.4050, device='cuda:0'), 'train_loss_bbox': tensor(0.1342, device='cuda:0'), 'train_loss_giou': tensor(0.6835, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0913, device='cuda:0'), 'validation_loss_ce': tensor(0.4534, device='cuda:0'), 'validation_loss_bbox': tensor(0.1405, device='cuda:0'), 'validation_loss_giou': tensor(0.4676, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5937, device='cuda:0'), 'train_loss_ce': tensor(0.4950, device='cuda:0'), 'train_loss_bbox': tensor(0.0820, device='cuda:0'), 'train_loss_giou': tensor(0.3444, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1049, device='cuda:0'), 'validation_loss_ce': tensor(0.4502, device='cuda:0'), 'validation_loss_bbox': tensor(0.1431, device='cuda:0'), 'validation_loss_giou': tensor(0.4696, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4078, device='cuda:0'), 'train_loss_ce': tensor(0.3842, device='cuda:0'), 'train_loss_bbox': tensor(0.1092, device='cuda:0'), 'train_loss_giou': tensor(0.2389, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0739, device='cuda:0'), 'validation_loss_ce': tensor(0.4510, device='cuda:0'), 'validation_loss_bbox': tensor(0.1392, device='cuda:0'), 'validation_loss_giou': tensor(0.4634, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7135, device='cuda:0'), 'train_loss_ce': tensor(0.3938, device='cuda:0'), 'train_loss_bbox': tensor(0.1142, device='cuda:0'), 'train_loss_giou': tensor(0.3742, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0500, device='cuda:0'), 'validation_loss_ce': tensor(0.4449, device='cuda:0'), 'validation_loss_bbox': tensor(0.1333, device='cuda:0'), 'validation_loss_giou': tensor(0.4693, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8719, device='cuda:0'), 'train_loss_ce': tensor(0.4170, device='cuda:0'), 'train_loss_bbox': tensor(0.0880, device='cuda:0'), 'train_loss_giou': tensor(0.5075, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9737, device='cuda:0'), 'validation_loss_ce': tensor(0.4429, device='cuda:0'), 'validation_loss_bbox': tensor(0.1294, device='cuda:0'), 'validation_loss_giou': tensor(0.4419, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9734, device='cuda:0'), 'train_loss_ce': tensor(0.4615, device='cuda:0'), 'train_loss_bbox': tensor(0.1003, device='cuda:0'), 'train_loss_giou': tensor(0.5052, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9729, device='cuda:0'), 'validation_loss_ce': tensor(0.4415, device='cuda:0'), 'validation_loss_bbox': tensor(0.1275, device='cuda:0'), 'validation_loss_giou': tensor(0.4470, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9288, device='cuda:0'), 'train_loss_ce': tensor(0.4898, device='cuda:0'), 'train_loss_bbox': tensor(0.0967, device='cuda:0'), 'train_loss_giou': tensor(0.4778, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0077, device='cuda:0'), 'validation_loss_ce': tensor(0.4397, device='cuda:0'), 'validation_loss_bbox': tensor(0.1310, device='cuda:0'), 'validation_loss_giou': tensor(0.4565, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5813, device='cuda:0'), 'train_loss_ce': tensor(0.3213, device='cuda:0'), 'train_loss_bbox': tensor(0.0890, device='cuda:0'), 'train_loss_giou': tensor(0.4076, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0185, device='cuda:0'), 'validation_loss_ce': tensor(0.4393, device='cuda:0'), 'validation_loss_bbox': tensor(0.1303, device='cuda:0'), 'validation_loss_giou': tensor(0.4639, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5830, device='cuda:0'), 'train_loss_ce': tensor(0.3790, device='cuda:0'), 'train_loss_bbox': tensor(0.1060, device='cuda:0'), 'train_loss_giou': tensor(0.3371, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0351, device='cuda:0'), 'validation_loss_ce': tensor(0.4372, device='cuda:0'), 'validation_loss_bbox': tensor(0.1342, device='cuda:0'), 'validation_loss_giou': tensor(0.4634, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2645, device='cuda:0'), 'train_loss_ce': tensor(0.4014, device='cuda:0'), 'train_loss_bbox': tensor(0.0714, device='cuda:0'), 'train_loss_giou': tensor(0.2532, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9948, device='cuda:0'), 'validation_loss_ce': tensor(0.4346, device='cuda:0'), 'validation_loss_bbox': tensor(0.1306, device='cuda:0'), 'validation_loss_giou': tensor(0.4536, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3426, device='cuda:0'), 'train_loss_ce': tensor(0.3139, device='cuda:0'), 'train_loss_bbox': tensor(0.0778, device='cuda:0'), 'train_loss_giou': tensor(0.3199, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9602, device='cuda:0'), 'validation_loss_ce': tensor(0.4345, device='cuda:0'), 'validation_loss_bbox': tensor(0.1249, device='cuda:0'), 'validation_loss_giou': tensor(0.4505, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5074, device='cuda:0'), 'train_loss_ce': tensor(0.4651, device='cuda:0'), 'train_loss_bbox': tensor(0.0795, device='cuda:0'), 'train_loss_giou': tensor(0.3223, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9882, device='cuda:0'), 'validation_loss_ce': tensor(0.4357, device='cuda:0'), 'validation_loss_bbox': tensor(0.1282, device='cuda:0'), 'validation_loss_giou': tensor(0.4558, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6619, device='cuda:0'), 'train_loss_ce': tensor(0.4541, device='cuda:0'), 'train_loss_bbox': tensor(0.1077, device='cuda:0'), 'train_loss_giou': tensor(0.3347, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9714, device='cuda:0'), 'validation_loss_ce': tensor(0.4288, device='cuda:0'), 'validation_loss_bbox': tensor(0.1264, device='cuda:0'), 'validation_loss_giou': tensor(0.4554, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2751, device='cuda:0'), 'train_loss_ce': tensor(0.4780, device='cuda:0'), 'train_loss_bbox': tensor(0.0599, device='cuda:0'), 'train_loss_giou': tensor(0.2488, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9359, device='cuda:0'), 'validation_loss_ce': tensor(0.4287, device='cuda:0'), 'validation_loss_bbox': tensor(0.1222, device='cuda:0'), 'validation_loss_giou': tensor(0.4481, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3953, device='cuda:0'), 'train_loss_ce': tensor(0.4210, device='cuda:0'), 'train_loss_bbox': tensor(0.0698, device='cuda:0'), 'train_loss_giou': tensor(0.3127, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9527, device='cuda:0'), 'validation_loss_ce': tensor(0.4282, device='cuda:0'), 'validation_loss_bbox': tensor(0.1249, device='cuda:0'), 'validation_loss_giou': tensor(0.4501, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2062, device='cuda:0'), 'train_loss_ce': tensor(0.4534, device='cuda:0'), 'train_loss_bbox': tensor(0.0659, device='cuda:0'), 'train_loss_giou': tensor(0.2117, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9332, device='cuda:0'), 'validation_loss_ce': tensor(0.4249, device='cuda:0'), 'validation_loss_bbox': tensor(0.1223, device='cuda:0'), 'validation_loss_giou': tensor(0.4484, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5195, device='cuda:0'), 'train_loss_ce': tensor(0.3928, device='cuda:0'), 'train_loss_bbox': tensor(0.1094, device='cuda:0'), 'train_loss_giou': tensor(0.2898, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9284, device='cuda:0'), 'validation_loss_ce': tensor(0.4224, device='cuda:0'), 'validation_loss_bbox': tensor(0.1230, device='cuda:0'), 'validation_loss_giou': tensor(0.4454, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1695, device='cuda:0'), 'train_loss_ce': tensor(0.3714, device='cuda:0'), 'train_loss_bbox': tensor(0.0564, device='cuda:0'), 'train_loss_giou': tensor(0.2579, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9271, device='cuda:0'), 'validation_loss_ce': tensor(0.4234, device='cuda:0'), 'validation_loss_bbox': tensor(0.1215, device='cuda:0'), 'validation_loss_giou': tensor(0.4481, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4215, device='cuda:0'), 'train_loss_ce': tensor(0.4881, device='cuda:0'), 'train_loss_bbox': tensor(0.0761, device='cuda:0'), 'train_loss_giou': tensor(0.2763, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9468, device='cuda:0'), 'validation_loss_ce': tensor(0.4214, device='cuda:0'), 'validation_loss_bbox': tensor(0.1246, device='cuda:0'), 'validation_loss_giou': tensor(0.4512, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3969, device='cuda:0'), 'train_loss_ce': tensor(0.4695, device='cuda:0'), 'train_loss_bbox': tensor(0.0575, device='cuda:0'), 'train_loss_giou': tensor(0.3200, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9221, device='cuda:0'), 'validation_loss_ce': tensor(0.4188, device='cuda:0'), 'validation_loss_bbox': tensor(0.1234, device='cuda:0'), 'validation_loss_giou': tensor(0.4433, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3017, device='cuda:0'), 'train_loss_ce': tensor(0.3737, device='cuda:0'), 'train_loss_bbox': tensor(0.0451, device='cuda:0'), 'train_loss_giou': tensor(0.3513, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9424, device='cuda:0'), 'validation_loss_ce': tensor(0.4178, device='cuda:0'), 'validation_loss_bbox': tensor(0.1247, device='cuda:0'), 'validation_loss_giou': tensor(0.4505, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8226, device='cuda:0'), 'train_loss_ce': tensor(0.2608, device='cuda:0'), 'train_loss_bbox': tensor(0.0339, device='cuda:0'), 'train_loss_giou': tensor(0.1962, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9638, device='cuda:0'), 'validation_loss_ce': tensor(0.4177, device='cuda:0'), 'validation_loss_bbox': tensor(0.1261, device='cuda:0'), 'validation_loss_giou': tensor(0.4579, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9972, device='cuda:0'), 'train_loss_ce': tensor(0.4199, device='cuda:0'), 'train_loss_bbox': tensor(0.0402, device='cuda:0'), 'train_loss_giou': tensor(0.1882, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9488, device='cuda:0'), 'validation_loss_ce': tensor(0.4148, device='cuda:0'), 'validation_loss_bbox': tensor(0.1252, device='cuda:0'), 'validation_loss_giou': tensor(0.4539, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2127, device='cuda:0'), 'train_loss_ce': tensor(0.3963, device='cuda:0'), 'train_loss_bbox': tensor(0.0675, device='cuda:0'), 'train_loss_giou': tensor(0.2394, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9382, device='cuda:0'), 'validation_loss_ce': tensor(0.4113, device='cuda:0'), 'validation_loss_bbox': tensor(0.1234, device='cuda:0'), 'validation_loss_giou': tensor(0.4550, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4711, device='cuda:0'), 'train_loss_ce': tensor(0.4774, device='cuda:0'), 'train_loss_bbox': tensor(0.0708, device='cuda:0'), 'train_loss_giou': tensor(0.3198, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9266, device='cuda:0'), 'validation_loss_ce': tensor(0.4101, device='cuda:0'), 'validation_loss_bbox': tensor(0.1233, device='cuda:0'), 'validation_loss_giou': tensor(0.4500, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9959, device='cuda:0'), 'train_loss_ce': tensor(0.3633, device='cuda:0'), 'train_loss_bbox': tensor(0.0561, device='cuda:0'), 'train_loss_giou': tensor(0.1760, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9331, device='cuda:0'), 'validation_loss_ce': tensor(0.4114, device='cuda:0'), 'validation_loss_bbox': tensor(0.1232, device='cuda:0'), 'validation_loss_giou': tensor(0.4529, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2761, device='cuda:0'), 'train_loss_ce': tensor(0.3369, device='cuda:0'), 'train_loss_bbox': tensor(0.0609, device='cuda:0'), 'train_loss_giou': tensor(0.3174, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.8959, device='cuda:0'), 'validation_loss_ce': tensor(0.4092, device='cuda:0'), 'validation_loss_bbox': tensor(0.1196, device='cuda:0'), 'validation_loss_giou': tensor(0.4443, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1052, device='cuda:0'), 'train_loss_ce': tensor(0.4021, device='cuda:0'), 'train_loss_bbox': tensor(0.0450, device='cuda:0'), 'train_loss_giou': tensor(0.2390, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9103, device='cuda:0'), 'validation_loss_ce': tensor(0.4082, device='cuda:0'), 'validation_loss_bbox': tensor(0.1223, device='cuda:0'), 'validation_loss_giou': tensor(0.4453, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0489, device='cuda:0'), 'train_loss_ce': tensor(0.4296, device='cuda:0'), 'train_loss_bbox': tensor(0.0439, device='cuda:0'), 'train_loss_giou': tensor(0.2000, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9410, device='cuda:0'), 'validation_loss_ce': tensor(0.4067, device='cuda:0'), 'validation_loss_bbox': tensor(0.1275, device='cuda:0'), 'validation_loss_giou': tensor(0.4484, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0332, device='cuda:0'), 'train_loss_ce': tensor(0.3963, device='cuda:0'), 'train_loss_bbox': tensor(0.0597, device='cuda:0'), 'train_loss_giou': tensor(0.1693, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9021, device='cuda:0'), 'validation_loss_ce': tensor(0.4044, device='cuda:0'), 'validation_loss_bbox': tensor(0.1204, device='cuda:0'), 'validation_loss_giou': tensor(0.4479, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3650, device='cuda:0'), 'train_loss_ce': tensor(0.4742, device='cuda:0'), 'train_loss_bbox': tensor(0.0558, device='cuda:0'), 'train_loss_giou': tensor(0.3059, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9119, device='cuda:0'), 'validation_loss_ce': tensor(0.4054, device='cuda:0'), 'validation_loss_bbox': tensor(0.1221, device='cuda:0'), 'validation_loss_giou': tensor(0.4479, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2805, device='cuda:0'), 'train_loss_ce': tensor(0.4037, device='cuda:0'), 'train_loss_bbox': tensor(0.0486, device='cuda:0'), 'train_loss_giou': tensor(0.3169, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.8817, device='cuda:0'), 'validation_loss_ce': tensor(0.4047, device='cuda:0'), 'validation_loss_bbox': tensor(0.1203, device='cuda:0'), 'validation_loss_giou': tensor(0.4377, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1888, device='cuda:0'), 'train_loss_ce': tensor(0.4283, device='cuda:0'), 'train_loss_bbox': tensor(0.0574, device='cuda:0'), 'train_loss_giou': tensor(0.2369, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.8818, device='cuda:0'), 'validation_loss_ce': tensor(0.4025, device='cuda:0'), 'validation_loss_bbox': tensor(0.1179, device='cuda:0'), 'validation_loss_giou': tensor(0.4451, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7404, device='cuda:0'), 'train_loss_ce': tensor(0.3634, device='cuda:0'), 'train_loss_bbox': tensor(0.0316, device='cuda:0'), 'train_loss_giou': tensor(0.1096, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.8977, device='cuda:0'), 'validation_loss_ce': tensor(0.4013, device='cuda:0'), 'validation_loss_bbox': tensor(0.1235, device='cuda:0'), 'validation_loss_giou': tensor(0.4395, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0661, device='cuda:0'), 'train_loss_ce': tensor(0.4053, device='cuda:0'), 'train_loss_bbox': tensor(0.0441, device='cuda:0'), 'train_loss_giou': tensor(0.2203, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.8821, device='cuda:0'), 'validation_loss_ce': tensor(0.3989, device='cuda:0'), 'validation_loss_bbox': tensor(0.1186, device='cuda:0'), 'validation_loss_giou': tensor(0.4450, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7028, device='cuda:0'), 'train_loss_ce': tensor(0.3904, device='cuda:0'), 'train_loss_bbox': tensor(0.0235, device='cuda:0'), 'train_loss_giou': tensor(0.0974, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.9134, device='cuda:0'), 'validation_loss_ce': tensor(0.3996, device='cuda:0'), 'validation_loss_bbox': tensor(0.1234, device='cuda:0'), 'validation_loss_giou': tensor(0.4485, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7978, device='cuda:0'), 'train_loss_ce': tensor(0.3985, device='cuda:0'), 'train_loss_bbox': tensor(0.0377, device='cuda:0'), 'train_loss_giou': tensor(0.1054, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9087, device='cuda:0'), 'validation_loss_ce': tensor(0.3957, device='cuda:0'), 'validation_loss_bbox': tensor(0.1230, device='cuda:0'), 'validation_loss_giou': tensor(0.4489, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9359, device='cuda:0'), 'train_loss_ce': tensor(0.4104, device='cuda:0'), 'train_loss_bbox': tensor(0.0329, device='cuda:0'), 'train_loss_giou': tensor(0.1804, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.8785, device='cuda:0'), 'validation_loss_ce': tensor(0.3954, device='cuda:0'), 'validation_loss_bbox': tensor(0.1187, device='cuda:0'), 'validation_loss_giou': tensor(0.4448, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4489, device='cuda:0'), 'train_loss_ce': tensor(0.3335, device='cuda:0'), 'train_loss_bbox': tensor(0.0751, device='cuda:0'), 'train_loss_giou': tensor(0.3699, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.8740, device='cuda:0'), 'validation_loss_ce': tensor(0.3949, device='cuda:0'), 'validation_loss_bbox': tensor(0.1199, device='cuda:0'), 'validation_loss_giou': tensor(0.4397, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8472, device='cuda:0'), 'train_loss_ce': tensor(0.3181, device='cuda:0'), 'train_loss_bbox': tensor(0.0378, device='cuda:0'), 'train_loss_giou': tensor(0.1699, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.8785, device='cuda:0'), 'validation_loss_ce': tensor(0.3940, device='cuda:0'), 'validation_loss_bbox': tensor(0.1190, device='cuda:0'), 'validation_loss_giou': tensor(0.4448, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(1.0123, device='cuda:0'), 'train_loss_ce': tensor(0.4111, device='cuda:0'), 'train_loss_bbox': tensor(0.0362, device='cuda:0'), 'train_loss_giou': tensor(0.2100, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9187, device='cuda:0'), 'validation_loss_ce': tensor(0.3924, device='cuda:0'), 'validation_loss_bbox': tensor(0.1253, device='cuda:0'), 'validation_loss_giou': tensor(0.4500, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.5481, device='cuda:0'), 'train_loss_ce': tensor(0.2719, device='cuda:0'), 'train_loss_bbox': tensor(0.0257, device='cuda:0'), 'train_loss_giou': tensor(0.0739, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9145, device='cuda:0'), 'validation_loss_ce': tensor(0.3937, device='cuda:0'), 'validation_loss_bbox': tensor(0.1219, device='cuda:0'), 'validation_loss_giou': tensor(0.4556, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0651, device='cuda:0'), 'train_loss_ce': tensor(0.3829, device='cuda:0'), 'train_loss_bbox': tensor(0.0515, device='cuda:0'), 'train_loss_giou': tensor(0.2123, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.8978, device='cuda:0'), 'validation_loss_ce': tensor(0.3919, device='cuda:0'), 'validation_loss_bbox': tensor(0.1215, device='cuda:0'), 'validation_loss_giou': tensor(0.4491, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
```
## Examples
{'size': tensor([512, 512]), 'image_id': tensor([1]), 'class_labels': tensor([4]), 'boxes': tensor([[0.2622, 0.5729, 0.0847, 0.0773]]), 'area': tensor([1717.9431]), 'iscrowd': tensor([0]), 'orig_size': tensor([1024, 1024])}

|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
MedicalVision/yolos_tiny_100ep
|
## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.002
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.009
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.003
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.004
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.033
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.054
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.056
```
## Config
- dataset: NIH
- original model: hustvl/yolos-tiny
- lr: 1e-06
- dropout_rate: 0.1
- weight_decay: 0.05
- max_epochs: 100
- train samples: 885
## Logging
### Training process
```
{'validation_loss': tensor(7.4421, device='cuda:0'), 'validation_loss_ce': tensor(2.5115, device='cuda:0'), 'validation_loss_bbox': tensor(0.5845, device='cuda:0'), 'validation_loss_giou': tensor(1.0041, device='cuda:0'), 'validation_cardinality_error': tensor(98.9688, device='cuda:0')}
{'training_loss': tensor(5.3640, device='cuda:0'), 'train_loss_ce': tensor(2.2904, device='cuda:0'), 'train_loss_bbox': tensor(0.3264, device='cuda:0'), 'train_loss_giou': tensor(0.7207, device='cuda:0'), 'train_cardinality_error': tensor(99., device='cuda:0'), 'validation_loss': tensor(6.1285, device='cuda:0'), 'validation_loss_ce': tensor(2.2476, device='cuda:0'), 'validation_loss_bbox': tensor(0.4395, device='cuda:0'), 'validation_loss_giou': tensor(0.8417, device='cuda:0'), 'validation_cardinality_error': tensor(98.7273, device='cuda:0')}
{'training_loss': tensor(4.6269, device='cuda:0'), 'train_loss_ce': tensor(2.0755, device='cuda:0'), 'train_loss_bbox': tensor(0.2549, device='cuda:0'), 'train_loss_giou': tensor(0.6384, device='cuda:0'), 'train_cardinality_error': tensor(97.6000, device='cuda:0'), 'validation_loss': tensor(5.2690, device='cuda:0'), 'validation_loss_ce': tensor(2.0870, device='cuda:0'), 'validation_loss_bbox': tensor(0.3288, device='cuda:0'), 'validation_loss_giou': tensor(0.7689, device='cuda:0'), 'validation_cardinality_error': tensor(96.6364, device='cuda:0')}
{'training_loss': tensor(4.7931, device='cuda:0'), 'train_loss_ce': tensor(1.9471, device='cuda:0'), 'train_loss_bbox': tensor(0.2410, device='cuda:0'), 'train_loss_giou': tensor(0.8204, device='cuda:0'), 'train_cardinality_error': tensor(87.6000, device='cuda:0'), 'validation_loss': tensor(4.8855, device='cuda:0'), 'validation_loss_ce': tensor(1.9507, device='cuda:0'), 'validation_loss_bbox': tensor(0.2969, device='cuda:0'), 'validation_loss_giou': tensor(0.7252, device='cuda:0'), 'validation_cardinality_error': tensor(88.3535, device='cuda:0')}
{'training_loss': tensor(4.7517, device='cuda:0'), 'train_loss_ce': tensor(1.8214, device='cuda:0'), 'train_loss_bbox': tensor(0.2749, device='cuda:0'), 'train_loss_giou': tensor(0.7778, device='cuda:0'), 'train_cardinality_error': tensor(72.2000, device='cuda:0'), 'validation_loss': tensor(4.4990, device='cuda:0'), 'validation_loss_ce': tensor(1.8171, device='cuda:0'), 'validation_loss_bbox': tensor(0.2615, device='cuda:0'), 'validation_loss_giou': tensor(0.6871, device='cuda:0'), 'validation_cardinality_error': tensor(71.3535, device='cuda:0')}
{'training_loss': tensor(4.1045, device='cuda:0'), 'train_loss_ce': tensor(1.7791, device='cuda:0'), 'train_loss_bbox': tensor(0.1798, device='cuda:0'), 'train_loss_giou': tensor(0.7132, device='cuda:0'), 'train_cardinality_error': tensor(61.8000, device='cuda:0'), 'validation_loss': tensor(4.1904, device='cuda:0'), 'validation_loss_ce': tensor(1.6777, device='cuda:0'), 'validation_loss_bbox': tensor(0.2327, device='cuda:0'), 'validation_loss_giou': tensor(0.6746, device='cuda:0'), 'validation_cardinality_error': tensor(44.9495, device='cuda:0')}
{'training_loss': tensor(3.6955, device='cuda:0'), 'train_loss_ce': tensor(1.6416, device='cuda:0'), 'train_loss_bbox': tensor(0.1936, device='cuda:0'), 'train_loss_giou': tensor(0.5429, device='cuda:0'), 'train_cardinality_error': tensor(47.4000, device='cuda:0'), 'validation_loss': tensor(3.9828, device='cuda:0'), 'validation_loss_ce': tensor(1.5497, device='cuda:0'), 'validation_loss_bbox': tensor(0.2214, device='cuda:0'), 'validation_loss_giou': tensor(0.6631, device='cuda:0'), 'validation_cardinality_error': tensor(24.1818, device='cuda:0')}
{'training_loss': tensor(3.2076, device='cuda:0'), 'train_loss_ce': tensor(1.3885, device='cuda:0'), 'train_loss_bbox': tensor(0.1682, device='cuda:0'), 'train_loss_giou': tensor(0.4889, device='cuda:0'), 'train_cardinality_error': tensor(5.6000, device='cuda:0'), 'validation_loss': tensor(3.8317, device='cuda:0'), 'validation_loss_ce': tensor(1.4248, device='cuda:0'), 'validation_loss_bbox': tensor(0.2183, device='cuda:0'), 'validation_loss_giou': tensor(0.6578, device='cuda:0'), 'validation_cardinality_error': tensor(10.5152, device='cuda:0')}
{'training_loss': tensor(3.3197, device='cuda:0'), 'train_loss_ce': tensor(1.3421, device='cuda:0'), 'train_loss_bbox': tensor(0.1697, device='cuda:0'), 'train_loss_giou': tensor(0.5645, device='cuda:0'), 'train_cardinality_error': tensor(3.8000, device='cuda:0'), 'validation_loss': tensor(3.7097, device='cuda:0'), 'validation_loss_ce': tensor(1.3099, device='cuda:0'), 'validation_loss_bbox': tensor(0.2153, device='cuda:0'), 'validation_loss_giou': tensor(0.6616, device='cuda:0'), 'validation_cardinality_error': tensor(4.3535, device='cuda:0')}
{'training_loss': tensor(3.1406, device='cuda:0'), 'train_loss_ce': tensor(1.2408, device='cuda:0'), 'train_loss_bbox': tensor(0.1745, device='cuda:0'), 'train_loss_giou': tensor(0.5138, device='cuda:0'), 'train_cardinality_error': tensor(3.6000, device='cuda:0'), 'validation_loss': tensor(3.5652, device='cuda:0'), 'validation_loss_ce': tensor(1.1933, device='cuda:0'), 'validation_loss_bbox': tensor(0.2128, device='cuda:0'), 'validation_loss_giou': tensor(0.6538, device='cuda:0'), 'validation_cardinality_error': tensor(1.9394, device='cuda:0')}
{'training_loss': tensor(3.1124, device='cuda:0'), 'train_loss_ce': tensor(1.1540, device='cuda:0'), 'train_loss_bbox': tensor(0.1709, device='cuda:0'), 'train_loss_giou': tensor(0.5520, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(3.4331, device='cuda:0'), 'validation_loss_ce': tensor(1.0883, device='cuda:0'), 'validation_loss_bbox': tensor(0.2090, device='cuda:0'), 'validation_loss_giou': tensor(0.6499, device='cuda:0'), 'validation_cardinality_error': tensor(1.2828, device='cuda:0')}
{'training_loss': tensor(3.1652, device='cuda:0'), 'train_loss_ce': tensor(1.0350, device='cuda:0'), 'train_loss_bbox': tensor(0.2501, device='cuda:0'), 'train_loss_giou': tensor(0.4399, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(3.3208, device='cuda:0'), 'validation_loss_ce': tensor(0.9921, device='cuda:0'), 'validation_loss_bbox': tensor(0.2082, device='cuda:0'), 'validation_loss_giou': tensor(0.6439, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.7558, device='cuda:0'), 'train_loss_ce': tensor(0.8441, device='cuda:0'), 'train_loss_bbox': tensor(0.1465, device='cuda:0'), 'train_loss_giou': tensor(0.5895, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(3.2377, device='cuda:0'), 'validation_loss_ce': tensor(0.9079, device='cuda:0'), 'validation_loss_bbox': tensor(0.2120, device='cuda:0'), 'validation_loss_giou': tensor(0.6349, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(3.1056, device='cuda:0'), 'train_loss_ce': tensor(0.8188, device='cuda:0'), 'train_loss_bbox': tensor(0.2010, device='cuda:0'), 'train_loss_giou': tensor(0.6410, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(3.1547, device='cuda:0'), 'validation_loss_ce': tensor(0.8358, device='cuda:0'), 'validation_loss_bbox': tensor(0.2115, device='cuda:0'), 'validation_loss_giou': tensor(0.6307, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(3.3618, device='cuda:0'), 'train_loss_ce': tensor(0.8644, device='cuda:0'), 'train_loss_bbox': tensor(0.2050, device='cuda:0'), 'train_loss_giou': tensor(0.7361, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(3.0753, device='cuda:0'), 'validation_loss_ce': tensor(0.7736, device='cuda:0'), 'validation_loss_bbox': tensor(0.2098, device='cuda:0'), 'validation_loss_giou': tensor(0.6264, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3893, device='cuda:0'), 'train_loss_ce': tensor(0.7473, device='cuda:0'), 'train_loss_bbox': tensor(0.1331, device='cuda:0'), 'train_loss_giou': tensor(0.4883, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(3.0103, device='cuda:0'), 'validation_loss_ce': tensor(0.7209, device='cuda:0'), 'validation_loss_bbox': tensor(0.2076, device='cuda:0'), 'validation_loss_giou': tensor(0.6257, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5919, device='cuda:0'), 'train_loss_ce': tensor(0.6147, device='cuda:0'), 'train_loss_bbox': tensor(0.1713, device='cuda:0'), 'train_loss_giou': tensor(0.5603, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.9583, device='cuda:0'), 'validation_loss_ce': tensor(0.6792, device='cuda:0'), 'validation_loss_bbox': tensor(0.2056, device='cuda:0'), 'validation_loss_giou': tensor(0.6255, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(3.0810, device='cuda:0'), 'train_loss_ce': tensor(0.5400, device='cuda:0'), 'train_loss_bbox': tensor(0.2192, device='cuda:0'), 'train_loss_giou': tensor(0.7225, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.9196, device='cuda:0'), 'validation_loss_ce': tensor(0.6439, device='cuda:0'), 'validation_loss_bbox': tensor(0.2061, device='cuda:0'), 'validation_loss_giou': tensor(0.6227, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6011, device='cuda:0'), 'train_loss_ce': tensor(0.5601, device='cuda:0'), 'train_loss_bbox': tensor(0.1572, device='cuda:0'), 'train_loss_giou': tensor(0.6275, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.8905, device='cuda:0'), 'validation_loss_ce': tensor(0.6165, device='cuda:0'), 'validation_loss_bbox': tensor(0.2054, device='cuda:0'), 'validation_loss_giou': tensor(0.6235, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(3.0947, device='cuda:0'), 'train_loss_ce': tensor(0.5913, device='cuda:0'), 'train_loss_bbox': tensor(0.2277, device='cuda:0'), 'train_loss_giou': tensor(0.6826, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.8587, device='cuda:0'), 'validation_loss_ce': tensor(0.5922, device='cuda:0'), 'validation_loss_bbox': tensor(0.2026, device='cuda:0'), 'validation_loss_giou': tensor(0.6267, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5062, device='cuda:0'), 'train_loss_ce': tensor(0.5246, device='cuda:0'), 'train_loss_bbox': tensor(0.1848, device='cuda:0'), 'train_loss_giou': tensor(0.5288, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.8384, device='cuda:0'), 'validation_loss_ce': tensor(0.5722, device='cuda:0'), 'validation_loss_bbox': tensor(0.2042, device='cuda:0'), 'validation_loss_giou': tensor(0.6225, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8459, device='cuda:0'), 'train_loss_ce': tensor(0.4725, device='cuda:0'), 'train_loss_bbox': tensor(0.1202, device='cuda:0'), 'train_loss_giou': tensor(0.3863, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.8109, device='cuda:0'), 'validation_loss_ce': tensor(0.5569, device='cuda:0'), 'validation_loss_bbox': tensor(0.2019, device='cuda:0'), 'validation_loss_giou': tensor(0.6223, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1466, device='cuda:0'), 'train_loss_ce': tensor(0.5486, device='cuda:0'), 'train_loss_bbox': tensor(0.1195, device='cuda:0'), 'train_loss_giou': tensor(0.5003, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7918, device='cuda:0'), 'validation_loss_ce': tensor(0.5419, device='cuda:0'), 'validation_loss_bbox': tensor(0.2015, device='cuda:0'), 'validation_loss_giou': tensor(0.6213, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8757, device='cuda:0'), 'train_loss_ce': tensor(0.5642, device='cuda:0'), 'train_loss_bbox': tensor(0.1445, device='cuda:0'), 'train_loss_giou': tensor(0.2944, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7745, device='cuda:0'), 'validation_loss_ce': tensor(0.5278, device='cuda:0'), 'validation_loss_bbox': tensor(0.2026, device='cuda:0'), 'validation_loss_giou': tensor(0.6169, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6128, device='cuda:0'), 'train_loss_ce': tensor(0.4974, device='cuda:0'), 'train_loss_bbox': tensor(0.1414, device='cuda:0'), 'train_loss_giou': tensor(0.7041, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7593, device='cuda:0'), 'validation_loss_ce': tensor(0.5189, device='cuda:0'), 'validation_loss_bbox': tensor(0.2021, device='cuda:0'), 'validation_loss_giou': tensor(0.6150, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7824, device='cuda:0'), 'train_loss_ce': tensor(0.4890, device='cuda:0'), 'train_loss_bbox': tensor(0.1042, device='cuda:0'), 'train_loss_giou': tensor(0.3861, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7412, device='cuda:0'), 'validation_loss_ce': tensor(0.5102, device='cuda:0'), 'validation_loss_bbox': tensor(0.2015, device='cuda:0'), 'validation_loss_giou': tensor(0.6118, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9606, device='cuda:0'), 'train_loss_ce': tensor(0.5061, device='cuda:0'), 'train_loss_bbox': tensor(0.1328, device='cuda:0'), 'train_loss_giou': tensor(0.3954, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7341, device='cuda:0'), 'validation_loss_ce': tensor(0.5061, device='cuda:0'), 'validation_loss_bbox': tensor(0.1992, device='cuda:0'), 'validation_loss_giou': tensor(0.6160, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.8304, device='cuda:0'), 'train_loss_ce': tensor(0.5065, device='cuda:0'), 'train_loss_bbox': tensor(0.2069, device='cuda:0'), 'train_loss_giou': tensor(0.6447, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7390, device='cuda:0'), 'validation_loss_ce': tensor(0.5002, device='cuda:0'), 'validation_loss_bbox': tensor(0.2018, device='cuda:0'), 'validation_loss_giou': tensor(0.6148, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6329, device='cuda:0'), 'train_loss_ce': tensor(0.4457, device='cuda:0'), 'train_loss_bbox': tensor(0.1868, device='cuda:0'), 'train_loss_giou': tensor(0.6266, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7249, device='cuda:0'), 'validation_loss_ce': tensor(0.4955, device='cuda:0'), 'validation_loss_bbox': tensor(0.1999, device='cuda:0'), 'validation_loss_giou': tensor(0.6150, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.9033, device='cuda:0'), 'train_loss_ce': tensor(0.4851, device='cuda:0'), 'train_loss_bbox': tensor(0.2238, device='cuda:0'), 'train_loss_giou': tensor(0.6495, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7176, device='cuda:0'), 'validation_loss_ce': tensor(0.4911, device='cuda:0'), 'validation_loss_bbox': tensor(0.2013, device='cuda:0'), 'validation_loss_giou': tensor(0.6099, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.9650, device='cuda:0'), 'train_loss_ce': tensor(0.5187, device='cuda:0'), 'train_loss_bbox': tensor(0.2221, device='cuda:0'), 'train_loss_giou': tensor(0.6678, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7125, device='cuda:0'), 'validation_loss_ce': tensor(0.4864, device='cuda:0'), 'validation_loss_bbox': tensor(0.1995, device='cuda:0'), 'validation_loss_giou': tensor(0.6143, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.9593, device='cuda:0'), 'train_loss_ce': tensor(0.4404, device='cuda:0'), 'train_loss_bbox': tensor(0.1834, device='cuda:0'), 'train_loss_giou': tensor(0.8008, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7055, device='cuda:0'), 'validation_loss_ce': tensor(0.4840, device='cuda:0'), 'validation_loss_bbox': tensor(0.2003, device='cuda:0'), 'validation_loss_giou': tensor(0.6100, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1896, device='cuda:0'), 'train_loss_ce': tensor(0.4241, device='cuda:0'), 'train_loss_bbox': tensor(0.0758, device='cuda:0'), 'train_loss_giou': tensor(0.1933, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6971, device='cuda:0'), 'validation_loss_ce': tensor(0.4806, device='cuda:0'), 'validation_loss_bbox': tensor(0.2012, device='cuda:0'), 'validation_loss_giou': tensor(0.6053, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9310, device='cuda:0'), 'train_loss_ce': tensor(0.4291, device='cuda:0'), 'train_loss_bbox': tensor(0.1107, device='cuda:0'), 'train_loss_giou': tensor(0.4743, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6835, device='cuda:0'), 'validation_loss_ce': tensor(0.4779, device='cuda:0'), 'validation_loss_bbox': tensor(0.1983, device='cuda:0'), 'validation_loss_giou': tensor(0.6070, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8326, device='cuda:0'), 'train_loss_ce': tensor(0.4910, device='cuda:0'), 'train_loss_bbox': tensor(0.1155, device='cuda:0'), 'train_loss_giou': tensor(0.3822, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6924, device='cuda:0'), 'validation_loss_ce': tensor(0.4747, device='cuda:0'), 'validation_loss_bbox': tensor(0.1989, device='cuda:0'), 'validation_loss_giou': tensor(0.6115, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1651, device='cuda:0'), 'train_loss_ce': tensor(0.4247, device='cuda:0'), 'train_loss_bbox': tensor(0.1594, device='cuda:0'), 'train_loss_giou': tensor(0.4716, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6750, device='cuda:0'), 'validation_loss_ce': tensor(0.4747, device='cuda:0'), 'validation_loss_bbox': tensor(0.1977, device='cuda:0'), 'validation_loss_giou': tensor(0.6059, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0874, device='cuda:0'), 'train_loss_ce': tensor(0.4776, device='cuda:0'), 'train_loss_bbox': tensor(0.1475, device='cuda:0'), 'train_loss_giou': tensor(0.4363, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6784, device='cuda:0'), 'validation_loss_ce': tensor(0.4713, device='cuda:0'), 'validation_loss_bbox': tensor(0.1979, device='cuda:0'), 'validation_loss_giou': tensor(0.6088, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9946, device='cuda:0'), 'train_loss_ce': tensor(0.4626, device='cuda:0'), 'train_loss_bbox': tensor(0.1389, device='cuda:0'), 'train_loss_giou': tensor(0.4188, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6744, device='cuda:0'), 'validation_loss_ce': tensor(0.4698, device='cuda:0'), 'validation_loss_bbox': tensor(0.1988, device='cuda:0'), 'validation_loss_giou': tensor(0.6054, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0583, device='cuda:0'), 'train_loss_ce': tensor(0.4076, device='cuda:0'), 'train_loss_bbox': tensor(0.1304, device='cuda:0'), 'train_loss_giou': tensor(0.4993, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6416, device='cuda:0'), 'validation_loss_ce': tensor(0.4677, device='cuda:0'), 'validation_loss_bbox': tensor(0.1947, device='cuda:0'), 'validation_loss_giou': tensor(0.6002, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6100, device='cuda:0'), 'train_loss_ce': tensor(0.4910, device='cuda:0'), 'train_loss_bbox': tensor(0.0847, device='cuda:0'), 'train_loss_giou': tensor(0.3478, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6569, device='cuda:0'), 'validation_loss_ce': tensor(0.4668, device='cuda:0'), 'validation_loss_bbox': tensor(0.1978, device='cuda:0'), 'validation_loss_giou': tensor(0.6005, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9128, device='cuda:0'), 'train_loss_ce': tensor(0.4083, device='cuda:0'), 'train_loss_bbox': tensor(0.1298, device='cuda:0'), 'train_loss_giou': tensor(0.4278, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6522, device='cuda:0'), 'validation_loss_ce': tensor(0.4649, device='cuda:0'), 'validation_loss_bbox': tensor(0.1968, device='cuda:0'), 'validation_loss_giou': tensor(0.6016, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6468, device='cuda:0'), 'train_loss_ce': tensor(0.4145, device='cuda:0'), 'train_loss_bbox': tensor(0.1012, device='cuda:0'), 'train_loss_giou': tensor(0.3631, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6414, device='cuda:0'), 'validation_loss_ce': tensor(0.4628, device='cuda:0'), 'validation_loss_bbox': tensor(0.1959, device='cuda:0'), 'validation_loss_giou': tensor(0.5997, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1550, device='cuda:0'), 'train_loss_ce': tensor(0.4127, device='cuda:0'), 'train_loss_bbox': tensor(0.1374, device='cuda:0'), 'train_loss_giou': tensor(0.5277, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6425, device='cuda:0'), 'validation_loss_ce': tensor(0.4617, device='cuda:0'), 'validation_loss_bbox': tensor(0.1981, device='cuda:0'), 'validation_loss_giou': tensor(0.5951, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6485, device='cuda:0'), 'train_loss_ce': tensor(0.4828, device='cuda:0'), 'train_loss_bbox': tensor(0.1050, device='cuda:0'), 'train_loss_giou': tensor(0.3204, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6531, device='cuda:0'), 'validation_loss_ce': tensor(0.4611, device='cuda:0'), 'validation_loss_bbox': tensor(0.1969, device='cuda:0'), 'validation_loss_giou': tensor(0.6039, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2124, device='cuda:0'), 'train_loss_ce': tensor(0.4464, device='cuda:0'), 'train_loss_bbox': tensor(0.1366, device='cuda:0'), 'train_loss_giou': tensor(0.5415, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6317, device='cuda:0'), 'validation_loss_ce': tensor(0.4610, device='cuda:0'), 'validation_loss_bbox': tensor(0.1945, device='cuda:0'), 'validation_loss_giou': tensor(0.5992, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0973, device='cuda:0'), 'train_loss_ce': tensor(0.5066, device='cuda:0'), 'train_loss_bbox': tensor(0.1410, device='cuda:0'), 'train_loss_giou': tensor(0.4428, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6351, device='cuda:0'), 'validation_loss_ce': tensor(0.4587, device='cuda:0'), 'validation_loss_bbox': tensor(0.1964, device='cuda:0'), 'validation_loss_giou': tensor(0.5973, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(3.0631, device='cuda:0'), 'train_loss_ce': tensor(0.4982, device='cuda:0'), 'train_loss_bbox': tensor(0.2281, device='cuda:0'), 'train_loss_giou': tensor(0.7121, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6270, device='cuda:0'), 'validation_loss_ce': tensor(0.4579, device='cuda:0'), 'validation_loss_bbox': tensor(0.1950, device='cuda:0'), 'validation_loss_giou': tensor(0.5970, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8231, device='cuda:0'), 'train_loss_ce': tensor(0.4370, device='cuda:0'), 'train_loss_bbox': tensor(0.1023, device='cuda:0'), 'train_loss_giou': tensor(0.4374, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6277, device='cuda:0'), 'validation_loss_ce': tensor(0.4557, device='cuda:0'), 'validation_loss_bbox': tensor(0.1953, device='cuda:0'), 'validation_loss_giou': tensor(0.5978, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.8109, device='cuda:0'), 'train_loss_ce': tensor(0.4927, device='cuda:0'), 'train_loss_bbox': tensor(0.2012, device='cuda:0'), 'train_loss_giou': tensor(0.6562, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6170, device='cuda:0'), 'validation_loss_ce': tensor(0.4545, device='cuda:0'), 'validation_loss_bbox': tensor(0.1947, device='cuda:0'), 'validation_loss_giou': tensor(0.5945, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6291, device='cuda:0'), 'train_loss_ce': tensor(0.4953, device='cuda:0'), 'train_loss_bbox': tensor(0.1611, device='cuda:0'), 'train_loss_giou': tensor(0.6643, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6084, device='cuda:0'), 'validation_loss_ce': tensor(0.4543, device='cuda:0'), 'validation_loss_bbox': tensor(0.1929, device='cuda:0'), 'validation_loss_giou': tensor(0.5948, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5380, device='cuda:0'), 'train_loss_ce': tensor(0.4861, device='cuda:0'), 'train_loss_bbox': tensor(0.1045, device='cuda:0'), 'train_loss_giou': tensor(0.2647, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6087, device='cuda:0'), 'validation_loss_ce': tensor(0.4521, device='cuda:0'), 'validation_loss_bbox': tensor(0.1949, device='cuda:0'), 'validation_loss_giou': tensor(0.5911, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9147, device='cuda:0'), 'train_loss_ce': tensor(0.4746, device='cuda:0'), 'train_loss_bbox': tensor(0.1096, device='cuda:0'), 'train_loss_giou': tensor(0.4460, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6031, device='cuda:0'), 'validation_loss_ce': tensor(0.4519, device='cuda:0'), 'validation_loss_bbox': tensor(0.1924, device='cuda:0'), 'validation_loss_giou': tensor(0.5946, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4415, device='cuda:0'), 'train_loss_ce': tensor(0.4633, device='cuda:0'), 'train_loss_bbox': tensor(0.1337, device='cuda:0'), 'train_loss_giou': tensor(0.6547, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5929, device='cuda:0'), 'validation_loss_ce': tensor(0.4506, device='cuda:0'), 'validation_loss_bbox': tensor(0.1925, device='cuda:0'), 'validation_loss_giou': tensor(0.5898, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3528, device='cuda:0'), 'train_loss_ce': tensor(0.4787, device='cuda:0'), 'train_loss_bbox': tensor(0.0845, device='cuda:0'), 'train_loss_giou': tensor(0.2259, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5939, device='cuda:0'), 'validation_loss_ce': tensor(0.4496, device='cuda:0'), 'validation_loss_bbox': tensor(0.1925, device='cuda:0'), 'validation_loss_giou': tensor(0.5908, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3855, device='cuda:0'), 'train_loss_ce': tensor(0.4904, device='cuda:0'), 'train_loss_bbox': tensor(0.1708, device='cuda:0'), 'train_loss_giou': tensor(0.5206, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5926, device='cuda:0'), 'validation_loss_ce': tensor(0.4489, device='cuda:0'), 'validation_loss_bbox': tensor(0.1923, device='cuda:0'), 'validation_loss_giou': tensor(0.5911, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9941, device='cuda:0'), 'train_loss_ce': tensor(0.4179, device='cuda:0'), 'train_loss_bbox': tensor(0.1169, device='cuda:0'), 'train_loss_giou': tensor(0.4957, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6010, device='cuda:0'), 'validation_loss_ce': tensor(0.4481, device='cuda:0'), 'validation_loss_bbox': tensor(0.1929, device='cuda:0'), 'validation_loss_giou': tensor(0.5941, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3430, device='cuda:0'), 'train_loss_ce': tensor(0.4101, device='cuda:0'), 'train_loss_bbox': tensor(0.1676, device='cuda:0'), 'train_loss_giou': tensor(0.5475, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5848, device='cuda:0'), 'validation_loss_ce': tensor(0.4476, device='cuda:0'), 'validation_loss_bbox': tensor(0.1902, device='cuda:0'), 'validation_loss_giou': tensor(0.5930, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0356, device='cuda:0'), 'train_loss_ce': tensor(0.3885, device='cuda:0'), 'train_loss_bbox': tensor(0.0528, device='cuda:0'), 'train_loss_giou': tensor(0.1914, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5917, device='cuda:0'), 'validation_loss_ce': tensor(0.4471, device='cuda:0'), 'validation_loss_bbox': tensor(0.1912, device='cuda:0'), 'validation_loss_giou': tensor(0.5943, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1007, device='cuda:0'), 'train_loss_ce': tensor(0.3253, device='cuda:0'), 'train_loss_bbox': tensor(0.0563, device='cuda:0'), 'train_loss_giou': tensor(0.2470, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5969, device='cuda:0'), 'validation_loss_ce': tensor(0.4461, device='cuda:0'), 'validation_loss_bbox': tensor(0.1943, device='cuda:0'), 'validation_loss_giou': tensor(0.5897, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8121, device='cuda:0'), 'train_loss_ce': tensor(0.3974, device='cuda:0'), 'train_loss_bbox': tensor(0.0934, device='cuda:0'), 'train_loss_giou': tensor(0.4737, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5796, device='cuda:0'), 'validation_loss_ce': tensor(0.4455, device='cuda:0'), 'validation_loss_bbox': tensor(0.1896, device='cuda:0'), 'validation_loss_giou': tensor(0.5930, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0623, device='cuda:0'), 'train_loss_ce': tensor(0.3080, device='cuda:0'), 'train_loss_bbox': tensor(0.1189, device='cuda:0'), 'train_loss_giou': tensor(0.5798, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5785, device='cuda:0'), 'validation_loss_ce': tensor(0.4440, device='cuda:0'), 'validation_loss_bbox': tensor(0.1901, device='cuda:0'), 'validation_loss_giou': tensor(0.5921, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6082, device='cuda:0'), 'train_loss_ce': tensor(0.4056, device='cuda:0'), 'train_loss_bbox': tensor(0.1185, device='cuda:0'), 'train_loss_giou': tensor(0.3051, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5693, device='cuda:0'), 'validation_loss_ce': tensor(0.4425, device='cuda:0'), 'validation_loss_bbox': tensor(0.1886, device='cuda:0'), 'validation_loss_giou': tensor(0.5918, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4199, device='cuda:0'), 'train_loss_ce': tensor(0.4382, device='cuda:0'), 'train_loss_bbox': tensor(0.1484, device='cuda:0'), 'train_loss_giou': tensor(0.6199, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5728, device='cuda:0'), 'validation_loss_ce': tensor(0.4417, device='cuda:0'), 'validation_loss_bbox': tensor(0.1904, device='cuda:0'), 'validation_loss_giou': tensor(0.5896, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4047, device='cuda:0'), 'train_loss_ce': tensor(0.3788, device='cuda:0'), 'train_loss_bbox': tensor(0.1592, device='cuda:0'), 'train_loss_giou': tensor(0.6149, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5722, device='cuda:0'), 'validation_loss_ce': tensor(0.4420, device='cuda:0'), 'validation_loss_bbox': tensor(0.1896, device='cuda:0'), 'validation_loss_giou': tensor(0.5912, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9535, device='cuda:0'), 'train_loss_ce': tensor(0.4432, device='cuda:0'), 'train_loss_bbox': tensor(0.1193, device='cuda:0'), 'train_loss_giou': tensor(0.4570, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5639, device='cuda:0'), 'validation_loss_ce': tensor(0.4427, device='cuda:0'), 'validation_loss_bbox': tensor(0.1875, device='cuda:0'), 'validation_loss_giou': tensor(0.5918, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0176, device='cuda:0'), 'train_loss_ce': tensor(0.4873, device='cuda:0'), 'train_loss_bbox': tensor(0.1339, device='cuda:0'), 'train_loss_giou': tensor(0.4305, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5706, device='cuda:0'), 'validation_loss_ce': tensor(0.4407, device='cuda:0'), 'validation_loss_bbox': tensor(0.1889, device='cuda:0'), 'validation_loss_giou': tensor(0.5928, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0423, device='cuda:0'), 'train_loss_ce': tensor(0.4026, device='cuda:0'), 'train_loss_bbox': tensor(0.1162, device='cuda:0'), 'train_loss_giou': tensor(0.5294, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5695, device='cuda:0'), 'validation_loss_ce': tensor(0.4393, device='cuda:0'), 'validation_loss_bbox': tensor(0.1894, device='cuda:0'), 'validation_loss_giou': tensor(0.5916, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5977, device='cuda:0'), 'train_loss_ce': tensor(0.5043, device='cuda:0'), 'train_loss_bbox': tensor(0.2092, device='cuda:0'), 'train_loss_giou': tensor(0.5237, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5655, device='cuda:0'), 'validation_loss_ce': tensor(0.4399, device='cuda:0'), 'validation_loss_bbox': tensor(0.1883, device='cuda:0'), 'validation_loss_giou': tensor(0.5920, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7494, device='cuda:0'), 'train_loss_ce': tensor(0.3655, device='cuda:0'), 'train_loss_bbox': tensor(0.1080, device='cuda:0'), 'train_loss_giou': tensor(0.4219, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5542, device='cuda:0'), 'validation_loss_ce': tensor(0.4394, device='cuda:0'), 'validation_loss_bbox': tensor(0.1872, device='cuda:0'), 'validation_loss_giou': tensor(0.5894, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7155, device='cuda:0'), 'train_loss_ce': tensor(0.3842, device='cuda:0'), 'train_loss_bbox': tensor(0.1178, device='cuda:0'), 'train_loss_giou': tensor(0.3711, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5515, device='cuda:0'), 'validation_loss_ce': tensor(0.4396, device='cuda:0'), 'validation_loss_bbox': tensor(0.1865, device='cuda:0'), 'validation_loss_giou': tensor(0.5896, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5134, device='cuda:0'), 'train_loss_ce': tensor(0.4339, device='cuda:0'), 'train_loss_bbox': tensor(0.0862, device='cuda:0'), 'train_loss_giou': tensor(0.3242, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5449, device='cuda:0'), 'validation_loss_ce': tensor(0.4382, device='cuda:0'), 'validation_loss_bbox': tensor(0.1860, device='cuda:0'), 'validation_loss_giou': tensor(0.5882, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1454, device='cuda:0'), 'train_loss_ce': tensor(0.4427, device='cuda:0'), 'train_loss_bbox': tensor(0.1563, device='cuda:0'), 'train_loss_giou': tensor(0.4606, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5667, device='cuda:0'), 'validation_loss_ce': tensor(0.4387, device='cuda:0'), 'validation_loss_bbox': tensor(0.1888, device='cuda:0'), 'validation_loss_giou': tensor(0.5920, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1418, device='cuda:0'), 'train_loss_ce': tensor(0.4907, device='cuda:0'), 'train_loss_bbox': tensor(0.1390, device='cuda:0'), 'train_loss_giou': tensor(0.4781, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5471, device='cuda:0'), 'validation_loss_ce': tensor(0.4371, device='cuda:0'), 'validation_loss_bbox': tensor(0.1864, device='cuda:0'), 'validation_loss_giou': tensor(0.5891, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6641, device='cuda:0'), 'train_loss_ce': tensor(0.4517, device='cuda:0'), 'train_loss_bbox': tensor(0.1113, device='cuda:0'), 'train_loss_giou': tensor(0.3280, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5497, device='cuda:0'), 'validation_loss_ce': tensor(0.4370, device='cuda:0'), 'validation_loss_bbox': tensor(0.1869, device='cuda:0'), 'validation_loss_giou': tensor(0.5891, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0588, device='cuda:0'), 'train_loss_ce': tensor(0.4640, device='cuda:0'), 'train_loss_bbox': tensor(0.1414, device='cuda:0'), 'train_loss_giou': tensor(0.4440, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5494, device='cuda:0'), 'validation_loss_ce': tensor(0.4363, device='cuda:0'), 'validation_loss_bbox': tensor(0.1860, device='cuda:0'), 'validation_loss_giou': tensor(0.5916, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4668, device='cuda:0'), 'train_loss_ce': tensor(0.4662, device='cuda:0'), 'train_loss_bbox': tensor(0.0906, device='cuda:0'), 'train_loss_giou': tensor(0.2739, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5355, device='cuda:0'), 'validation_loss_ce': tensor(0.4356, device='cuda:0'), 'validation_loss_bbox': tensor(0.1840, device='cuda:0'), 'validation_loss_giou': tensor(0.5900, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5525, device='cuda:0'), 'train_loss_ce': tensor(0.4230, device='cuda:0'), 'train_loss_bbox': tensor(0.0795, device='cuda:0'), 'train_loss_giou': tensor(0.3660, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5437, device='cuda:0'), 'validation_loss_ce': tensor(0.4360, device='cuda:0'), 'validation_loss_bbox': tensor(0.1872, device='cuda:0'), 'validation_loss_giou': tensor(0.5859, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0347, device='cuda:0'), 'train_loss_ce': tensor(0.3822, device='cuda:0'), 'train_loss_bbox': tensor(0.1549, device='cuda:0'), 'train_loss_giou': tensor(0.4391, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5326, device='cuda:0'), 'validation_loss_ce': tensor(0.4352, device='cuda:0'), 'validation_loss_bbox': tensor(0.1859, device='cuda:0'), 'validation_loss_giou': tensor(0.5838, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6319, device='cuda:0'), 'train_loss_ce': tensor(0.4843, device='cuda:0'), 'train_loss_bbox': tensor(0.0757, device='cuda:0'), 'train_loss_giou': tensor(0.3845, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5430, device='cuda:0'), 'validation_loss_ce': tensor(0.4347, device='cuda:0'), 'validation_loss_bbox': tensor(0.1858, device='cuda:0'), 'validation_loss_giou': tensor(0.5896, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2715, device='cuda:0'), 'train_loss_ce': tensor(0.4234, device='cuda:0'), 'train_loss_bbox': tensor(0.0752, device='cuda:0'), 'train_loss_giou': tensor(0.2360, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5396, device='cuda:0'), 'validation_loss_ce': tensor(0.4339, device='cuda:0'), 'validation_loss_bbox': tensor(0.1871, device='cuda:0'), 'validation_loss_giou': tensor(0.5852, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0096, device='cuda:0'), 'train_loss_ce': tensor(0.3640, device='cuda:0'), 'train_loss_bbox': tensor(0.1264, device='cuda:0'), 'train_loss_giou': tensor(0.5067, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5445, device='cuda:0'), 'validation_loss_ce': tensor(0.4326, device='cuda:0'), 'validation_loss_bbox': tensor(0.1859, device='cuda:0'), 'validation_loss_giou': tensor(0.5912, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4542, device='cuda:0'), 'train_loss_ce': tensor(0.3515, device='cuda:0'), 'train_loss_bbox': tensor(0.1006, device='cuda:0'), 'train_loss_giou': tensor(0.2998, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5331, device='cuda:0'), 'validation_loss_ce': tensor(0.4338, device='cuda:0'), 'validation_loss_bbox': tensor(0.1851, device='cuda:0'), 'validation_loss_giou': tensor(0.5870, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4403, device='cuda:0'), 'train_loss_ce': tensor(0.2866, device='cuda:0'), 'train_loss_bbox': tensor(0.0839, device='cuda:0'), 'train_loss_giou': tensor(0.3673, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5408, device='cuda:0'), 'validation_loss_ce': tensor(0.4336, device='cuda:0'), 'validation_loss_bbox': tensor(0.1854, device='cuda:0'), 'validation_loss_giou': tensor(0.5901, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3805, device='cuda:0'), 'train_loss_ce': tensor(0.3999, device='cuda:0'), 'train_loss_bbox': tensor(0.1305, device='cuda:0'), 'train_loss_giou': tensor(0.6641, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5276, device='cuda:0'), 'validation_loss_ce': tensor(0.4311, device='cuda:0'), 'validation_loss_bbox': tensor(0.1828, device='cuda:0'), 'validation_loss_giou': tensor(0.5913, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4951, device='cuda:0'), 'train_loss_ce': tensor(0.4566, device='cuda:0'), 'train_loss_bbox': tensor(0.1746, device='cuda:0'), 'train_loss_giou': tensor(0.5827, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5454, device='cuda:0'), 'validation_loss_ce': tensor(0.4331, device='cuda:0'), 'validation_loss_bbox': tensor(0.1866, device='cuda:0'), 'validation_loss_giou': tensor(0.5897, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8686, device='cuda:0'), 'train_loss_ce': tensor(0.4667, device='cuda:0'), 'train_loss_bbox': tensor(0.1072, device='cuda:0'), 'train_loss_giou': tensor(0.4330, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5325, device='cuda:0'), 'validation_loss_ce': tensor(0.4310, device='cuda:0'), 'validation_loss_bbox': tensor(0.1854, device='cuda:0'), 'validation_loss_giou': tensor(0.5873, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4417, device='cuda:0'), 'train_loss_ce': tensor(0.4591, device='cuda:0'), 'train_loss_bbox': tensor(0.0979, device='cuda:0'), 'train_loss_giou': tensor(0.2466, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5337, device='cuda:0'), 'validation_loss_ce': tensor(0.4309, device='cuda:0'), 'validation_loss_bbox': tensor(0.1859, device='cuda:0'), 'validation_loss_giou': tensor(0.5867, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8012, device='cuda:0'), 'train_loss_ce': tensor(0.4728, device='cuda:0'), 'train_loss_bbox': tensor(0.1020, device='cuda:0'), 'train_loss_giou': tensor(0.4092, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5271, device='cuda:0'), 'validation_loss_ce': tensor(0.4309, device='cuda:0'), 'validation_loss_bbox': tensor(0.1841, device='cuda:0'), 'validation_loss_giou': tensor(0.5878, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2664, device='cuda:0'), 'train_loss_ce': tensor(0.4616, device='cuda:0'), 'train_loss_bbox': tensor(0.1533, device='cuda:0'), 'train_loss_giou': tensor(0.5191, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5326, device='cuda:0'), 'validation_loss_ce': tensor(0.4308, device='cuda:0'), 'validation_loss_bbox': tensor(0.1855, device='cuda:0'), 'validation_loss_giou': tensor(0.5870, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6760, device='cuda:0'), 'train_loss_ce': tensor(0.3843, device='cuda:0'), 'train_loss_bbox': tensor(0.1065, device='cuda:0'), 'train_loss_giou': tensor(0.3796, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5274, device='cuda:0'), 'validation_loss_ce': tensor(0.4312, device='cuda:0'), 'validation_loss_bbox': tensor(0.1832, device='cuda:0'), 'validation_loss_giou': tensor(0.5902, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9554, device='cuda:0'), 'train_loss_ce': tensor(0.3618, device='cuda:0'), 'train_loss_bbox': tensor(0.1362, device='cuda:0'), 'train_loss_giou': tensor(0.4562, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5353, device='cuda:0'), 'validation_loss_ce': tensor(0.4288, device='cuda:0'), 'validation_loss_bbox': tensor(0.1856, device='cuda:0'), 'validation_loss_giou': tensor(0.5893, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3378, device='cuda:0'), 'train_loss_ce': tensor(0.3755, device='cuda:0'), 'train_loss_bbox': tensor(0.0839, device='cuda:0'), 'train_loss_giou': tensor(0.2715, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5284, device='cuda:0'), 'validation_loss_ce': tensor(0.4289, device='cuda:0'), 'validation_loss_bbox': tensor(0.1861, device='cuda:0'), 'validation_loss_giou': tensor(0.5844, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8531, device='cuda:0'), 'train_loss_ce': tensor(0.4023, device='cuda:0'), 'train_loss_bbox': tensor(0.1025, device='cuda:0'), 'train_loss_giou': tensor(0.4693, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5285, device='cuda:0'), 'validation_loss_ce': tensor(0.4299, device='cuda:0'), 'validation_loss_bbox': tensor(0.1845, device='cuda:0'), 'validation_loss_giou': tensor(0.5881, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5323, device='cuda:0'), 'train_loss_ce': tensor(0.3935, device='cuda:0'), 'train_loss_bbox': tensor(0.0904, device='cuda:0'), 'train_loss_giou': tensor(0.3433, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5246, device='cuda:0'), 'validation_loss_ce': tensor(0.4286, device='cuda:0'), 'validation_loss_bbox': tensor(0.1843, device='cuda:0'), 'validation_loss_giou': tensor(0.5872, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5760, device='cuda:0'), 'train_loss_ce': tensor(0.4108, device='cuda:0'), 'train_loss_bbox': tensor(0.1176, device='cuda:0'), 'train_loss_giou': tensor(0.2887, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5271, device='cuda:0'), 'validation_loss_ce': tensor(0.4282, device='cuda:0'), 'validation_loss_bbox': tensor(0.1860, device='cuda:0'), 'validation_loss_giou': tensor(0.5845, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5995, device='cuda:0'), 'train_loss_ce': tensor(0.4539, device='cuda:0'), 'train_loss_bbox': tensor(0.0965, device='cuda:0'), 'train_loss_giou': tensor(0.3315, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5257, device='cuda:0'), 'validation_loss_ce': tensor(0.4284, device='cuda:0'), 'validation_loss_bbox': tensor(0.1853, device='cuda:0'), 'validation_loss_giou': tensor(0.5854, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0778, device='cuda:0'), 'train_loss_ce': tensor(0.3774, device='cuda:0'), 'train_loss_bbox': tensor(0.1422, device='cuda:0'), 'train_loss_giou': tensor(0.4945, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5161, device='cuda:0'), 'validation_loss_ce': tensor(0.4269, device='cuda:0'), 'validation_loss_bbox': tensor(0.1839, device='cuda:0'), 'validation_loss_giou': tensor(0.5849, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0061, device='cuda:0'), 'train_loss_ce': tensor(0.3836, device='cuda:0'), 'train_loss_bbox': tensor(0.1675, device='cuda:0'), 'train_loss_giou': tensor(0.3924, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5247, device='cuda:0'), 'validation_loss_ce': tensor(0.4271, device='cuda:0'), 'validation_loss_bbox': tensor(0.1854, device='cuda:0'), 'validation_loss_giou': tensor(0.5853, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4839, device='cuda:0'), 'train_loss_ce': tensor(0.2162, device='cuda:0'), 'train_loss_bbox': tensor(0.1028, device='cuda:0'), 'train_loss_giou': tensor(0.3769, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5184, device='cuda:0'), 'validation_loss_ce': tensor(0.4272, device='cuda:0'), 'validation_loss_bbox': tensor(0.1824, device='cuda:0'), 'validation_loss_giou': tensor(0.5895, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3401, device='cuda:0'), 'train_loss_ce': tensor(0.3501, device='cuda:0'), 'train_loss_bbox': tensor(0.0873, device='cuda:0'), 'train_loss_giou': tensor(0.2767, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5114, device='cuda:0'), 'validation_loss_ce': tensor(0.4268, device='cuda:0'), 'validation_loss_bbox': tensor(0.1842, device='cuda:0'), 'validation_loss_giou': tensor(0.5817, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3274, device='cuda:0'), 'train_loss_ce': tensor(0.4181, device='cuda:0'), 'train_loss_bbox': tensor(0.0620, device='cuda:0'), 'train_loss_giou': tensor(0.2997, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5149, device='cuda:0'), 'validation_loss_ce': tensor(0.4258, device='cuda:0'), 'validation_loss_bbox': tensor(0.1843, device='cuda:0'), 'validation_loss_giou': tensor(0.5838, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
```
## Examples
{'size': tensor([512, 512]), 'image_id': tensor([1]), 'class_labels': tensor([4]), 'boxes': tensor([[0.2622, 0.5729, 0.0847, 0.0773]]), 'area': tensor([1717.9431]), 'iscrowd': tensor([0]), 'orig_size': tensor([1024, 1024])}

|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
MedicalVision/yolos_tiny_test_overfitting
|
## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.900
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 1.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.900
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.900
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.900
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.900
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.900
```
## Config
- dataset: NIH
- original model: hustvl/yolos-tiny
- lr: 0.0001
- dropout_rate: 0.1
- weight_decay: 0.0001
- max_epochs: 300
- train samples: 2
## Logging
### Training process
```
{'validation_loss': tensor(8.4415, device='cuda:0'), 'validation_loss_ce': tensor(2.1892, device='cuda:0'), 'validation_loss_bbox': tensor(0.7321, device='cuda:0'), 'validation_loss_giou': tensor(1.2958, device='cuda:0'), 'validation_cardinality_error': tensor(97.5000, device='cuda:0')}
{'training_loss': tensor(8.4415, device='cuda:0'), 'train_loss_ce': tensor(2.1892, device='cuda:0'), 'train_loss_bbox': tensor(0.7321, device='cuda:0'), 'train_loss_giou': tensor(1.2958, device='cuda:0'), 'train_cardinality_error': tensor(97.5000, device='cuda:0'), 'validation_loss': tensor(6.8429, device='cuda:0'), 'validation_loss_ce': tensor(1.7903, device='cuda:0'), 'validation_loss_bbox': tensor(0.4391, device='cuda:0'), 'validation_loss_giou': tensor(1.4286, device='cuda:0'), 'validation_cardinality_error': tensor(38., device='cuda:0')}
{'training_loss': tensor(6.8429, device='cuda:0'), 'train_loss_ce': tensor(1.7903, device='cuda:0'), 'train_loss_bbox': tensor(0.4391, device='cuda:0'), 'train_loss_giou': tensor(1.4286, device='cuda:0'), 'train_cardinality_error': tensor(38., device='cuda:0'), 'validation_loss': tensor(4.6954, device='cuda:0'), 'validation_loss_ce': tensor(1.6042, device='cuda:0'), 'validation_loss_bbox': tensor(0.2544, device='cuda:0'), 'validation_loss_giou': tensor(0.9095, device='cuda:0'), 'validation_cardinality_error': tensor(21., device='cuda:0')}
{'training_loss': tensor(4.6954, device='cuda:0'), 'train_loss_ce': tensor(1.6042, device='cuda:0'), 'train_loss_bbox': tensor(0.2544, device='cuda:0'), 'train_loss_giou': tensor(0.9095, device='cuda:0'), 'train_cardinality_error': tensor(21., device='cuda:0'), 'validation_loss': tensor(4.3832, device='cuda:0'), 'validation_loss_ce': tensor(1.4586, device='cuda:0'), 'validation_loss_bbox': tensor(0.1827, device='cuda:0'), 'validation_loss_giou': tensor(1.0055, device='cuda:0'), 'validation_cardinality_error': tensor(10.5000, device='cuda:0')}
{'training_loss': tensor(4.3832, device='cuda:0'), 'train_loss_ce': tensor(1.4586, device='cuda:0'), 'train_loss_bbox': tensor(0.1827, device='cuda:0'), 'train_loss_giou': tensor(1.0055, device='cuda:0'), 'train_cardinality_error': tensor(10.5000, device='cuda:0'), 'validation_loss': tensor(2.5910, device='cuda:0'), 'validation_loss_ce': tensor(1.3605, device='cuda:0'), 'validation_loss_bbox': tensor(0.0772, device='cuda:0'), 'validation_loss_giou': tensor(0.4223, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(2.5910, device='cuda:0'), 'train_loss_ce': tensor(1.3605, device='cuda:0'), 'train_loss_bbox': tensor(0.0772, device='cuda:0'), 'train_loss_giou': tensor(0.4223, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(2.2764, device='cuda:0'), 'validation_loss_ce': tensor(1.2621, device='cuda:0'), 'validation_loss_bbox': tensor(0.0533, device='cuda:0'), 'validation_loss_giou': tensor(0.3738, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2764, device='cuda:0'), 'train_loss_ce': tensor(1.2621, device='cuda:0'), 'train_loss_bbox': tensor(0.0533, device='cuda:0'), 'train_loss_giou': tensor(0.3738, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2869, device='cuda:0'), 'validation_loss_ce': tensor(1.1396, device='cuda:0'), 'validation_loss_bbox': tensor(0.0631, device='cuda:0'), 'validation_loss_giou': tensor(0.4159, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2869, device='cuda:0'), 'train_loss_ce': tensor(1.1396, device='cuda:0'), 'train_loss_bbox': tensor(0.0631, device='cuda:0'), 'train_loss_giou': tensor(0.4159, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.7317, device='cuda:0'), 'validation_loss_ce': tensor(1.0187, device='cuda:0'), 'validation_loss_bbox': tensor(0.0306, device='cuda:0'), 'validation_loss_giou': tensor(0.2799, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7317, device='cuda:0'), 'train_loss_ce': tensor(1.0187, device='cuda:0'), 'train_loss_bbox': tensor(0.0306, device='cuda:0'), 'train_loss_giou': tensor(0.2799, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5695, device='cuda:0'), 'validation_loss_ce': tensor(0.9265, device='cuda:0'), 'validation_loss_bbox': tensor(0.0909, device='cuda:0'), 'validation_loss_giou': tensor(0.5943, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5695, device='cuda:0'), 'train_loss_ce': tensor(0.9265, device='cuda:0'), 'train_loss_bbox': tensor(0.0909, device='cuda:0'), 'train_loss_giou': tensor(0.5943, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.4328, device='cuda:0'), 'validation_loss_ce': tensor(0.8355, device='cuda:0'), 'validation_loss_bbox': tensor(0.0930, device='cuda:0'), 'validation_loss_giou': tensor(0.5662, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4328, device='cuda:0'), 'train_loss_ce': tensor(0.8355, device='cuda:0'), 'train_loss_bbox': tensor(0.0930, device='cuda:0'), 'train_loss_giou': tensor(0.5662, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9397, device='cuda:0'), 'validation_loss_ce': tensor(0.7566, device='cuda:0'), 'validation_loss_bbox': tensor(0.0739, device='cuda:0'), 'validation_loss_giou': tensor(0.4067, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9397, device='cuda:0'), 'train_loss_ce': tensor(0.7566, device='cuda:0'), 'train_loss_bbox': tensor(0.0739, device='cuda:0'), 'train_loss_giou': tensor(0.4067, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.8813, device='cuda:0'), 'validation_loss_ce': tensor(0.6895, device='cuda:0'), 'validation_loss_bbox': tensor(0.0686, device='cuda:0'), 'validation_loss_giou': tensor(0.4244, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8813, device='cuda:0'), 'train_loss_ce': tensor(0.6895, device='cuda:0'), 'train_loss_bbox': tensor(0.0686, device='cuda:0'), 'train_loss_giou': tensor(0.4244, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.6956, device='cuda:0'), 'validation_loss_ce': tensor(0.6046, device='cuda:0'), 'validation_loss_bbox': tensor(0.0604, device='cuda:0'), 'validation_loss_giou': tensor(0.3946, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6956, device='cuda:0'), 'train_loss_ce': tensor(0.6046, device='cuda:0'), 'train_loss_bbox': tensor(0.0604, device='cuda:0'), 'train_loss_giou': tensor(0.3946, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.5624, device='cuda:0'), 'validation_loss_ce': tensor(0.5391, device='cuda:0'), 'validation_loss_bbox': tensor(0.0615, device='cuda:0'), 'validation_loss_giou': tensor(0.3580, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5624, device='cuda:0'), 'train_loss_ce': tensor(0.5391, device='cuda:0'), 'train_loss_bbox': tensor(0.0615, device='cuda:0'), 'train_loss_giou': tensor(0.3580, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.0563, device='cuda:0'), 'validation_loss_ce': tensor(0.4887, device='cuda:0'), 'validation_loss_bbox': tensor(0.0301, device='cuda:0'), 'validation_loss_giou': tensor(0.2084, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0563, device='cuda:0'), 'train_loss_ce': tensor(0.4887, device='cuda:0'), 'train_loss_bbox': tensor(0.0301, device='cuda:0'), 'train_loss_giou': tensor(0.2084, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.4984, device='cuda:0'), 'validation_loss_ce': tensor(0.4608, device='cuda:0'), 'validation_loss_bbox': tensor(0.0831, device='cuda:0'), 'validation_loss_giou': tensor(0.3111, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4984, device='cuda:0'), 'train_loss_ce': tensor(0.4608, device='cuda:0'), 'train_loss_bbox': tensor(0.0831, device='cuda:0'), 'train_loss_giou': tensor(0.3111, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.2211, device='cuda:0'), 'validation_loss_ce': tensor(0.4321, device='cuda:0'), 'validation_loss_bbox': tensor(0.0592, device='cuda:0'), 'validation_loss_giou': tensor(0.2466, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2211, device='cuda:0'), 'train_loss_ce': tensor(0.4321, device='cuda:0'), 'train_loss_bbox': tensor(0.0592, device='cuda:0'), 'train_loss_giou': tensor(0.2466, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.3553, device='cuda:0'), 'validation_loss_ce': tensor(0.3998, device='cuda:0'), 'validation_loss_bbox': tensor(0.0638, device='cuda:0'), 'validation_loss_giou': tensor(0.3182, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3553, device='cuda:0'), 'train_loss_ce': tensor(0.3998, device='cuda:0'), 'train_loss_bbox': tensor(0.0638, device='cuda:0'), 'train_loss_giou': tensor(0.3182, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.1320, device='cuda:0'), 'validation_loss_ce': tensor(0.3978, device='cuda:0'), 'validation_loss_bbox': tensor(0.0442, device='cuda:0'), 'validation_loss_giou': tensor(0.2565, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1320, device='cuda:0'), 'train_loss_ce': tensor(0.3978, device='cuda:0'), 'train_loss_bbox': tensor(0.0442, device='cuda:0'), 'train_loss_giou': tensor(0.2565, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8688, device='cuda:0'), 'validation_loss_ce': tensor(0.4125, device='cuda:0'), 'validation_loss_bbox': tensor(0.0229, device='cuda:0'), 'validation_loss_giou': tensor(0.1709, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8688, device='cuda:0'), 'train_loss_ce': tensor(0.4125, device='cuda:0'), 'train_loss_bbox': tensor(0.0229, device='cuda:0'), 'train_loss_giou': tensor(0.1709, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5925, device='cuda:0'), 'validation_loss_ce': tensor(0.4242, device='cuda:0'), 'validation_loss_bbox': tensor(0.0075, device='cuda:0'), 'validation_loss_giou': tensor(0.0653, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5925, device='cuda:0'), 'train_loss_ce': tensor(0.4242, device='cuda:0'), 'train_loss_bbox': tensor(0.0075, device='cuda:0'), 'train_loss_giou': tensor(0.0653, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9919, device='cuda:0'), 'validation_loss_ce': tensor(0.4179, device='cuda:0'), 'validation_loss_bbox': tensor(0.0315, device='cuda:0'), 'validation_loss_giou': tensor(0.2082, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9919, device='cuda:0'), 'train_loss_ce': tensor(0.4179, device='cuda:0'), 'train_loss_bbox': tensor(0.0315, device='cuda:0'), 'train_loss_giou': tensor(0.2082, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9607, device='cuda:0'), 'validation_loss_ce': tensor(0.4075, device='cuda:0'), 'validation_loss_bbox': tensor(0.0330, device='cuda:0'), 'validation_loss_giou': tensor(0.1941, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9607, device='cuda:0'), 'train_loss_ce': tensor(0.4075, device='cuda:0'), 'train_loss_bbox': tensor(0.0330, device='cuda:0'), 'train_loss_giou': tensor(0.1941, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8104, device='cuda:0'), 'validation_loss_ce': tensor(0.3983, device='cuda:0'), 'validation_loss_bbox': tensor(0.0237, device='cuda:0'), 'validation_loss_giou': tensor(0.1467, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8104, device='cuda:0'), 'train_loss_ce': tensor(0.3983, device='cuda:0'), 'train_loss_bbox': tensor(0.0237, device='cuda:0'), 'train_loss_giou': tensor(0.1467, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6995, device='cuda:0'), 'validation_loss_ce': tensor(0.3888, device='cuda:0'), 'validation_loss_bbox': tensor(0.0181, device='cuda:0'), 'validation_loss_giou': tensor(0.1101, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6995, device='cuda:0'), 'train_loss_ce': tensor(0.3888, device='cuda:0'), 'train_loss_bbox': tensor(0.0181, device='cuda:0'), 'train_loss_giou': tensor(0.1101, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8095, device='cuda:0'), 'validation_loss_ce': tensor(0.3818, device='cuda:0'), 'validation_loss_bbox': tensor(0.0239, device='cuda:0'), 'validation_loss_giou': tensor(0.1540, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8095, device='cuda:0'), 'train_loss_ce': tensor(0.3818, device='cuda:0'), 'train_loss_bbox': tensor(0.0239, device='cuda:0'), 'train_loss_giou': tensor(0.1540, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8350, device='cuda:0'), 'validation_loss_ce': tensor(0.3689, device='cuda:0'), 'validation_loss_bbox': tensor(0.0254, device='cuda:0'), 'validation_loss_giou': tensor(0.1695, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8350, device='cuda:0'), 'train_loss_ce': tensor(0.3689, device='cuda:0'), 'train_loss_bbox': tensor(0.0254, device='cuda:0'), 'train_loss_giou': tensor(0.1695, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7958, device='cuda:0'), 'validation_loss_ce': tensor(0.3573, device='cuda:0'), 'validation_loss_bbox': tensor(0.0241, device='cuda:0'), 'validation_loss_giou': tensor(0.1590, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7958, device='cuda:0'), 'train_loss_ce': tensor(0.3573, device='cuda:0'), 'train_loss_bbox': tensor(0.0241, device='cuda:0'), 'train_loss_giou': tensor(0.1590, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9031, device='cuda:0'), 'validation_loss_ce': tensor(0.3476, device='cuda:0'), 'validation_loss_bbox': tensor(0.0276, device='cuda:0'), 'validation_loss_giou': tensor(0.2087, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9031, device='cuda:0'), 'train_loss_ce': tensor(0.3476, device='cuda:0'), 'train_loss_bbox': tensor(0.0276, device='cuda:0'), 'train_loss_giou': tensor(0.2087, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7674, device='cuda:0'), 'validation_loss_ce': tensor(0.3367, device='cuda:0'), 'validation_loss_bbox': tensor(0.0211, device='cuda:0'), 'validation_loss_giou': tensor(0.1627, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7674, device='cuda:0'), 'train_loss_ce': tensor(0.3367, device='cuda:0'), 'train_loss_bbox': tensor(0.0211, device='cuda:0'), 'train_loss_giou': tensor(0.1627, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5935, device='cuda:0'), 'validation_loss_ce': tensor(0.3245, device='cuda:0'), 'validation_loss_bbox': tensor(0.0132, device='cuda:0'), 'validation_loss_giou': tensor(0.1014, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5935, device='cuda:0'), 'train_loss_ce': tensor(0.3245, device='cuda:0'), 'train_loss_bbox': tensor(0.0132, device='cuda:0'), 'train_loss_giou': tensor(0.1014, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5668, device='cuda:0'), 'validation_loss_ce': tensor(0.3225, device='cuda:0'), 'validation_loss_bbox': tensor(0.0136, device='cuda:0'), 'validation_loss_giou': tensor(0.0881, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5668, device='cuda:0'), 'train_loss_ce': tensor(0.3225, device='cuda:0'), 'train_loss_bbox': tensor(0.0136, device='cuda:0'), 'train_loss_giou': tensor(0.0881, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6651, device='cuda:0'), 'validation_loss_ce': tensor(0.3124, device='cuda:0'), 'validation_loss_bbox': tensor(0.0177, device='cuda:0'), 'validation_loss_giou': tensor(0.1322, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6651, device='cuda:0'), 'train_loss_ce': tensor(0.3124, device='cuda:0'), 'train_loss_bbox': tensor(0.0177, device='cuda:0'), 'train_loss_giou': tensor(0.1322, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6747, device='cuda:0'), 'validation_loss_ce': tensor(0.3028, device='cuda:0'), 'validation_loss_bbox': tensor(0.0200, device='cuda:0'), 'validation_loss_giou': tensor(0.1358, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6747, device='cuda:0'), 'train_loss_ce': tensor(0.3028, device='cuda:0'), 'train_loss_bbox': tensor(0.0200, device='cuda:0'), 'train_loss_giou': tensor(0.1358, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7654, device='cuda:0'), 'validation_loss_ce': tensor(0.2944, device='cuda:0'), 'validation_loss_bbox': tensor(0.0258, device='cuda:0'), 'validation_loss_giou': tensor(0.1710, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7654, device='cuda:0'), 'train_loss_ce': tensor(0.2944, device='cuda:0'), 'train_loss_bbox': tensor(0.0258, device='cuda:0'), 'train_loss_giou': tensor(0.1710, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6377, device='cuda:0'), 'validation_loss_ce': tensor(0.2869, device='cuda:0'), 'validation_loss_bbox': tensor(0.0198, device='cuda:0'), 'validation_loss_giou': tensor(0.1259, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6377, device='cuda:0'), 'train_loss_ce': tensor(0.2869, device='cuda:0'), 'train_loss_bbox': tensor(0.0198, device='cuda:0'), 'train_loss_giou': tensor(0.1259, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5517, device='cuda:0'), 'validation_loss_ce': tensor(0.2820, device='cuda:0'), 'validation_loss_bbox': tensor(0.0146, device='cuda:0'), 'validation_loss_giou': tensor(0.0984, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5517, device='cuda:0'), 'train_loss_ce': tensor(0.2820, device='cuda:0'), 'train_loss_bbox': tensor(0.0146, device='cuda:0'), 'train_loss_giou': tensor(0.0984, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6360, device='cuda:0'), 'validation_loss_ce': tensor(0.2759, device='cuda:0'), 'validation_loss_bbox': tensor(0.0216, device='cuda:0'), 'validation_loss_giou': tensor(0.1261, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6360, device='cuda:0'), 'train_loss_ce': tensor(0.2759, device='cuda:0'), 'train_loss_bbox': tensor(0.0216, device='cuda:0'), 'train_loss_giou': tensor(0.1261, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5860, device='cuda:0'), 'validation_loss_ce': tensor(0.2692, device='cuda:0'), 'validation_loss_bbox': tensor(0.0175, device='cuda:0'), 'validation_loss_giou': tensor(0.1147, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5860, device='cuda:0'), 'train_loss_ce': tensor(0.2692, device='cuda:0'), 'train_loss_bbox': tensor(0.0175, device='cuda:0'), 'train_loss_giou': tensor(0.1147, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4671, device='cuda:0'), 'validation_loss_ce': tensor(0.2624, device='cuda:0'), 'validation_loss_bbox': tensor(0.0115, device='cuda:0'), 'validation_loss_giou': tensor(0.0736, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4671, device='cuda:0'), 'train_loss_ce': tensor(0.2624, device='cuda:0'), 'train_loss_bbox': tensor(0.0115, device='cuda:0'), 'train_loss_giou': tensor(0.0736, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6358, device='cuda:0'), 'validation_loss_ce': tensor(0.2559, device='cuda:0'), 'validation_loss_bbox': tensor(0.0212, device='cuda:0'), 'validation_loss_giou': tensor(0.1369, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6358, device='cuda:0'), 'train_loss_ce': tensor(0.2559, device='cuda:0'), 'train_loss_bbox': tensor(0.0212, device='cuda:0'), 'train_loss_giou': tensor(0.1369, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7122, device='cuda:0'), 'validation_loss_ce': tensor(0.2498, device='cuda:0'), 'validation_loss_bbox': tensor(0.0253, device='cuda:0'), 'validation_loss_giou': tensor(0.1680, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7122, device='cuda:0'), 'train_loss_ce': tensor(0.2498, device='cuda:0'), 'train_loss_bbox': tensor(0.0253, device='cuda:0'), 'train_loss_giou': tensor(0.1680, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6051, device='cuda:0'), 'validation_loss_ce': tensor(0.2438, device='cuda:0'), 'validation_loss_bbox': tensor(0.0173, device='cuda:0'), 'validation_loss_giou': tensor(0.1375, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6051, device='cuda:0'), 'train_loss_ce': tensor(0.2438, device='cuda:0'), 'train_loss_bbox': tensor(0.0173, device='cuda:0'), 'train_loss_giou': tensor(0.1375, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5448, device='cuda:0'), 'validation_loss_ce': tensor(0.2378, device='cuda:0'), 'validation_loss_bbox': tensor(0.0146, device='cuda:0'), 'validation_loss_giou': tensor(0.1169, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5448, device='cuda:0'), 'train_loss_ce': tensor(0.2378, device='cuda:0'), 'train_loss_bbox': tensor(0.0146, device='cuda:0'), 'train_loss_giou': tensor(0.1169, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6503, device='cuda:0'), 'validation_loss_ce': tensor(0.2314, device='cuda:0'), 'validation_loss_bbox': tensor(0.0230, device='cuda:0'), 'validation_loss_giou': tensor(0.1519, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6503, device='cuda:0'), 'train_loss_ce': tensor(0.2314, device='cuda:0'), 'train_loss_bbox': tensor(0.0230, device='cuda:0'), 'train_loss_giou': tensor(0.1519, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6441, device='cuda:0'), 'validation_loss_ce': tensor(0.2251, device='cuda:0'), 'validation_loss_bbox': tensor(0.0237, device='cuda:0'), 'validation_loss_giou': tensor(0.1502, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6441, device='cuda:0'), 'train_loss_ce': tensor(0.2251, device='cuda:0'), 'train_loss_bbox': tensor(0.0237, device='cuda:0'), 'train_loss_giou': tensor(0.1502, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5166, device='cuda:0'), 'validation_loss_ce': tensor(0.2191, device='cuda:0'), 'validation_loss_bbox': tensor(0.0144, device='cuda:0'), 'validation_loss_giou': tensor(0.1129, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5166, device='cuda:0'), 'train_loss_ce': tensor(0.2191, device='cuda:0'), 'train_loss_bbox': tensor(0.0144, device='cuda:0'), 'train_loss_giou': tensor(0.1129, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4642, device='cuda:0'), 'validation_loss_ce': tensor(0.2135, device='cuda:0'), 'validation_loss_bbox': tensor(0.0131, device='cuda:0'), 'validation_loss_giou': tensor(0.0925, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4642, device='cuda:0'), 'train_loss_ce': tensor(0.2135, device='cuda:0'), 'train_loss_bbox': tensor(0.0131, device='cuda:0'), 'train_loss_giou': tensor(0.0925, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5538, device='cuda:0'), 'validation_loss_ce': tensor(0.2082, device='cuda:0'), 'validation_loss_bbox': tensor(0.0205, device='cuda:0'), 'validation_loss_giou': tensor(0.1215, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5538, device='cuda:0'), 'train_loss_ce': tensor(0.2082, device='cuda:0'), 'train_loss_bbox': tensor(0.0205, device='cuda:0'), 'train_loss_giou': tensor(0.1215, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5844, device='cuda:0'), 'validation_loss_ce': tensor(0.2029, device='cuda:0'), 'validation_loss_bbox': tensor(0.0202, device='cuda:0'), 'validation_loss_giou': tensor(0.1402, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5844, device='cuda:0'), 'train_loss_ce': tensor(0.2029, device='cuda:0'), 'train_loss_bbox': tensor(0.0202, device='cuda:0'), 'train_loss_giou': tensor(0.1402, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4431, device='cuda:0'), 'validation_loss_ce': tensor(0.1975, device='cuda:0'), 'validation_loss_bbox': tensor(0.0111, device='cuda:0'), 'validation_loss_giou': tensor(0.0950, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4431, device='cuda:0'), 'train_loss_ce': tensor(0.1975, device='cuda:0'), 'train_loss_bbox': tensor(0.0111, device='cuda:0'), 'train_loss_giou': tensor(0.0950, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4185, device='cuda:0'), 'validation_loss_ce': tensor(0.1922, device='cuda:0'), 'validation_loss_bbox': tensor(0.0124, device='cuda:0'), 'validation_loss_giou': tensor(0.0821, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4185, device='cuda:0'), 'train_loss_ce': tensor(0.1922, device='cuda:0'), 'train_loss_bbox': tensor(0.0124, device='cuda:0'), 'train_loss_giou': tensor(0.0821, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5260, device='cuda:0'), 'validation_loss_ce': tensor(0.1868, device='cuda:0'), 'validation_loss_bbox': tensor(0.0183, device='cuda:0'), 'validation_loss_giou': tensor(0.1239, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5260, device='cuda:0'), 'train_loss_ce': tensor(0.1868, device='cuda:0'), 'train_loss_bbox': tensor(0.0183, device='cuda:0'), 'train_loss_giou': tensor(0.1239, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4616, device='cuda:0'), 'validation_loss_ce': tensor(0.1816, device='cuda:0'), 'validation_loss_bbox': tensor(0.0166, device='cuda:0'), 'validation_loss_giou': tensor(0.0985, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4616, device='cuda:0'), 'train_loss_ce': tensor(0.1816, device='cuda:0'), 'train_loss_bbox': tensor(0.0166, device='cuda:0'), 'train_loss_giou': tensor(0.0985, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4940, device='cuda:0'), 'validation_loss_ce': tensor(0.1762, device='cuda:0'), 'validation_loss_bbox': tensor(0.0163, device='cuda:0'), 'validation_loss_giou': tensor(0.1182, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4940, device='cuda:0'), 'train_loss_ce': tensor(0.1762, device='cuda:0'), 'train_loss_bbox': tensor(0.0163, device='cuda:0'), 'train_loss_giou': tensor(0.1182, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4763, device='cuda:0'), 'validation_loss_ce': tensor(0.1710, device='cuda:0'), 'validation_loss_bbox': tensor(0.0155, device='cuda:0'), 'validation_loss_giou': tensor(0.1139, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4763, device='cuda:0'), 'train_loss_ce': tensor(0.1710, device='cuda:0'), 'train_loss_bbox': tensor(0.0155, device='cuda:0'), 'train_loss_giou': tensor(0.1139, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4972, device='cuda:0'), 'validation_loss_ce': tensor(0.1658, device='cuda:0'), 'validation_loss_bbox': tensor(0.0189, device='cuda:0'), 'validation_loss_giou': tensor(0.1183, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4972, device='cuda:0'), 'train_loss_ce': tensor(0.1658, device='cuda:0'), 'train_loss_bbox': tensor(0.0189, device='cuda:0'), 'train_loss_giou': tensor(0.1183, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4801, device='cuda:0'), 'validation_loss_ce': tensor(0.1608, device='cuda:0'), 'validation_loss_bbox': tensor(0.0173, device='cuda:0'), 'validation_loss_giou': tensor(0.1165, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4801, device='cuda:0'), 'train_loss_ce': tensor(0.1608, device='cuda:0'), 'train_loss_bbox': tensor(0.0173, device='cuda:0'), 'train_loss_giou': tensor(0.1165, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4167, device='cuda:0'), 'validation_loss_ce': tensor(0.1564, device='cuda:0'), 'validation_loss_bbox': tensor(0.0091, device='cuda:0'), 'validation_loss_giou': tensor(0.1074, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4167, device='cuda:0'), 'train_loss_ce': tensor(0.1564, device='cuda:0'), 'train_loss_bbox': tensor(0.0091, device='cuda:0'), 'train_loss_giou': tensor(0.1074, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3448, device='cuda:0'), 'validation_loss_ce': tensor(0.1525, device='cuda:0'), 'validation_loss_bbox': tensor(0.0115, device='cuda:0'), 'validation_loss_giou': tensor(0.0674, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3448, device='cuda:0'), 'train_loss_ce': tensor(0.1525, device='cuda:0'), 'train_loss_bbox': tensor(0.0115, device='cuda:0'), 'train_loss_giou': tensor(0.0674, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4019, device='cuda:0'), 'validation_loss_ce': tensor(0.1483, device='cuda:0'), 'validation_loss_bbox': tensor(0.0140, device='cuda:0'), 'validation_loss_giou': tensor(0.0918, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4019, device='cuda:0'), 'train_loss_ce': tensor(0.1483, device='cuda:0'), 'train_loss_bbox': tensor(0.0140, device='cuda:0'), 'train_loss_giou': tensor(0.0918, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3806, device='cuda:0'), 'validation_loss_ce': tensor(0.1439, device='cuda:0'), 'validation_loss_bbox': tensor(0.0112, device='cuda:0'), 'validation_loss_giou': tensor(0.0903, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3806, device='cuda:0'), 'train_loss_ce': tensor(0.1439, device='cuda:0'), 'train_loss_bbox': tensor(0.0112, device='cuda:0'), 'train_loss_giou': tensor(0.0903, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4055, device='cuda:0'), 'validation_loss_ce': tensor(0.1394, device='cuda:0'), 'validation_loss_bbox': tensor(0.0108, device='cuda:0'), 'validation_loss_giou': tensor(0.1061, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.4055, device='cuda:0'), 'train_loss_ce': tensor(0.1394, device='cuda:0'), 'train_loss_bbox': tensor(0.0108, device='cuda:0'), 'train_loss_giou': tensor(0.1061, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3380, device='cuda:0'), 'validation_loss_ce': tensor(0.1345, device='cuda:0'), 'validation_loss_bbox': tensor(0.0114, device='cuda:0'), 'validation_loss_giou': tensor(0.0732, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.3380, device='cuda:0'), 'train_loss_ce': tensor(0.1345, device='cuda:0'), 'train_loss_bbox': tensor(0.0114, device='cuda:0'), 'train_loss_giou': tensor(0.0732, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3690, device='cuda:0'), 'validation_loss_ce': tensor(0.1303, device='cuda:0'), 'validation_loss_bbox': tensor(0.0118, device='cuda:0'), 'validation_loss_giou': tensor(0.0898, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.3690, device='cuda:0'), 'train_loss_ce': tensor(0.1303, device='cuda:0'), 'train_loss_bbox': tensor(0.0118, device='cuda:0'), 'train_loss_giou': tensor(0.0898, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3661, device='cuda:0'), 'validation_loss_ce': tensor(0.1265, device='cuda:0'), 'validation_loss_bbox': tensor(0.0095, device='cuda:0'), 'validation_loss_giou': tensor(0.0960, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.3661, device='cuda:0'), 'train_loss_ce': tensor(0.1265, device='cuda:0'), 'train_loss_bbox': tensor(0.0095, device='cuda:0'), 'train_loss_giou': tensor(0.0960, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3483, device='cuda:0'), 'validation_loss_ce': tensor(0.1225, device='cuda:0'), 'validation_loss_bbox': tensor(0.0088, device='cuda:0'), 'validation_loss_giou': tensor(0.0909, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.3483, device='cuda:0'), 'train_loss_ce': tensor(0.1225, device='cuda:0'), 'train_loss_bbox': tensor(0.0088, device='cuda:0'), 'train_loss_giou': tensor(0.0909, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2951, device='cuda:0'), 'validation_loss_ce': tensor(0.1182, device='cuda:0'), 'validation_loss_bbox': tensor(0.0103, device='cuda:0'), 'validation_loss_giou': tensor(0.0627, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.2951, device='cuda:0'), 'train_loss_ce': tensor(0.1182, device='cuda:0'), 'train_loss_bbox': tensor(0.0103, device='cuda:0'), 'train_loss_giou': tensor(0.0627, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3811, device='cuda:0'), 'validation_loss_ce': tensor(0.1145, device='cuda:0'), 'validation_loss_bbox': tensor(0.0148, device='cuda:0'), 'validation_loss_giou': tensor(0.0963, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.3811, device='cuda:0'), 'train_loss_ce': tensor(0.1145, device='cuda:0'), 'train_loss_bbox': tensor(0.0148, device='cuda:0'), 'train_loss_giou': tensor(0.0963, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4378, device='cuda:0'), 'validation_loss_ce': tensor(0.1108, device='cuda:0'), 'validation_loss_bbox': tensor(0.0171, device='cuda:0'), 'validation_loss_giou': tensor(0.1207, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.4378, device='cuda:0'), 'train_loss_ce': tensor(0.1108, device='cuda:0'), 'train_loss_bbox': tensor(0.0171, device='cuda:0'), 'train_loss_giou': tensor(0.1207, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3757, device='cuda:0'), 'validation_loss_ce': tensor(0.1069, device='cuda:0'), 'validation_loss_bbox': tensor(0.0129, device='cuda:0'), 'validation_loss_giou': tensor(0.1021, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.3757, device='cuda:0'), 'train_loss_ce': tensor(0.1069, device='cuda:0'), 'train_loss_bbox': tensor(0.0129, device='cuda:0'), 'train_loss_giou': tensor(0.1021, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3717, device='cuda:0'), 'validation_loss_ce': tensor(0.1029, device='cuda:0'), 'validation_loss_bbox': tensor(0.0127, device='cuda:0'), 'validation_loss_giou': tensor(0.1026, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.3717, device='cuda:0'), 'train_loss_ce': tensor(0.1029, device='cuda:0'), 'train_loss_bbox': tensor(0.0127, device='cuda:0'), 'train_loss_giou': tensor(0.1026, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3644, device='cuda:0'), 'validation_loss_ce': tensor(0.0999, device='cuda:0'), 'validation_loss_bbox': tensor(0.0122, device='cuda:0'), 'validation_loss_giou': tensor(0.1017, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3644, device='cuda:0'), 'train_loss_ce': tensor(0.0999, device='cuda:0'), 'train_loss_bbox': tensor(0.0122, device='cuda:0'), 'train_loss_giou': tensor(0.1017, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2506, device='cuda:0'), 'validation_loss_ce': tensor(0.0973, device='cuda:0'), 'validation_loss_bbox': tensor(0.0066, device='cuda:0'), 'validation_loss_giou': tensor(0.0600, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2506, device='cuda:0'), 'train_loss_ce': tensor(0.0973, device='cuda:0'), 'train_loss_bbox': tensor(0.0066, device='cuda:0'), 'train_loss_giou': tensor(0.0600, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.4763, device='cuda:0'), 'validation_loss_ce': tensor(0.0953, device='cuda:0'), 'validation_loss_bbox': tensor(0.0164, device='cuda:0'), 'validation_loss_giou': tensor(0.1494, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.4763, device='cuda:0'), 'train_loss_ce': tensor(0.0953, device='cuda:0'), 'train_loss_bbox': tensor(0.0164, device='cuda:0'), 'train_loss_giou': tensor(0.1494, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.5612, device='cuda:0'), 'validation_loss_ce': tensor(0.0930, device='cuda:0'), 'validation_loss_bbox': tensor(0.0188, device='cuda:0'), 'validation_loss_giou': tensor(0.1871, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.5612, device='cuda:0'), 'train_loss_ce': tensor(0.0930, device='cuda:0'), 'train_loss_bbox': tensor(0.0188, device='cuda:0'), 'train_loss_giou': tensor(0.1871, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.4405, device='cuda:0'), 'validation_loss_ce': tensor(0.0902, device='cuda:0'), 'validation_loss_bbox': tensor(0.0139, device='cuda:0'), 'validation_loss_giou': tensor(0.1405, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.4405, device='cuda:0'), 'train_loss_ce': tensor(0.0902, device='cuda:0'), 'train_loss_bbox': tensor(0.0139, device='cuda:0'), 'train_loss_giou': tensor(0.1405, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2879, device='cuda:0'), 'validation_loss_ce': tensor(0.0873, device='cuda:0'), 'validation_loss_bbox': tensor(0.0097, device='cuda:0'), 'validation_loss_giou': tensor(0.0760, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2879, device='cuda:0'), 'train_loss_ce': tensor(0.0873, device='cuda:0'), 'train_loss_bbox': tensor(0.0097, device='cuda:0'), 'train_loss_giou': tensor(0.0760, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.4814, device='cuda:0'), 'validation_loss_ce': tensor(0.0842, device='cuda:0'), 'validation_loss_bbox': tensor(0.0182, device='cuda:0'), 'validation_loss_giou': tensor(0.1530, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.4814, device='cuda:0'), 'train_loss_ce': tensor(0.0842, device='cuda:0'), 'train_loss_bbox': tensor(0.0182, device='cuda:0'), 'train_loss_giou': tensor(0.1530, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.5626, device='cuda:0'), 'validation_loss_ce': tensor(0.0817, device='cuda:0'), 'validation_loss_bbox': tensor(0.0193, device='cuda:0'), 'validation_loss_giou': tensor(0.1921, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5626, device='cuda:0'), 'train_loss_ce': tensor(0.0817, device='cuda:0'), 'train_loss_bbox': tensor(0.0193, device='cuda:0'), 'train_loss_giou': tensor(0.1921, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3903, device='cuda:0'), 'validation_loss_ce': tensor(0.0794, device='cuda:0'), 'validation_loss_bbox': tensor(0.0099, device='cuda:0'), 'validation_loss_giou': tensor(0.1308, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3903, device='cuda:0'), 'train_loss_ce': tensor(0.0794, device='cuda:0'), 'train_loss_bbox': tensor(0.0099, device='cuda:0'), 'train_loss_giou': tensor(0.1308, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3352, device='cuda:0'), 'validation_loss_ce': tensor(0.0774, device='cuda:0'), 'validation_loss_bbox': tensor(0.0103, device='cuda:0'), 'validation_loss_giou': tensor(0.1032, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3352, device='cuda:0'), 'train_loss_ce': tensor(0.0774, device='cuda:0'), 'train_loss_bbox': tensor(0.0103, device='cuda:0'), 'train_loss_giou': tensor(0.1032, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3630, device='cuda:0'), 'validation_loss_ce': tensor(0.0987, device='cuda:0'), 'validation_loss_bbox': tensor(0.0135, device='cuda:0'), 'validation_loss_giou': tensor(0.0983, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3630, device='cuda:0'), 'train_loss_ce': tensor(0.0987, device='cuda:0'), 'train_loss_bbox': tensor(0.0135, device='cuda:0'), 'train_loss_giou': tensor(0.0983, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5952, device='cuda:0'), 'validation_loss_ce': tensor(0.0961, device='cuda:0'), 'validation_loss_bbox': tensor(0.0205, device='cuda:0'), 'validation_loss_giou': tensor(0.1984, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5952, device='cuda:0'), 'train_loss_ce': tensor(0.0961, device='cuda:0'), 'train_loss_bbox': tensor(0.0205, device='cuda:0'), 'train_loss_giou': tensor(0.1984, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5618, device='cuda:0'), 'validation_loss_ce': tensor(0.0946, device='cuda:0'), 'validation_loss_bbox': tensor(0.0177, device='cuda:0'), 'validation_loss_giou': tensor(0.1893, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5618, device='cuda:0'), 'train_loss_ce': tensor(0.0946, device='cuda:0'), 'train_loss_bbox': tensor(0.0177, device='cuda:0'), 'train_loss_giou': tensor(0.1893, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2575, device='cuda:0'), 'validation_loss_ce': tensor(0.0950, device='cuda:0'), 'validation_loss_bbox': tensor(0.0090, device='cuda:0'), 'validation_loss_giou': tensor(0.0587, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.2575, device='cuda:0'), 'train_loss_ce': tensor(0.0950, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0587, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3741, device='cuda:0'), 'validation_loss_ce': tensor(0.0681, device='cuda:0'), 'validation_loss_bbox': tensor(0.0146, device='cuda:0'), 'validation_loss_giou': tensor(0.1164, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3741, device='cuda:0'), 'train_loss_ce': tensor(0.0681, device='cuda:0'), 'train_loss_bbox': tensor(0.0146, device='cuda:0'), 'train_loss_giou': tensor(0.1164, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3804, device='cuda:0'), 'validation_loss_ce': tensor(0.0672, device='cuda:0'), 'validation_loss_bbox': tensor(0.0145, device='cuda:0'), 'validation_loss_giou': tensor(0.1203, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3804, device='cuda:0'), 'train_loss_ce': tensor(0.0672, device='cuda:0'), 'train_loss_bbox': tensor(0.0145, device='cuda:0'), 'train_loss_giou': tensor(0.1203, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4510, device='cuda:0'), 'validation_loss_ce': tensor(0.0661, device='cuda:0'), 'validation_loss_bbox': tensor(0.0164, device='cuda:0'), 'validation_loss_giou': tensor(0.1514, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.4510, device='cuda:0'), 'train_loss_ce': tensor(0.0661, device='cuda:0'), 'train_loss_bbox': tensor(0.0164, device='cuda:0'), 'train_loss_giou': tensor(0.1514, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.4518, device='cuda:0'), 'validation_loss_ce': tensor(0.0644, device='cuda:0'), 'validation_loss_bbox': tensor(0.0157, device='cuda:0'), 'validation_loss_giou': tensor(0.1545, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.4518, device='cuda:0'), 'train_loss_ce': tensor(0.0644, device='cuda:0'), 'train_loss_bbox': tensor(0.0157, device='cuda:0'), 'train_loss_giou': tensor(0.1545, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.3655, device='cuda:0'), 'validation_loss_ce': tensor(0.0634, device='cuda:0'), 'validation_loss_bbox': tensor(0.0132, device='cuda:0'), 'validation_loss_giou': tensor(0.1181, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.3655, device='cuda:0'), 'train_loss_ce': tensor(0.0634, device='cuda:0'), 'train_loss_bbox': tensor(0.0132, device='cuda:0'), 'train_loss_giou': tensor(0.1181, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2913, device='cuda:0'), 'validation_loss_ce': tensor(0.0632, device='cuda:0'), 'validation_loss_bbox': tensor(0.0085, device='cuda:0'), 'validation_loss_giou': tensor(0.0927, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.2913, device='cuda:0'), 'train_loss_ce': tensor(0.0632, device='cuda:0'), 'train_loss_bbox': tensor(0.0085, device='cuda:0'), 'train_loss_giou': tensor(0.0927, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.3692, device='cuda:0'), 'validation_loss_ce': tensor(0.0632, device='cuda:0'), 'validation_loss_bbox': tensor(0.0130, device='cuda:0'), 'validation_loss_giou': tensor(0.1204, device='cuda:0'), 'validation_cardinality_error': tensor(2., device='cuda:0')}
{'training_loss': tensor(0.3692, device='cuda:0'), 'train_loss_ce': tensor(0.0632, device='cuda:0'), 'train_loss_bbox': tensor(0.0130, device='cuda:0'), 'train_loss_giou': tensor(0.1204, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(0.3340, device='cuda:0'), 'validation_loss_ce': tensor(0.0623, device='cuda:0'), 'validation_loss_bbox': tensor(0.0146, device='cuda:0'), 'validation_loss_giou': tensor(0.0994, device='cuda:0'), 'validation_cardinality_error': tensor(2., device='cuda:0')}
{'training_loss': tensor(0.3340, device='cuda:0'), 'train_loss_ce': tensor(0.0623, device='cuda:0'), 'train_loss_bbox': tensor(0.0146, device='cuda:0'), 'train_loss_giou': tensor(0.0994, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(0.2792, device='cuda:0'), 'validation_loss_ce': tensor(0.0603, device='cuda:0'), 'validation_loss_bbox': tensor(0.0124, device='cuda:0'), 'validation_loss_giou': tensor(0.0784, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.2792, device='cuda:0'), 'train_loss_ce': tensor(0.0603, device='cuda:0'), 'train_loss_bbox': tensor(0.0124, device='cuda:0'), 'train_loss_giou': tensor(0.0784, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2597, device='cuda:0'), 'validation_loss_ce': tensor(0.0582, device='cuda:0'), 'validation_loss_bbox': tensor(0.0103, device='cuda:0'), 'validation_loss_giou': tensor(0.0751, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.2597, device='cuda:0'), 'train_loss_ce': tensor(0.0582, device='cuda:0'), 'train_loss_bbox': tensor(0.0103, device='cuda:0'), 'train_loss_giou': tensor(0.0751, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.1822, device='cuda:0'), 'validation_loss_ce': tensor(0.0560, device='cuda:0'), 'validation_loss_bbox': tensor(0.0070, device='cuda:0'), 'validation_loss_giou': tensor(0.0456, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.1822, device='cuda:0'), 'train_loss_ce': tensor(0.0560, device='cuda:0'), 'train_loss_bbox': tensor(0.0070, device='cuda:0'), 'train_loss_giou': tensor(0.0456, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1763, device='cuda:0'), 'validation_loss_ce': tensor(0.0536, device='cuda:0'), 'validation_loss_bbox': tensor(0.0054, device='cuda:0'), 'validation_loss_giou': tensor(0.0479, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.1763, device='cuda:0'), 'train_loss_ce': tensor(0.0536, device='cuda:0'), 'train_loss_bbox': tensor(0.0054, device='cuda:0'), 'train_loss_giou': tensor(0.0479, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1416, device='cuda:0'), 'validation_loss_ce': tensor(0.0507, device='cuda:0'), 'validation_loss_bbox': tensor(0.0052, device='cuda:0'), 'validation_loss_giou': tensor(0.0324, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.1416, device='cuda:0'), 'train_loss_ce': tensor(0.0507, device='cuda:0'), 'train_loss_bbox': tensor(0.0052, device='cuda:0'), 'train_loss_giou': tensor(0.0324, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2995, device='cuda:0'), 'validation_loss_ce': tensor(0.0473, device='cuda:0'), 'validation_loss_bbox': tensor(0.0116, device='cuda:0'), 'validation_loss_giou': tensor(0.0972, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2995, device='cuda:0'), 'train_loss_ce': tensor(0.0473, device='cuda:0'), 'train_loss_bbox': tensor(0.0116, device='cuda:0'), 'train_loss_giou': tensor(0.0972, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2813, device='cuda:0'), 'validation_loss_ce': tensor(0.0460, device='cuda:0'), 'validation_loss_bbox': tensor(0.0098, device='cuda:0'), 'validation_loss_giou': tensor(0.0932, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2813, device='cuda:0'), 'train_loss_ce': tensor(0.0460, device='cuda:0'), 'train_loss_bbox': tensor(0.0098, device='cuda:0'), 'train_loss_giou': tensor(0.0932, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2491, device='cuda:0'), 'validation_loss_ce': tensor(0.0447, device='cuda:0'), 'validation_loss_bbox': tensor(0.0094, device='cuda:0'), 'validation_loss_giou': tensor(0.0785, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2491, device='cuda:0'), 'train_loss_ce': tensor(0.0447, device='cuda:0'), 'train_loss_bbox': tensor(0.0094, device='cuda:0'), 'train_loss_giou': tensor(0.0785, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3269, device='cuda:0'), 'validation_loss_ce': tensor(0.0435, device='cuda:0'), 'validation_loss_bbox': tensor(0.0138, device='cuda:0'), 'validation_loss_giou': tensor(0.1072, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3269, device='cuda:0'), 'train_loss_ce': tensor(0.0435, device='cuda:0'), 'train_loss_bbox': tensor(0.0138, device='cuda:0'), 'train_loss_giou': tensor(0.1072, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3899, device='cuda:0'), 'validation_loss_ce': tensor(0.0423, device='cuda:0'), 'validation_loss_bbox': tensor(0.0150, device='cuda:0'), 'validation_loss_giou': tensor(0.1362, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3899, device='cuda:0'), 'train_loss_ce': tensor(0.0423, device='cuda:0'), 'train_loss_bbox': tensor(0.0150, device='cuda:0'), 'train_loss_giou': tensor(0.1362, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2593, device='cuda:0'), 'validation_loss_ce': tensor(0.0412, device='cuda:0'), 'validation_loss_bbox': tensor(0.0090, device='cuda:0'), 'validation_loss_giou': tensor(0.0866, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2593, device='cuda:0'), 'train_loss_ce': tensor(0.0412, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0866, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2396, device='cuda:0'), 'validation_loss_ce': tensor(0.0404, device='cuda:0'), 'validation_loss_bbox': tensor(0.0082, device='cuda:0'), 'validation_loss_giou': tensor(0.0791, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2396, device='cuda:0'), 'train_loss_ce': tensor(0.0404, device='cuda:0'), 'train_loss_bbox': tensor(0.0082, device='cuda:0'), 'train_loss_giou': tensor(0.0791, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2881, device='cuda:0'), 'validation_loss_ce': tensor(0.0394, device='cuda:0'), 'validation_loss_bbox': tensor(0.0101, device='cuda:0'), 'validation_loss_giou': tensor(0.0992, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2881, device='cuda:0'), 'train_loss_ce': tensor(0.0394, device='cuda:0'), 'train_loss_bbox': tensor(0.0101, device='cuda:0'), 'train_loss_giou': tensor(0.0992, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1705, device='cuda:0'), 'validation_loss_ce': tensor(0.0383, device='cuda:0'), 'validation_loss_bbox': tensor(0.0079, device='cuda:0'), 'validation_loss_giou': tensor(0.0464, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.1705, device='cuda:0'), 'train_loss_ce': tensor(0.0383, device='cuda:0'), 'train_loss_bbox': tensor(0.0079, device='cuda:0'), 'train_loss_giou': tensor(0.0464, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2659, device='cuda:0'), 'validation_loss_ce': tensor(0.0371, device='cuda:0'), 'validation_loss_bbox': tensor(0.0100, device='cuda:0'), 'validation_loss_giou': tensor(0.0895, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2659, device='cuda:0'), 'train_loss_ce': tensor(0.0371, device='cuda:0'), 'train_loss_bbox': tensor(0.0100, device='cuda:0'), 'train_loss_giou': tensor(0.0895, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2592, device='cuda:0'), 'validation_loss_ce': tensor(0.0363, device='cuda:0'), 'validation_loss_bbox': tensor(0.0107, device='cuda:0'), 'validation_loss_giou': tensor(0.0846, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2592, device='cuda:0'), 'train_loss_ce': tensor(0.0363, device='cuda:0'), 'train_loss_bbox': tensor(0.0107, device='cuda:0'), 'train_loss_giou': tensor(0.0846, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1584, device='cuda:0'), 'validation_loss_ce': tensor(0.0354, device='cuda:0'), 'validation_loss_bbox': tensor(0.0064, device='cuda:0'), 'validation_loss_giou': tensor(0.0456, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.1584, device='cuda:0'), 'train_loss_ce': tensor(0.0354, device='cuda:0'), 'train_loss_bbox': tensor(0.0064, device='cuda:0'), 'train_loss_giou': tensor(0.0456, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2545, device='cuda:0'), 'validation_loss_ce': tensor(0.0346, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0916, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2545, device='cuda:0'), 'train_loss_ce': tensor(0.0346, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0916, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3034, device='cuda:0'), 'validation_loss_ce': tensor(0.0338, device='cuda:0'), 'validation_loss_bbox': tensor(0.0113, device='cuda:0'), 'validation_loss_giou': tensor(0.1066, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3034, device='cuda:0'), 'train_loss_ce': tensor(0.0338, device='cuda:0'), 'train_loss_bbox': tensor(0.0113, device='cuda:0'), 'train_loss_giou': tensor(0.1066, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2192, device='cuda:0'), 'validation_loss_ce': tensor(0.0331, device='cuda:0'), 'validation_loss_bbox': tensor(0.0084, device='cuda:0'), 'validation_loss_giou': tensor(0.0720, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2192, device='cuda:0'), 'train_loss_ce': tensor(0.0331, device='cuda:0'), 'train_loss_bbox': tensor(0.0084, device='cuda:0'), 'train_loss_giou': tensor(0.0720, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2407, device='cuda:0'), 'validation_loss_ce': tensor(0.0325, device='cuda:0'), 'validation_loss_bbox': tensor(0.0104, device='cuda:0'), 'validation_loss_giou': tensor(0.0780, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2407, device='cuda:0'), 'train_loss_ce': tensor(0.0325, device='cuda:0'), 'train_loss_bbox': tensor(0.0104, device='cuda:0'), 'train_loss_giou': tensor(0.0780, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2686, device='cuda:0'), 'validation_loss_ce': tensor(0.0318, device='cuda:0'), 'validation_loss_bbox': tensor(0.0110, device='cuda:0'), 'validation_loss_giou': tensor(0.0909, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2686, device='cuda:0'), 'train_loss_ce': tensor(0.0318, device='cuda:0'), 'train_loss_bbox': tensor(0.0110, device='cuda:0'), 'train_loss_giou': tensor(0.0909, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1828, device='cuda:0'), 'validation_loss_ce': tensor(0.0310, device='cuda:0'), 'validation_loss_bbox': tensor(0.0067, device='cuda:0'), 'validation_loss_giou': tensor(0.0593, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.1828, device='cuda:0'), 'train_loss_ce': tensor(0.0310, device='cuda:0'), 'train_loss_bbox': tensor(0.0067, device='cuda:0'), 'train_loss_giou': tensor(0.0593, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2056, device='cuda:0'), 'validation_loss_ce': tensor(0.0303, device='cuda:0'), 'validation_loss_bbox': tensor(0.0090, device='cuda:0'), 'validation_loss_giou': tensor(0.0651, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2056, device='cuda:0'), 'train_loss_ce': tensor(0.0303, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0651, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2310, device='cuda:0'), 'validation_loss_ce': tensor(0.0294, device='cuda:0'), 'validation_loss_bbox': tensor(0.0096, device='cuda:0'), 'validation_loss_giou': tensor(0.0768, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2310, device='cuda:0'), 'train_loss_ce': tensor(0.0294, device='cuda:0'), 'train_loss_bbox': tensor(0.0096, device='cuda:0'), 'train_loss_giou': tensor(0.0768, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1602, device='cuda:0'), 'validation_loss_ce': tensor(0.0286, device='cuda:0'), 'validation_loss_bbox': tensor(0.0074, device='cuda:0'), 'validation_loss_giou': tensor(0.0473, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.1602, device='cuda:0'), 'train_loss_ce': tensor(0.0286, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.0473, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2294, device='cuda:0'), 'validation_loss_ce': tensor(0.0280, device='cuda:0'), 'validation_loss_bbox': tensor(0.0083, device='cuda:0'), 'validation_loss_giou': tensor(0.0800, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2294, device='cuda:0'), 'train_loss_ce': tensor(0.0280, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.0800, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2559, device='cuda:0'), 'validation_loss_ce': tensor(0.0274, device='cuda:0'), 'validation_loss_bbox': tensor(0.0113, device='cuda:0'), 'validation_loss_giou': tensor(0.0859, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.2559, device='cuda:0'), 'train_loss_ce': tensor(0.0274, device='cuda:0'), 'train_loss_bbox': tensor(0.0113, device='cuda:0'), 'train_loss_giou': tensor(0.0859, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1676, device='cuda:0'), 'validation_loss_ce': tensor(0.0266, device='cuda:0'), 'validation_loss_bbox': tensor(0.0074, device='cuda:0'), 'validation_loss_giou': tensor(0.0521, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.1676, device='cuda:0'), 'train_loss_ce': tensor(0.0266, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.0521, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1977, device='cuda:0'), 'validation_loss_ce': tensor(0.0254, device='cuda:0'), 'validation_loss_bbox': tensor(0.0088, device='cuda:0'), 'validation_loss_giou': tensor(0.0642, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.1977, device='cuda:0'), 'train_loss_ce': tensor(0.0254, device='cuda:0'), 'train_loss_bbox': tensor(0.0088, device='cuda:0'), 'train_loss_giou': tensor(0.0642, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1807, device='cuda:0'), 'validation_loss_ce': tensor(0.0242, device='cuda:0'), 'validation_loss_bbox': tensor(0.0086, device='cuda:0'), 'validation_loss_giou': tensor(0.0567, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.1807, device='cuda:0'), 'train_loss_ce': tensor(0.0242, device='cuda:0'), 'train_loss_bbox': tensor(0.0086, device='cuda:0'), 'train_loss_giou': tensor(0.0567, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2037, device='cuda:0'), 'validation_loss_ce': tensor(0.0235, device='cuda:0'), 'validation_loss_bbox': tensor(0.0083, device='cuda:0'), 'validation_loss_giou': tensor(0.0693, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2037, device='cuda:0'), 'train_loss_ce': tensor(0.0235, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.0693, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1670, device='cuda:0'), 'validation_loss_ce': tensor(0.0232, device='cuda:0'), 'validation_loss_bbox': tensor(0.0078, device='cuda:0'), 'validation_loss_giou': tensor(0.0525, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.1670, device='cuda:0'), 'train_loss_ce': tensor(0.0232, device='cuda:0'), 'train_loss_bbox': tensor(0.0078, device='cuda:0'), 'train_loss_giou': tensor(0.0525, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1765, device='cuda:0'), 'validation_loss_ce': tensor(0.0229, device='cuda:0'), 'validation_loss_bbox': tensor(0.0091, device='cuda:0'), 'validation_loss_giou': tensor(0.0541, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.1765, device='cuda:0'), 'train_loss_ce': tensor(0.0229, device='cuda:0'), 'train_loss_bbox': tensor(0.0091, device='cuda:0'), 'train_loss_giou': tensor(0.0541, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2228, device='cuda:0'), 'validation_loss_ce': tensor(0.0225, device='cuda:0'), 'validation_loss_bbox': tensor(0.0089, device='cuda:0'), 'validation_loss_giou': tensor(0.0779, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.2228, device='cuda:0'), 'train_loss_ce': tensor(0.0225, device='cuda:0'), 'train_loss_bbox': tensor(0.0089, device='cuda:0'), 'train_loss_giou': tensor(0.0779, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1548, device='cuda:0'), 'validation_loss_ce': tensor(0.0218, device='cuda:0'), 'validation_loss_bbox': tensor(0.0060, device='cuda:0'), 'validation_loss_giou': tensor(0.0515, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1548, device='cuda:0'), 'train_loss_ce': tensor(0.0218, device='cuda:0'), 'train_loss_bbox': tensor(0.0060, device='cuda:0'), 'train_loss_giou': tensor(0.0515, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2298, device='cuda:0'), 'validation_loss_ce': tensor(0.0208, device='cuda:0'), 'validation_loss_bbox': tensor(0.0131, device='cuda:0'), 'validation_loss_giou': tensor(0.0717, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.2298, device='cuda:0'), 'train_loss_ce': tensor(0.0208, device='cuda:0'), 'train_loss_bbox': tensor(0.0131, device='cuda:0'), 'train_loss_giou': tensor(0.0717, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2543, device='cuda:0'), 'validation_loss_ce': tensor(0.0200, device='cuda:0'), 'validation_loss_bbox': tensor(0.0151, device='cuda:0'), 'validation_loss_giou': tensor(0.0793, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.2543, device='cuda:0'), 'train_loss_ce': tensor(0.0200, device='cuda:0'), 'train_loss_bbox': tensor(0.0151, device='cuda:0'), 'train_loss_giou': tensor(0.0793, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1557, device='cuda:0'), 'validation_loss_ce': tensor(0.0194, device='cuda:0'), 'validation_loss_bbox': tensor(0.0081, device='cuda:0'), 'validation_loss_giou': tensor(0.0480, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1557, device='cuda:0'), 'train_loss_ce': tensor(0.0194, device='cuda:0'), 'train_loss_bbox': tensor(0.0081, device='cuda:0'), 'train_loss_giou': tensor(0.0480, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1749, device='cuda:0'), 'validation_loss_ce': tensor(0.0190, device='cuda:0'), 'validation_loss_bbox': tensor(0.0081, device='cuda:0'), 'validation_loss_giou': tensor(0.0577, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1749, device='cuda:0'), 'train_loss_ce': tensor(0.0190, device='cuda:0'), 'train_loss_bbox': tensor(0.0081, device='cuda:0'), 'train_loss_giou': tensor(0.0577, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2357, device='cuda:0'), 'validation_loss_ce': tensor(0.0184, device='cuda:0'), 'validation_loss_bbox': tensor(0.0119, device='cuda:0'), 'validation_loss_giou': tensor(0.0790, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2357, device='cuda:0'), 'train_loss_ce': tensor(0.0184, device='cuda:0'), 'train_loss_bbox': tensor(0.0119, device='cuda:0'), 'train_loss_giou': tensor(0.0790, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2063, device='cuda:0'), 'validation_loss_ce': tensor(0.0177, device='cuda:0'), 'validation_loss_bbox': tensor(0.0090, device='cuda:0'), 'validation_loss_giou': tensor(0.0719, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2063, device='cuda:0'), 'train_loss_ce': tensor(0.0177, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0719, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1656, device='cuda:0'), 'validation_loss_ce': tensor(0.0170, device='cuda:0'), 'validation_loss_bbox': tensor(0.0068, device='cuda:0'), 'validation_loss_giou': tensor(0.0572, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.1656, device='cuda:0'), 'train_loss_ce': tensor(0.0170, device='cuda:0'), 'train_loss_bbox': tensor(0.0068, device='cuda:0'), 'train_loss_giou': tensor(0.0572, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1819, device='cuda:0'), 'validation_loss_ce': tensor(0.0165, device='cuda:0'), 'validation_loss_bbox': tensor(0.0086, device='cuda:0'), 'validation_loss_giou': tensor(0.0613, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.1819, device='cuda:0'), 'train_loss_ce': tensor(0.0165, device='cuda:0'), 'train_loss_bbox': tensor(0.0086, device='cuda:0'), 'train_loss_giou': tensor(0.0613, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1635, device='cuda:0'), 'validation_loss_ce': tensor(0.0159, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0554, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1635, device='cuda:0'), 'train_loss_ce': tensor(0.0159, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0554, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1871, device='cuda:0'), 'validation_loss_ce': tensor(0.0153, device='cuda:0'), 'validation_loss_bbox': tensor(0.0074, device='cuda:0'), 'validation_loss_giou': tensor(0.0675, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1871, device='cuda:0'), 'train_loss_ce': tensor(0.0153, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.0675, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1836, device='cuda:0'), 'validation_loss_ce': tensor(0.0150, device='cuda:0'), 'validation_loss_bbox': tensor(0.0098, device='cuda:0'), 'validation_loss_giou': tensor(0.0598, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1836, device='cuda:0'), 'train_loss_ce': tensor(0.0150, device='cuda:0'), 'train_loss_bbox': tensor(0.0098, device='cuda:0'), 'train_loss_giou': tensor(0.0598, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1827, device='cuda:0'), 'validation_loss_ce': tensor(0.0145, device='cuda:0'), 'validation_loss_bbox': tensor(0.0093, device='cuda:0'), 'validation_loss_giou': tensor(0.0608, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1827, device='cuda:0'), 'train_loss_ce': tensor(0.0145, device='cuda:0'), 'train_loss_bbox': tensor(0.0093, device='cuda:0'), 'train_loss_giou': tensor(0.0608, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2484, device='cuda:0'), 'validation_loss_ce': tensor(0.0142, device='cuda:0'), 'validation_loss_bbox': tensor(0.0118, device='cuda:0'), 'validation_loss_giou': tensor(0.0876, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2484, device='cuda:0'), 'train_loss_ce': tensor(0.0142, device='cuda:0'), 'train_loss_bbox': tensor(0.0118, device='cuda:0'), 'train_loss_giou': tensor(0.0876, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3151, device='cuda:0'), 'validation_loss_ce': tensor(0.0138, device='cuda:0'), 'validation_loss_bbox': tensor(0.0142, device='cuda:0'), 'validation_loss_giou': tensor(0.1152, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3151, device='cuda:0'), 'train_loss_ce': tensor(0.0138, device='cuda:0'), 'train_loss_bbox': tensor(0.0142, device='cuda:0'), 'train_loss_giou': tensor(0.1152, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2890, device='cuda:0'), 'validation_loss_ce': tensor(0.0135, device='cuda:0'), 'validation_loss_bbox': tensor(0.0115, device='cuda:0'), 'validation_loss_giou': tensor(0.1091, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2890, device='cuda:0'), 'train_loss_ce': tensor(0.0135, device='cuda:0'), 'train_loss_bbox': tensor(0.0115, device='cuda:0'), 'train_loss_giou': tensor(0.1091, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1245, device='cuda:0'), 'validation_loss_ce': tensor(0.0137, device='cuda:0'), 'validation_loss_bbox': tensor(0.0055, device='cuda:0'), 'validation_loss_giou': tensor(0.0416, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1245, device='cuda:0'), 'train_loss_ce': tensor(0.0137, device='cuda:0'), 'train_loss_bbox': tensor(0.0055, device='cuda:0'), 'train_loss_giou': tensor(0.0416, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2204, device='cuda:0'), 'validation_loss_ce': tensor(0.0151, device='cuda:0'), 'validation_loss_bbox': tensor(0.0096, device='cuda:0'), 'validation_loss_giou': tensor(0.0786, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2204, device='cuda:0'), 'train_loss_ce': tensor(0.0151, device='cuda:0'), 'train_loss_bbox': tensor(0.0096, device='cuda:0'), 'train_loss_giou': tensor(0.0786, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2524, device='cuda:0'), 'validation_loss_ce': tensor(0.0153, device='cuda:0'), 'validation_loss_bbox': tensor(0.0121, device='cuda:0'), 'validation_loss_giou': tensor(0.0883, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2524, device='cuda:0'), 'train_loss_ce': tensor(0.0153, device='cuda:0'), 'train_loss_bbox': tensor(0.0121, device='cuda:0'), 'train_loss_giou': tensor(0.0883, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2031, device='cuda:0'), 'validation_loss_ce': tensor(0.0142, device='cuda:0'), 'validation_loss_bbox': tensor(0.0106, device='cuda:0'), 'validation_loss_giou': tensor(0.0679, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2031, device='cuda:0'), 'train_loss_ce': tensor(0.0142, device='cuda:0'), 'train_loss_bbox': tensor(0.0106, device='cuda:0'), 'train_loss_giou': tensor(0.0679, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1970, device='cuda:0'), 'validation_loss_ce': tensor(0.0131, device='cuda:0'), 'validation_loss_bbox': tensor(0.0084, device='cuda:0'), 'validation_loss_giou': tensor(0.0709, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1970, device='cuda:0'), 'train_loss_ce': tensor(0.0131, device='cuda:0'), 'train_loss_bbox': tensor(0.0084, device='cuda:0'), 'train_loss_giou': tensor(0.0709, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2780, device='cuda:0'), 'validation_loss_ce': tensor(0.0125, device='cuda:0'), 'validation_loss_bbox': tensor(0.0110, device='cuda:0'), 'validation_loss_giou': tensor(0.1054, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2780, device='cuda:0'), 'train_loss_ce': tensor(0.0125, device='cuda:0'), 'train_loss_bbox': tensor(0.0110, device='cuda:0'), 'train_loss_giou': tensor(0.1054, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2422, device='cuda:0'), 'validation_loss_ce': tensor(0.0124, device='cuda:0'), 'validation_loss_bbox': tensor(0.0117, device='cuda:0'), 'validation_loss_giou': tensor(0.0858, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2422, device='cuda:0'), 'train_loss_ce': tensor(0.0124, device='cuda:0'), 'train_loss_bbox': tensor(0.0117, device='cuda:0'), 'train_loss_giou': tensor(0.0858, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2422, device='cuda:0'), 'validation_loss_ce': tensor(0.0120, device='cuda:0'), 'validation_loss_bbox': tensor(0.0123, device='cuda:0'), 'validation_loss_giou': tensor(0.0842, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2422, device='cuda:0'), 'train_loss_ce': tensor(0.0120, device='cuda:0'), 'train_loss_bbox': tensor(0.0123, device='cuda:0'), 'train_loss_giou': tensor(0.0842, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2694, device='cuda:0'), 'validation_loss_ce': tensor(0.0121, device='cuda:0'), 'validation_loss_bbox': tensor(0.0123, device='cuda:0'), 'validation_loss_giou': tensor(0.0979, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2694, device='cuda:0'), 'train_loss_ce': tensor(0.0121, device='cuda:0'), 'train_loss_bbox': tensor(0.0123, device='cuda:0'), 'train_loss_giou': tensor(0.0979, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2531, device='cuda:0'), 'validation_loss_ce': tensor(0.0126, device='cuda:0'), 'validation_loss_bbox': tensor(0.0122, device='cuda:0'), 'validation_loss_giou': tensor(0.0898, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2531, device='cuda:0'), 'train_loss_ce': tensor(0.0126, device='cuda:0'), 'train_loss_bbox': tensor(0.0122, device='cuda:0'), 'train_loss_giou': tensor(0.0898, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2334, device='cuda:0'), 'validation_loss_ce': tensor(0.0128, device='cuda:0'), 'validation_loss_bbox': tensor(0.0122, device='cuda:0'), 'validation_loss_giou': tensor(0.0797, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2334, device='cuda:0'), 'train_loss_ce': tensor(0.0128, device='cuda:0'), 'train_loss_bbox': tensor(0.0122, device='cuda:0'), 'train_loss_giou': tensor(0.0797, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2111, device='cuda:0'), 'validation_loss_ce': tensor(0.0122, device='cuda:0'), 'validation_loss_bbox': tensor(0.0119, device='cuda:0'), 'validation_loss_giou': tensor(0.0698, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2111, device='cuda:0'), 'train_loss_ce': tensor(0.0122, device='cuda:0'), 'train_loss_bbox': tensor(0.0119, device='cuda:0'), 'train_loss_giou': tensor(0.0698, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2438, device='cuda:0'), 'validation_loss_ce': tensor(0.0113, device='cuda:0'), 'validation_loss_bbox': tensor(0.0092, device='cuda:0'), 'validation_loss_giou': tensor(0.0932, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2438, device='cuda:0'), 'train_loss_ce': tensor(0.0113, device='cuda:0'), 'train_loss_bbox': tensor(0.0092, device='cuda:0'), 'train_loss_giou': tensor(0.0932, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1562, device='cuda:0'), 'validation_loss_ce': tensor(0.0111, device='cuda:0'), 'validation_loss_bbox': tensor(0.0076, device='cuda:0'), 'validation_loss_giou': tensor(0.0536, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1562, device='cuda:0'), 'train_loss_ce': tensor(0.0111, device='cuda:0'), 'train_loss_bbox': tensor(0.0076, device='cuda:0'), 'train_loss_giou': tensor(0.0536, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2693, device='cuda:0'), 'validation_loss_ce': tensor(0.0111, device='cuda:0'), 'validation_loss_bbox': tensor(0.0125, device='cuda:0'), 'validation_loss_giou': tensor(0.0977, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2693, device='cuda:0'), 'train_loss_ce': tensor(0.0111, device='cuda:0'), 'train_loss_bbox': tensor(0.0125, device='cuda:0'), 'train_loss_giou': tensor(0.0977, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2538, device='cuda:0'), 'validation_loss_ce': tensor(0.0104, device='cuda:0'), 'validation_loss_bbox': tensor(0.0110, device='cuda:0'), 'validation_loss_giou': tensor(0.0943, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2538, device='cuda:0'), 'train_loss_ce': tensor(0.0104, device='cuda:0'), 'train_loss_bbox': tensor(0.0110, device='cuda:0'), 'train_loss_giou': tensor(0.0943, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.0871, device='cuda:0'), 'validation_loss_ce': tensor(0.0097, device='cuda:0'), 'validation_loss_bbox': tensor(0.0044, device='cuda:0'), 'validation_loss_giou': tensor(0.0277, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.0871, device='cuda:0'), 'train_loss_ce': tensor(0.0097, device='cuda:0'), 'train_loss_bbox': tensor(0.0044, device='cuda:0'), 'train_loss_giou': tensor(0.0277, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3141, device='cuda:0'), 'validation_loss_ce': tensor(0.0100, device='cuda:0'), 'validation_loss_bbox': tensor(0.0112, device='cuda:0'), 'validation_loss_giou': tensor(0.1241, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3141, device='cuda:0'), 'train_loss_ce': tensor(0.0100, device='cuda:0'), 'train_loss_bbox': tensor(0.0112, device='cuda:0'), 'train_loss_giou': tensor(0.1241, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3379, device='cuda:0'), 'validation_loss_ce': tensor(0.0102, device='cuda:0'), 'validation_loss_bbox': tensor(0.0139, device='cuda:0'), 'validation_loss_giou': tensor(0.1290, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3379, device='cuda:0'), 'train_loss_ce': tensor(0.0102, device='cuda:0'), 'train_loss_bbox': tensor(0.0139, device='cuda:0'), 'train_loss_giou': tensor(0.1290, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3033, device='cuda:0'), 'validation_loss_ce': tensor(0.0098, device='cuda:0'), 'validation_loss_bbox': tensor(0.0128, device='cuda:0'), 'validation_loss_giou': tensor(0.1148, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3033, device='cuda:0'), 'train_loss_ce': tensor(0.0098, device='cuda:0'), 'train_loss_bbox': tensor(0.0128, device='cuda:0'), 'train_loss_giou': tensor(0.1148, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2814, device='cuda:0'), 'validation_loss_ce': tensor(0.0091, device='cuda:0'), 'validation_loss_bbox': tensor(0.0104, device='cuda:0'), 'validation_loss_giou': tensor(0.1102, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2814, device='cuda:0'), 'train_loss_ce': tensor(0.0091, device='cuda:0'), 'train_loss_bbox': tensor(0.0104, device='cuda:0'), 'train_loss_giou': tensor(0.1102, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2810, device='cuda:0'), 'validation_loss_ce': tensor(0.0088, device='cuda:0'), 'validation_loss_bbox': tensor(0.0104, device='cuda:0'), 'validation_loss_giou': tensor(0.1101, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2810, device='cuda:0'), 'train_loss_ce': tensor(0.0088, device='cuda:0'), 'train_loss_bbox': tensor(0.0104, device='cuda:0'), 'train_loss_giou': tensor(0.1101, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2601, device='cuda:0'), 'validation_loss_ce': tensor(0.0087, device='cuda:0'), 'validation_loss_bbox': tensor(0.0126, device='cuda:0'), 'validation_loss_giou': tensor(0.0941, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2601, device='cuda:0'), 'train_loss_ce': tensor(0.0087, device='cuda:0'), 'train_loss_bbox': tensor(0.0126, device='cuda:0'), 'train_loss_giou': tensor(0.0941, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2376, device='cuda:0'), 'validation_loss_ce': tensor(0.0087, device='cuda:0'), 'validation_loss_bbox': tensor(0.0122, device='cuda:0'), 'validation_loss_giou': tensor(0.0840, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2376, device='cuda:0'), 'train_loss_ce': tensor(0.0087, device='cuda:0'), 'train_loss_bbox': tensor(0.0122, device='cuda:0'), 'train_loss_giou': tensor(0.0840, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2287, device='cuda:0'), 'validation_loss_ce': tensor(0.0087, device='cuda:0'), 'validation_loss_bbox': tensor(0.0116, device='cuda:0'), 'validation_loss_giou': tensor(0.0811, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2287, device='cuda:0'), 'train_loss_ce': tensor(0.0087, device='cuda:0'), 'train_loss_bbox': tensor(0.0116, device='cuda:0'), 'train_loss_giou': tensor(0.0811, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2307, device='cuda:0'), 'validation_loss_ce': tensor(0.0086, device='cuda:0'), 'validation_loss_bbox': tensor(0.0084, device='cuda:0'), 'validation_loss_giou': tensor(0.0901, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2307, device='cuda:0'), 'train_loss_ce': tensor(0.0086, device='cuda:0'), 'train_loss_bbox': tensor(0.0084, device='cuda:0'), 'train_loss_giou': tensor(0.0901, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1298, device='cuda:0'), 'validation_loss_ce': tensor(0.0083, device='cuda:0'), 'validation_loss_bbox': tensor(0.0054, device='cuda:0'), 'validation_loss_giou': tensor(0.0473, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1298, device='cuda:0'), 'train_loss_ce': tensor(0.0083, device='cuda:0'), 'train_loss_bbox': tensor(0.0054, device='cuda:0'), 'train_loss_giou': tensor(0.0473, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2433, device='cuda:0'), 'validation_loss_ce': tensor(0.0082, device='cuda:0'), 'validation_loss_bbox': tensor(0.0095, device='cuda:0'), 'validation_loss_giou': tensor(0.0938, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2433, device='cuda:0'), 'train_loss_ce': tensor(0.0082, device='cuda:0'), 'train_loss_bbox': tensor(0.0095, device='cuda:0'), 'train_loss_giou': tensor(0.0938, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3300, device='cuda:0'), 'validation_loss_ce': tensor(0.0080, device='cuda:0'), 'validation_loss_bbox': tensor(0.0145, device='cuda:0'), 'validation_loss_giou': tensor(0.1247, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3300, device='cuda:0'), 'train_loss_ce': tensor(0.0080, device='cuda:0'), 'train_loss_bbox': tensor(0.0145, device='cuda:0'), 'train_loss_giou': tensor(0.1247, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2760, device='cuda:0'), 'validation_loss_ce': tensor(0.0077, device='cuda:0'), 'validation_loss_bbox': tensor(0.0123, device='cuda:0'), 'validation_loss_giou': tensor(0.1034, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2760, device='cuda:0'), 'train_loss_ce': tensor(0.0077, device='cuda:0'), 'train_loss_bbox': tensor(0.0123, device='cuda:0'), 'train_loss_giou': tensor(0.1034, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1365, device='cuda:0'), 'validation_loss_ce': tensor(0.0074, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0463, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1365, device='cuda:0'), 'train_loss_ce': tensor(0.0074, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0463, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3019, device='cuda:0'), 'validation_loss_ce': tensor(0.0070, device='cuda:0'), 'validation_loss_bbox': tensor(0.0121, device='cuda:0'), 'validation_loss_giou': tensor(0.1171, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3019, device='cuda:0'), 'train_loss_ce': tensor(0.0070, device='cuda:0'), 'train_loss_bbox': tensor(0.0121, device='cuda:0'), 'train_loss_giou': tensor(0.1171, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3336, device='cuda:0'), 'validation_loss_ce': tensor(0.0069, device='cuda:0'), 'validation_loss_bbox': tensor(0.0149, device='cuda:0'), 'validation_loss_giou': tensor(0.1260, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3336, device='cuda:0'), 'train_loss_ce': tensor(0.0069, device='cuda:0'), 'train_loss_bbox': tensor(0.0149, device='cuda:0'), 'train_loss_giou': tensor(0.1260, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2558, device='cuda:0'), 'validation_loss_ce': tensor(0.0069, device='cuda:0'), 'validation_loss_bbox': tensor(0.0107, device='cuda:0'), 'validation_loss_giou': tensor(0.0976, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2558, device='cuda:0'), 'train_loss_ce': tensor(0.0069, device='cuda:0'), 'train_loss_bbox': tensor(0.0107, device='cuda:0'), 'train_loss_giou': tensor(0.0976, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1840, device='cuda:0'), 'validation_loss_ce': tensor(0.0069, device='cuda:0'), 'validation_loss_bbox': tensor(0.0093, device='cuda:0'), 'validation_loss_giou': tensor(0.0654, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1840, device='cuda:0'), 'train_loss_ce': tensor(0.0069, device='cuda:0'), 'train_loss_bbox': tensor(0.0093, device='cuda:0'), 'train_loss_giou': tensor(0.0654, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2434, device='cuda:0'), 'validation_loss_ce': tensor(0.0068, device='cuda:0'), 'validation_loss_bbox': tensor(0.0102, device='cuda:0'), 'validation_loss_giou': tensor(0.0928, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2434, device='cuda:0'), 'train_loss_ce': tensor(0.0068, device='cuda:0'), 'train_loss_bbox': tensor(0.0102, device='cuda:0'), 'train_loss_giou': tensor(0.0928, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2289, device='cuda:0'), 'validation_loss_ce': tensor(0.0067, device='cuda:0'), 'validation_loss_bbox': tensor(0.0098, device='cuda:0'), 'validation_loss_giou': tensor(0.0865, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2289, device='cuda:0'), 'train_loss_ce': tensor(0.0067, device='cuda:0'), 'train_loss_bbox': tensor(0.0098, device='cuda:0'), 'train_loss_giou': tensor(0.0865, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2336, device='cuda:0'), 'validation_loss_ce': tensor(0.0066, device='cuda:0'), 'validation_loss_bbox': tensor(0.0135, device='cuda:0'), 'validation_loss_giou': tensor(0.0798, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2336, device='cuda:0'), 'train_loss_ce': tensor(0.0066, device='cuda:0'), 'train_loss_bbox': tensor(0.0135, device='cuda:0'), 'train_loss_giou': tensor(0.0798, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3234, device='cuda:0'), 'validation_loss_ce': tensor(0.0063, device='cuda:0'), 'validation_loss_bbox': tensor(0.0172, device='cuda:0'), 'validation_loss_giou': tensor(0.1155, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3234, device='cuda:0'), 'train_loss_ce': tensor(0.0063, device='cuda:0'), 'train_loss_bbox': tensor(0.0172, device='cuda:0'), 'train_loss_giou': tensor(0.1155, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3425, device='cuda:0'), 'validation_loss_ce': tensor(0.0062, device='cuda:0'), 'validation_loss_bbox': tensor(0.0176, device='cuda:0'), 'validation_loss_giou': tensor(0.1242, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3425, device='cuda:0'), 'train_loss_ce': tensor(0.0062, device='cuda:0'), 'train_loss_bbox': tensor(0.0176, device='cuda:0'), 'train_loss_giou': tensor(0.1242, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2623, device='cuda:0'), 'validation_loss_ce': tensor(0.0061, device='cuda:0'), 'validation_loss_bbox': tensor(0.0116, device='cuda:0'), 'validation_loss_giou': tensor(0.0992, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2623, device='cuda:0'), 'train_loss_ce': tensor(0.0061, device='cuda:0'), 'train_loss_bbox': tensor(0.0116, device='cuda:0'), 'train_loss_giou': tensor(0.0992, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1937, device='cuda:0'), 'validation_loss_ce': tensor(0.0060, device='cuda:0'), 'validation_loss_bbox': tensor(0.0077, device='cuda:0'), 'validation_loss_giou': tensor(0.0745, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1937, device='cuda:0'), 'train_loss_ce': tensor(0.0060, device='cuda:0'), 'train_loss_bbox': tensor(0.0077, device='cuda:0'), 'train_loss_giou': tensor(0.0745, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3438, device='cuda:0'), 'validation_loss_ce': tensor(0.0060, device='cuda:0'), 'validation_loss_bbox': tensor(0.0149, device='cuda:0'), 'validation_loss_giou': tensor(0.1316, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3438, device='cuda:0'), 'train_loss_ce': tensor(0.0060, device='cuda:0'), 'train_loss_bbox': tensor(0.0149, device='cuda:0'), 'train_loss_giou': tensor(0.1316, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3953, device='cuda:0'), 'validation_loss_ce': tensor(0.0059, device='cuda:0'), 'validation_loss_bbox': tensor(0.0194, device='cuda:0'), 'validation_loss_giou': tensor(0.1463, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3953, device='cuda:0'), 'train_loss_ce': tensor(0.0059, device='cuda:0'), 'train_loss_bbox': tensor(0.0194, device='cuda:0'), 'train_loss_giou': tensor(0.1463, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3053, device='cuda:0'), 'validation_loss_ce': tensor(0.0058, device='cuda:0'), 'validation_loss_bbox': tensor(0.0172, device='cuda:0'), 'validation_loss_giou': tensor(0.1067, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3053, device='cuda:0'), 'train_loss_ce': tensor(0.0058, device='cuda:0'), 'train_loss_bbox': tensor(0.0172, device='cuda:0'), 'train_loss_giou': tensor(0.1067, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3345, device='cuda:0'), 'validation_loss_ce': tensor(0.0058, device='cuda:0'), 'validation_loss_bbox': tensor(0.0153, device='cuda:0'), 'validation_loss_giou': tensor(0.1262, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3345, device='cuda:0'), 'train_loss_ce': tensor(0.0058, device='cuda:0'), 'train_loss_bbox': tensor(0.0153, device='cuda:0'), 'train_loss_giou': tensor(0.1262, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2791, device='cuda:0'), 'validation_loss_ce': tensor(0.0057, device='cuda:0'), 'validation_loss_bbox': tensor(0.0118, device='cuda:0'), 'validation_loss_giou': tensor(0.1072, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2791, device='cuda:0'), 'train_loss_ce': tensor(0.0057, device='cuda:0'), 'train_loss_bbox': tensor(0.0118, device='cuda:0'), 'train_loss_giou': tensor(0.1072, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2469, device='cuda:0'), 'validation_loss_ce': tensor(0.0056, device='cuda:0'), 'validation_loss_bbox': tensor(0.0097, device='cuda:0'), 'validation_loss_giou': tensor(0.0963, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2469, device='cuda:0'), 'train_loss_ce': tensor(0.0056, device='cuda:0'), 'train_loss_bbox': tensor(0.0097, device='cuda:0'), 'train_loss_giou': tensor(0.0963, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2663, device='cuda:0'), 'validation_loss_ce': tensor(0.0055, device='cuda:0'), 'validation_loss_bbox': tensor(0.0143, device='cuda:0'), 'validation_loss_giou': tensor(0.0945, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2663, device='cuda:0'), 'train_loss_ce': tensor(0.0055, device='cuda:0'), 'train_loss_bbox': tensor(0.0143, device='cuda:0'), 'train_loss_giou': tensor(0.0945, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3384, device='cuda:0'), 'validation_loss_ce': tensor(0.0054, device='cuda:0'), 'validation_loss_bbox': tensor(0.0148, device='cuda:0'), 'validation_loss_giou': tensor(0.1294, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3384, device='cuda:0'), 'train_loss_ce': tensor(0.0054, device='cuda:0'), 'train_loss_bbox': tensor(0.0148, device='cuda:0'), 'train_loss_giou': tensor(0.1294, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2651, device='cuda:0'), 'validation_loss_ce': tensor(0.0053, device='cuda:0'), 'validation_loss_bbox': tensor(0.0140, device='cuda:0'), 'validation_loss_giou': tensor(0.0949, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2651, device='cuda:0'), 'train_loss_ce': tensor(0.0053, device='cuda:0'), 'train_loss_bbox': tensor(0.0140, device='cuda:0'), 'train_loss_giou': tensor(0.0949, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3123, device='cuda:0'), 'validation_loss_ce': tensor(0.0052, device='cuda:0'), 'validation_loss_bbox': tensor(0.0126, device='cuda:0'), 'validation_loss_giou': tensor(0.1220, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3123, device='cuda:0'), 'train_loss_ce': tensor(0.0052, device='cuda:0'), 'train_loss_bbox': tensor(0.0126, device='cuda:0'), 'train_loss_giou': tensor(0.1220, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2979, device='cuda:0'), 'validation_loss_ce': tensor(0.0051, device='cuda:0'), 'validation_loss_bbox': tensor(0.0098, device='cuda:0'), 'validation_loss_giou': tensor(0.1218, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2979, device='cuda:0'), 'train_loss_ce': tensor(0.0051, device='cuda:0'), 'train_loss_bbox': tensor(0.0098, device='cuda:0'), 'train_loss_giou': tensor(0.1218, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2771, device='cuda:0'), 'validation_loss_ce': tensor(0.0051, device='cuda:0'), 'validation_loss_bbox': tensor(0.0111, device='cuda:0'), 'validation_loss_giou': tensor(0.1082, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2771, device='cuda:0'), 'train_loss_ce': tensor(0.0051, device='cuda:0'), 'train_loss_bbox': tensor(0.0111, device='cuda:0'), 'train_loss_giou': tensor(0.1082, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2593, device='cuda:0'), 'validation_loss_ce': tensor(0.0051, device='cuda:0'), 'validation_loss_bbox': tensor(0.0118, device='cuda:0'), 'validation_loss_giou': tensor(0.0976, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2593, device='cuda:0'), 'train_loss_ce': tensor(0.0051, device='cuda:0'), 'train_loss_bbox': tensor(0.0118, device='cuda:0'), 'train_loss_giou': tensor(0.0976, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2314, device='cuda:0'), 'validation_loss_ce': tensor(0.0051, device='cuda:0'), 'validation_loss_bbox': tensor(0.0113, device='cuda:0'), 'validation_loss_giou': tensor(0.0849, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2314, device='cuda:0'), 'train_loss_ce': tensor(0.0051, device='cuda:0'), 'train_loss_bbox': tensor(0.0113, device='cuda:0'), 'train_loss_giou': tensor(0.0849, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2144, device='cuda:0'), 'validation_loss_ce': tensor(0.0051, device='cuda:0'), 'validation_loss_bbox': tensor(0.0086, device='cuda:0'), 'validation_loss_giou': tensor(0.0831, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2144, device='cuda:0'), 'train_loss_ce': tensor(0.0051, device='cuda:0'), 'train_loss_bbox': tensor(0.0086, device='cuda:0'), 'train_loss_giou': tensor(0.0831, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2268, device='cuda:0'), 'validation_loss_ce': tensor(0.0051, device='cuda:0'), 'validation_loss_bbox': tensor(0.0099, device='cuda:0'), 'validation_loss_giou': tensor(0.0860, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2268, device='cuda:0'), 'train_loss_ce': tensor(0.0051, device='cuda:0'), 'train_loss_bbox': tensor(0.0099, device='cuda:0'), 'train_loss_giou': tensor(0.0860, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2667, device='cuda:0'), 'validation_loss_ce': tensor(0.0050, device='cuda:0'), 'validation_loss_bbox': tensor(0.0122, device='cuda:0'), 'validation_loss_giou': tensor(0.1003, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2667, device='cuda:0'), 'train_loss_ce': tensor(0.0050, device='cuda:0'), 'train_loss_bbox': tensor(0.0122, device='cuda:0'), 'train_loss_giou': tensor(0.1003, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1828, device='cuda:0'), 'validation_loss_ce': tensor(0.0049, device='cuda:0'), 'validation_loss_bbox': tensor(0.0103, device='cuda:0'), 'validation_loss_giou': tensor(0.0632, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1828, device='cuda:0'), 'train_loss_ce': tensor(0.0049, device='cuda:0'), 'train_loss_bbox': tensor(0.0103, device='cuda:0'), 'train_loss_giou': tensor(0.0632, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2312, device='cuda:0'), 'validation_loss_ce': tensor(0.0048, device='cuda:0'), 'validation_loss_bbox': tensor(0.0107, device='cuda:0'), 'validation_loss_giou': tensor(0.0864, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2312, device='cuda:0'), 'train_loss_ce': tensor(0.0048, device='cuda:0'), 'train_loss_bbox': tensor(0.0107, device='cuda:0'), 'train_loss_giou': tensor(0.0864, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2423, device='cuda:0'), 'validation_loss_ce': tensor(0.0047, device='cuda:0'), 'validation_loss_bbox': tensor(0.0090, device='cuda:0'), 'validation_loss_giou': tensor(0.0964, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2423, device='cuda:0'), 'train_loss_ce': tensor(0.0047, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0964, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.0665, device='cuda:0'), 'validation_loss_ce': tensor(0.0046, device='cuda:0'), 'validation_loss_bbox': tensor(0.0034, device='cuda:0'), 'validation_loss_giou': tensor(0.0224, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.0665, device='cuda:0'), 'train_loss_ce': tensor(0.0046, device='cuda:0'), 'train_loss_bbox': tensor(0.0034, device='cuda:0'), 'train_loss_giou': tensor(0.0224, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1930, device='cuda:0'), 'validation_loss_ce': tensor(0.0046, device='cuda:0'), 'validation_loss_bbox': tensor(0.0081, device='cuda:0'), 'validation_loss_giou': tensor(0.0740, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1930, device='cuda:0'), 'train_loss_ce': tensor(0.0046, device='cuda:0'), 'train_loss_bbox': tensor(0.0081, device='cuda:0'), 'train_loss_giou': tensor(0.0740, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2849, device='cuda:0'), 'validation_loss_ce': tensor(0.0045, device='cuda:0'), 'validation_loss_bbox': tensor(0.0112, device='cuda:0'), 'validation_loss_giou': tensor(0.1122, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2849, device='cuda:0'), 'train_loss_ce': tensor(0.0045, device='cuda:0'), 'train_loss_bbox': tensor(0.0112, device='cuda:0'), 'train_loss_giou': tensor(0.1122, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1956, device='cuda:0'), 'validation_loss_ce': tensor(0.0044, device='cuda:0'), 'validation_loss_bbox': tensor(0.0075, device='cuda:0'), 'validation_loss_giou': tensor(0.0769, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1956, device='cuda:0'), 'train_loss_ce': tensor(0.0044, device='cuda:0'), 'train_loss_bbox': tensor(0.0075, device='cuda:0'), 'train_loss_giou': tensor(0.0769, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1454, device='cuda:0'), 'validation_loss_ce': tensor(0.0044, device='cuda:0'), 'validation_loss_bbox': tensor(0.0061, device='cuda:0'), 'validation_loss_giou': tensor(0.0553, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1454, device='cuda:0'), 'train_loss_ce': tensor(0.0044, device='cuda:0'), 'train_loss_bbox': tensor(0.0061, device='cuda:0'), 'train_loss_giou': tensor(0.0553, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2098, device='cuda:0'), 'validation_loss_ce': tensor(0.0043, device='cuda:0'), 'validation_loss_bbox': tensor(0.0072, device='cuda:0'), 'validation_loss_giou': tensor(0.0848, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2098, device='cuda:0'), 'train_loss_ce': tensor(0.0043, device='cuda:0'), 'train_loss_bbox': tensor(0.0072, device='cuda:0'), 'train_loss_giou': tensor(0.0848, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1164, device='cuda:0'), 'validation_loss_ce': tensor(0.0043, device='cuda:0'), 'validation_loss_bbox': tensor(0.0050, device='cuda:0'), 'validation_loss_giou': tensor(0.0436, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1164, device='cuda:0'), 'train_loss_ce': tensor(0.0043, device='cuda:0'), 'train_loss_bbox': tensor(0.0050, device='cuda:0'), 'train_loss_giou': tensor(0.0436, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2209, device='cuda:0'), 'validation_loss_ce': tensor(0.0043, device='cuda:0'), 'validation_loss_bbox': tensor(0.0085, device='cuda:0'), 'validation_loss_giou': tensor(0.0871, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2209, device='cuda:0'), 'train_loss_ce': tensor(0.0043, device='cuda:0'), 'train_loss_bbox': tensor(0.0085, device='cuda:0'), 'train_loss_giou': tensor(0.0871, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2499, device='cuda:0'), 'validation_loss_ce': tensor(0.0042, device='cuda:0'), 'validation_loss_bbox': tensor(0.0091, device='cuda:0'), 'validation_loss_giou': tensor(0.1000, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2499, device='cuda:0'), 'train_loss_ce': tensor(0.0042, device='cuda:0'), 'train_loss_bbox': tensor(0.0091, device='cuda:0'), 'train_loss_giou': tensor(0.1000, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1557, device='cuda:0'), 'validation_loss_ce': tensor(0.0041, device='cuda:0'), 'validation_loss_bbox': tensor(0.0064, device='cuda:0'), 'validation_loss_giou': tensor(0.0597, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1557, device='cuda:0'), 'train_loss_ce': tensor(0.0041, device='cuda:0'), 'train_loss_bbox': tensor(0.0064, device='cuda:0'), 'train_loss_giou': tensor(0.0597, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1533, device='cuda:0'), 'validation_loss_ce': tensor(0.0040, device='cuda:0'), 'validation_loss_bbox': tensor(0.0069, device='cuda:0'), 'validation_loss_giou': tensor(0.0575, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1533, device='cuda:0'), 'train_loss_ce': tensor(0.0040, device='cuda:0'), 'train_loss_bbox': tensor(0.0069, device='cuda:0'), 'train_loss_giou': tensor(0.0575, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1770, device='cuda:0'), 'validation_loss_ce': tensor(0.0040, device='cuda:0'), 'validation_loss_bbox': tensor(0.0069, device='cuda:0'), 'validation_loss_giou': tensor(0.0693, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1770, device='cuda:0'), 'train_loss_ce': tensor(0.0040, device='cuda:0'), 'train_loss_bbox': tensor(0.0069, device='cuda:0'), 'train_loss_giou': tensor(0.0693, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1144, device='cuda:0'), 'validation_loss_ce': tensor(0.0039, device='cuda:0'), 'validation_loss_bbox': tensor(0.0054, device='cuda:0'), 'validation_loss_giou': tensor(0.0419, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1144, device='cuda:0'), 'train_loss_ce': tensor(0.0039, device='cuda:0'), 'train_loss_bbox': tensor(0.0054, device='cuda:0'), 'train_loss_giou': tensor(0.0419, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1907, device='cuda:0'), 'validation_loss_ce': tensor(0.0037, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0752, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1907, device='cuda:0'), 'train_loss_ce': tensor(0.0037, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0752, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2450, device='cuda:0'), 'validation_loss_ce': tensor(0.0036, device='cuda:0'), 'validation_loss_bbox': tensor(0.0087, device='cuda:0'), 'validation_loss_giou': tensor(0.0990, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2450, device='cuda:0'), 'train_loss_ce': tensor(0.0036, device='cuda:0'), 'train_loss_bbox': tensor(0.0087, device='cuda:0'), 'train_loss_giou': tensor(0.0990, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2099, device='cuda:0'), 'validation_loss_ce': tensor(0.0035, device='cuda:0'), 'validation_loss_bbox': tensor(0.0074, device='cuda:0'), 'validation_loss_giou': tensor(0.0848, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2099, device='cuda:0'), 'train_loss_ce': tensor(0.0035, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.0848, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.0943, device='cuda:0'), 'validation_loss_ce': tensor(0.0036, device='cuda:0'), 'validation_loss_bbox': tensor(0.0045, device='cuda:0'), 'validation_loss_giou': tensor(0.0341, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.0943, device='cuda:0'), 'train_loss_ce': tensor(0.0036, device='cuda:0'), 'train_loss_bbox': tensor(0.0045, device='cuda:0'), 'train_loss_giou': tensor(0.0341, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1894, device='cuda:0'), 'validation_loss_ce': tensor(0.0036, device='cuda:0'), 'validation_loss_bbox': tensor(0.0064, device='cuda:0'), 'validation_loss_giou': tensor(0.0768, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1894, device='cuda:0'), 'train_loss_ce': tensor(0.0036, device='cuda:0'), 'train_loss_bbox': tensor(0.0064, device='cuda:0'), 'train_loss_giou': tensor(0.0768, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1661, device='cuda:0'), 'validation_loss_ce': tensor(0.0036, device='cuda:0'), 'validation_loss_bbox': tensor(0.0062, device='cuda:0'), 'validation_loss_giou': tensor(0.0657, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1661, device='cuda:0'), 'train_loss_ce': tensor(0.0036, device='cuda:0'), 'train_loss_bbox': tensor(0.0062, device='cuda:0'), 'train_loss_giou': tensor(0.0657, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.0847, device='cuda:0'), 'validation_loss_ce': tensor(0.0035, device='cuda:0'), 'validation_loss_bbox': tensor(0.0029, device='cuda:0'), 'validation_loss_giou': tensor(0.0332, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.0847, device='cuda:0'), 'train_loss_ce': tensor(0.0035, device='cuda:0'), 'train_loss_bbox': tensor(0.0029, device='cuda:0'), 'train_loss_giou': tensor(0.0332, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1978, device='cuda:0'), 'validation_loss_ce': tensor(0.0034, device='cuda:0'), 'validation_loss_bbox': tensor(0.0062, device='cuda:0'), 'validation_loss_giou': tensor(0.0818, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1978, device='cuda:0'), 'train_loss_ce': tensor(0.0034, device='cuda:0'), 'train_loss_bbox': tensor(0.0062, device='cuda:0'), 'train_loss_giou': tensor(0.0818, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2746, device='cuda:0'), 'validation_loss_ce': tensor(0.0034, device='cuda:0'), 'validation_loss_bbox': tensor(0.0093, device='cuda:0'), 'validation_loss_giou': tensor(0.1123, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2746, device='cuda:0'), 'train_loss_ce': tensor(0.0034, device='cuda:0'), 'train_loss_bbox': tensor(0.0093, device='cuda:0'), 'train_loss_giou': tensor(0.1123, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1926, device='cuda:0'), 'validation_loss_ce': tensor(0.0033, device='cuda:0'), 'validation_loss_bbox': tensor(0.0082, device='cuda:0'), 'validation_loss_giou': tensor(0.0741, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1926, device='cuda:0'), 'train_loss_ce': tensor(0.0033, device='cuda:0'), 'train_loss_bbox': tensor(0.0082, device='cuda:0'), 'train_loss_giou': tensor(0.0741, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1713, device='cuda:0'), 'validation_loss_ce': tensor(0.0032, device='cuda:0'), 'validation_loss_bbox': tensor(0.0070, device='cuda:0'), 'validation_loss_giou': tensor(0.0665, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1713, device='cuda:0'), 'train_loss_ce': tensor(0.0032, device='cuda:0'), 'train_loss_bbox': tensor(0.0070, device='cuda:0'), 'train_loss_giou': tensor(0.0665, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3369, device='cuda:0'), 'validation_loss_ce': tensor(0.0032, device='cuda:0'), 'validation_loss_bbox': tensor(0.0115, device='cuda:0'), 'validation_loss_giou': tensor(0.1381, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3369, device='cuda:0'), 'train_loss_ce': tensor(0.0032, device='cuda:0'), 'train_loss_bbox': tensor(0.0115, device='cuda:0'), 'train_loss_giou': tensor(0.1381, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3359, device='cuda:0'), 'validation_loss_ce': tensor(0.0031, device='cuda:0'), 'validation_loss_bbox': tensor(0.0110, device='cuda:0'), 'validation_loss_giou': tensor(0.1390, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3359, device='cuda:0'), 'train_loss_ce': tensor(0.0031, device='cuda:0'), 'train_loss_bbox': tensor(0.0110, device='cuda:0'), 'train_loss_giou': tensor(0.1390, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2050, device='cuda:0'), 'validation_loss_ce': tensor(0.0031, device='cuda:0'), 'validation_loss_bbox': tensor(0.0079, device='cuda:0'), 'validation_loss_giou': tensor(0.0811, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2050, device='cuda:0'), 'train_loss_ce': tensor(0.0031, device='cuda:0'), 'train_loss_bbox': tensor(0.0079, device='cuda:0'), 'train_loss_giou': tensor(0.0811, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1934, device='cuda:0'), 'validation_loss_ce': tensor(0.0031, device='cuda:0'), 'validation_loss_bbox': tensor(0.0093, device='cuda:0'), 'validation_loss_giou': tensor(0.0720, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1934, device='cuda:0'), 'train_loss_ce': tensor(0.0031, device='cuda:0'), 'train_loss_bbox': tensor(0.0093, device='cuda:0'), 'train_loss_giou': tensor(0.0720, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2651, device='cuda:0'), 'validation_loss_ce': tensor(0.0031, device='cuda:0'), 'validation_loss_bbox': tensor(0.0106, device='cuda:0'), 'validation_loss_giou': tensor(0.1044, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2651, device='cuda:0'), 'train_loss_ce': tensor(0.0031, device='cuda:0'), 'train_loss_bbox': tensor(0.0106, device='cuda:0'), 'train_loss_giou': tensor(0.1044, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1370, device='cuda:0'), 'validation_loss_ce': tensor(0.0031, device='cuda:0'), 'validation_loss_bbox': tensor(0.0061, device='cuda:0'), 'validation_loss_giou': tensor(0.0518, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1370, device='cuda:0'), 'train_loss_ce': tensor(0.0031, device='cuda:0'), 'train_loss_bbox': tensor(0.0061, device='cuda:0'), 'train_loss_giou': tensor(0.0518, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2645, device='cuda:0'), 'validation_loss_ce': tensor(0.0032, device='cuda:0'), 'validation_loss_bbox': tensor(0.0081, device='cuda:0'), 'validation_loss_giou': tensor(0.1105, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2645, device='cuda:0'), 'train_loss_ce': tensor(0.0032, device='cuda:0'), 'train_loss_bbox': tensor(0.0081, device='cuda:0'), 'train_loss_giou': tensor(0.1105, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3578, device='cuda:0'), 'validation_loss_ce': tensor(0.0032, device='cuda:0'), 'validation_loss_bbox': tensor(0.0117, device='cuda:0'), 'validation_loss_giou': tensor(0.1480, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3578, device='cuda:0'), 'train_loss_ce': tensor(0.0032, device='cuda:0'), 'train_loss_bbox': tensor(0.0117, device='cuda:0'), 'train_loss_giou': tensor(0.1480, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3293, device='cuda:0'), 'validation_loss_ce': tensor(0.0031, device='cuda:0'), 'validation_loss_bbox': tensor(0.0117, device='cuda:0'), 'validation_loss_giou': tensor(0.1338, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3293, device='cuda:0'), 'train_loss_ce': tensor(0.0031, device='cuda:0'), 'train_loss_bbox': tensor(0.0117, device='cuda:0'), 'train_loss_giou': tensor(0.1338, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1457, device='cuda:0'), 'validation_loss_ce': tensor(0.0031, device='cuda:0'), 'validation_loss_bbox': tensor(0.0057, device='cuda:0'), 'validation_loss_giou': tensor(0.0571, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1457, device='cuda:0'), 'train_loss_ce': tensor(0.0031, device='cuda:0'), 'train_loss_bbox': tensor(0.0057, device='cuda:0'), 'train_loss_giou': tensor(0.0571, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1852, device='cuda:0'), 'validation_loss_ce': tensor(0.0029, device='cuda:0'), 'validation_loss_bbox': tensor(0.0069, device='cuda:0'), 'validation_loss_giou': tensor(0.0739, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1852, device='cuda:0'), 'train_loss_ce': tensor(0.0029, device='cuda:0'), 'train_loss_bbox': tensor(0.0069, device='cuda:0'), 'train_loss_giou': tensor(0.0739, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2342, device='cuda:0'), 'validation_loss_ce': tensor(0.0028, device='cuda:0'), 'validation_loss_bbox': tensor(0.0089, device='cuda:0'), 'validation_loss_giou': tensor(0.0934, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2342, device='cuda:0'), 'train_loss_ce': tensor(0.0028, device='cuda:0'), 'train_loss_bbox': tensor(0.0089, device='cuda:0'), 'train_loss_giou': tensor(0.0934, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1252, device='cuda:0'), 'validation_loss_ce': tensor(0.0028, device='cuda:0'), 'validation_loss_bbox': tensor(0.0065, device='cuda:0'), 'validation_loss_giou': tensor(0.0449, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1252, device='cuda:0'), 'train_loss_ce': tensor(0.0028, device='cuda:0'), 'train_loss_bbox': tensor(0.0065, device='cuda:0'), 'train_loss_giou': tensor(0.0449, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1787, device='cuda:0'), 'validation_loss_ce': tensor(0.0028, device='cuda:0'), 'validation_loss_bbox': tensor(0.0084, device='cuda:0'), 'validation_loss_giou': tensor(0.0670, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1787, device='cuda:0'), 'train_loss_ce': tensor(0.0028, device='cuda:0'), 'train_loss_bbox': tensor(0.0084, device='cuda:0'), 'train_loss_giou': tensor(0.0670, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2583, device='cuda:0'), 'validation_loss_ce': tensor(0.0028, device='cuda:0'), 'validation_loss_bbox': tensor(0.0120, device='cuda:0'), 'validation_loss_giou': tensor(0.0979, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2583, device='cuda:0'), 'train_loss_ce': tensor(0.0028, device='cuda:0'), 'train_loss_bbox': tensor(0.0120, device='cuda:0'), 'train_loss_giou': tensor(0.0979, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2179, device='cuda:0'), 'validation_loss_ce': tensor(0.0027, device='cuda:0'), 'validation_loss_bbox': tensor(0.0094, device='cuda:0'), 'validation_loss_giou': tensor(0.0842, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2179, device='cuda:0'), 'train_loss_ce': tensor(0.0027, device='cuda:0'), 'train_loss_bbox': tensor(0.0094, device='cuda:0'), 'train_loss_giou': tensor(0.0842, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1052, device='cuda:0'), 'validation_loss_ce': tensor(0.0027, device='cuda:0'), 'validation_loss_bbox': tensor(0.0044, device='cuda:0'), 'validation_loss_giou': tensor(0.0403, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1052, device='cuda:0'), 'train_loss_ce': tensor(0.0027, device='cuda:0'), 'train_loss_bbox': tensor(0.0044, device='cuda:0'), 'train_loss_giou': tensor(0.0403, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2141, device='cuda:0'), 'validation_loss_ce': tensor(0.0027, device='cuda:0'), 'validation_loss_bbox': tensor(0.0079, device='cuda:0'), 'validation_loss_giou': tensor(0.0861, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2141, device='cuda:0'), 'train_loss_ce': tensor(0.0027, device='cuda:0'), 'train_loss_bbox': tensor(0.0079, device='cuda:0'), 'train_loss_giou': tensor(0.0861, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2502, device='cuda:0'), 'validation_loss_ce': tensor(0.0027, device='cuda:0'), 'validation_loss_bbox': tensor(0.0094, device='cuda:0'), 'validation_loss_giou': tensor(0.1002, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2502, device='cuda:0'), 'train_loss_ce': tensor(0.0027, device='cuda:0'), 'train_loss_bbox': tensor(0.0094, device='cuda:0'), 'train_loss_giou': tensor(0.1002, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1387, device='cuda:0'), 'validation_loss_ce': tensor(0.0027, device='cuda:0'), 'validation_loss_bbox': tensor(0.0069, device='cuda:0'), 'validation_loss_giou': tensor(0.0507, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1387, device='cuda:0'), 'train_loss_ce': tensor(0.0027, device='cuda:0'), 'train_loss_bbox': tensor(0.0069, device='cuda:0'), 'train_loss_giou': tensor(0.0507, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1273, device='cuda:0'), 'validation_loss_ce': tensor(0.0027, device='cuda:0'), 'validation_loss_bbox': tensor(0.0051, device='cuda:0'), 'validation_loss_giou': tensor(0.0496, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1273, device='cuda:0'), 'train_loss_ce': tensor(0.0027, device='cuda:0'), 'train_loss_bbox': tensor(0.0051, device='cuda:0'), 'train_loss_giou': tensor(0.0496, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1621, device='cuda:0'), 'validation_loss_ce': tensor(0.0027, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0613, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1621, device='cuda:0'), 'train_loss_ce': tensor(0.0027, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0613, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1434, device='cuda:0'), 'validation_loss_ce': tensor(0.0027, device='cuda:0'), 'validation_loss_bbox': tensor(0.0075, device='cuda:0'), 'validation_loss_giou': tensor(0.0515, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1434, device='cuda:0'), 'train_loss_ce': tensor(0.0027, device='cuda:0'), 'train_loss_bbox': tensor(0.0075, device='cuda:0'), 'train_loss_giou': tensor(0.0515, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1542, device='cuda:0'), 'validation_loss_ce': tensor(0.0028, device='cuda:0'), 'validation_loss_bbox': tensor(0.0087, device='cuda:0'), 'validation_loss_giou': tensor(0.0540, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1542, device='cuda:0'), 'train_loss_ce': tensor(0.0028, device='cuda:0'), 'train_loss_bbox': tensor(0.0087, device='cuda:0'), 'train_loss_giou': tensor(0.0540, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2351, device='cuda:0'), 'validation_loss_ce': tensor(0.0028, device='cuda:0'), 'validation_loss_bbox': tensor(0.0105, device='cuda:0'), 'validation_loss_giou': tensor(0.0900, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2351, device='cuda:0'), 'train_loss_ce': tensor(0.0028, device='cuda:0'), 'train_loss_bbox': tensor(0.0105, device='cuda:0'), 'train_loss_giou': tensor(0.0900, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1805, device='cuda:0'), 'validation_loss_ce': tensor(0.0027, device='cuda:0'), 'validation_loss_bbox': tensor(0.0087, device='cuda:0'), 'validation_loss_giou': tensor(0.0672, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1805, device='cuda:0'), 'train_loss_ce': tensor(0.0027, device='cuda:0'), 'train_loss_bbox': tensor(0.0087, device='cuda:0'), 'train_loss_giou': tensor(0.0672, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1407, device='cuda:0'), 'validation_loss_ce': tensor(0.0026, device='cuda:0'), 'validation_loss_bbox': tensor(0.0061, device='cuda:0'), 'validation_loss_giou': tensor(0.0538, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1407, device='cuda:0'), 'train_loss_ce': tensor(0.0026, device='cuda:0'), 'train_loss_bbox': tensor(0.0061, device='cuda:0'), 'train_loss_giou': tensor(0.0538, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1305, device='cuda:0'), 'validation_loss_ce': tensor(0.0026, device='cuda:0'), 'validation_loss_bbox': tensor(0.0074, device='cuda:0'), 'validation_loss_giou': tensor(0.0455, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1305, device='cuda:0'), 'train_loss_ce': tensor(0.0026, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.0455, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1796, device='cuda:0'), 'validation_loss_ce': tensor(0.0026, device='cuda:0'), 'validation_loss_bbox': tensor(0.0093, device='cuda:0'), 'validation_loss_giou': tensor(0.0653, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1796, device='cuda:0'), 'train_loss_ce': tensor(0.0026, device='cuda:0'), 'train_loss_bbox': tensor(0.0093, device='cuda:0'), 'train_loss_giou': tensor(0.0653, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1812, device='cuda:0'), 'validation_loss_ce': tensor(0.0026, device='cuda:0'), 'validation_loss_bbox': tensor(0.0105, device='cuda:0'), 'validation_loss_giou': tensor(0.0630, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1812, device='cuda:0'), 'train_loss_ce': tensor(0.0026, device='cuda:0'), 'train_loss_bbox': tensor(0.0105, device='cuda:0'), 'train_loss_giou': tensor(0.0630, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1530, device='cuda:0'), 'validation_loss_ce': tensor(0.0025, device='cuda:0'), 'validation_loss_bbox': tensor(0.0085, device='cuda:0'), 'validation_loss_giou': tensor(0.0540, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1530, device='cuda:0'), 'train_loss_ce': tensor(0.0025, device='cuda:0'), 'train_loss_bbox': tensor(0.0085, device='cuda:0'), 'train_loss_giou': tensor(0.0540, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1584, device='cuda:0'), 'validation_loss_ce': tensor(0.0025, device='cuda:0'), 'validation_loss_bbox': tensor(0.0068, device='cuda:0'), 'validation_loss_giou': tensor(0.0610, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1584, device='cuda:0'), 'train_loss_ce': tensor(0.0025, device='cuda:0'), 'train_loss_bbox': tensor(0.0068, device='cuda:0'), 'train_loss_giou': tensor(0.0610, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1358, device='cuda:0'), 'validation_loss_ce': tensor(0.0024, device='cuda:0'), 'validation_loss_bbox': tensor(0.0051, device='cuda:0'), 'validation_loss_giou': tensor(0.0540, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1358, device='cuda:0'), 'train_loss_ce': tensor(0.0024, device='cuda:0'), 'train_loss_bbox': tensor(0.0051, device='cuda:0'), 'train_loss_giou': tensor(0.0540, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1468, device='cuda:0'), 'validation_loss_ce': tensor(0.0024, device='cuda:0'), 'validation_loss_bbox': tensor(0.0072, device='cuda:0'), 'validation_loss_giou': tensor(0.0542, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1468, device='cuda:0'), 'train_loss_ce': tensor(0.0024, device='cuda:0'), 'train_loss_bbox': tensor(0.0072, device='cuda:0'), 'train_loss_giou': tensor(0.0542, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1805, device='cuda:0'), 'validation_loss_ce': tensor(0.0024, device='cuda:0'), 'validation_loss_bbox': tensor(0.0089, device='cuda:0'), 'validation_loss_giou': tensor(0.0668, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1805, device='cuda:0'), 'train_loss_ce': tensor(0.0024, device='cuda:0'), 'train_loss_bbox': tensor(0.0089, device='cuda:0'), 'train_loss_giou': tensor(0.0668, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1439, device='cuda:0'), 'validation_loss_ce': tensor(0.0024, device='cuda:0'), 'validation_loss_bbox': tensor(0.0071, device='cuda:0'), 'validation_loss_giou': tensor(0.0530, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1439, device='cuda:0'), 'train_loss_ce': tensor(0.0024, device='cuda:0'), 'train_loss_bbox': tensor(0.0071, device='cuda:0'), 'train_loss_giou': tensor(0.0530, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2011, device='cuda:0'), 'validation_loss_ce': tensor(0.0024, device='cuda:0'), 'validation_loss_bbox': tensor(0.0104, device='cuda:0'), 'validation_loss_giou': tensor(0.0734, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2011, device='cuda:0'), 'train_loss_ce': tensor(0.0024, device='cuda:0'), 'train_loss_bbox': tensor(0.0104, device='cuda:0'), 'train_loss_giou': tensor(0.0734, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2137, device='cuda:0'), 'validation_loss_ce': tensor(0.0023, device='cuda:0'), 'validation_loss_bbox': tensor(0.0114, device='cuda:0'), 'validation_loss_giou': tensor(0.0772, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2137, device='cuda:0'), 'train_loss_ce': tensor(0.0023, device='cuda:0'), 'train_loss_bbox': tensor(0.0114, device='cuda:0'), 'train_loss_giou': tensor(0.0772, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1350, device='cuda:0'), 'validation_loss_ce': tensor(0.0024, device='cuda:0'), 'validation_loss_bbox': tensor(0.0070, device='cuda:0'), 'validation_loss_giou': tensor(0.0487, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1350, device='cuda:0'), 'train_loss_ce': tensor(0.0024, device='cuda:0'), 'train_loss_bbox': tensor(0.0070, device='cuda:0'), 'train_loss_giou': tensor(0.0487, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1804, device='cuda:0'), 'validation_loss_ce': tensor(0.0025, device='cuda:0'), 'validation_loss_bbox': tensor(0.0100, device='cuda:0'), 'validation_loss_giou': tensor(0.0640, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1804, device='cuda:0'), 'train_loss_ce': tensor(0.0025, device='cuda:0'), 'train_loss_bbox': tensor(0.0100, device='cuda:0'), 'train_loss_giou': tensor(0.0640, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2193, device='cuda:0'), 'validation_loss_ce': tensor(0.0025, device='cuda:0'), 'validation_loss_bbox': tensor(0.0123, device='cuda:0'), 'validation_loss_giou': tensor(0.0776, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2193, device='cuda:0'), 'train_loss_ce': tensor(0.0025, device='cuda:0'), 'train_loss_bbox': tensor(0.0123, device='cuda:0'), 'train_loss_giou': tensor(0.0776, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1465, device='cuda:0'), 'validation_loss_ce': tensor(0.0025, device='cuda:0'), 'validation_loss_bbox': tensor(0.0090, device='cuda:0'), 'validation_loss_giou': tensor(0.0496, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1465, device='cuda:0'), 'train_loss_ce': tensor(0.0025, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0496, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1465, device='cuda:0'), 'validation_loss_ce': tensor(0.0024, device='cuda:0'), 'validation_loss_bbox': tensor(0.0071, device='cuda:0'), 'validation_loss_giou': tensor(0.0544, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1465, device='cuda:0'), 'train_loss_ce': tensor(0.0024, device='cuda:0'), 'train_loss_bbox': tensor(0.0071, device='cuda:0'), 'train_loss_giou': tensor(0.0544, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1179, device='cuda:0'), 'validation_loss_ce': tensor(0.0023, device='cuda:0'), 'validation_loss_bbox': tensor(0.0066, device='cuda:0'), 'validation_loss_giou': tensor(0.0414, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1179, device='cuda:0'), 'train_loss_ce': tensor(0.0023, device='cuda:0'), 'train_loss_bbox': tensor(0.0066, device='cuda:0'), 'train_loss_giou': tensor(0.0414, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1842, device='cuda:0'), 'validation_loss_ce': tensor(0.0023, device='cuda:0'), 'validation_loss_bbox': tensor(0.0074, device='cuda:0'), 'validation_loss_giou': tensor(0.0724, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1842, device='cuda:0'), 'train_loss_ce': tensor(0.0023, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.0724, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1665, device='cuda:0'), 'validation_loss_ce': tensor(0.0023, device='cuda:0'), 'validation_loss_bbox': tensor(0.0064, device='cuda:0'), 'validation_loss_giou': tensor(0.0661, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1665, device='cuda:0'), 'train_loss_ce': tensor(0.0023, device='cuda:0'), 'train_loss_bbox': tensor(0.0064, device='cuda:0'), 'train_loss_giou': tensor(0.0661, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2244, device='cuda:0'), 'validation_loss_ce': tensor(0.0023, device='cuda:0'), 'validation_loss_bbox': tensor(0.0076, device='cuda:0'), 'validation_loss_giou': tensor(0.0920, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2244, device='cuda:0'), 'train_loss_ce': tensor(0.0023, device='cuda:0'), 'train_loss_bbox': tensor(0.0076, device='cuda:0'), 'train_loss_giou': tensor(0.0920, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2112, device='cuda:0'), 'validation_loss_ce': tensor(0.0023, device='cuda:0'), 'validation_loss_bbox': tensor(0.0082, device='cuda:0'), 'validation_loss_giou': tensor(0.0839, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2112, device='cuda:0'), 'train_loss_ce': tensor(0.0023, device='cuda:0'), 'train_loss_bbox': tensor(0.0082, device='cuda:0'), 'train_loss_giou': tensor(0.0839, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1813, device='cuda:0'), 'validation_loss_ce': tensor(0.0022, device='cuda:0'), 'validation_loss_bbox': tensor(0.0075, device='cuda:0'), 'validation_loss_giou': tensor(0.0707, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1813, device='cuda:0'), 'train_loss_ce': tensor(0.0022, device='cuda:0'), 'train_loss_bbox': tensor(0.0075, device='cuda:0'), 'train_loss_giou': tensor(0.0707, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2024, device='cuda:0'), 'validation_loss_ce': tensor(0.0022, device='cuda:0'), 'validation_loss_bbox': tensor(0.0074, device='cuda:0'), 'validation_loss_giou': tensor(0.0815, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2024, device='cuda:0'), 'train_loss_ce': tensor(0.0022, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.0815, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1581, device='cuda:0'), 'validation_loss_ce': tensor(0.0023, device='cuda:0'), 'validation_loss_bbox': tensor(0.0055, device='cuda:0'), 'validation_loss_giou': tensor(0.0642, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1581, device='cuda:0'), 'train_loss_ce': tensor(0.0023, device='cuda:0'), 'train_loss_bbox': tensor(0.0055, device='cuda:0'), 'train_loss_giou': tensor(0.0642, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1893, device='cuda:0'), 'validation_loss_ce': tensor(0.0023, device='cuda:0'), 'validation_loss_bbox': tensor(0.0069, device='cuda:0'), 'validation_loss_giou': tensor(0.0763, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1893, device='cuda:0'), 'train_loss_ce': tensor(0.0023, device='cuda:0'), 'train_loss_bbox': tensor(0.0069, device='cuda:0'), 'train_loss_giou': tensor(0.0763, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1946, device='cuda:0'), 'validation_loss_ce': tensor(0.0023, device='cuda:0'), 'validation_loss_bbox': tensor(0.0078, device='cuda:0'), 'validation_loss_giou': tensor(0.0766, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1946, device='cuda:0'), 'train_loss_ce': tensor(0.0023, device='cuda:0'), 'train_loss_bbox': tensor(0.0078, device='cuda:0'), 'train_loss_giou': tensor(0.0766, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1593, device='cuda:0'), 'validation_loss_ce': tensor(0.0022, device='cuda:0'), 'validation_loss_bbox': tensor(0.0068, device='cuda:0'), 'validation_loss_giou': tensor(0.0616, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1593, device='cuda:0'), 'train_loss_ce': tensor(0.0022, device='cuda:0'), 'train_loss_bbox': tensor(0.0068, device='cuda:0'), 'train_loss_giou': tensor(0.0616, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1564, device='cuda:0'), 'validation_loss_ce': tensor(0.0022, device='cuda:0'), 'validation_loss_bbox': tensor(0.0057, device='cuda:0'), 'validation_loss_giou': tensor(0.0629, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1564, device='cuda:0'), 'train_loss_ce': tensor(0.0022, device='cuda:0'), 'train_loss_bbox': tensor(0.0057, device='cuda:0'), 'train_loss_giou': tensor(0.0629, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.0987, device='cuda:0'), 'validation_loss_ce': tensor(0.0021, device='cuda:0'), 'validation_loss_bbox': tensor(0.0048, device='cuda:0'), 'validation_loss_giou': tensor(0.0364, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.0987, device='cuda:0'), 'train_loss_ce': tensor(0.0021, device='cuda:0'), 'train_loss_bbox': tensor(0.0048, device='cuda:0'), 'train_loss_giou': tensor(0.0364, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1400, device='cuda:0'), 'validation_loss_ce': tensor(0.0021, device='cuda:0'), 'validation_loss_bbox': tensor(0.0048, device='cuda:0'), 'validation_loss_giou': tensor(0.0569, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1400, device='cuda:0'), 'train_loss_ce': tensor(0.0021, device='cuda:0'), 'train_loss_bbox': tensor(0.0048, device='cuda:0'), 'train_loss_giou': tensor(0.0569, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1314, device='cuda:0'), 'validation_loss_ce': tensor(0.0020, device='cuda:0'), 'validation_loss_bbox': tensor(0.0045, device='cuda:0'), 'validation_loss_giou': tensor(0.0533, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1314, device='cuda:0'), 'train_loss_ce': tensor(0.0020, device='cuda:0'), 'train_loss_bbox': tensor(0.0045, device='cuda:0'), 'train_loss_giou': tensor(0.0533, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1424, device='cuda:0'), 'validation_loss_ce': tensor(0.0020, device='cuda:0'), 'validation_loss_bbox': tensor(0.0049, device='cuda:0'), 'validation_loss_giou': tensor(0.0580, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1424, device='cuda:0'), 'train_loss_ce': tensor(0.0020, device='cuda:0'), 'train_loss_bbox': tensor(0.0049, device='cuda:0'), 'train_loss_giou': tensor(0.0580, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.0753, device='cuda:0'), 'validation_loss_ce': tensor(0.0020, device='cuda:0'), 'validation_loss_bbox': tensor(0.0030, device='cuda:0'), 'validation_loss_giou': tensor(0.0290, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.0753, device='cuda:0'), 'train_loss_ce': tensor(0.0020, device='cuda:0'), 'train_loss_bbox': tensor(0.0030, device='cuda:0'), 'train_loss_giou': tensor(0.0290, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.0889, device='cuda:0'), 'validation_loss_ce': tensor(0.0021, device='cuda:0'), 'validation_loss_bbox': tensor(0.0032, device='cuda:0'), 'validation_loss_giou': tensor(0.0353, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.0889, device='cuda:0'), 'train_loss_ce': tensor(0.0021, device='cuda:0'), 'train_loss_bbox': tensor(0.0032, device='cuda:0'), 'train_loss_giou': tensor(0.0353, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1552, device='cuda:0'), 'validation_loss_ce': tensor(0.0021, device='cuda:0'), 'validation_loss_bbox': tensor(0.0051, device='cuda:0'), 'validation_loss_giou': tensor(0.0639, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1552, device='cuda:0'), 'train_loss_ce': tensor(0.0021, device='cuda:0'), 'train_loss_bbox': tensor(0.0051, device='cuda:0'), 'train_loss_giou': tensor(0.0639, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1461, device='cuda:0'), 'validation_loss_ce': tensor(0.0021, device='cuda:0'), 'validation_loss_bbox': tensor(0.0058, device='cuda:0'), 'validation_loss_giou': tensor(0.0576, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1461, device='cuda:0'), 'train_loss_ce': tensor(0.0021, device='cuda:0'), 'train_loss_bbox': tensor(0.0058, device='cuda:0'), 'train_loss_giou': tensor(0.0576, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1026, device='cuda:0'), 'validation_loss_ce': tensor(0.0020, device='cuda:0'), 'validation_loss_bbox': tensor(0.0048, device='cuda:0'), 'validation_loss_giou': tensor(0.0382, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1026, device='cuda:0'), 'train_loss_ce': tensor(0.0020, device='cuda:0'), 'train_loss_bbox': tensor(0.0048, device='cuda:0'), 'train_loss_giou': tensor(0.0382, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1504, device='cuda:0'), 'validation_loss_ce': tensor(0.0020, device='cuda:0'), 'validation_loss_bbox': tensor(0.0065, device='cuda:0'), 'validation_loss_giou': tensor(0.0581, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1504, device='cuda:0'), 'train_loss_ce': tensor(0.0020, device='cuda:0'), 'train_loss_bbox': tensor(0.0065, device='cuda:0'), 'train_loss_giou': tensor(0.0581, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1370, device='cuda:0'), 'validation_loss_ce': tensor(0.0020, device='cuda:0'), 'validation_loss_bbox': tensor(0.0042, device='cuda:0'), 'validation_loss_giou': tensor(0.0570, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1370, device='cuda:0'), 'train_loss_ce': tensor(0.0020, device='cuda:0'), 'train_loss_bbox': tensor(0.0042, device='cuda:0'), 'train_loss_giou': tensor(0.0570, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1498, device='cuda:0'), 'validation_loss_ce': tensor(0.0020, device='cuda:0'), 'validation_loss_bbox': tensor(0.0076, device='cuda:0'), 'validation_loss_giou': tensor(0.0550, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1498, device='cuda:0'), 'train_loss_ce': tensor(0.0020, device='cuda:0'), 'train_loss_bbox': tensor(0.0076, device='cuda:0'), 'train_loss_giou': tensor(0.0550, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1961, device='cuda:0'), 'validation_loss_ce': tensor(0.0020, device='cuda:0'), 'validation_loss_bbox': tensor(0.0111, device='cuda:0'), 'validation_loss_giou': tensor(0.0693, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1961, device='cuda:0'), 'train_loss_ce': tensor(0.0020, device='cuda:0'), 'train_loss_bbox': tensor(0.0111, device='cuda:0'), 'train_loss_giou': tensor(0.0693, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1626, device='cuda:0'), 'validation_loss_ce': tensor(0.0021, device='cuda:0'), 'validation_loss_bbox': tensor(0.0083, device='cuda:0'), 'validation_loss_giou': tensor(0.0594, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1626, device='cuda:0'), 'train_loss_ce': tensor(0.0021, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.0594, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1654, device='cuda:0'), 'validation_loss_ce': tensor(0.0021, device='cuda:0'), 'validation_loss_bbox': tensor(0.0094, device='cuda:0'), 'validation_loss_giou': tensor(0.0582, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
```
## Examples
{'size': tensor([512, 512]), 'image_id': tensor([735]), 'class_labels': tensor([5]), 'boxes': tensor([[0.7651, 0.5307, 0.0952, 0.0942]]), 'area': tensor([2351.3042]), 'iscrowd': tensor([0]), 'orig_size': tensor([1024, 1024])}

|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
MedicalVision/yolos_tiny_20ep
|
## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.002
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.013
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.013
```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.025
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.053
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.021
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.025
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.070
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.133
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.154
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.155
```
## Config
- dataset: NIH
- original model: hustvl/yolos-tiny
- lr: 0.0001
- dropout_rate: 0.15
- weight_decay: 0.05
- max_epochs: 20
- train samples: 885
## Logging
### Training process
```
{'validation_loss': tensor(6.7559, device='cuda:0'), 'validation_loss_ce': tensor(2.5739, device='cuda:0'), 'validation_loss_bbox': tensor(0.4952, device='cuda:0'), 'validation_loss_giou': tensor(0.8531, device='cuda:0'), 'validation_cardinality_error': tensor(99., device='cuda:0')}
{'training_loss': tensor(2.4990, device='cuda:0'), 'train_loss_ce': tensor(0.4887, device='cuda:0'), 'train_loss_bbox': tensor(0.1862, device='cuda:0'), 'train_loss_giou': tensor(0.5398, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.4497, device='cuda:0'), 'validation_loss_ce': tensor(0.4524, device='cuda:0'), 'validation_loss_bbox': tensor(0.1829, device='cuda:0'), 'validation_loss_giou': tensor(0.5414, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4763, device='cuda:0'), 'train_loss_ce': tensor(0.4236, device='cuda:0'), 'train_loss_bbox': tensor(0.1986, device='cuda:0'), 'train_loss_giou': tensor(0.5300, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2358, device='cuda:0'), 'validation_loss_ce': tensor(0.4386, device='cuda:0'), 'validation_loss_bbox': tensor(0.1531, device='cuda:0'), 'validation_loss_giou': tensor(0.5160, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0404, device='cuda:0'), 'train_loss_ce': tensor(0.4148, device='cuda:0'), 'train_loss_bbox': tensor(0.1398, device='cuda:0'), 'train_loss_giou': tensor(0.4634, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3295, device='cuda:0'), 'validation_loss_ce': tensor(0.4369, device='cuda:0'), 'validation_loss_bbox': tensor(0.1697, device='cuda:0'), 'validation_loss_giou': tensor(0.5220, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0230, device='cuda:0'), 'train_loss_ce': tensor(0.3600, device='cuda:0'), 'train_loss_bbox': tensor(0.1205, device='cuda:0'), 'train_loss_giou': tensor(0.5302, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2546, device='cuda:0'), 'validation_loss_ce': tensor(0.4068, device='cuda:0'), 'validation_loss_bbox': tensor(0.1611, device='cuda:0'), 'validation_loss_giou': tensor(0.5210, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1597, device='cuda:0'), 'train_loss_ce': tensor(0.4342, device='cuda:0'), 'train_loss_bbox': tensor(0.1431, device='cuda:0'), 'train_loss_giou': tensor(0.5049, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0929, device='cuda:0'), 'validation_loss_ce': tensor(0.4126, device='cuda:0'), 'validation_loss_bbox': tensor(0.1394, device='cuda:0'), 'validation_loss_giou': tensor(0.4916, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0645, device='cuda:0'), 'train_loss_ce': tensor(0.4740, device='cuda:0'), 'train_loss_bbox': tensor(0.1324, device='cuda:0'), 'train_loss_giou': tensor(0.4642, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2642, device='cuda:0'), 'validation_loss_ce': tensor(0.4195, device='cuda:0'), 'validation_loss_bbox': tensor(0.1665, device='cuda:0'), 'validation_loss_giou': tensor(0.5060, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7443, device='cuda:0'), 'train_loss_ce': tensor(0.3507, device='cuda:0'), 'train_loss_bbox': tensor(0.1351, device='cuda:0'), 'train_loss_giou': tensor(0.3591, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9930, device='cuda:0'), 'validation_loss_ce': tensor(0.4063, device='cuda:0'), 'validation_loss_bbox': tensor(0.1294, device='cuda:0'), 'validation_loss_giou': tensor(0.4698, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2440, device='cuda:0'), 'train_loss_ce': tensor(0.3884, device='cuda:0'), 'train_loss_bbox': tensor(0.1348, device='cuda:0'), 'train_loss_giou': tensor(0.5907, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0082, device='cuda:0'), 'validation_loss_ce': tensor(0.4112, device='cuda:0'), 'validation_loss_bbox': tensor(0.1296, device='cuda:0'), 'validation_loss_giou': tensor(0.4744, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7194, device='cuda:0'), 'train_loss_ce': tensor(0.3257, device='cuda:0'), 'train_loss_bbox': tensor(0.1185, device='cuda:0'), 'train_loss_giou': tensor(0.4007, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0462, device='cuda:0'), 'validation_loss_ce': tensor(0.4009, device='cuda:0'), 'validation_loss_bbox': tensor(0.1423, device='cuda:0'), 'validation_loss_giou': tensor(0.4670, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3192, device='cuda:0'), 'train_loss_ce': tensor(0.3495, device='cuda:0'), 'train_loss_bbox': tensor(0.1083, device='cuda:0'), 'train_loss_giou': tensor(0.2141, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0731, device='cuda:0'), 'validation_loss_ce': tensor(0.4010, device='cuda:0'), 'validation_loss_bbox': tensor(0.1389, device='cuda:0'), 'validation_loss_giou': tensor(0.4888, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5797, device='cuda:0'), 'train_loss_ce': tensor(0.4210, device='cuda:0'), 'train_loss_bbox': tensor(0.1568, device='cuda:0'), 'train_loss_giou': tensor(0.6874, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.1459, device='cuda:0'), 'validation_loss_ce': tensor(0.4006, device='cuda:0'), 'validation_loss_bbox': tensor(0.1465, device='cuda:0'), 'validation_loss_giou': tensor(0.5065, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(1.9156, device='cuda:0'), 'train_loss_ce': tensor(0.3240, device='cuda:0'), 'train_loss_bbox': tensor(0.1310, device='cuda:0'), 'train_loss_giou': tensor(0.4683, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2520, device='cuda:0'), 'validation_loss_ce': tensor(0.3980, device='cuda:0'), 'validation_loss_bbox': tensor(0.1614, device='cuda:0'), 'validation_loss_giou': tensor(0.5236, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.9559, device='cuda:0'), 'train_loss_ce': tensor(0.4028, device='cuda:0'), 'train_loss_bbox': tensor(0.2567, device='cuda:0'), 'train_loss_giou': tensor(0.6347, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.4024, device='cuda:0'), 'validation_loss_ce': tensor(0.3812, device='cuda:0'), 'validation_loss_bbox': tensor(0.1705, device='cuda:0'), 'validation_loss_giou': tensor(0.5843, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1148, device='cuda:0'), 'train_loss_ce': tensor(0.4487, device='cuda:0'), 'train_loss_bbox': tensor(0.1306, device='cuda:0'), 'train_loss_giou': tensor(0.5065, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2119, device='cuda:0'), 'validation_loss_ce': tensor(0.3946, device='cuda:0'), 'validation_loss_bbox': tensor(0.1521, device='cuda:0'), 'validation_loss_giou': tensor(0.5285, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6145, device='cuda:0'), 'train_loss_ce': tensor(0.3484, device='cuda:0'), 'train_loss_bbox': tensor(0.0966, device='cuda:0'), 'train_loss_giou': tensor(0.3917, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2147, device='cuda:0'), 'validation_loss_ce': tensor(0.4000, device='cuda:0'), 'validation_loss_bbox': tensor(0.1524, device='cuda:0'), 'validation_loss_giou': tensor(0.5264, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4464, device='cuda:0'), 'train_loss_ce': tensor(0.3513, device='cuda:0'), 'train_loss_bbox': tensor(0.1503, device='cuda:0'), 'train_loss_giou': tensor(0.6718, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0945, device='cuda:0'), 'validation_loss_ce': tensor(0.3839, device='cuda:0'), 'validation_loss_bbox': tensor(0.1390, device='cuda:0'), 'validation_loss_giou': tensor(0.5079, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1035, device='cuda:0'), 'train_loss_ce': tensor(0.3531, device='cuda:0'), 'train_loss_bbox': tensor(0.1833, device='cuda:0'), 'train_loss_giou': tensor(0.4169, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0258, device='cuda:0'), 'validation_loss_ce': tensor(0.3667, device='cuda:0'), 'validation_loss_bbox': tensor(0.1385, device='cuda:0'), 'validation_loss_giou': tensor(0.4833, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8120, device='cuda:0'), 'train_loss_ce': tensor(0.3834, device='cuda:0'), 'train_loss_bbox': tensor(0.1274, device='cuda:0'), 'train_loss_giou': tensor(0.3959, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0069, device='cuda:0'), 'validation_loss_ce': tensor(0.3738, device='cuda:0'), 'validation_loss_bbox': tensor(0.1400, device='cuda:0'), 'validation_loss_giou': tensor(0.4665, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(1.2792, device='cuda:0'), 'train_loss_ce': tensor(0.3943, device='cuda:0'), 'train_loss_bbox': tensor(0.0620, device='cuda:0'), 'train_loss_giou': tensor(0.2874, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9124, device='cuda:0'), 'validation_loss_ce': tensor(0.3761, device='cuda:0'), 'validation_loss_bbox': tensor(0.1317, device='cuda:0'), 'validation_loss_giou': tensor(0.4388, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8847, device='cuda:0'), 'train_loss_ce': tensor(0.3796, device='cuda:0'), 'train_loss_bbox': tensor(0.1281, device='cuda:0'), 'train_loss_giou': tensor(0.4323, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0097, device='cuda:0'), 'validation_loss_ce': tensor(0.3599, device='cuda:0'), 'validation_loss_bbox': tensor(0.1377, device='cuda:0'), 'validation_loss_giou': tensor(0.4806, device='cuda:0'), 'validation_cardinality_error': tensor(0.6263, device='cuda:0')}
```
## Examples
{'size': tensor([512, 512]), 'image_id': tensor([1]), 'class_labels': tensor([4]), 'boxes': tensor([[0.2622, 0.5729, 0.0847, 0.0773]]), 'area': tensor([1717.9431]), 'iscrowd': tensor([0]), 'orig_size': tensor([1024, 1024])}

|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
MedicalVision/yolos_tiny_30ep
|
## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.003
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.008
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.008
```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.012
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.023
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.011
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.012
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.056
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.118
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.145
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.146
```
## Config
- dataset: NIH
- original model: hustvl/yolos-tiny
- lr: 1e-05
- dropout_rate: 0.1
- weight_decay: 0.05
- max_epochs: 30
- train samples: 885
## Logging
### Training process
```
{'validation_loss': tensor(6.7207, device='cuda:0'), 'validation_loss_ce': tensor(2.1866, device='cuda:0'), 'validation_loss_bbox': tensor(0.5249, device='cuda:0'), 'validation_loss_giou': tensor(0.9547, device='cuda:0'), 'validation_cardinality_error': tensor(98.5312, device='cuda:0')}
{'training_loss': tensor(3.7287, device='cuda:0'), 'train_loss_ce': tensor(1.3098, device='cuda:0'), 'train_loss_bbox': tensor(0.2119, device='cuda:0'), 'train_loss_giou': tensor(0.6797, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(3.4332, device='cuda:0'), 'validation_loss_ce': tensor(1.2399, device='cuda:0'), 'validation_loss_bbox': tensor(0.2065, device='cuda:0'), 'validation_loss_giou': tensor(0.5804, device='cuda:0'), 'validation_cardinality_error': tensor(1.0909, device='cuda:0')}
{'training_loss': tensor(2.8569, device='cuda:0'), 'train_loss_ce': tensor(0.5845, device='cuda:0'), 'train_loss_bbox': tensor(0.2106, device='cuda:0'), 'train_loss_giou': tensor(0.6097, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.4866, device='cuda:0'), 'validation_loss_ce': tensor(0.5491, device='cuda:0'), 'validation_loss_bbox': tensor(0.1759, device='cuda:0'), 'validation_loss_giou': tensor(0.5290, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2491, device='cuda:0'), 'train_loss_ce': tensor(0.5182, device='cuda:0'), 'train_loss_bbox': tensor(0.1662, device='cuda:0'), 'train_loss_giou': tensor(0.4500, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3079, device='cuda:0'), 'validation_loss_ce': tensor(0.4791, device='cuda:0'), 'validation_loss_bbox': tensor(0.1619, device='cuda:0'), 'validation_loss_giou': tensor(0.5096, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9377, device='cuda:0'), 'train_loss_ce': tensor(0.5210, device='cuda:0'), 'train_loss_bbox': tensor(0.1273, device='cuda:0'), 'train_loss_giou': tensor(0.3902, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2293, device='cuda:0'), 'validation_loss_ce': tensor(0.4691, device='cuda:0'), 'validation_loss_bbox': tensor(0.1544, device='cuda:0'), 'validation_loss_giou': tensor(0.4940, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1924, device='cuda:0'), 'train_loss_ce': tensor(0.5255, device='cuda:0'), 'train_loss_bbox': tensor(0.1414, device='cuda:0'), 'train_loss_giou': tensor(0.4800, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1471, device='cuda:0'), 'validation_loss_ce': tensor(0.4648, device='cuda:0'), 'validation_loss_bbox': tensor(0.1457, device='cuda:0'), 'validation_loss_giou': tensor(0.4770, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4833, device='cuda:0'), 'train_loss_ce': tensor(0.4674, device='cuda:0'), 'train_loss_bbox': tensor(0.2011, device='cuda:0'), 'train_loss_giou': tensor(0.5053, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1557, device='cuda:0'), 'validation_loss_ce': tensor(0.4630, device='cuda:0'), 'validation_loss_bbox': tensor(0.1464, device='cuda:0'), 'validation_loss_giou': tensor(0.4804, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9442, device='cuda:0'), 'train_loss_ce': tensor(0.4237, device='cuda:0'), 'train_loss_bbox': tensor(0.1272, device='cuda:0'), 'train_loss_giou': tensor(0.4424, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1246, device='cuda:0'), 'validation_loss_ce': tensor(0.4547, device='cuda:0'), 'validation_loss_bbox': tensor(0.1406, device='cuda:0'), 'validation_loss_giou': tensor(0.4833, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8449, device='cuda:0'), 'train_loss_ce': tensor(0.5204, device='cuda:0'), 'train_loss_bbox': tensor(0.1064, device='cuda:0'), 'train_loss_giou': tensor(0.3963, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0914, device='cuda:0'), 'validation_loss_ce': tensor(0.4524, device='cuda:0'), 'validation_loss_bbox': tensor(0.1409, device='cuda:0'), 'validation_loss_giou': tensor(0.4673, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2881, device='cuda:0'), 'train_loss_ce': tensor(0.4765, device='cuda:0'), 'train_loss_bbox': tensor(0.1549, device='cuda:0'), 'train_loss_giou': tensor(0.5186, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1367, device='cuda:0'), 'validation_loss_ce': tensor(0.4505, device='cuda:0'), 'validation_loss_bbox': tensor(0.1434, device='cuda:0'), 'validation_loss_giou': tensor(0.4846, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5250, device='cuda:0'), 'train_loss_ce': tensor(0.4858, device='cuda:0'), 'train_loss_bbox': tensor(0.0681, device='cuda:0'), 'train_loss_giou': tensor(0.3494, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0727, device='cuda:0'), 'validation_loss_ce': tensor(0.4480, device='cuda:0'), 'validation_loss_bbox': tensor(0.1342, device='cuda:0'), 'validation_loss_giou': tensor(0.4769, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5382, device='cuda:0'), 'train_loss_ce': tensor(0.3929, device='cuda:0'), 'train_loss_bbox': tensor(0.1066, device='cuda:0'), 'train_loss_giou': tensor(0.3061, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9921, device='cuda:0'), 'validation_loss_ce': tensor(0.4464, device='cuda:0'), 'validation_loss_bbox': tensor(0.1298, device='cuda:0'), 'validation_loss_giou': tensor(0.4483, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8638, device='cuda:0'), 'train_loss_ce': tensor(0.4090, device='cuda:0'), 'train_loss_bbox': tensor(0.1044, device='cuda:0'), 'train_loss_giou': tensor(0.4665, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0358, device='cuda:0'), 'validation_loss_ce': tensor(0.4468, device='cuda:0'), 'validation_loss_bbox': tensor(0.1343, device='cuda:0'), 'validation_loss_giou': tensor(0.4588, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6616, device='cuda:0'), 'train_loss_ce': tensor(0.4866, device='cuda:0'), 'train_loss_bbox': tensor(0.0970, device='cuda:0'), 'train_loss_giou': tensor(0.3450, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0047, device='cuda:0'), 'validation_loss_ce': tensor(0.4417, device='cuda:0'), 'validation_loss_bbox': tensor(0.1302, device='cuda:0'), 'validation_loss_giou': tensor(0.4559, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4619, device='cuda:0'), 'train_loss_ce': tensor(0.4675, device='cuda:0'), 'train_loss_bbox': tensor(0.1028, device='cuda:0'), 'train_loss_giou': tensor(0.2401, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0066, device='cuda:0'), 'validation_loss_ce': tensor(0.4412, device='cuda:0'), 'validation_loss_bbox': tensor(0.1329, device='cuda:0'), 'validation_loss_giou': tensor(0.4505, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5520, device='cuda:0'), 'train_loss_ce': tensor(0.4766, device='cuda:0'), 'train_loss_bbox': tensor(0.0950, device='cuda:0'), 'train_loss_giou': tensor(0.3002, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9805, device='cuda:0'), 'validation_loss_ce': tensor(0.4422, device='cuda:0'), 'validation_loss_bbox': tensor(0.1306, device='cuda:0'), 'validation_loss_giou': tensor(0.4428, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0331, device='cuda:0'), 'train_loss_ce': tensor(0.5165, device='cuda:0'), 'train_loss_bbox': tensor(0.1336, device='cuda:0'), 'train_loss_giou': tensor(0.4242, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9927, device='cuda:0'), 'validation_loss_ce': tensor(0.4389, device='cuda:0'), 'validation_loss_bbox': tensor(0.1282, device='cuda:0'), 'validation_loss_giou': tensor(0.4563, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4602, device='cuda:0'), 'train_loss_ce': tensor(0.2981, device='cuda:0'), 'train_loss_bbox': tensor(0.1021, device='cuda:0'), 'train_loss_giou': tensor(0.3257, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9925, device='cuda:0'), 'validation_loss_ce': tensor(0.4381, device='cuda:0'), 'validation_loss_bbox': tensor(0.1300, device='cuda:0'), 'validation_loss_giou': tensor(0.4522, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8886, device='cuda:0'), 'train_loss_ce': tensor(0.4785, device='cuda:0'), 'train_loss_bbox': tensor(0.1082, device='cuda:0'), 'train_loss_giou': tensor(0.4345, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9744, device='cuda:0'), 'validation_loss_ce': tensor(0.4333, device='cuda:0'), 'validation_loss_bbox': tensor(0.1284, device='cuda:0'), 'validation_loss_giou': tensor(0.4496, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8621, device='cuda:0'), 'train_loss_ce': tensor(0.5109, device='cuda:0'), 'train_loss_bbox': tensor(0.0748, device='cuda:0'), 'train_loss_giou': tensor(0.4886, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9745, device='cuda:0'), 'validation_loss_ce': tensor(0.4335, device='cuda:0'), 'validation_loss_bbox': tensor(0.1278, device='cuda:0'), 'validation_loss_giou': tensor(0.4509, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0607, device='cuda:0'), 'train_loss_ce': tensor(0.4695, device='cuda:0'), 'train_loss_bbox': tensor(0.0499, device='cuda:0'), 'train_loss_giou': tensor(0.1708, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9522, device='cuda:0'), 'validation_loss_ce': tensor(0.4317, device='cuda:0'), 'validation_loss_bbox': tensor(0.1251, device='cuda:0'), 'validation_loss_giou': tensor(0.4474, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7454, device='cuda:0'), 'train_loss_ce': tensor(0.4005, device='cuda:0'), 'train_loss_bbox': tensor(0.0675, device='cuda:0'), 'train_loss_giou': tensor(0.5036, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9562, device='cuda:0'), 'validation_loss_ce': tensor(0.4312, device='cuda:0'), 'validation_loss_bbox': tensor(0.1280, device='cuda:0'), 'validation_loss_giou': tensor(0.4424, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1943, device='cuda:0'), 'train_loss_ce': tensor(0.4380, device='cuda:0'), 'train_loss_bbox': tensor(0.0761, device='cuda:0'), 'train_loss_giou': tensor(0.1880, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9790, device='cuda:0'), 'validation_loss_ce': tensor(0.4290, device='cuda:0'), 'validation_loss_bbox': tensor(0.1262, device='cuda:0'), 'validation_loss_giou': tensor(0.4595, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3419, device='cuda:0'), 'train_loss_ce': tensor(0.3899, device='cuda:0'), 'train_loss_bbox': tensor(0.0794, device='cuda:0'), 'train_loss_giou': tensor(0.2774, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9489, device='cuda:0'), 'validation_loss_ce': tensor(0.4249, device='cuda:0'), 'validation_loss_bbox': tensor(0.1241, device='cuda:0'), 'validation_loss_giou': tensor(0.4519, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9394, device='cuda:0'), 'train_loss_ce': tensor(0.3998, device='cuda:0'), 'train_loss_bbox': tensor(0.1388, device='cuda:0'), 'train_loss_giou': tensor(0.4227, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0161, device='cuda:0'), 'validation_loss_ce': tensor(0.4221, device='cuda:0'), 'validation_loss_bbox': tensor(0.1321, device='cuda:0'), 'validation_loss_giou': tensor(0.4667, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3021, device='cuda:0'), 'train_loss_ce': tensor(0.3494, device='cuda:0'), 'train_loss_bbox': tensor(0.0630, device='cuda:0'), 'train_loss_giou': tensor(0.3188, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0121, device='cuda:0'), 'validation_loss_ce': tensor(0.4226, device='cuda:0'), 'validation_loss_bbox': tensor(0.1326, device='cuda:0'), 'validation_loss_giou': tensor(0.4634, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4117, device='cuda:0'), 'train_loss_ce': tensor(0.4587, device='cuda:0'), 'train_loss_bbox': tensor(0.0724, device='cuda:0'), 'train_loss_giou': tensor(0.2954, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9528, device='cuda:0'), 'validation_loss_ce': tensor(0.4217, device='cuda:0'), 'validation_loss_bbox': tensor(0.1242, device='cuda:0'), 'validation_loss_giou': tensor(0.4550, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4619, device='cuda:0'), 'train_loss_ce': tensor(0.3838, device='cuda:0'), 'train_loss_bbox': tensor(0.0605, device='cuda:0'), 'train_loss_giou': tensor(0.3878, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0346, device='cuda:0'), 'validation_loss_ce': tensor(0.4194, device='cuda:0'), 'validation_loss_bbox': tensor(0.1323, device='cuda:0'), 'validation_loss_giou': tensor(0.4769, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2125, device='cuda:0'), 'train_loss_ce': tensor(0.3469, device='cuda:0'), 'train_loss_bbox': tensor(0.0725, device='cuda:0'), 'train_loss_giou': tensor(0.2517, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9540, device='cuda:0'), 'validation_loss_ce': tensor(0.4169, device='cuda:0'), 'validation_loss_bbox': tensor(0.1248, device='cuda:0'), 'validation_loss_giou': tensor(0.4566, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1738, device='cuda:0'), 'train_loss_ce': tensor(0.4249, device='cuda:0'), 'train_loss_bbox': tensor(0.0353, device='cuda:0'), 'train_loss_giou': tensor(0.2863, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9534, device='cuda:0'), 'validation_loss_ce': tensor(0.4152, device='cuda:0'), 'validation_loss_bbox': tensor(0.1264, device='cuda:0'), 'validation_loss_giou': tensor(0.4531, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2029, device='cuda:0'), 'train_loss_ce': tensor(0.4904, device='cuda:0'), 'train_loss_bbox': tensor(0.0577, device='cuda:0'), 'train_loss_giou': tensor(0.2119, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9811, device='cuda:0'), 'validation_loss_ce': tensor(0.4117, device='cuda:0'), 'validation_loss_bbox': tensor(0.1291, device='cuda:0'), 'validation_loss_giou': tensor(0.4620, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
```
## Examples
{'size': tensor([512, 512]), 'image_id': tensor([1]), 'class_labels': tensor([4]), 'boxes': tensor([[0.2622, 0.5729, 0.0847, 0.0773]]), 'area': tensor([1717.9431]), 'iscrowd': tensor([0]), 'orig_size': tensor([1024, 1024])}

|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
MedicalVision/yolos_mini_overfitting
|
## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.900
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 1.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.900
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.900
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.900
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.900
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.900
```
## Config
- dataset: NIH
- original model: hustvl/yolos-tiny
- lr: 0.0001
- dropout_rate: 0.1
- weight_decay: 0.0001
- max_epochs: 300
- train samples: 2
## Logging
### Training process
```
{'validation_loss': tensor(8.3559, device='cuda:0'), 'validation_loss_ce': tensor(2.1036, device='cuda:0'), 'validation_loss_bbox': tensor(0.7321, device='cuda:0'), 'validation_loss_giou': tensor(1.2958, device='cuda:0'), 'validation_cardinality_error': tensor(77.5000, device='cuda:0')}
{'training_loss': tensor(8.3559, device='cuda:0'), 'train_loss_ce': tensor(2.1036, device='cuda:0'), 'train_loss_bbox': tensor(0.7321, device='cuda:0'), 'train_loss_giou': tensor(1.2958, device='cuda:0'), 'train_cardinality_error': tensor(77.5000, device='cuda:0'), 'validation_loss': tensor(6.2559, device='cuda:0'), 'validation_loss_ce': tensor(1.6991, device='cuda:0'), 'validation_loss_bbox': tensor(0.4806, device='cuda:0'), 'validation_loss_giou': tensor(1.0768, device='cuda:0'), 'validation_cardinality_error': tensor(16., device='cuda:0')}
{'training_loss': tensor(6.2559, device='cuda:0'), 'train_loss_ce': tensor(1.6991, device='cuda:0'), 'train_loss_bbox': tensor(0.4806, device='cuda:0'), 'train_loss_giou': tensor(1.0768, device='cuda:0'), 'train_cardinality_error': tensor(16., device='cuda:0'), 'validation_loss': tensor(3.7908, device='cuda:0'), 'validation_loss_ce': tensor(1.6682, device='cuda:0'), 'validation_loss_bbox': tensor(0.1846, device='cuda:0'), 'validation_loss_giou': tensor(0.5999, device='cuda:0'), 'validation_cardinality_error': tensor(14., device='cuda:0')}
{'training_loss': tensor(3.7908, device='cuda:0'), 'train_loss_ce': tensor(1.6682, device='cuda:0'), 'train_loss_bbox': tensor(0.1846, device='cuda:0'), 'train_loss_giou': tensor(0.5999, device='cuda:0'), 'train_cardinality_error': tensor(14., device='cuda:0'), 'validation_loss': tensor(3.5762, device='cuda:0'), 'validation_loss_ce': tensor(1.6408, device='cuda:0'), 'validation_loss_bbox': tensor(0.1302, device='cuda:0'), 'validation_loss_giou': tensor(0.6422, device='cuda:0'), 'validation_cardinality_error': tensor(15., device='cuda:0')}
{'training_loss': tensor(3.5762, device='cuda:0'), 'train_loss_ce': tensor(1.6408, device='cuda:0'), 'train_loss_bbox': tensor(0.1302, device='cuda:0'), 'train_loss_giou': tensor(0.6422, device='cuda:0'), 'train_cardinality_error': tensor(15., device='cuda:0'), 'validation_loss': tensor(2.8491, device='cuda:0'), 'validation_loss_ce': tensor(1.4923, device='cuda:0'), 'validation_loss_bbox': tensor(0.0855, device='cuda:0'), 'validation_loss_giou': tensor(0.4646, device='cuda:0'), 'validation_cardinality_error': tensor(5.5000, device='cuda:0')}
{'training_loss': tensor(2.8491, device='cuda:0'), 'train_loss_ce': tensor(1.4923, device='cuda:0'), 'train_loss_bbox': tensor(0.0855, device='cuda:0'), 'train_loss_giou': tensor(0.4646, device='cuda:0'), 'train_cardinality_error': tensor(5.5000, device='cuda:0'), 'validation_loss': tensor(2.5695, device='cuda:0'), 'validation_loss_ce': tensor(1.3328, device='cuda:0'), 'validation_loss_bbox': tensor(0.0811, device='cuda:0'), 'validation_loss_giou': tensor(0.4157, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(2.5695, device='cuda:0'), 'train_loss_ce': tensor(1.3328, device='cuda:0'), 'train_loss_bbox': tensor(0.0811, device='cuda:0'), 'train_loss_giou': tensor(0.4157, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(2.3803, device='cuda:0'), 'validation_loss_ce': tensor(1.1906, device='cuda:0'), 'validation_loss_bbox': tensor(0.0628, device='cuda:0'), 'validation_loss_giou': tensor(0.4379, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3803, device='cuda:0'), 'train_loss_ce': tensor(1.1906, device='cuda:0'), 'train_loss_bbox': tensor(0.0628, device='cuda:0'), 'train_loss_giou': tensor(0.4379, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1123, device='cuda:0'), 'validation_loss_ce': tensor(1.0646, device='cuda:0'), 'validation_loss_bbox': tensor(0.0620, device='cuda:0'), 'validation_loss_giou': tensor(0.3689, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1123, device='cuda:0'), 'train_loss_ce': tensor(1.0646, device='cuda:0'), 'train_loss_bbox': tensor(0.0620, device='cuda:0'), 'train_loss_giou': tensor(0.3689, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.3603, device='cuda:0'), 'validation_loss_ce': tensor(0.9428, device='cuda:0'), 'validation_loss_bbox': tensor(0.0213, device='cuda:0'), 'validation_loss_giou': tensor(0.1555, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3603, device='cuda:0'), 'train_loss_ce': tensor(0.9428, device='cuda:0'), 'train_loss_bbox': tensor(0.0213, device='cuda:0'), 'train_loss_giou': tensor(0.1555, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.5155, device='cuda:0'), 'validation_loss_ce': tensor(0.8373, device='cuda:0'), 'validation_loss_bbox': tensor(0.0411, device='cuda:0'), 'validation_loss_giou': tensor(0.2363, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5155, device='cuda:0'), 'train_loss_ce': tensor(0.8373, device='cuda:0'), 'train_loss_bbox': tensor(0.0411, device='cuda:0'), 'train_loss_giou': tensor(0.2363, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.3419, device='cuda:0'), 'validation_loss_ce': tensor(0.7548, device='cuda:0'), 'validation_loss_bbox': tensor(0.0344, device='cuda:0'), 'validation_loss_giou': tensor(0.2075, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3419, device='cuda:0'), 'train_loss_ce': tensor(0.7548, device='cuda:0'), 'train_loss_bbox': tensor(0.0344, device='cuda:0'), 'train_loss_giou': tensor(0.2075, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.2925, device='cuda:0'), 'validation_loss_ce': tensor(0.6352, device='cuda:0'), 'validation_loss_bbox': tensor(0.0379, device='cuda:0'), 'validation_loss_giou': tensor(0.2339, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2925, device='cuda:0'), 'train_loss_ce': tensor(0.6352, device='cuda:0'), 'train_loss_bbox': tensor(0.0379, device='cuda:0'), 'train_loss_giou': tensor(0.2339, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.2193, device='cuda:0'), 'validation_loss_ce': tensor(0.5917, device='cuda:0'), 'validation_loss_bbox': tensor(0.0254, device='cuda:0'), 'validation_loss_giou': tensor(0.2502, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2193, device='cuda:0'), 'train_loss_ce': tensor(0.5917, device='cuda:0'), 'train_loss_bbox': tensor(0.0254, device='cuda:0'), 'train_loss_giou': tensor(0.2502, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.1958, device='cuda:0'), 'validation_loss_ce': tensor(0.5600, device='cuda:0'), 'validation_loss_bbox': tensor(0.0223, device='cuda:0'), 'validation_loss_giou': tensor(0.2620, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1958, device='cuda:0'), 'train_loss_ce': tensor(0.5600, device='cuda:0'), 'train_loss_bbox': tensor(0.0223, device='cuda:0'), 'train_loss_giou': tensor(0.2620, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.0383, device='cuda:0'), 'validation_loss_ce': tensor(0.5319, device='cuda:0'), 'validation_loss_bbox': tensor(0.0257, device='cuda:0'), 'validation_loss_giou': tensor(0.1890, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0383, device='cuda:0'), 'train_loss_ce': tensor(0.5319, device='cuda:0'), 'train_loss_bbox': tensor(0.0257, device='cuda:0'), 'train_loss_giou': tensor(0.1890, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9030, device='cuda:0'), 'validation_loss_ce': tensor(0.5090, device='cuda:0'), 'validation_loss_bbox': tensor(0.0216, device='cuda:0'), 'validation_loss_giou': tensor(0.1430, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9030, device='cuda:0'), 'train_loss_ce': tensor(0.5090, device='cuda:0'), 'train_loss_bbox': tensor(0.0216, device='cuda:0'), 'train_loss_giou': tensor(0.1430, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8889, device='cuda:0'), 'validation_loss_ce': tensor(0.4708, device='cuda:0'), 'validation_loss_bbox': tensor(0.0160, device='cuda:0'), 'validation_loss_giou': tensor(0.1690, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8889, device='cuda:0'), 'train_loss_ce': tensor(0.4708, device='cuda:0'), 'train_loss_bbox': tensor(0.0160, device='cuda:0'), 'train_loss_giou': tensor(0.1690, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9039, device='cuda:0'), 'validation_loss_ce': tensor(0.4101, device='cuda:0'), 'validation_loss_bbox': tensor(0.0278, device='cuda:0'), 'validation_loss_giou': tensor(0.1775, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9039, device='cuda:0'), 'train_loss_ce': tensor(0.4101, device='cuda:0'), 'train_loss_bbox': tensor(0.0278, device='cuda:0'), 'train_loss_giou': tensor(0.1775, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8671, device='cuda:0'), 'validation_loss_ce': tensor(0.4057, device='cuda:0'), 'validation_loss_bbox': tensor(0.0271, device='cuda:0'), 'validation_loss_giou': tensor(0.1630, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8671, device='cuda:0'), 'train_loss_ce': tensor(0.4057, device='cuda:0'), 'train_loss_bbox': tensor(0.0271, device='cuda:0'), 'train_loss_giou': tensor(0.1630, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.1647, device='cuda:0'), 'validation_loss_ce': tensor(0.4174, device='cuda:0'), 'validation_loss_bbox': tensor(0.0296, device='cuda:0'), 'validation_loss_giou': tensor(0.2996, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1647, device='cuda:0'), 'train_loss_ce': tensor(0.4174, device='cuda:0'), 'train_loss_bbox': tensor(0.0296, device='cuda:0'), 'train_loss_giou': tensor(0.2996, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8014, device='cuda:0'), 'validation_loss_ce': tensor(0.3957, device='cuda:0'), 'validation_loss_bbox': tensor(0.0193, device='cuda:0'), 'validation_loss_giou': tensor(0.1545, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8014, device='cuda:0'), 'train_loss_ce': tensor(0.3957, device='cuda:0'), 'train_loss_bbox': tensor(0.0193, device='cuda:0'), 'train_loss_giou': tensor(0.1545, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.0071, device='cuda:0'), 'validation_loss_ce': tensor(0.3869, device='cuda:0'), 'validation_loss_bbox': tensor(0.0272, device='cuda:0'), 'validation_loss_giou': tensor(0.2421, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0071, device='cuda:0'), 'train_loss_ce': tensor(0.3869, device='cuda:0'), 'train_loss_bbox': tensor(0.0272, device='cuda:0'), 'train_loss_giou': tensor(0.2421, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7473, device='cuda:0'), 'validation_loss_ce': tensor(0.3831, device='cuda:0'), 'validation_loss_bbox': tensor(0.0177, device='cuda:0'), 'validation_loss_giou': tensor(0.1378, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7473, device='cuda:0'), 'train_loss_ce': tensor(0.3831, device='cuda:0'), 'train_loss_bbox': tensor(0.0177, device='cuda:0'), 'train_loss_giou': tensor(0.1378, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.0069, device='cuda:0'), 'validation_loss_ce': tensor(0.3847, device='cuda:0'), 'validation_loss_bbox': tensor(0.0276, device='cuda:0'), 'validation_loss_giou': tensor(0.2422, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0069, device='cuda:0'), 'train_loss_ce': tensor(0.3847, device='cuda:0'), 'train_loss_bbox': tensor(0.0276, device='cuda:0'), 'train_loss_giou': tensor(0.2422, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9100, device='cuda:0'), 'validation_loss_ce': tensor(0.3462, device='cuda:0'), 'validation_loss_bbox': tensor(0.0370, device='cuda:0'), 'validation_loss_giou': tensor(0.1894, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9100, device='cuda:0'), 'train_loss_ce': tensor(0.3462, device='cuda:0'), 'train_loss_bbox': tensor(0.0370, device='cuda:0'), 'train_loss_giou': tensor(0.1894, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7600, device='cuda:0'), 'validation_loss_ce': tensor(0.3246, device='cuda:0'), 'validation_loss_bbox': tensor(0.0222, device='cuda:0'), 'validation_loss_giou': tensor(0.1622, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7600, device='cuda:0'), 'train_loss_ce': tensor(0.3246, device='cuda:0'), 'train_loss_bbox': tensor(0.0222, device='cuda:0'), 'train_loss_giou': tensor(0.1622, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8284, device='cuda:0'), 'validation_loss_ce': tensor(0.3207, device='cuda:0'), 'validation_loss_bbox': tensor(0.0243, device='cuda:0'), 'validation_loss_giou': tensor(0.1931, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8284, device='cuda:0'), 'train_loss_ce': tensor(0.3207, device='cuda:0'), 'train_loss_bbox': tensor(0.0243, device='cuda:0'), 'train_loss_giou': tensor(0.1931, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9889, device='cuda:0'), 'validation_loss_ce': tensor(0.3811, device='cuda:0'), 'validation_loss_bbox': tensor(0.0323, device='cuda:0'), 'validation_loss_giou': tensor(0.2232, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9889, device='cuda:0'), 'train_loss_ce': tensor(0.3811, device='cuda:0'), 'train_loss_bbox': tensor(0.0323, device='cuda:0'), 'train_loss_giou': tensor(0.2232, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8287, device='cuda:0'), 'validation_loss_ce': tensor(0.3891, device='cuda:0'), 'validation_loss_bbox': tensor(0.0239, device='cuda:0'), 'validation_loss_giou': tensor(0.1601, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8287, device='cuda:0'), 'train_loss_ce': tensor(0.3891, device='cuda:0'), 'train_loss_bbox': tensor(0.0239, device='cuda:0'), 'train_loss_giou': tensor(0.1601, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6333, device='cuda:0'), 'validation_loss_ce': tensor(0.3800, device='cuda:0'), 'validation_loss_bbox': tensor(0.0119, device='cuda:0'), 'validation_loss_giou': tensor(0.0968, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6333, device='cuda:0'), 'train_loss_ce': tensor(0.3800, device='cuda:0'), 'train_loss_bbox': tensor(0.0119, device='cuda:0'), 'train_loss_giou': tensor(0.0968, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8941, device='cuda:0'), 'validation_loss_ce': tensor(0.3426, device='cuda:0'), 'validation_loss_bbox': tensor(0.0257, device='cuda:0'), 'validation_loss_giou': tensor(0.2114, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8941, device='cuda:0'), 'train_loss_ce': tensor(0.3426, device='cuda:0'), 'train_loss_bbox': tensor(0.0257, device='cuda:0'), 'train_loss_giou': tensor(0.2114, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.0201, device='cuda:0'), 'validation_loss_ce': tensor(0.3592, device='cuda:0'), 'validation_loss_bbox': tensor(0.0230, device='cuda:0'), 'validation_loss_giou': tensor(0.2729, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0201, device='cuda:0'), 'train_loss_ce': tensor(0.3592, device='cuda:0'), 'train_loss_bbox': tensor(0.0230, device='cuda:0'), 'train_loss_giou': tensor(0.2729, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9102, device='cuda:0'), 'validation_loss_ce': tensor(0.3984, device='cuda:0'), 'validation_loss_bbox': tensor(0.0256, device='cuda:0'), 'validation_loss_giou': tensor(0.1920, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9102, device='cuda:0'), 'train_loss_ce': tensor(0.3984, device='cuda:0'), 'train_loss_bbox': tensor(0.0256, device='cuda:0'), 'train_loss_giou': tensor(0.1920, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9486, device='cuda:0'), 'validation_loss_ce': tensor(0.3820, device='cuda:0'), 'validation_loss_bbox': tensor(0.0354, device='cuda:0'), 'validation_loss_giou': tensor(0.1949, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9486, device='cuda:0'), 'train_loss_ce': tensor(0.3820, device='cuda:0'), 'train_loss_bbox': tensor(0.0354, device='cuda:0'), 'train_loss_giou': tensor(0.1949, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9036, device='cuda:0'), 'validation_loss_ce': tensor(0.3768, device='cuda:0'), 'validation_loss_bbox': tensor(0.0346, device='cuda:0'), 'validation_loss_giou': tensor(0.1769, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9036, device='cuda:0'), 'train_loss_ce': tensor(0.3768, device='cuda:0'), 'train_loss_bbox': tensor(0.0346, device='cuda:0'), 'train_loss_giou': tensor(0.1769, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8386, device='cuda:0'), 'validation_loss_ce': tensor(0.3814, device='cuda:0'), 'validation_loss_bbox': tensor(0.0342, device='cuda:0'), 'validation_loss_giou': tensor(0.1430, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8386, device='cuda:0'), 'train_loss_ce': tensor(0.3814, device='cuda:0'), 'train_loss_bbox': tensor(0.0342, device='cuda:0'), 'train_loss_giou': tensor(0.1430, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.0848, device='cuda:0'), 'validation_loss_ce': tensor(0.3772, device='cuda:0'), 'validation_loss_bbox': tensor(0.0503, device='cuda:0'), 'validation_loss_giou': tensor(0.2281, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0848, device='cuda:0'), 'train_loss_ce': tensor(0.3772, device='cuda:0'), 'train_loss_bbox': tensor(0.0503, device='cuda:0'), 'train_loss_giou': tensor(0.2281, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8091, device='cuda:0'), 'validation_loss_ce': tensor(0.3633, device='cuda:0'), 'validation_loss_bbox': tensor(0.0282, device='cuda:0'), 'validation_loss_giou': tensor(0.1523, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8091, device='cuda:0'), 'train_loss_ce': tensor(0.3633, device='cuda:0'), 'train_loss_bbox': tensor(0.0282, device='cuda:0'), 'train_loss_giou': tensor(0.1523, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5336, device='cuda:0'), 'validation_loss_ce': tensor(0.3394, device='cuda:0'), 'validation_loss_bbox': tensor(0.0102, device='cuda:0'), 'validation_loss_giou': tensor(0.0716, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5336, device='cuda:0'), 'train_loss_ce': tensor(0.3394, device='cuda:0'), 'train_loss_bbox': tensor(0.0102, device='cuda:0'), 'train_loss_giou': tensor(0.0716, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6050, device='cuda:0'), 'validation_loss_ce': tensor(0.3207, device='cuda:0'), 'validation_loss_bbox': tensor(0.0152, device='cuda:0'), 'validation_loss_giou': tensor(0.1041, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6050, device='cuda:0'), 'train_loss_ce': tensor(0.3207, device='cuda:0'), 'train_loss_bbox': tensor(0.0152, device='cuda:0'), 'train_loss_giou': tensor(0.1041, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5110, device='cuda:0'), 'validation_loss_ce': tensor(0.3089, device='cuda:0'), 'validation_loss_bbox': tensor(0.0096, device='cuda:0'), 'validation_loss_giou': tensor(0.0771, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5110, device='cuda:0'), 'train_loss_ce': tensor(0.3089, device='cuda:0'), 'train_loss_bbox': tensor(0.0096, device='cuda:0'), 'train_loss_giou': tensor(0.0771, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4854, device='cuda:0'), 'validation_loss_ce': tensor(0.2999, device='cuda:0'), 'validation_loss_bbox': tensor(0.0104, device='cuda:0'), 'validation_loss_giou': tensor(0.0668, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4854, device='cuda:0'), 'train_loss_ce': tensor(0.2999, device='cuda:0'), 'train_loss_bbox': tensor(0.0104, device='cuda:0'), 'train_loss_giou': tensor(0.0668, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6600, device='cuda:0'), 'validation_loss_ce': tensor(0.2791, device='cuda:0'), 'validation_loss_bbox': tensor(0.0165, device='cuda:0'), 'validation_loss_giou': tensor(0.1493, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6600, device='cuda:0'), 'train_loss_ce': tensor(0.2791, device='cuda:0'), 'train_loss_bbox': tensor(0.0165, device='cuda:0'), 'train_loss_giou': tensor(0.1493, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9600, device='cuda:0'), 'validation_loss_ce': tensor(0.2729, device='cuda:0'), 'validation_loss_bbox': tensor(0.0289, device='cuda:0'), 'validation_loss_giou': tensor(0.2714, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9600, device='cuda:0'), 'train_loss_ce': tensor(0.2729, device='cuda:0'), 'train_loss_bbox': tensor(0.0289, device='cuda:0'), 'train_loss_giou': tensor(0.2714, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7155, device='cuda:0'), 'validation_loss_ce': tensor(0.2840, device='cuda:0'), 'validation_loss_bbox': tensor(0.0182, device='cuda:0'), 'validation_loss_giou': tensor(0.1703, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7155, device='cuda:0'), 'train_loss_ce': tensor(0.2840, device='cuda:0'), 'train_loss_bbox': tensor(0.0182, device='cuda:0'), 'train_loss_giou': tensor(0.1703, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8492, device='cuda:0'), 'validation_loss_ce': tensor(0.2677, device='cuda:0'), 'validation_loss_bbox': tensor(0.0289, device='cuda:0'), 'validation_loss_giou': tensor(0.2186, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8492, device='cuda:0'), 'train_loss_ce': tensor(0.2677, device='cuda:0'), 'train_loss_bbox': tensor(0.0289, device='cuda:0'), 'train_loss_giou': tensor(0.2186, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5750, device='cuda:0'), 'validation_loss_ce': tensor(0.2515, device='cuda:0'), 'validation_loss_bbox': tensor(0.0149, device='cuda:0'), 'validation_loss_giou': tensor(0.1246, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5750, device='cuda:0'), 'train_loss_ce': tensor(0.2515, device='cuda:0'), 'train_loss_bbox': tensor(0.0149, device='cuda:0'), 'train_loss_giou': tensor(0.1246, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9160, device='cuda:0'), 'validation_loss_ce': tensor(0.2407, device='cuda:0'), 'validation_loss_bbox': tensor(0.0301, device='cuda:0'), 'validation_loss_giou': tensor(0.2625, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9160, device='cuda:0'), 'train_loss_ce': tensor(0.2407, device='cuda:0'), 'train_loss_bbox': tensor(0.0301, device='cuda:0'), 'train_loss_giou': tensor(0.2625, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8331, device='cuda:0'), 'validation_loss_ce': tensor(0.2357, device='cuda:0'), 'validation_loss_bbox': tensor(0.0303, device='cuda:0'), 'validation_loss_giou': tensor(0.2230, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8331, device='cuda:0'), 'train_loss_ce': tensor(0.2357, device='cuda:0'), 'train_loss_bbox': tensor(0.0303, device='cuda:0'), 'train_loss_giou': tensor(0.2230, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8007, device='cuda:0'), 'validation_loss_ce': tensor(0.2294, device='cuda:0'), 'validation_loss_bbox': tensor(0.0299, device='cuda:0'), 'validation_loss_giou': tensor(0.2108, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8007, device='cuda:0'), 'train_loss_ce': tensor(0.2294, device='cuda:0'), 'train_loss_bbox': tensor(0.0299, device='cuda:0'), 'train_loss_giou': tensor(0.2108, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8696, device='cuda:0'), 'validation_loss_ce': tensor(0.2233, device='cuda:0'), 'validation_loss_bbox': tensor(0.0414, device='cuda:0'), 'validation_loss_giou': tensor(0.2197, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8696, device='cuda:0'), 'train_loss_ce': tensor(0.2233, device='cuda:0'), 'train_loss_bbox': tensor(0.0414, device='cuda:0'), 'train_loss_giou': tensor(0.2197, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6948, device='cuda:0'), 'validation_loss_ce': tensor(0.2176, device='cuda:0'), 'validation_loss_bbox': tensor(0.0278, device='cuda:0'), 'validation_loss_giou': tensor(0.1691, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6948, device='cuda:0'), 'train_loss_ce': tensor(0.2176, device='cuda:0'), 'train_loss_bbox': tensor(0.0278, device='cuda:0'), 'train_loss_giou': tensor(0.1691, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8890, device='cuda:0'), 'validation_loss_ce': tensor(0.2122, device='cuda:0'), 'validation_loss_bbox': tensor(0.0323, device='cuda:0'), 'validation_loss_giou': tensor(0.2577, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8890, device='cuda:0'), 'train_loss_ce': tensor(0.2122, device='cuda:0'), 'train_loss_bbox': tensor(0.0323, device='cuda:0'), 'train_loss_giou': tensor(0.2577, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9893, device='cuda:0'), 'validation_loss_ce': tensor(0.2058, device='cuda:0'), 'validation_loss_bbox': tensor(0.0366, device='cuda:0'), 'validation_loss_giou': tensor(0.3003, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9893, device='cuda:0'), 'train_loss_ce': tensor(0.2058, device='cuda:0'), 'train_loss_bbox': tensor(0.0366, device='cuda:0'), 'train_loss_giou': tensor(0.3003, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7744, device='cuda:0'), 'validation_loss_ce': tensor(0.2003, device='cuda:0'), 'validation_loss_bbox': tensor(0.0249, device='cuda:0'), 'validation_loss_giou': tensor(0.2249, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7744, device='cuda:0'), 'train_loss_ce': tensor(0.2003, device='cuda:0'), 'train_loss_bbox': tensor(0.0249, device='cuda:0'), 'train_loss_giou': tensor(0.2249, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6827, device='cuda:0'), 'validation_loss_ce': tensor(0.1962, device='cuda:0'), 'validation_loss_bbox': tensor(0.0197, device='cuda:0'), 'validation_loss_giou': tensor(0.1941, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6827, device='cuda:0'), 'train_loss_ce': tensor(0.1962, device='cuda:0'), 'train_loss_bbox': tensor(0.0197, device='cuda:0'), 'train_loss_giou': tensor(0.1941, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6586, device='cuda:0'), 'validation_loss_ce': tensor(0.1966, device='cuda:0'), 'validation_loss_bbox': tensor(0.0211, device='cuda:0'), 'validation_loss_giou': tensor(0.1782, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6586, device='cuda:0'), 'train_loss_ce': tensor(0.1966, device='cuda:0'), 'train_loss_bbox': tensor(0.0211, device='cuda:0'), 'train_loss_giou': tensor(0.1782, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9432, device='cuda:0'), 'validation_loss_ce': tensor(0.2052, device='cuda:0'), 'validation_loss_bbox': tensor(0.0407, device='cuda:0'), 'validation_loss_giou': tensor(0.2674, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9432, device='cuda:0'), 'train_loss_ce': tensor(0.2052, device='cuda:0'), 'train_loss_bbox': tensor(0.0407, device='cuda:0'), 'train_loss_giou': tensor(0.2674, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6272, device='cuda:0'), 'validation_loss_ce': tensor(0.1928, device='cuda:0'), 'validation_loss_bbox': tensor(0.0214, device='cuda:0'), 'validation_loss_giou': tensor(0.1636, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6272, device='cuda:0'), 'train_loss_ce': tensor(0.1928, device='cuda:0'), 'train_loss_bbox': tensor(0.0214, device='cuda:0'), 'train_loss_giou': tensor(0.1636, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5373, device='cuda:0'), 'validation_loss_ce': tensor(0.1812, device='cuda:0'), 'validation_loss_bbox': tensor(0.0149, device='cuda:0'), 'validation_loss_giou': tensor(0.1408, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5373, device='cuda:0'), 'train_loss_ce': tensor(0.1812, device='cuda:0'), 'train_loss_bbox': tensor(0.0149, device='cuda:0'), 'train_loss_giou': tensor(0.1408, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6149, device='cuda:0'), 'validation_loss_ce': tensor(0.1763, device='cuda:0'), 'validation_loss_bbox': tensor(0.0181, device='cuda:0'), 'validation_loss_giou': tensor(0.1740, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6149, device='cuda:0'), 'train_loss_ce': tensor(0.1763, device='cuda:0'), 'train_loss_bbox': tensor(0.0181, device='cuda:0'), 'train_loss_giou': tensor(0.1740, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6501, device='cuda:0'), 'validation_loss_ce': tensor(0.1729, device='cuda:0'), 'validation_loss_bbox': tensor(0.0212, device='cuda:0'), 'validation_loss_giou': tensor(0.1855, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6501, device='cuda:0'), 'train_loss_ce': tensor(0.1729, device='cuda:0'), 'train_loss_bbox': tensor(0.0212, device='cuda:0'), 'train_loss_giou': tensor(0.1855, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3090, device='cuda:0'), 'validation_loss_ce': tensor(0.1710, device='cuda:0'), 'validation_loss_bbox': tensor(0.0078, device='cuda:0'), 'validation_loss_giou': tensor(0.0496, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3090, device='cuda:0'), 'train_loss_ce': tensor(0.1710, device='cuda:0'), 'train_loss_bbox': tensor(0.0078, device='cuda:0'), 'train_loss_giou': tensor(0.0496, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8422, device='cuda:0'), 'validation_loss_ce': tensor(0.1743, device='cuda:0'), 'validation_loss_bbox': tensor(0.0272, device='cuda:0'), 'validation_loss_giou': tensor(0.2660, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8422, device='cuda:0'), 'train_loss_ce': tensor(0.1743, device='cuda:0'), 'train_loss_bbox': tensor(0.0272, device='cuda:0'), 'train_loss_giou': tensor(0.2660, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.0222, device='cuda:0'), 'validation_loss_ce': tensor(0.1727, device='cuda:0'), 'validation_loss_bbox': tensor(0.0350, device='cuda:0'), 'validation_loss_giou': tensor(0.3373, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0222, device='cuda:0'), 'train_loss_ce': tensor(0.1727, device='cuda:0'), 'train_loss_bbox': tensor(0.0350, device='cuda:0'), 'train_loss_giou': tensor(0.3373, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9221, device='cuda:0'), 'validation_loss_ce': tensor(0.1691, device='cuda:0'), 'validation_loss_bbox': tensor(0.0368, device='cuda:0'), 'validation_loss_giou': tensor(0.2846, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9221, device='cuda:0'), 'train_loss_ce': tensor(0.1691, device='cuda:0'), 'train_loss_bbox': tensor(0.0368, device='cuda:0'), 'train_loss_giou': tensor(0.2846, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6458, device='cuda:0'), 'validation_loss_ce': tensor(0.1655, device='cuda:0'), 'validation_loss_bbox': tensor(0.0260, device='cuda:0'), 'validation_loss_giou': tensor(0.1750, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6458, device='cuda:0'), 'train_loss_ce': tensor(0.1655, device='cuda:0'), 'train_loss_bbox': tensor(0.0260, device='cuda:0'), 'train_loss_giou': tensor(0.1750, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5741, device='cuda:0'), 'validation_loss_ce': tensor(0.1625, device='cuda:0'), 'validation_loss_bbox': tensor(0.0219, device='cuda:0'), 'validation_loss_giou': tensor(0.1510, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5741, device='cuda:0'), 'train_loss_ce': tensor(0.1625, device='cuda:0'), 'train_loss_bbox': tensor(0.0219, device='cuda:0'), 'train_loss_giou': tensor(0.1510, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6301, device='cuda:0'), 'validation_loss_ce': tensor(0.1616, device='cuda:0'), 'validation_loss_bbox': tensor(0.0245, device='cuda:0'), 'validation_loss_giou': tensor(0.1729, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.6301, device='cuda:0'), 'train_loss_ce': tensor(0.1616, device='cuda:0'), 'train_loss_bbox': tensor(0.0245, device='cuda:0'), 'train_loss_giou': tensor(0.1729, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.5749, device='cuda:0'), 'validation_loss_ce': tensor(0.1603, device='cuda:0'), 'validation_loss_bbox': tensor(0.0248, device='cuda:0'), 'validation_loss_giou': tensor(0.1452, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.5749, device='cuda:0'), 'train_loss_ce': tensor(0.1603, device='cuda:0'), 'train_loss_bbox': tensor(0.0248, device='cuda:0'), 'train_loss_giou': tensor(0.1452, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.5829, device='cuda:0'), 'validation_loss_ce': tensor(0.1581, device='cuda:0'), 'validation_loss_bbox': tensor(0.0212, device='cuda:0'), 'validation_loss_giou': tensor(0.1595, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.5829, device='cuda:0'), 'train_loss_ce': tensor(0.1581, device='cuda:0'), 'train_loss_bbox': tensor(0.0212, device='cuda:0'), 'train_loss_giou': tensor(0.1595, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.5218, device='cuda:0'), 'validation_loss_ce': tensor(0.1558, device='cuda:0'), 'validation_loss_bbox': tensor(0.0133, device='cuda:0'), 'validation_loss_giou': tensor(0.1497, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.5218, device='cuda:0'), 'train_loss_ce': tensor(0.1558, device='cuda:0'), 'train_loss_bbox': tensor(0.0133, device='cuda:0'), 'train_loss_giou': tensor(0.1497, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.5585, device='cuda:0'), 'validation_loss_ce': tensor(0.1532, device='cuda:0'), 'validation_loss_bbox': tensor(0.0254, device='cuda:0'), 'validation_loss_giou': tensor(0.1391, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.5585, device='cuda:0'), 'train_loss_ce': tensor(0.1532, device='cuda:0'), 'train_loss_bbox': tensor(0.0254, device='cuda:0'), 'train_loss_giou': tensor(0.1391, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.5528, device='cuda:0'), 'validation_loss_ce': tensor(0.1511, device='cuda:0'), 'validation_loss_bbox': tensor(0.0233, device='cuda:0'), 'validation_loss_giou': tensor(0.1427, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.5528, device='cuda:0'), 'train_loss_ce': tensor(0.1511, device='cuda:0'), 'train_loss_bbox': tensor(0.0233, device='cuda:0'), 'train_loss_giou': tensor(0.1427, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3387, device='cuda:0'), 'validation_loss_ce': tensor(0.1496, device='cuda:0'), 'validation_loss_bbox': tensor(0.0119, device='cuda:0'), 'validation_loss_giou': tensor(0.0648, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.3387, device='cuda:0'), 'train_loss_ce': tensor(0.1496, device='cuda:0'), 'train_loss_bbox': tensor(0.0119, device='cuda:0'), 'train_loss_giou': tensor(0.0648, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.6054, device='cuda:0'), 'validation_loss_ce': tensor(0.1467, device='cuda:0'), 'validation_loss_bbox': tensor(0.0179, device='cuda:0'), 'validation_loss_giou': tensor(0.1847, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.6054, device='cuda:0'), 'train_loss_ce': tensor(0.1467, device='cuda:0'), 'train_loss_bbox': tensor(0.0179, device='cuda:0'), 'train_loss_giou': tensor(0.1847, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.5739, device='cuda:0'), 'validation_loss_ce': tensor(0.1441, device='cuda:0'), 'validation_loss_bbox': tensor(0.0202, device='cuda:0'), 'validation_loss_giou': tensor(0.1645, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.5739, device='cuda:0'), 'train_loss_ce': tensor(0.1441, device='cuda:0'), 'train_loss_bbox': tensor(0.0202, device='cuda:0'), 'train_loss_giou': tensor(0.1645, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4889, device='cuda:0'), 'validation_loss_ce': tensor(0.1424, device='cuda:0'), 'validation_loss_bbox': tensor(0.0167, device='cuda:0'), 'validation_loss_giou': tensor(0.1316, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.4889, device='cuda:0'), 'train_loss_ce': tensor(0.1424, device='cuda:0'), 'train_loss_bbox': tensor(0.0167, device='cuda:0'), 'train_loss_giou': tensor(0.1316, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4939, device='cuda:0'), 'validation_loss_ce': tensor(0.1390, device='cuda:0'), 'validation_loss_bbox': tensor(0.0164, device='cuda:0'), 'validation_loss_giou': tensor(0.1364, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.4939, device='cuda:0'), 'train_loss_ce': tensor(0.1390, device='cuda:0'), 'train_loss_bbox': tensor(0.0164, device='cuda:0'), 'train_loss_giou': tensor(0.1364, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3661, device='cuda:0'), 'validation_loss_ce': tensor(0.1356, device='cuda:0'), 'validation_loss_bbox': tensor(0.0117, device='cuda:0'), 'validation_loss_giou': tensor(0.0861, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.3661, device='cuda:0'), 'train_loss_ce': tensor(0.1356, device='cuda:0'), 'train_loss_bbox': tensor(0.0117, device='cuda:0'), 'train_loss_giou': tensor(0.0861, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.5251, device='cuda:0'), 'validation_loss_ce': tensor(0.1322, device='cuda:0'), 'validation_loss_bbox': tensor(0.0202, device='cuda:0'), 'validation_loss_giou': tensor(0.1460, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.5251, device='cuda:0'), 'train_loss_ce': tensor(0.1322, device='cuda:0'), 'train_loss_bbox': tensor(0.0202, device='cuda:0'), 'train_loss_giou': tensor(0.1460, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4723, device='cuda:0'), 'validation_loss_ce': tensor(0.1310, device='cuda:0'), 'validation_loss_bbox': tensor(0.0204, device='cuda:0'), 'validation_loss_giou': tensor(0.1196, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.4723, device='cuda:0'), 'train_loss_ce': tensor(0.1310, device='cuda:0'), 'train_loss_bbox': tensor(0.0204, device='cuda:0'), 'train_loss_giou': tensor(0.1196, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4198, device='cuda:0'), 'validation_loss_ce': tensor(0.1298, device='cuda:0'), 'validation_loss_bbox': tensor(0.0141, device='cuda:0'), 'validation_loss_giou': tensor(0.1097, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.4198, device='cuda:0'), 'train_loss_ce': tensor(0.1298, device='cuda:0'), 'train_loss_bbox': tensor(0.0141, device='cuda:0'), 'train_loss_giou': tensor(0.1097, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3856, device='cuda:0'), 'validation_loss_ce': tensor(0.1307, device='cuda:0'), 'validation_loss_bbox': tensor(0.0151, device='cuda:0'), 'validation_loss_giou': tensor(0.0898, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.3856, device='cuda:0'), 'train_loss_ce': tensor(0.1307, device='cuda:0'), 'train_loss_bbox': tensor(0.0151, device='cuda:0'), 'train_loss_giou': tensor(0.0898, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4118, device='cuda:0'), 'validation_loss_ce': tensor(0.1319, device='cuda:0'), 'validation_loss_bbox': tensor(0.0150, device='cuda:0'), 'validation_loss_giou': tensor(0.1024, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4118, device='cuda:0'), 'train_loss_ce': tensor(0.1319, device='cuda:0'), 'train_loss_bbox': tensor(0.0150, device='cuda:0'), 'train_loss_giou': tensor(0.1024, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3538, device='cuda:0'), 'validation_loss_ce': tensor(0.1327, device='cuda:0'), 'validation_loss_bbox': tensor(0.0111, device='cuda:0'), 'validation_loss_giou': tensor(0.0829, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3538, device='cuda:0'), 'train_loss_ce': tensor(0.1327, device='cuda:0'), 'train_loss_bbox': tensor(0.0111, device='cuda:0'), 'train_loss_giou': tensor(0.0829, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3896, device='cuda:0'), 'validation_loss_ce': tensor(0.1331, device='cuda:0'), 'validation_loss_bbox': tensor(0.0115, device='cuda:0'), 'validation_loss_giou': tensor(0.0994, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3896, device='cuda:0'), 'train_loss_ce': tensor(0.1331, device='cuda:0'), 'train_loss_bbox': tensor(0.0115, device='cuda:0'), 'train_loss_giou': tensor(0.0994, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3710, device='cuda:0'), 'validation_loss_ce': tensor(0.1325, device='cuda:0'), 'validation_loss_bbox': tensor(0.0128, device='cuda:0'), 'validation_loss_giou': tensor(0.0872, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3710, device='cuda:0'), 'train_loss_ce': tensor(0.1325, device='cuda:0'), 'train_loss_bbox': tensor(0.0128, device='cuda:0'), 'train_loss_giou': tensor(0.0872, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4217, device='cuda:0'), 'validation_loss_ce': tensor(0.1308, device='cuda:0'), 'validation_loss_bbox': tensor(0.0125, device='cuda:0'), 'validation_loss_giou': tensor(0.1142, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4217, device='cuda:0'), 'train_loss_ce': tensor(0.1308, device='cuda:0'), 'train_loss_bbox': tensor(0.0125, device='cuda:0'), 'train_loss_giou': tensor(0.1142, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4105, device='cuda:0'), 'validation_loss_ce': tensor(0.1289, device='cuda:0'), 'validation_loss_bbox': tensor(0.0101, device='cuda:0'), 'validation_loss_giou': tensor(0.1155, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.4105, device='cuda:0'), 'train_loss_ce': tensor(0.1289, device='cuda:0'), 'train_loss_bbox': tensor(0.0101, device='cuda:0'), 'train_loss_giou': tensor(0.1155, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3503, device='cuda:0'), 'validation_loss_ce': tensor(0.1274, device='cuda:0'), 'validation_loss_bbox': tensor(0.0140, device='cuda:0'), 'validation_loss_giou': tensor(0.0766, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.3503, device='cuda:0'), 'train_loss_ce': tensor(0.1274, device='cuda:0'), 'train_loss_bbox': tensor(0.0140, device='cuda:0'), 'train_loss_giou': tensor(0.0766, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4310, device='cuda:0'), 'validation_loss_ce': tensor(0.1262, device='cuda:0'), 'validation_loss_bbox': tensor(0.0154, device='cuda:0'), 'validation_loss_giou': tensor(0.1138, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.4310, device='cuda:0'), 'train_loss_ce': tensor(0.1262, device='cuda:0'), 'train_loss_bbox': tensor(0.0154, device='cuda:0'), 'train_loss_giou': tensor(0.1138, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3380, device='cuda:0'), 'validation_loss_ce': tensor(0.1243, device='cuda:0'), 'validation_loss_bbox': tensor(0.0112, device='cuda:0'), 'validation_loss_giou': tensor(0.0788, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3380, device='cuda:0'), 'train_loss_ce': tensor(0.1243, device='cuda:0'), 'train_loss_bbox': tensor(0.0112, device='cuda:0'), 'train_loss_giou': tensor(0.0788, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.4583, device='cuda:0'), 'validation_loss_ce': tensor(0.1217, device='cuda:0'), 'validation_loss_bbox': tensor(0.0145, device='cuda:0'), 'validation_loss_giou': tensor(0.1320, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.4583, device='cuda:0'), 'train_loss_ce': tensor(0.1217, device='cuda:0'), 'train_loss_bbox': tensor(0.0145, device='cuda:0'), 'train_loss_giou': tensor(0.1320, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.5777, device='cuda:0'), 'validation_loss_ce': tensor(0.1196, device='cuda:0'), 'validation_loss_bbox': tensor(0.0179, device='cuda:0'), 'validation_loss_giou': tensor(0.1842, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5777, device='cuda:0'), 'train_loss_ce': tensor(0.1196, device='cuda:0'), 'train_loss_bbox': tensor(0.0179, device='cuda:0'), 'train_loss_giou': tensor(0.1842, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4839, device='cuda:0'), 'validation_loss_ce': tensor(0.1175, device='cuda:0'), 'validation_loss_bbox': tensor(0.0154, device='cuda:0'), 'validation_loss_giou': tensor(0.1447, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4839, device='cuda:0'), 'train_loss_ce': tensor(0.1175, device='cuda:0'), 'train_loss_bbox': tensor(0.0154, device='cuda:0'), 'train_loss_giou': tensor(0.1447, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5275, device='cuda:0'), 'validation_loss_ce': tensor(0.1153, device='cuda:0'), 'validation_loss_bbox': tensor(0.0184, device='cuda:0'), 'validation_loss_giou': tensor(0.1602, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.5275, device='cuda:0'), 'train_loss_ce': tensor(0.1153, device='cuda:0'), 'train_loss_bbox': tensor(0.0184, device='cuda:0'), 'train_loss_giou': tensor(0.1602, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.5243, device='cuda:0'), 'validation_loss_ce': tensor(0.1119, device='cuda:0'), 'validation_loss_bbox': tensor(0.0186, device='cuda:0'), 'validation_loss_giou': tensor(0.1597, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.5243, device='cuda:0'), 'train_loss_ce': tensor(0.1119, device='cuda:0'), 'train_loss_bbox': tensor(0.0186, device='cuda:0'), 'train_loss_giou': tensor(0.1597, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.4720, device='cuda:0'), 'validation_loss_ce': tensor(0.1080, device='cuda:0'), 'validation_loss_bbox': tensor(0.0159, device='cuda:0'), 'validation_loss_giou': tensor(0.1423, device='cuda:0'), 'validation_cardinality_error': tensor(2., device='cuda:0')}
{'training_loss': tensor(0.4720, device='cuda:0'), 'train_loss_ce': tensor(0.1080, device='cuda:0'), 'train_loss_bbox': tensor(0.0159, device='cuda:0'), 'train_loss_giou': tensor(0.1423, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(0.3416, device='cuda:0'), 'validation_loss_ce': tensor(0.1046, device='cuda:0'), 'validation_loss_bbox': tensor(0.0102, device='cuda:0'), 'validation_loss_giou': tensor(0.0930, device='cuda:0'), 'validation_cardinality_error': tensor(2., device='cuda:0')}
{'training_loss': tensor(0.3416, device='cuda:0'), 'train_loss_ce': tensor(0.1046, device='cuda:0'), 'train_loss_bbox': tensor(0.0102, device='cuda:0'), 'train_loss_giou': tensor(0.0930, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(0.3403, device='cuda:0'), 'validation_loss_ce': tensor(0.1018, device='cuda:0'), 'validation_loss_bbox': tensor(0.0082, device='cuda:0'), 'validation_loss_giou': tensor(0.0987, device='cuda:0'), 'validation_cardinality_error': tensor(2., device='cuda:0')}
{'training_loss': tensor(0.3403, device='cuda:0'), 'train_loss_ce': tensor(0.1018, device='cuda:0'), 'train_loss_bbox': tensor(0.0082, device='cuda:0'), 'train_loss_giou': tensor(0.0987, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(0.2694, device='cuda:0'), 'validation_loss_ce': tensor(0.0991, device='cuda:0'), 'validation_loss_bbox': tensor(0.0079, device='cuda:0'), 'validation_loss_giou': tensor(0.0653, device='cuda:0'), 'validation_cardinality_error': tensor(2.5000, device='cuda:0')}
{'training_loss': tensor(0.2694, device='cuda:0'), 'train_loss_ce': tensor(0.0991, device='cuda:0'), 'train_loss_bbox': tensor(0.0079, device='cuda:0'), 'train_loss_giou': tensor(0.0653, device='cuda:0'), 'train_cardinality_error': tensor(2.5000, device='cuda:0'), 'validation_loss': tensor(0.2905, device='cuda:0'), 'validation_loss_ce': tensor(0.0968, device='cuda:0'), 'validation_loss_bbox': tensor(0.0101, device='cuda:0'), 'validation_loss_giou': tensor(0.0715, device='cuda:0'), 'validation_cardinality_error': tensor(2.5000, device='cuda:0')}
{'training_loss': tensor(0.2905, device='cuda:0'), 'train_loss_ce': tensor(0.0968, device='cuda:0'), 'train_loss_bbox': tensor(0.0101, device='cuda:0'), 'train_loss_giou': tensor(0.0715, device='cuda:0'), 'train_cardinality_error': tensor(2.5000, device='cuda:0'), 'validation_loss': tensor(0.3587, device='cuda:0'), 'validation_loss_ce': tensor(0.0941, device='cuda:0'), 'validation_loss_bbox': tensor(0.0106, device='cuda:0'), 'validation_loss_giou': tensor(0.1059, device='cuda:0'), 'validation_cardinality_error': tensor(2.5000, device='cuda:0')}
{'training_loss': tensor(0.3587, device='cuda:0'), 'train_loss_ce': tensor(0.0941, device='cuda:0'), 'train_loss_bbox': tensor(0.0106, device='cuda:0'), 'train_loss_giou': tensor(0.1059, device='cuda:0'), 'train_cardinality_error': tensor(2.5000, device='cuda:0'), 'validation_loss': tensor(0.2442, device='cuda:0'), 'validation_loss_ce': tensor(0.0922, device='cuda:0'), 'validation_loss_bbox': tensor(0.0076, device='cuda:0'), 'validation_loss_giou': tensor(0.0570, device='cuda:0'), 'validation_cardinality_error': tensor(2.5000, device='cuda:0')}
{'training_loss': tensor(0.2442, device='cuda:0'), 'train_loss_ce': tensor(0.0922, device='cuda:0'), 'train_loss_bbox': tensor(0.0076, device='cuda:0'), 'train_loss_giou': tensor(0.0570, device='cuda:0'), 'train_cardinality_error': tensor(2.5000, device='cuda:0'), 'validation_loss': tensor(0.3910, device='cuda:0'), 'validation_loss_ce': tensor(0.0910, device='cuda:0'), 'validation_loss_bbox': tensor(0.0115, device='cuda:0'), 'validation_loss_giou': tensor(0.1212, device='cuda:0'), 'validation_cardinality_error': tensor(2.5000, device='cuda:0')}
{'training_loss': tensor(0.3910, device='cuda:0'), 'train_loss_ce': tensor(0.0910, device='cuda:0'), 'train_loss_bbox': tensor(0.0115, device='cuda:0'), 'train_loss_giou': tensor(0.1212, device='cuda:0'), 'train_cardinality_error': tensor(2.5000, device='cuda:0'), 'validation_loss': tensor(0.4743, device='cuda:0'), 'validation_loss_ce': tensor(0.0896, device='cuda:0'), 'validation_loss_bbox': tensor(0.0153, device='cuda:0'), 'validation_loss_giou': tensor(0.1541, device='cuda:0'), 'validation_cardinality_error': tensor(2.5000, device='cuda:0')}
{'training_loss': tensor(0.4743, device='cuda:0'), 'train_loss_ce': tensor(0.0896, device='cuda:0'), 'train_loss_bbox': tensor(0.0153, device='cuda:0'), 'train_loss_giou': tensor(0.1541, device='cuda:0'), 'train_cardinality_error': tensor(2.5000, device='cuda:0'), 'validation_loss': tensor(0.3298, device='cuda:0'), 'validation_loss_ce': tensor(0.0876, device='cuda:0'), 'validation_loss_bbox': tensor(0.0125, device='cuda:0'), 'validation_loss_giou': tensor(0.0898, device='cuda:0'), 'validation_cardinality_error': tensor(2.5000, device='cuda:0')}
{'training_loss': tensor(0.3298, device='cuda:0'), 'train_loss_ce': tensor(0.0876, device='cuda:0'), 'train_loss_bbox': tensor(0.0125, device='cuda:0'), 'train_loss_giou': tensor(0.0898, device='cuda:0'), 'train_cardinality_error': tensor(2.5000, device='cuda:0'), 'validation_loss': tensor(0.4291, device='cuda:0'), 'validation_loss_ce': tensor(0.0853, device='cuda:0'), 'validation_loss_bbox': tensor(0.0159, device='cuda:0'), 'validation_loss_giou': tensor(0.1322, device='cuda:0'), 'validation_cardinality_error': tensor(2.5000, device='cuda:0')}
{'training_loss': tensor(0.4291, device='cuda:0'), 'train_loss_ce': tensor(0.0853, device='cuda:0'), 'train_loss_bbox': tensor(0.0159, device='cuda:0'), 'train_loss_giou': tensor(0.1322, device='cuda:0'), 'train_cardinality_error': tensor(2.5000, device='cuda:0'), 'validation_loss': tensor(0.5704, device='cuda:0'), 'validation_loss_ce': tensor(0.0832, device='cuda:0'), 'validation_loss_bbox': tensor(0.0233, device='cuda:0'), 'validation_loss_giou': tensor(0.1853, device='cuda:0'), 'validation_cardinality_error': tensor(2., device='cuda:0')}
{'training_loss': tensor(0.5704, device='cuda:0'), 'train_loss_ce': tensor(0.0832, device='cuda:0'), 'train_loss_bbox': tensor(0.0233, device='cuda:0'), 'train_loss_giou': tensor(0.1853, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(0.5066, device='cuda:0'), 'validation_loss_ce': tensor(0.0818, device='cuda:0'), 'validation_loss_bbox': tensor(0.0209, device='cuda:0'), 'validation_loss_giou': tensor(0.1602, device='cuda:0'), 'validation_cardinality_error': tensor(2., device='cuda:0')}
{'training_loss': tensor(0.5066, device='cuda:0'), 'train_loss_ce': tensor(0.0818, device='cuda:0'), 'train_loss_bbox': tensor(0.0209, device='cuda:0'), 'train_loss_giou': tensor(0.1602, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(0.2915, device='cuda:0'), 'validation_loss_ce': tensor(0.0808, device='cuda:0'), 'validation_loss_bbox': tensor(0.0116, device='cuda:0'), 'validation_loss_giou': tensor(0.0763, device='cuda:0'), 'validation_cardinality_error': tensor(2., device='cuda:0')}
{'training_loss': tensor(0.2915, device='cuda:0'), 'train_loss_ce': tensor(0.0808, device='cuda:0'), 'train_loss_bbox': tensor(0.0116, device='cuda:0'), 'train_loss_giou': tensor(0.0763, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(0.3250, device='cuda:0'), 'validation_loss_ce': tensor(0.0802, device='cuda:0'), 'validation_loss_bbox': tensor(0.0084, device='cuda:0'), 'validation_loss_giou': tensor(0.1014, device='cuda:0'), 'validation_cardinality_error': tensor(2., device='cuda:0')}
{'training_loss': tensor(0.3250, device='cuda:0'), 'train_loss_ce': tensor(0.0802, device='cuda:0'), 'train_loss_bbox': tensor(0.0084, device='cuda:0'), 'train_loss_giou': tensor(0.1014, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(0.4303, device='cuda:0'), 'validation_loss_ce': tensor(0.0801, device='cuda:0'), 'validation_loss_bbox': tensor(0.0180, device='cuda:0'), 'validation_loss_giou': tensor(0.1301, device='cuda:0'), 'validation_cardinality_error': tensor(2., device='cuda:0')}
{'training_loss': tensor(0.4303, device='cuda:0'), 'train_loss_ce': tensor(0.0801, device='cuda:0'), 'train_loss_bbox': tensor(0.0180, device='cuda:0'), 'train_loss_giou': tensor(0.1301, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(0.3446, device='cuda:0'), 'validation_loss_ce': tensor(0.0794, device='cuda:0'), 'validation_loss_bbox': tensor(0.0151, device='cuda:0'), 'validation_loss_giou': tensor(0.0948, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.3446, device='cuda:0'), 'train_loss_ce': tensor(0.0794, device='cuda:0'), 'train_loss_bbox': tensor(0.0151, device='cuda:0'), 'train_loss_giou': tensor(0.0948, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.3661, device='cuda:0'), 'validation_loss_ce': tensor(0.0786, device='cuda:0'), 'validation_loss_bbox': tensor(0.0128, device='cuda:0'), 'validation_loss_giou': tensor(0.1117, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.3661, device='cuda:0'), 'train_loss_ce': tensor(0.0786, device='cuda:0'), 'train_loss_bbox': tensor(0.0128, device='cuda:0'), 'train_loss_giou': tensor(0.1117, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.3939, device='cuda:0'), 'validation_loss_ce': tensor(0.0774, device='cuda:0'), 'validation_loss_bbox': tensor(0.0134, device='cuda:0'), 'validation_loss_giou': tensor(0.1248, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.3939, device='cuda:0'), 'train_loss_ce': tensor(0.0774, device='cuda:0'), 'train_loss_bbox': tensor(0.0134, device='cuda:0'), 'train_loss_giou': tensor(0.1248, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.3280, device='cuda:0'), 'validation_loss_ce': tensor(0.0764, device='cuda:0'), 'validation_loss_bbox': tensor(0.0137, device='cuda:0'), 'validation_loss_giou': tensor(0.0915, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.3280, device='cuda:0'), 'train_loss_ce': tensor(0.0764, device='cuda:0'), 'train_loss_bbox': tensor(0.0137, device='cuda:0'), 'train_loss_giou': tensor(0.0915, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.3776, device='cuda:0'), 'validation_loss_ce': tensor(0.0747, device='cuda:0'), 'validation_loss_bbox': tensor(0.0146, device='cuda:0'), 'validation_loss_giou': tensor(0.1149, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.3776, device='cuda:0'), 'train_loss_ce': tensor(0.0747, device='cuda:0'), 'train_loss_bbox': tensor(0.0146, device='cuda:0'), 'train_loss_giou': tensor(0.1149, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.3394, device='cuda:0'), 'validation_loss_ce': tensor(0.0729, device='cuda:0'), 'validation_loss_bbox': tensor(0.0091, device='cuda:0'), 'validation_loss_giou': tensor(0.1105, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.3394, device='cuda:0'), 'train_loss_ce': tensor(0.0729, device='cuda:0'), 'train_loss_bbox': tensor(0.0091, device='cuda:0'), 'train_loss_giou': tensor(0.1105, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2104, device='cuda:0'), 'validation_loss_ce': tensor(0.0714, device='cuda:0'), 'validation_loss_bbox': tensor(0.0061, device='cuda:0'), 'validation_loss_giou': tensor(0.0542, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.2104, device='cuda:0'), 'train_loss_ce': tensor(0.0714, device='cuda:0'), 'train_loss_bbox': tensor(0.0061, device='cuda:0'), 'train_loss_giou': tensor(0.0542, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.3044, device='cuda:0'), 'validation_loss_ce': tensor(0.0701, device='cuda:0'), 'validation_loss_bbox': tensor(0.0093, device='cuda:0'), 'validation_loss_giou': tensor(0.0940, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.3044, device='cuda:0'), 'train_loss_ce': tensor(0.0701, device='cuda:0'), 'train_loss_bbox': tensor(0.0093, device='cuda:0'), 'train_loss_giou': tensor(0.0940, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2583, device='cuda:0'), 'validation_loss_ce': tensor(0.0690, device='cuda:0'), 'validation_loss_bbox': tensor(0.0074, device='cuda:0'), 'validation_loss_giou': tensor(0.0763, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.2583, device='cuda:0'), 'train_loss_ce': tensor(0.0690, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.0763, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2836, device='cuda:0'), 'validation_loss_ce': tensor(0.0676, device='cuda:0'), 'validation_loss_bbox': tensor(0.0082, device='cuda:0'), 'validation_loss_giou': tensor(0.0875, device='cuda:0'), 'validation_cardinality_error': tensor(2., device='cuda:0')}
{'training_loss': tensor(0.2836, device='cuda:0'), 'train_loss_ce': tensor(0.0676, device='cuda:0'), 'train_loss_bbox': tensor(0.0082, device='cuda:0'), 'train_loss_giou': tensor(0.0875, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(0.3254, device='cuda:0'), 'validation_loss_ce': tensor(0.0661, device='cuda:0'), 'validation_loss_bbox': tensor(0.0107, device='cuda:0'), 'validation_loss_giou': tensor(0.1028, device='cuda:0'), 'validation_cardinality_error': tensor(2., device='cuda:0')}
{'training_loss': tensor(0.3254, device='cuda:0'), 'train_loss_ce': tensor(0.0661, device='cuda:0'), 'train_loss_bbox': tensor(0.0107, device='cuda:0'), 'train_loss_giou': tensor(0.1028, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(0.1842, device='cuda:0'), 'validation_loss_ce': tensor(0.0632, device='cuda:0'), 'validation_loss_bbox': tensor(0.0065, device='cuda:0'), 'validation_loss_giou': tensor(0.0442, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.1842, device='cuda:0'), 'train_loss_ce': tensor(0.0632, device='cuda:0'), 'train_loss_bbox': tensor(0.0065, device='cuda:0'), 'train_loss_giou': tensor(0.0442, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.4055, device='cuda:0'), 'validation_loss_ce': tensor(0.0594, device='cuda:0'), 'validation_loss_bbox': tensor(0.0124, device='cuda:0'), 'validation_loss_giou': tensor(0.1420, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.4055, device='cuda:0'), 'train_loss_ce': tensor(0.0594, device='cuda:0'), 'train_loss_bbox': tensor(0.0124, device='cuda:0'), 'train_loss_giou': tensor(0.1420, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.3525, device='cuda:0'), 'validation_loss_ce': tensor(0.0585, device='cuda:0'), 'validation_loss_bbox': tensor(0.0120, device='cuda:0'), 'validation_loss_giou': tensor(0.1171, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.3525, device='cuda:0'), 'train_loss_ce': tensor(0.0585, device='cuda:0'), 'train_loss_bbox': tensor(0.0120, device='cuda:0'), 'train_loss_giou': tensor(0.1171, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2458, device='cuda:0'), 'validation_loss_ce': tensor(0.0573, device='cuda:0'), 'validation_loss_bbox': tensor(0.0103, device='cuda:0'), 'validation_loss_giou': tensor(0.0685, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.2458, device='cuda:0'), 'train_loss_ce': tensor(0.0573, device='cuda:0'), 'train_loss_bbox': tensor(0.0103, device='cuda:0'), 'train_loss_giou': tensor(0.0685, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.3245, device='cuda:0'), 'validation_loss_ce': tensor(0.0564, device='cuda:0'), 'validation_loss_bbox': tensor(0.0121, device='cuda:0'), 'validation_loss_giou': tensor(0.1039, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.3245, device='cuda:0'), 'train_loss_ce': tensor(0.0564, device='cuda:0'), 'train_loss_bbox': tensor(0.0121, device='cuda:0'), 'train_loss_giou': tensor(0.1039, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.1545, device='cuda:0'), 'validation_loss_ce': tensor(0.0562, device='cuda:0'), 'validation_loss_bbox': tensor(0.0055, device='cuda:0'), 'validation_loss_giou': tensor(0.0355, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.1545, device='cuda:0'), 'train_loss_ce': tensor(0.0562, device='cuda:0'), 'train_loss_bbox': tensor(0.0055, device='cuda:0'), 'train_loss_giou': tensor(0.0355, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2599, device='cuda:0'), 'validation_loss_ce': tensor(0.0567, device='cuda:0'), 'validation_loss_bbox': tensor(0.0091, device='cuda:0'), 'validation_loss_giou': tensor(0.0788, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.2599, device='cuda:0'), 'train_loss_ce': tensor(0.0567, device='cuda:0'), 'train_loss_bbox': tensor(0.0091, device='cuda:0'), 'train_loss_giou': tensor(0.0788, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2099, device='cuda:0'), 'validation_loss_ce': tensor(0.0550, device='cuda:0'), 'validation_loss_bbox': tensor(0.0082, device='cuda:0'), 'validation_loss_giou': tensor(0.0569, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.2099, device='cuda:0'), 'train_loss_ce': tensor(0.0550, device='cuda:0'), 'train_loss_bbox': tensor(0.0082, device='cuda:0'), 'train_loss_giou': tensor(0.0569, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2494, device='cuda:0'), 'validation_loss_ce': tensor(0.0533, device='cuda:0'), 'validation_loss_bbox': tensor(0.0099, device='cuda:0'), 'validation_loss_giou': tensor(0.0734, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.2494, device='cuda:0'), 'train_loss_ce': tensor(0.0533, device='cuda:0'), 'train_loss_bbox': tensor(0.0099, device='cuda:0'), 'train_loss_giou': tensor(0.0734, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2410, device='cuda:0'), 'validation_loss_ce': tensor(0.0525, device='cuda:0'), 'validation_loss_bbox': tensor(0.0077, device='cuda:0'), 'validation_loss_giou': tensor(0.0750, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.2410, device='cuda:0'), 'train_loss_ce': tensor(0.0525, device='cuda:0'), 'train_loss_bbox': tensor(0.0077, device='cuda:0'), 'train_loss_giou': tensor(0.0750, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.1777, device='cuda:0'), 'validation_loss_ce': tensor(0.0518, device='cuda:0'), 'validation_loss_bbox': tensor(0.0059, device='cuda:0'), 'validation_loss_giou': tensor(0.0482, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.1777, device='cuda:0'), 'train_loss_ce': tensor(0.0518, device='cuda:0'), 'train_loss_bbox': tensor(0.0059, device='cuda:0'), 'train_loss_giou': tensor(0.0482, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2153, device='cuda:0'), 'validation_loss_ce': tensor(0.0511, device='cuda:0'), 'validation_loss_bbox': tensor(0.0076, device='cuda:0'), 'validation_loss_giou': tensor(0.0630, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.2153, device='cuda:0'), 'train_loss_ce': tensor(0.0511, device='cuda:0'), 'train_loss_bbox': tensor(0.0076, device='cuda:0'), 'train_loss_giou': tensor(0.0630, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2629, device='cuda:0'), 'validation_loss_ce': tensor(0.0505, device='cuda:0'), 'validation_loss_bbox': tensor(0.0120, device='cuda:0'), 'validation_loss_giou': tensor(0.0761, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.2629, device='cuda:0'), 'train_loss_ce': tensor(0.0505, device='cuda:0'), 'train_loss_bbox': tensor(0.0120, device='cuda:0'), 'train_loss_giou': tensor(0.0761, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.1967, device='cuda:0'), 'validation_loss_ce': tensor(0.0500, device='cuda:0'), 'validation_loss_bbox': tensor(0.0082, device='cuda:0'), 'validation_loss_giou': tensor(0.0528, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.1967, device='cuda:0'), 'train_loss_ce': tensor(0.0500, device='cuda:0'), 'train_loss_bbox': tensor(0.0082, device='cuda:0'), 'train_loss_giou': tensor(0.0528, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.1913, device='cuda:0'), 'validation_loss_ce': tensor(0.0494, device='cuda:0'), 'validation_loss_bbox': tensor(0.0067, device='cuda:0'), 'validation_loss_giou': tensor(0.0541, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.1913, device='cuda:0'), 'train_loss_ce': tensor(0.0494, device='cuda:0'), 'train_loss_bbox': tensor(0.0067, device='cuda:0'), 'train_loss_giou': tensor(0.0541, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2913, device='cuda:0'), 'validation_loss_ce': tensor(0.0489, device='cuda:0'), 'validation_loss_bbox': tensor(0.0131, device='cuda:0'), 'validation_loss_giou': tensor(0.0885, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.2913, device='cuda:0'), 'train_loss_ce': tensor(0.0489, device='cuda:0'), 'train_loss_bbox': tensor(0.0131, device='cuda:0'), 'train_loss_giou': tensor(0.0885, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2145, device='cuda:0'), 'validation_loss_ce': tensor(0.0483, device='cuda:0'), 'validation_loss_bbox': tensor(0.0088, device='cuda:0'), 'validation_loss_giou': tensor(0.0611, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.2145, device='cuda:0'), 'train_loss_ce': tensor(0.0483, device='cuda:0'), 'train_loss_bbox': tensor(0.0088, device='cuda:0'), 'train_loss_giou': tensor(0.0611, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.1837, device='cuda:0'), 'validation_loss_ce': tensor(0.0477, device='cuda:0'), 'validation_loss_bbox': tensor(0.0070, device='cuda:0'), 'validation_loss_giou': tensor(0.0505, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.1837, device='cuda:0'), 'train_loss_ce': tensor(0.0477, device='cuda:0'), 'train_loss_bbox': tensor(0.0070, device='cuda:0'), 'train_loss_giou': tensor(0.0505, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2323, device='cuda:0'), 'validation_loss_ce': tensor(0.0472, device='cuda:0'), 'validation_loss_bbox': tensor(0.0091, device='cuda:0'), 'validation_loss_giou': tensor(0.0698, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.2323, device='cuda:0'), 'train_loss_ce': tensor(0.0472, device='cuda:0'), 'train_loss_bbox': tensor(0.0091, device='cuda:0'), 'train_loss_giou': tensor(0.0698, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.1643, device='cuda:0'), 'validation_loss_ce': tensor(0.0468, device='cuda:0'), 'validation_loss_bbox': tensor(0.0063, device='cuda:0'), 'validation_loss_giou': tensor(0.0431, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.1643, device='cuda:0'), 'train_loss_ce': tensor(0.0468, device='cuda:0'), 'train_loss_bbox': tensor(0.0063, device='cuda:0'), 'train_loss_giou': tensor(0.0431, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2469, device='cuda:0'), 'validation_loss_ce': tensor(0.0463, device='cuda:0'), 'validation_loss_bbox': tensor(0.0078, device='cuda:0'), 'validation_loss_giou': tensor(0.0807, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.2469, device='cuda:0'), 'train_loss_ce': tensor(0.0463, device='cuda:0'), 'train_loss_bbox': tensor(0.0078, device='cuda:0'), 'train_loss_giou': tensor(0.0807, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2578, device='cuda:0'), 'validation_loss_ce': tensor(0.0457, device='cuda:0'), 'validation_loss_bbox': tensor(0.0090, device='cuda:0'), 'validation_loss_giou': tensor(0.0836, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.2578, device='cuda:0'), 'train_loss_ce': tensor(0.0457, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0836, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.1767, device='cuda:0'), 'validation_loss_ce': tensor(0.0452, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0475, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.1767, device='cuda:0'), 'train_loss_ce': tensor(0.0452, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0475, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.3320, device='cuda:0'), 'validation_loss_ce': tensor(0.0447, device='cuda:0'), 'validation_loss_bbox': tensor(0.0110, device='cuda:0'), 'validation_loss_giou': tensor(0.1162, device='cuda:0'), 'validation_cardinality_error': tensor(1.5000, device='cuda:0')}
{'training_loss': tensor(0.3320, device='cuda:0'), 'train_loss_ce': tensor(0.0447, device='cuda:0'), 'train_loss_bbox': tensor(0.0110, device='cuda:0'), 'train_loss_giou': tensor(0.1162, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2102, device='cuda:0'), 'validation_loss_ce': tensor(0.0442, device='cuda:0'), 'validation_loss_bbox': tensor(0.0078, device='cuda:0'), 'validation_loss_giou': tensor(0.0635, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2102, device='cuda:0'), 'train_loss_ce': tensor(0.0442, device='cuda:0'), 'train_loss_bbox': tensor(0.0078, device='cuda:0'), 'train_loss_giou': tensor(0.0635, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3523, device='cuda:0'), 'validation_loss_ce': tensor(0.0439, device='cuda:0'), 'validation_loss_bbox': tensor(0.0125, device='cuda:0'), 'validation_loss_giou': tensor(0.1229, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3523, device='cuda:0'), 'train_loss_ce': tensor(0.0439, device='cuda:0'), 'train_loss_bbox': tensor(0.0125, device='cuda:0'), 'train_loss_giou': tensor(0.1229, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4119, device='cuda:0'), 'validation_loss_ce': tensor(0.0433, device='cuda:0'), 'validation_loss_bbox': tensor(0.0160, device='cuda:0'), 'validation_loss_giou': tensor(0.1443, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4119, device='cuda:0'), 'train_loss_ce': tensor(0.0433, device='cuda:0'), 'train_loss_bbox': tensor(0.0160, device='cuda:0'), 'train_loss_giou': tensor(0.1443, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1992, device='cuda:0'), 'validation_loss_ce': tensor(0.0424, device='cuda:0'), 'validation_loss_bbox': tensor(0.0084, device='cuda:0'), 'validation_loss_giou': tensor(0.0574, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.1992, device='cuda:0'), 'train_loss_ce': tensor(0.0424, device='cuda:0'), 'train_loss_bbox': tensor(0.0084, device='cuda:0'), 'train_loss_giou': tensor(0.0574, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4327, device='cuda:0'), 'validation_loss_ce': tensor(0.0416, device='cuda:0'), 'validation_loss_bbox': tensor(0.0158, device='cuda:0'), 'validation_loss_giou': tensor(0.1561, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4327, device='cuda:0'), 'train_loss_ce': tensor(0.0416, device='cuda:0'), 'train_loss_bbox': tensor(0.0158, device='cuda:0'), 'train_loss_giou': tensor(0.1561, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5166, device='cuda:0'), 'validation_loss_ce': tensor(0.0409, device='cuda:0'), 'validation_loss_bbox': tensor(0.0199, device='cuda:0'), 'validation_loss_giou': tensor(0.1880, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5166, device='cuda:0'), 'train_loss_ce': tensor(0.0409, device='cuda:0'), 'train_loss_bbox': tensor(0.0199, device='cuda:0'), 'train_loss_giou': tensor(0.1880, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4239, device='cuda:0'), 'validation_loss_ce': tensor(0.0402, device='cuda:0'), 'validation_loss_bbox': tensor(0.0147, device='cuda:0'), 'validation_loss_giou': tensor(0.1550, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4239, device='cuda:0'), 'train_loss_ce': tensor(0.0402, device='cuda:0'), 'train_loss_bbox': tensor(0.0147, device='cuda:0'), 'train_loss_giou': tensor(0.1550, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2549, device='cuda:0'), 'validation_loss_ce': tensor(0.0396, device='cuda:0'), 'validation_loss_bbox': tensor(0.0091, device='cuda:0'), 'validation_loss_giou': tensor(0.0849, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2549, device='cuda:0'), 'train_loss_ce': tensor(0.0396, device='cuda:0'), 'train_loss_bbox': tensor(0.0091, device='cuda:0'), 'train_loss_giou': tensor(0.0849, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3851, device='cuda:0'), 'validation_loss_ce': tensor(0.0389, device='cuda:0'), 'validation_loss_bbox': tensor(0.0123, device='cuda:0'), 'validation_loss_giou': tensor(0.1423, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3851, device='cuda:0'), 'train_loss_ce': tensor(0.0389, device='cuda:0'), 'train_loss_bbox': tensor(0.0123, device='cuda:0'), 'train_loss_giou': tensor(0.1423, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6551, device='cuda:0'), 'validation_loss_ce': tensor(0.0381, device='cuda:0'), 'validation_loss_bbox': tensor(0.0204, device='cuda:0'), 'validation_loss_giou': tensor(0.2576, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6551, device='cuda:0'), 'train_loss_ce': tensor(0.0381, device='cuda:0'), 'train_loss_bbox': tensor(0.0204, device='cuda:0'), 'train_loss_giou': tensor(0.2576, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7128, device='cuda:0'), 'validation_loss_ce': tensor(0.0373, device='cuda:0'), 'validation_loss_bbox': tensor(0.0220, device='cuda:0'), 'validation_loss_giou': tensor(0.2826, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7128, device='cuda:0'), 'train_loss_ce': tensor(0.0373, device='cuda:0'), 'train_loss_bbox': tensor(0.0220, device='cuda:0'), 'train_loss_giou': tensor(0.2826, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5387, device='cuda:0'), 'validation_loss_ce': tensor(0.0361, device='cuda:0'), 'validation_loss_bbox': tensor(0.0151, device='cuda:0'), 'validation_loss_giou': tensor(0.2136, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5387, device='cuda:0'), 'train_loss_ce': tensor(0.0361, device='cuda:0'), 'train_loss_bbox': tensor(0.0151, device='cuda:0'), 'train_loss_giou': tensor(0.2136, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1973, device='cuda:0'), 'validation_loss_ce': tensor(0.0357, device='cuda:0'), 'validation_loss_bbox': tensor(0.0057, device='cuda:0'), 'validation_loss_giou': tensor(0.0665, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.1973, device='cuda:0'), 'train_loss_ce': tensor(0.0357, device='cuda:0'), 'train_loss_bbox': tensor(0.0057, device='cuda:0'), 'train_loss_giou': tensor(0.0665, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5258, device='cuda:0'), 'validation_loss_ce': tensor(0.0358, device='cuda:0'), 'validation_loss_bbox': tensor(0.0162, device='cuda:0'), 'validation_loss_giou': tensor(0.2046, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5258, device='cuda:0'), 'train_loss_ce': tensor(0.0358, device='cuda:0'), 'train_loss_bbox': tensor(0.0162, device='cuda:0'), 'train_loss_giou': tensor(0.2046, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7037, device='cuda:0'), 'validation_loss_ce': tensor(0.0357, device='cuda:0'), 'validation_loss_bbox': tensor(0.0217, device='cuda:0'), 'validation_loss_giou': tensor(0.2798, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7037, device='cuda:0'), 'train_loss_ce': tensor(0.0357, device='cuda:0'), 'train_loss_bbox': tensor(0.0217, device='cuda:0'), 'train_loss_giou': tensor(0.2798, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6551, device='cuda:0'), 'validation_loss_ce': tensor(0.0355, device='cuda:0'), 'validation_loss_bbox': tensor(0.0215, device='cuda:0'), 'validation_loss_giou': tensor(0.2560, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6551, device='cuda:0'), 'train_loss_ce': tensor(0.0355, device='cuda:0'), 'train_loss_bbox': tensor(0.0215, device='cuda:0'), 'train_loss_giou': tensor(0.2560, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5110, device='cuda:0'), 'validation_loss_ce': tensor(0.0352, device='cuda:0'), 'validation_loss_bbox': tensor(0.0178, device='cuda:0'), 'validation_loss_giou': tensor(0.1934, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5110, device='cuda:0'), 'train_loss_ce': tensor(0.0352, device='cuda:0'), 'train_loss_bbox': tensor(0.0178, device='cuda:0'), 'train_loss_giou': tensor(0.1934, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3131, device='cuda:0'), 'validation_loss_ce': tensor(0.0350, device='cuda:0'), 'validation_loss_bbox': tensor(0.0118, device='cuda:0'), 'validation_loss_giou': tensor(0.1096, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3131, device='cuda:0'), 'train_loss_ce': tensor(0.0350, device='cuda:0'), 'train_loss_bbox': tensor(0.0118, device='cuda:0'), 'train_loss_giou': tensor(0.1096, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3472, device='cuda:0'), 'validation_loss_ce': tensor(0.0349, device='cuda:0'), 'validation_loss_bbox': tensor(0.0142, device='cuda:0'), 'validation_loss_giou': tensor(0.1207, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3472, device='cuda:0'), 'train_loss_ce': tensor(0.0349, device='cuda:0'), 'train_loss_bbox': tensor(0.0142, device='cuda:0'), 'train_loss_giou': tensor(0.1207, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5051, device='cuda:0'), 'validation_loss_ce': tensor(0.0346, device='cuda:0'), 'validation_loss_bbox': tensor(0.0200, device='cuda:0'), 'validation_loss_giou': tensor(0.1854, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5051, device='cuda:0'), 'train_loss_ce': tensor(0.0346, device='cuda:0'), 'train_loss_bbox': tensor(0.0200, device='cuda:0'), 'train_loss_giou': tensor(0.1854, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4515, device='cuda:0'), 'validation_loss_ce': tensor(0.0339, device='cuda:0'), 'validation_loss_bbox': tensor(0.0171, device='cuda:0'), 'validation_loss_giou': tensor(0.1660, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4515, device='cuda:0'), 'train_loss_ce': tensor(0.0339, device='cuda:0'), 'train_loss_bbox': tensor(0.0171, device='cuda:0'), 'train_loss_giou': tensor(0.1660, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3882, device='cuda:0'), 'validation_loss_ce': tensor(0.0330, device='cuda:0'), 'validation_loss_bbox': tensor(0.0149, device='cuda:0'), 'validation_loss_giou': tensor(0.1405, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3882, device='cuda:0'), 'train_loss_ce': tensor(0.0330, device='cuda:0'), 'train_loss_bbox': tensor(0.0149, device='cuda:0'), 'train_loss_giou': tensor(0.1405, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3157, device='cuda:0'), 'validation_loss_ce': tensor(0.0323, device='cuda:0'), 'validation_loss_bbox': tensor(0.0115, device='cuda:0'), 'validation_loss_giou': tensor(0.1130, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3157, device='cuda:0'), 'train_loss_ce': tensor(0.0323, device='cuda:0'), 'train_loss_bbox': tensor(0.0115, device='cuda:0'), 'train_loss_giou': tensor(0.1130, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3799, device='cuda:0'), 'validation_loss_ce': tensor(0.0318, device='cuda:0'), 'validation_loss_bbox': tensor(0.0109, device='cuda:0'), 'validation_loss_giou': tensor(0.1468, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3799, device='cuda:0'), 'train_loss_ce': tensor(0.0318, device='cuda:0'), 'train_loss_bbox': tensor(0.0109, device='cuda:0'), 'train_loss_giou': tensor(0.1468, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4205, device='cuda:0'), 'validation_loss_ce': tensor(0.0312, device='cuda:0'), 'validation_loss_bbox': tensor(0.0139, device='cuda:0'), 'validation_loss_giou': tensor(0.1598, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4205, device='cuda:0'), 'train_loss_ce': tensor(0.0312, device='cuda:0'), 'train_loss_bbox': tensor(0.0139, device='cuda:0'), 'train_loss_giou': tensor(0.1598, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2543, device='cuda:0'), 'validation_loss_ce': tensor(0.0304, device='cuda:0'), 'validation_loss_bbox': tensor(0.0096, device='cuda:0'), 'validation_loss_giou': tensor(0.0879, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2543, device='cuda:0'), 'train_loss_ce': tensor(0.0304, device='cuda:0'), 'train_loss_bbox': tensor(0.0096, device='cuda:0'), 'train_loss_giou': tensor(0.0879, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3698, device='cuda:0'), 'validation_loss_ce': tensor(0.0293, device='cuda:0'), 'validation_loss_bbox': tensor(0.0118, device='cuda:0'), 'validation_loss_giou': tensor(0.1408, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3698, device='cuda:0'), 'train_loss_ce': tensor(0.0293, device='cuda:0'), 'train_loss_bbox': tensor(0.0118, device='cuda:0'), 'train_loss_giou': tensor(0.1408, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5269, device='cuda:0'), 'validation_loss_ce': tensor(0.0288, device='cuda:0'), 'validation_loss_bbox': tensor(0.0170, device='cuda:0'), 'validation_loss_giou': tensor(0.2064, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5269, device='cuda:0'), 'train_loss_ce': tensor(0.0288, device='cuda:0'), 'train_loss_bbox': tensor(0.0170, device='cuda:0'), 'train_loss_giou': tensor(0.2064, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4526, device='cuda:0'), 'validation_loss_ce': tensor(0.0288, device='cuda:0'), 'validation_loss_bbox': tensor(0.0132, device='cuda:0'), 'validation_loss_giou': tensor(0.1789, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4526, device='cuda:0'), 'train_loss_ce': tensor(0.0288, device='cuda:0'), 'train_loss_bbox': tensor(0.0132, device='cuda:0'), 'train_loss_giou': tensor(0.1789, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2621, device='cuda:0'), 'validation_loss_ce': tensor(0.0292, device='cuda:0'), 'validation_loss_bbox': tensor(0.0080, device='cuda:0'), 'validation_loss_giou': tensor(0.0964, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2621, device='cuda:0'), 'train_loss_ce': tensor(0.0292, device='cuda:0'), 'train_loss_bbox': tensor(0.0080, device='cuda:0'), 'train_loss_giou': tensor(0.0964, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2984, device='cuda:0'), 'validation_loss_ce': tensor(0.0298, device='cuda:0'), 'validation_loss_bbox': tensor(0.0118, device='cuda:0'), 'validation_loss_giou': tensor(0.1049, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2984, device='cuda:0'), 'train_loss_ce': tensor(0.0298, device='cuda:0'), 'train_loss_bbox': tensor(0.0118, device='cuda:0'), 'train_loss_giou': tensor(0.1049, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3464, device='cuda:0'), 'validation_loss_ce': tensor(0.0301, device='cuda:0'), 'validation_loss_bbox': tensor(0.0129, device='cuda:0'), 'validation_loss_giou': tensor(0.1260, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3464, device='cuda:0'), 'train_loss_ce': tensor(0.0301, device='cuda:0'), 'train_loss_bbox': tensor(0.0129, device='cuda:0'), 'train_loss_giou': tensor(0.1260, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1926, device='cuda:0'), 'validation_loss_ce': tensor(0.0303, device='cuda:0'), 'validation_loss_bbox': tensor(0.0082, device='cuda:0'), 'validation_loss_giou': tensor(0.0607, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.1926, device='cuda:0'), 'train_loss_ce': tensor(0.0303, device='cuda:0'), 'train_loss_bbox': tensor(0.0082, device='cuda:0'), 'train_loss_giou': tensor(0.0607, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2669, device='cuda:0'), 'validation_loss_ce': tensor(0.0308, device='cuda:0'), 'validation_loss_bbox': tensor(0.0096, device='cuda:0'), 'validation_loss_giou': tensor(0.0941, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2669, device='cuda:0'), 'train_loss_ce': tensor(0.0308, device='cuda:0'), 'train_loss_bbox': tensor(0.0096, device='cuda:0'), 'train_loss_giou': tensor(0.0941, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3425, device='cuda:0'), 'validation_loss_ce': tensor(0.0310, device='cuda:0'), 'validation_loss_bbox': tensor(0.0130, device='cuda:0'), 'validation_loss_giou': tensor(0.1231, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3425, device='cuda:0'), 'train_loss_ce': tensor(0.0310, device='cuda:0'), 'train_loss_bbox': tensor(0.0130, device='cuda:0'), 'train_loss_giou': tensor(0.1231, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2701, device='cuda:0'), 'validation_loss_ce': tensor(0.0306, device='cuda:0'), 'validation_loss_bbox': tensor(0.0113, device='cuda:0'), 'validation_loss_giou': tensor(0.0915, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2701, device='cuda:0'), 'train_loss_ce': tensor(0.0306, device='cuda:0'), 'train_loss_bbox': tensor(0.0113, device='cuda:0'), 'train_loss_giou': tensor(0.0915, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1750, device='cuda:0'), 'validation_loss_ce': tensor(0.0298, device='cuda:0'), 'validation_loss_bbox': tensor(0.0066, device='cuda:0'), 'validation_loss_giou': tensor(0.0562, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.1750, device='cuda:0'), 'train_loss_ce': tensor(0.0298, device='cuda:0'), 'train_loss_bbox': tensor(0.0066, device='cuda:0'), 'train_loss_giou': tensor(0.0562, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2780, device='cuda:0'), 'validation_loss_ce': tensor(0.0291, device='cuda:0'), 'validation_loss_bbox': tensor(0.0098, device='cuda:0'), 'validation_loss_giou': tensor(0.0999, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2780, device='cuda:0'), 'train_loss_ce': tensor(0.0291, device='cuda:0'), 'train_loss_bbox': tensor(0.0098, device='cuda:0'), 'train_loss_giou': tensor(0.0999, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2750, device='cuda:0'), 'validation_loss_ce': tensor(0.0285, device='cuda:0'), 'validation_loss_bbox': tensor(0.0117, device='cuda:0'), 'validation_loss_giou': tensor(0.0939, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2750, device='cuda:0'), 'train_loss_ce': tensor(0.0285, device='cuda:0'), 'train_loss_bbox': tensor(0.0117, device='cuda:0'), 'train_loss_giou': tensor(0.0939, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2355, device='cuda:0'), 'validation_loss_ce': tensor(0.0282, device='cuda:0'), 'validation_loss_bbox': tensor(0.0098, device='cuda:0'), 'validation_loss_giou': tensor(0.0791, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2355, device='cuda:0'), 'train_loss_ce': tensor(0.0282, device='cuda:0'), 'train_loss_bbox': tensor(0.0098, device='cuda:0'), 'train_loss_giou': tensor(0.0791, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3096, device='cuda:0'), 'validation_loss_ce': tensor(0.0277, device='cuda:0'), 'validation_loss_bbox': tensor(0.0112, device='cuda:0'), 'validation_loss_giou': tensor(0.1130, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3096, device='cuda:0'), 'train_loss_ce': tensor(0.0277, device='cuda:0'), 'train_loss_bbox': tensor(0.0112, device='cuda:0'), 'train_loss_giou': tensor(0.1130, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2561, device='cuda:0'), 'validation_loss_ce': tensor(0.0268, device='cuda:0'), 'validation_loss_bbox': tensor(0.0083, device='cuda:0'), 'validation_loss_giou': tensor(0.0939, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2561, device='cuda:0'), 'train_loss_ce': tensor(0.0268, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.0939, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1542, device='cuda:0'), 'validation_loss_ce': tensor(0.0257, device='cuda:0'), 'validation_loss_bbox': tensor(0.0058, device='cuda:0'), 'validation_loss_giou': tensor(0.0498, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.1542, device='cuda:0'), 'train_loss_ce': tensor(0.0257, device='cuda:0'), 'train_loss_bbox': tensor(0.0058, device='cuda:0'), 'train_loss_giou': tensor(0.0498, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2112, device='cuda:0'), 'validation_loss_ce': tensor(0.0250, device='cuda:0'), 'validation_loss_bbox': tensor(0.0079, device='cuda:0'), 'validation_loss_giou': tensor(0.0733, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2112, device='cuda:0'), 'train_loss_ce': tensor(0.0250, device='cuda:0'), 'train_loss_bbox': tensor(0.0079, device='cuda:0'), 'train_loss_giou': tensor(0.0733, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2005, device='cuda:0'), 'validation_loss_ce': tensor(0.0244, device='cuda:0'), 'validation_loss_bbox': tensor(0.0089, device='cuda:0'), 'validation_loss_giou': tensor(0.0659, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2005, device='cuda:0'), 'train_loss_ce': tensor(0.0244, device='cuda:0'), 'train_loss_bbox': tensor(0.0089, device='cuda:0'), 'train_loss_giou': tensor(0.0659, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1875, device='cuda:0'), 'validation_loss_ce': tensor(0.0237, device='cuda:0'), 'validation_loss_bbox': tensor(0.0076, device='cuda:0'), 'validation_loss_giou': tensor(0.0630, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.1875, device='cuda:0'), 'train_loss_ce': tensor(0.0237, device='cuda:0'), 'train_loss_bbox': tensor(0.0076, device='cuda:0'), 'train_loss_giou': tensor(0.0630, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2538, device='cuda:0'), 'validation_loss_ce': tensor(0.0227, device='cuda:0'), 'validation_loss_bbox': tensor(0.0083, device='cuda:0'), 'validation_loss_giou': tensor(0.0949, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2538, device='cuda:0'), 'train_loss_ce': tensor(0.0227, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.0949, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3031, device='cuda:0'), 'validation_loss_ce': tensor(0.0216, device='cuda:0'), 'validation_loss_bbox': tensor(0.0114, device='cuda:0'), 'validation_loss_giou': tensor(0.1123, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3031, device='cuda:0'), 'train_loss_ce': tensor(0.0216, device='cuda:0'), 'train_loss_bbox': tensor(0.0114, device='cuda:0'), 'train_loss_giou': tensor(0.1123, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2111, device='cuda:0'), 'validation_loss_ce': tensor(0.0207, device='cuda:0'), 'validation_loss_bbox': tensor(0.0097, device='cuda:0'), 'validation_loss_giou': tensor(0.0710, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2111, device='cuda:0'), 'train_loss_ce': tensor(0.0207, device='cuda:0'), 'train_loss_bbox': tensor(0.0097, device='cuda:0'), 'train_loss_giou': tensor(0.0710, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2041, device='cuda:0'), 'validation_loss_ce': tensor(0.0200, device='cuda:0'), 'validation_loss_bbox': tensor(0.0084, device='cuda:0'), 'validation_loss_giou': tensor(0.0709, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2041, device='cuda:0'), 'train_loss_ce': tensor(0.0200, device='cuda:0'), 'train_loss_bbox': tensor(0.0084, device='cuda:0'), 'train_loss_giou': tensor(0.0709, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3369, device='cuda:0'), 'validation_loss_ce': tensor(0.0195, device='cuda:0'), 'validation_loss_bbox': tensor(0.0116, device='cuda:0'), 'validation_loss_giou': tensor(0.1297, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3369, device='cuda:0'), 'train_loss_ce': tensor(0.0195, device='cuda:0'), 'train_loss_bbox': tensor(0.0116, device='cuda:0'), 'train_loss_giou': tensor(0.1297, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2590, device='cuda:0'), 'validation_loss_ce': tensor(0.0186, device='cuda:0'), 'validation_loss_bbox': tensor(0.0095, device='cuda:0'), 'validation_loss_giou': tensor(0.0964, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2590, device='cuda:0'), 'train_loss_ce': tensor(0.0186, device='cuda:0'), 'train_loss_bbox': tensor(0.0095, device='cuda:0'), 'train_loss_giou': tensor(0.0964, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1649, device='cuda:0'), 'validation_loss_ce': tensor(0.0177, device='cuda:0'), 'validation_loss_bbox': tensor(0.0061, device='cuda:0'), 'validation_loss_giou': tensor(0.0583, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.1649, device='cuda:0'), 'train_loss_ce': tensor(0.0177, device='cuda:0'), 'train_loss_bbox': tensor(0.0061, device='cuda:0'), 'train_loss_giou': tensor(0.0583, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1832, device='cuda:0'), 'validation_loss_ce': tensor(0.0173, device='cuda:0'), 'validation_loss_bbox': tensor(0.0072, device='cuda:0'), 'validation_loss_giou': tensor(0.0651, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.1832, device='cuda:0'), 'train_loss_ce': tensor(0.0173, device='cuda:0'), 'train_loss_bbox': tensor(0.0072, device='cuda:0'), 'train_loss_giou': tensor(0.0651, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1532, device='cuda:0'), 'validation_loss_ce': tensor(0.0169, device='cuda:0'), 'validation_loss_bbox': tensor(0.0074, device='cuda:0'), 'validation_loss_giou': tensor(0.0497, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1532, device='cuda:0'), 'train_loss_ce': tensor(0.0169, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.0497, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1696, device='cuda:0'), 'validation_loss_ce': tensor(0.0165, device='cuda:0'), 'validation_loss_bbox': tensor(0.0078, device='cuda:0'), 'validation_loss_giou': tensor(0.0571, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1696, device='cuda:0'), 'train_loss_ce': tensor(0.0165, device='cuda:0'), 'train_loss_bbox': tensor(0.0078, device='cuda:0'), 'train_loss_giou': tensor(0.0571, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2185, device='cuda:0'), 'validation_loss_ce': tensor(0.0162, device='cuda:0'), 'validation_loss_bbox': tensor(0.0070, device='cuda:0'), 'validation_loss_giou': tensor(0.0836, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.2185, device='cuda:0'), 'train_loss_ce': tensor(0.0162, device='cuda:0'), 'train_loss_bbox': tensor(0.0070, device='cuda:0'), 'train_loss_giou': tensor(0.0836, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1897, device='cuda:0'), 'validation_loss_ce': tensor(0.0160, device='cuda:0'), 'validation_loss_bbox': tensor(0.0054, device='cuda:0'), 'validation_loss_giou': tensor(0.0733, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1897, device='cuda:0'), 'train_loss_ce': tensor(0.0160, device='cuda:0'), 'train_loss_bbox': tensor(0.0054, device='cuda:0'), 'train_loss_giou': tensor(0.0733, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1033, device='cuda:0'), 'validation_loss_ce': tensor(0.0158, device='cuda:0'), 'validation_loss_bbox': tensor(0.0044, device='cuda:0'), 'validation_loss_giou': tensor(0.0327, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1033, device='cuda:0'), 'train_loss_ce': tensor(0.0158, device='cuda:0'), 'train_loss_bbox': tensor(0.0044, device='cuda:0'), 'train_loss_giou': tensor(0.0327, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.0966, device='cuda:0'), 'validation_loss_ce': tensor(0.0153, device='cuda:0'), 'validation_loss_bbox': tensor(0.0043, device='cuda:0'), 'validation_loss_giou': tensor(0.0300, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.0966, device='cuda:0'), 'train_loss_ce': tensor(0.0153, device='cuda:0'), 'train_loss_bbox': tensor(0.0043, device='cuda:0'), 'train_loss_giou': tensor(0.0300, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2171, device='cuda:0'), 'validation_loss_ce': tensor(0.0148, device='cuda:0'), 'validation_loss_bbox': tensor(0.0100, device='cuda:0'), 'validation_loss_giou': tensor(0.0763, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2171, device='cuda:0'), 'train_loss_ce': tensor(0.0148, device='cuda:0'), 'train_loss_bbox': tensor(0.0100, device='cuda:0'), 'train_loss_giou': tensor(0.0763, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2056, device='cuda:0'), 'validation_loss_ce': tensor(0.0143, device='cuda:0'), 'validation_loss_bbox': tensor(0.0077, device='cuda:0'), 'validation_loss_giou': tensor(0.0765, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2056, device='cuda:0'), 'train_loss_ce': tensor(0.0143, device='cuda:0'), 'train_loss_bbox': tensor(0.0077, device='cuda:0'), 'train_loss_giou': tensor(0.0765, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1667, device='cuda:0'), 'validation_loss_ce': tensor(0.0142, device='cuda:0'), 'validation_loss_bbox': tensor(0.0058, device='cuda:0'), 'validation_loss_giou': tensor(0.0616, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1667, device='cuda:0'), 'train_loss_ce': tensor(0.0142, device='cuda:0'), 'train_loss_bbox': tensor(0.0058, device='cuda:0'), 'train_loss_giou': tensor(0.0616, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2692, device='cuda:0'), 'validation_loss_ce': tensor(0.0141, device='cuda:0'), 'validation_loss_bbox': tensor(0.0108, device='cuda:0'), 'validation_loss_giou': tensor(0.1007, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2692, device='cuda:0'), 'train_loss_ce': tensor(0.0141, device='cuda:0'), 'train_loss_bbox': tensor(0.0108, device='cuda:0'), 'train_loss_giou': tensor(0.1007, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1190, device='cuda:0'), 'validation_loss_ce': tensor(0.0136, device='cuda:0'), 'validation_loss_bbox': tensor(0.0053, device='cuda:0'), 'validation_loss_giou': tensor(0.0394, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1190, device='cuda:0'), 'train_loss_ce': tensor(0.0136, device='cuda:0'), 'train_loss_bbox': tensor(0.0053, device='cuda:0'), 'train_loss_giou': tensor(0.0394, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2437, device='cuda:0'), 'validation_loss_ce': tensor(0.0133, device='cuda:0'), 'validation_loss_bbox': tensor(0.0083, device='cuda:0'), 'validation_loss_giou': tensor(0.0944, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2437, device='cuda:0'), 'train_loss_ce': tensor(0.0133, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.0944, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2553, device='cuda:0'), 'validation_loss_ce': tensor(0.0131, device='cuda:0'), 'validation_loss_bbox': tensor(0.0074, device='cuda:0'), 'validation_loss_giou': tensor(0.1025, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2553, device='cuda:0'), 'train_loss_ce': tensor(0.0131, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.1025, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2637, device='cuda:0'), 'validation_loss_ce': tensor(0.0129, device='cuda:0'), 'validation_loss_bbox': tensor(0.0086, device='cuda:0'), 'validation_loss_giou': tensor(0.1037, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2637, device='cuda:0'), 'train_loss_ce': tensor(0.0129, device='cuda:0'), 'train_loss_bbox': tensor(0.0086, device='cuda:0'), 'train_loss_giou': tensor(0.1037, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2029, device='cuda:0'), 'validation_loss_ce': tensor(0.0124, device='cuda:0'), 'validation_loss_bbox': tensor(0.0071, device='cuda:0'), 'validation_loss_giou': tensor(0.0775, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2029, device='cuda:0'), 'train_loss_ce': tensor(0.0124, device='cuda:0'), 'train_loss_bbox': tensor(0.0071, device='cuda:0'), 'train_loss_giou': tensor(0.0775, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2380, device='cuda:0'), 'validation_loss_ce': tensor(0.0114, device='cuda:0'), 'validation_loss_bbox': tensor(0.0084, device='cuda:0'), 'validation_loss_giou': tensor(0.0923, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2380, device='cuda:0'), 'train_loss_ce': tensor(0.0114, device='cuda:0'), 'train_loss_bbox': tensor(0.0084, device='cuda:0'), 'train_loss_giou': tensor(0.0923, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2404, device='cuda:0'), 'validation_loss_ce': tensor(0.0105, device='cuda:0'), 'validation_loss_bbox': tensor(0.0103, device='cuda:0'), 'validation_loss_giou': tensor(0.0891, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2404, device='cuda:0'), 'train_loss_ce': tensor(0.0105, device='cuda:0'), 'train_loss_bbox': tensor(0.0103, device='cuda:0'), 'train_loss_giou': tensor(0.0891, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1571, device='cuda:0'), 'validation_loss_ce': tensor(0.0101, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0552, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1571, device='cuda:0'), 'train_loss_ce': tensor(0.0101, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0552, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1836, device='cuda:0'), 'validation_loss_ce': tensor(0.0099, device='cuda:0'), 'validation_loss_bbox': tensor(0.0072, device='cuda:0'), 'validation_loss_giou': tensor(0.0690, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1836, device='cuda:0'), 'train_loss_ce': tensor(0.0099, device='cuda:0'), 'train_loss_bbox': tensor(0.0072, device='cuda:0'), 'train_loss_giou': tensor(0.0690, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2468, device='cuda:0'), 'validation_loss_ce': tensor(0.0096, device='cuda:0'), 'validation_loss_bbox': tensor(0.0091, device='cuda:0'), 'validation_loss_giou': tensor(0.0959, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2468, device='cuda:0'), 'train_loss_ce': tensor(0.0096, device='cuda:0'), 'train_loss_bbox': tensor(0.0091, device='cuda:0'), 'train_loss_giou': tensor(0.0959, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1495, device='cuda:0'), 'validation_loss_ce': tensor(0.0094, device='cuda:0'), 'validation_loss_bbox': tensor(0.0072, device='cuda:0'), 'validation_loss_giou': tensor(0.0520, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1495, device='cuda:0'), 'train_loss_ce': tensor(0.0094, device='cuda:0'), 'train_loss_bbox': tensor(0.0072, device='cuda:0'), 'train_loss_giou': tensor(0.0520, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2373, device='cuda:0'), 'validation_loss_ce': tensor(0.0091, device='cuda:0'), 'validation_loss_bbox': tensor(0.0097, device='cuda:0'), 'validation_loss_giou': tensor(0.0898, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2373, device='cuda:0'), 'train_loss_ce': tensor(0.0091, device='cuda:0'), 'train_loss_bbox': tensor(0.0097, device='cuda:0'), 'train_loss_giou': tensor(0.0898, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3058, device='cuda:0'), 'validation_loss_ce': tensor(0.0089, device='cuda:0'), 'validation_loss_bbox': tensor(0.0125, device='cuda:0'), 'validation_loss_giou': tensor(0.1171, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3058, device='cuda:0'), 'train_loss_ce': tensor(0.0089, device='cuda:0'), 'train_loss_bbox': tensor(0.0125, device='cuda:0'), 'train_loss_giou': tensor(0.1171, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2295, device='cuda:0'), 'validation_loss_ce': tensor(0.0086, device='cuda:0'), 'validation_loss_bbox': tensor(0.0090, device='cuda:0'), 'validation_loss_giou': tensor(0.0880, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2295, device='cuda:0'), 'train_loss_ce': tensor(0.0086, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0880, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1606, device='cuda:0'), 'validation_loss_ce': tensor(0.0081, device='cuda:0'), 'validation_loss_bbox': tensor(0.0057, device='cuda:0'), 'validation_loss_giou': tensor(0.0620, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1606, device='cuda:0'), 'train_loss_ce': tensor(0.0081, device='cuda:0'), 'train_loss_bbox': tensor(0.0057, device='cuda:0'), 'train_loss_giou': tensor(0.0620, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1409, device='cuda:0'), 'validation_loss_ce': tensor(0.0078, device='cuda:0'), 'validation_loss_bbox': tensor(0.0059, device='cuda:0'), 'validation_loss_giou': tensor(0.0519, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1409, device='cuda:0'), 'train_loss_ce': tensor(0.0078, device='cuda:0'), 'train_loss_bbox': tensor(0.0059, device='cuda:0'), 'train_loss_giou': tensor(0.0519, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1154, device='cuda:0'), 'validation_loss_ce': tensor(0.0077, device='cuda:0'), 'validation_loss_bbox': tensor(0.0057, device='cuda:0'), 'validation_loss_giou': tensor(0.0397, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1154, device='cuda:0'), 'train_loss_ce': tensor(0.0077, device='cuda:0'), 'train_loss_bbox': tensor(0.0057, device='cuda:0'), 'train_loss_giou': tensor(0.0397, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1616, device='cuda:0'), 'validation_loss_ce': tensor(0.0073, device='cuda:0'), 'validation_loss_bbox': tensor(0.0075, device='cuda:0'), 'validation_loss_giou': tensor(0.0584, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1616, device='cuda:0'), 'train_loss_ce': tensor(0.0073, device='cuda:0'), 'train_loss_bbox': tensor(0.0075, device='cuda:0'), 'train_loss_giou': tensor(0.0584, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1212, device='cuda:0'), 'validation_loss_ce': tensor(0.0071, device='cuda:0'), 'validation_loss_bbox': tensor(0.0058, device='cuda:0'), 'validation_loss_giou': tensor(0.0425, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1212, device='cuda:0'), 'train_loss_ce': tensor(0.0071, device='cuda:0'), 'train_loss_bbox': tensor(0.0058, device='cuda:0'), 'train_loss_giou': tensor(0.0425, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1665, device='cuda:0'), 'validation_loss_ce': tensor(0.0068, device='cuda:0'), 'validation_loss_bbox': tensor(0.0070, device='cuda:0'), 'validation_loss_giou': tensor(0.0625, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1665, device='cuda:0'), 'train_loss_ce': tensor(0.0068, device='cuda:0'), 'train_loss_bbox': tensor(0.0070, device='cuda:0'), 'train_loss_giou': tensor(0.0625, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1377, device='cuda:0'), 'validation_loss_ce': tensor(0.0068, device='cuda:0'), 'validation_loss_bbox': tensor(0.0069, device='cuda:0'), 'validation_loss_giou': tensor(0.0481, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1377, device='cuda:0'), 'train_loss_ce': tensor(0.0068, device='cuda:0'), 'train_loss_bbox': tensor(0.0069, device='cuda:0'), 'train_loss_giou': tensor(0.0481, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2271, device='cuda:0'), 'validation_loss_ce': tensor(0.0072, device='cuda:0'), 'validation_loss_bbox': tensor(0.0077, device='cuda:0'), 'validation_loss_giou': tensor(0.0907, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2271, device='cuda:0'), 'train_loss_ce': tensor(0.0072, device='cuda:0'), 'train_loss_bbox': tensor(0.0077, device='cuda:0'), 'train_loss_giou': tensor(0.0907, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2350, device='cuda:0'), 'validation_loss_ce': tensor(0.0077, device='cuda:0'), 'validation_loss_bbox': tensor(0.0081, device='cuda:0'), 'validation_loss_giou': tensor(0.0935, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2350, device='cuda:0'), 'train_loss_ce': tensor(0.0077, device='cuda:0'), 'train_loss_bbox': tensor(0.0081, device='cuda:0'), 'train_loss_giou': tensor(0.0935, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1721, device='cuda:0'), 'validation_loss_ce': tensor(0.0081, device='cuda:0'), 'validation_loss_bbox': tensor(0.0072, device='cuda:0'), 'validation_loss_giou': tensor(0.0640, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1721, device='cuda:0'), 'train_loss_ce': tensor(0.0081, device='cuda:0'), 'train_loss_bbox': tensor(0.0072, device='cuda:0'), 'train_loss_giou': tensor(0.0640, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2190, device='cuda:0'), 'validation_loss_ce': tensor(0.0083, device='cuda:0'), 'validation_loss_bbox': tensor(0.0085, device='cuda:0'), 'validation_loss_giou': tensor(0.0841, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2190, device='cuda:0'), 'train_loss_ce': tensor(0.0083, device='cuda:0'), 'train_loss_bbox': tensor(0.0085, device='cuda:0'), 'train_loss_giou': tensor(0.0841, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1906, device='cuda:0'), 'validation_loss_ce': tensor(0.0083, device='cuda:0'), 'validation_loss_bbox': tensor(0.0089, device='cuda:0'), 'validation_loss_giou': tensor(0.0690, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1906, device='cuda:0'), 'train_loss_ce': tensor(0.0083, device='cuda:0'), 'train_loss_bbox': tensor(0.0089, device='cuda:0'), 'train_loss_giou': tensor(0.0690, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1392, device='cuda:0'), 'validation_loss_ce': tensor(0.0082, device='cuda:0'), 'validation_loss_bbox': tensor(0.0065, device='cuda:0'), 'validation_loss_giou': tensor(0.0492, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1392, device='cuda:0'), 'train_loss_ce': tensor(0.0082, device='cuda:0'), 'train_loss_bbox': tensor(0.0065, device='cuda:0'), 'train_loss_giou': tensor(0.0492, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2225, device='cuda:0'), 'validation_loss_ce': tensor(0.0078, device='cuda:0'), 'validation_loss_bbox': tensor(0.0064, device='cuda:0'), 'validation_loss_giou': tensor(0.0912, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2225, device='cuda:0'), 'train_loss_ce': tensor(0.0078, device='cuda:0'), 'train_loss_bbox': tensor(0.0064, device='cuda:0'), 'train_loss_giou': tensor(0.0912, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1888, device='cuda:0'), 'validation_loss_ce': tensor(0.0077, device='cuda:0'), 'validation_loss_bbox': tensor(0.0076, device='cuda:0'), 'validation_loss_giou': tensor(0.0716, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1888, device='cuda:0'), 'train_loss_ce': tensor(0.0077, device='cuda:0'), 'train_loss_bbox': tensor(0.0076, device='cuda:0'), 'train_loss_giou': tensor(0.0716, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2057, device='cuda:0'), 'validation_loss_ce': tensor(0.0078, device='cuda:0'), 'validation_loss_bbox': tensor(0.0093, device='cuda:0'), 'validation_loss_giou': tensor(0.0758, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2057, device='cuda:0'), 'train_loss_ce': tensor(0.0078, device='cuda:0'), 'train_loss_bbox': tensor(0.0093, device='cuda:0'), 'train_loss_giou': tensor(0.0758, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2481, device='cuda:0'), 'validation_loss_ce': tensor(0.0075, device='cuda:0'), 'validation_loss_bbox': tensor(0.0098, device='cuda:0'), 'validation_loss_giou': tensor(0.0958, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2481, device='cuda:0'), 'train_loss_ce': tensor(0.0075, device='cuda:0'), 'train_loss_bbox': tensor(0.0098, device='cuda:0'), 'train_loss_giou': tensor(0.0958, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1742, device='cuda:0'), 'validation_loss_ce': tensor(0.0070, device='cuda:0'), 'validation_loss_bbox': tensor(0.0099, device='cuda:0'), 'validation_loss_giou': tensor(0.0589, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1742, device='cuda:0'), 'train_loss_ce': tensor(0.0070, device='cuda:0'), 'train_loss_bbox': tensor(0.0099, device='cuda:0'), 'train_loss_giou': tensor(0.0589, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2543, device='cuda:0'), 'validation_loss_ce': tensor(0.0066, device='cuda:0'), 'validation_loss_bbox': tensor(0.0131, device='cuda:0'), 'validation_loss_giou': tensor(0.0912, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2543, device='cuda:0'), 'train_loss_ce': tensor(0.0066, device='cuda:0'), 'train_loss_bbox': tensor(0.0131, device='cuda:0'), 'train_loss_giou': tensor(0.0912, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2043, device='cuda:0'), 'validation_loss_ce': tensor(0.0064, device='cuda:0'), 'validation_loss_bbox': tensor(0.0117, device='cuda:0'), 'validation_loss_giou': tensor(0.0696, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2043, device='cuda:0'), 'train_loss_ce': tensor(0.0064, device='cuda:0'), 'train_loss_bbox': tensor(0.0117, device='cuda:0'), 'train_loss_giou': tensor(0.0696, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1374, device='cuda:0'), 'validation_loss_ce': tensor(0.0063, device='cuda:0'), 'validation_loss_bbox': tensor(0.0060, device='cuda:0'), 'validation_loss_giou': tensor(0.0506, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1374, device='cuda:0'), 'train_loss_ce': tensor(0.0063, device='cuda:0'), 'train_loss_bbox': tensor(0.0060, device='cuda:0'), 'train_loss_giou': tensor(0.0506, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1207, device='cuda:0'), 'validation_loss_ce': tensor(0.0060, device='cuda:0'), 'validation_loss_bbox': tensor(0.0059, device='cuda:0'), 'validation_loss_giou': tensor(0.0425, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1207, device='cuda:0'), 'train_loss_ce': tensor(0.0060, device='cuda:0'), 'train_loss_bbox': tensor(0.0059, device='cuda:0'), 'train_loss_giou': tensor(0.0425, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1411, device='cuda:0'), 'validation_loss_ce': tensor(0.0057, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0495, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1411, device='cuda:0'), 'train_loss_ce': tensor(0.0057, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0495, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1619, device='cuda:0'), 'validation_loss_ce': tensor(0.0055, device='cuda:0'), 'validation_loss_bbox': tensor(0.0070, device='cuda:0'), 'validation_loss_giou': tensor(0.0607, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1619, device='cuda:0'), 'train_loss_ce': tensor(0.0055, device='cuda:0'), 'train_loss_bbox': tensor(0.0070, device='cuda:0'), 'train_loss_giou': tensor(0.0607, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2000, device='cuda:0'), 'validation_loss_ce': tensor(0.0056, device='cuda:0'), 'validation_loss_bbox': tensor(0.0079, device='cuda:0'), 'validation_loss_giou': tensor(0.0776, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2000, device='cuda:0'), 'train_loss_ce': tensor(0.0056, device='cuda:0'), 'train_loss_bbox': tensor(0.0079, device='cuda:0'), 'train_loss_giou': tensor(0.0776, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1787, device='cuda:0'), 'validation_loss_ce': tensor(0.0051, device='cuda:0'), 'validation_loss_bbox': tensor(0.0068, device='cuda:0'), 'validation_loss_giou': tensor(0.0698, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1787, device='cuda:0'), 'train_loss_ce': tensor(0.0051, device='cuda:0'), 'train_loss_bbox': tensor(0.0068, device='cuda:0'), 'train_loss_giou': tensor(0.0698, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.0848, device='cuda:0'), 'validation_loss_ce': tensor(0.0049, device='cuda:0'), 'validation_loss_bbox': tensor(0.0031, device='cuda:0'), 'validation_loss_giou': tensor(0.0322, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.0848, device='cuda:0'), 'train_loss_ce': tensor(0.0049, device='cuda:0'), 'train_loss_bbox': tensor(0.0031, device='cuda:0'), 'train_loss_giou': tensor(0.0322, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1552, device='cuda:0'), 'validation_loss_ce': tensor(0.0048, device='cuda:0'), 'validation_loss_bbox': tensor(0.0081, device='cuda:0'), 'validation_loss_giou': tensor(0.0548, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1552, device='cuda:0'), 'train_loss_ce': tensor(0.0048, device='cuda:0'), 'train_loss_bbox': tensor(0.0081, device='cuda:0'), 'train_loss_giou': tensor(0.0548, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1901, device='cuda:0'), 'validation_loss_ce': tensor(0.0047, device='cuda:0'), 'validation_loss_bbox': tensor(0.0099, device='cuda:0'), 'validation_loss_giou': tensor(0.0680, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1901, device='cuda:0'), 'train_loss_ce': tensor(0.0047, device='cuda:0'), 'train_loss_bbox': tensor(0.0099, device='cuda:0'), 'train_loss_giou': tensor(0.0680, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1489, device='cuda:0'), 'validation_loss_ce': tensor(0.0047, device='cuda:0'), 'validation_loss_bbox': tensor(0.0063, device='cuda:0'), 'validation_loss_giou': tensor(0.0563, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1489, device='cuda:0'), 'train_loss_ce': tensor(0.0047, device='cuda:0'), 'train_loss_bbox': tensor(0.0063, device='cuda:0'), 'train_loss_giou': tensor(0.0563, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1431, device='cuda:0'), 'validation_loss_ce': tensor(0.0045, device='cuda:0'), 'validation_loss_bbox': tensor(0.0076, device='cuda:0'), 'validation_loss_giou': tensor(0.0502, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1431, device='cuda:0'), 'train_loss_ce': tensor(0.0045, device='cuda:0'), 'train_loss_bbox': tensor(0.0076, device='cuda:0'), 'train_loss_giou': tensor(0.0502, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2040, device='cuda:0'), 'validation_loss_ce': tensor(0.0044, device='cuda:0'), 'validation_loss_bbox': tensor(0.0111, device='cuda:0'), 'validation_loss_giou': tensor(0.0721, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2040, device='cuda:0'), 'train_loss_ce': tensor(0.0044, device='cuda:0'), 'train_loss_bbox': tensor(0.0111, device='cuda:0'), 'train_loss_giou': tensor(0.0721, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1512, device='cuda:0'), 'validation_loss_ce': tensor(0.0044, device='cuda:0'), 'validation_loss_bbox': tensor(0.0079, device='cuda:0'), 'validation_loss_giou': tensor(0.0538, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1512, device='cuda:0'), 'train_loss_ce': tensor(0.0044, device='cuda:0'), 'train_loss_bbox': tensor(0.0079, device='cuda:0'), 'train_loss_giou': tensor(0.0538, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1816, device='cuda:0'), 'validation_loss_ce': tensor(0.0044, device='cuda:0'), 'validation_loss_bbox': tensor(0.0087, device='cuda:0'), 'validation_loss_giou': tensor(0.0670, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1816, device='cuda:0'), 'train_loss_ce': tensor(0.0044, device='cuda:0'), 'train_loss_bbox': tensor(0.0087, device='cuda:0'), 'train_loss_giou': tensor(0.0670, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1836, device='cuda:0'), 'validation_loss_ce': tensor(0.0044, device='cuda:0'), 'validation_loss_bbox': tensor(0.0110, device='cuda:0'), 'validation_loss_giou': tensor(0.0621, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1836, device='cuda:0'), 'train_loss_ce': tensor(0.0044, device='cuda:0'), 'train_loss_bbox': tensor(0.0110, device='cuda:0'), 'train_loss_giou': tensor(0.0621, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1674, device='cuda:0'), 'validation_loss_ce': tensor(0.0043, device='cuda:0'), 'validation_loss_bbox': tensor(0.0084, device='cuda:0'), 'validation_loss_giou': tensor(0.0605, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1674, device='cuda:0'), 'train_loss_ce': tensor(0.0043, device='cuda:0'), 'train_loss_bbox': tensor(0.0084, device='cuda:0'), 'train_loss_giou': tensor(0.0605, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1089, device='cuda:0'), 'validation_loss_ce': tensor(0.0043, device='cuda:0'), 'validation_loss_bbox': tensor(0.0048, device='cuda:0'), 'validation_loss_giou': tensor(0.0404, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1089, device='cuda:0'), 'train_loss_ce': tensor(0.0043, device='cuda:0'), 'train_loss_bbox': tensor(0.0048, device='cuda:0'), 'train_loss_giou': tensor(0.0404, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1897, device='cuda:0'), 'validation_loss_ce': tensor(0.0043, device='cuda:0'), 'validation_loss_bbox': tensor(0.0079, device='cuda:0'), 'validation_loss_giou': tensor(0.0731, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1897, device='cuda:0'), 'train_loss_ce': tensor(0.0043, device='cuda:0'), 'train_loss_bbox': tensor(0.0079, device='cuda:0'), 'train_loss_giou': tensor(0.0731, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1057, device='cuda:0'), 'validation_loss_ce': tensor(0.0042, device='cuda:0'), 'validation_loss_bbox': tensor(0.0048, device='cuda:0'), 'validation_loss_giou': tensor(0.0387, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1057, device='cuda:0'), 'train_loss_ce': tensor(0.0042, device='cuda:0'), 'train_loss_bbox': tensor(0.0048, device='cuda:0'), 'train_loss_giou': tensor(0.0387, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1787, device='cuda:0'), 'validation_loss_ce': tensor(0.0041, device='cuda:0'), 'validation_loss_bbox': tensor(0.0048, device='cuda:0'), 'validation_loss_giou': tensor(0.0752, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1787, device='cuda:0'), 'train_loss_ce': tensor(0.0041, device='cuda:0'), 'train_loss_bbox': tensor(0.0048, device='cuda:0'), 'train_loss_giou': tensor(0.0752, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2425, device='cuda:0'), 'validation_loss_ce': tensor(0.0041, device='cuda:0'), 'validation_loss_bbox': tensor(0.0071, device='cuda:0'), 'validation_loss_giou': tensor(0.1014, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2425, device='cuda:0'), 'train_loss_ce': tensor(0.0041, device='cuda:0'), 'train_loss_bbox': tensor(0.0071, device='cuda:0'), 'train_loss_giou': tensor(0.1014, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1987, device='cuda:0'), 'validation_loss_ce': tensor(0.0041, device='cuda:0'), 'validation_loss_bbox': tensor(0.0066, device='cuda:0'), 'validation_loss_giou': tensor(0.0809, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1987, device='cuda:0'), 'train_loss_ce': tensor(0.0041, device='cuda:0'), 'train_loss_bbox': tensor(0.0066, device='cuda:0'), 'train_loss_giou': tensor(0.0809, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.0974, device='cuda:0'), 'validation_loss_ce': tensor(0.0041, device='cuda:0'), 'validation_loss_bbox': tensor(0.0043, device='cuda:0'), 'validation_loss_giou': tensor(0.0359, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.0974, device='cuda:0'), 'train_loss_ce': tensor(0.0041, device='cuda:0'), 'train_loss_bbox': tensor(0.0043, device='cuda:0'), 'train_loss_giou': tensor(0.0359, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2264, device='cuda:0'), 'validation_loss_ce': tensor(0.0041, device='cuda:0'), 'validation_loss_bbox': tensor(0.0074, device='cuda:0'), 'validation_loss_giou': tensor(0.0925, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2264, device='cuda:0'), 'train_loss_ce': tensor(0.0041, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.0925, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2317, device='cuda:0'), 'validation_loss_ce': tensor(0.0042, device='cuda:0'), 'validation_loss_bbox': tensor(0.0066, device='cuda:0'), 'validation_loss_giou': tensor(0.0972, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2317, device='cuda:0'), 'train_loss_ce': tensor(0.0042, device='cuda:0'), 'train_loss_bbox': tensor(0.0066, device='cuda:0'), 'train_loss_giou': tensor(0.0972, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2073, device='cuda:0'), 'validation_loss_ce': tensor(0.0043, device='cuda:0'), 'validation_loss_bbox': tensor(0.0077, device='cuda:0'), 'validation_loss_giou': tensor(0.0823, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2073, device='cuda:0'), 'train_loss_ce': tensor(0.0043, device='cuda:0'), 'train_loss_bbox': tensor(0.0077, device='cuda:0'), 'train_loss_giou': tensor(0.0823, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1901, device='cuda:0'), 'validation_loss_ce': tensor(0.0044, device='cuda:0'), 'validation_loss_bbox': tensor(0.0097, device='cuda:0'), 'validation_loss_giou': tensor(0.0686, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1901, device='cuda:0'), 'train_loss_ce': tensor(0.0044, device='cuda:0'), 'train_loss_bbox': tensor(0.0097, device='cuda:0'), 'train_loss_giou': tensor(0.0686, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2833, device='cuda:0'), 'validation_loss_ce': tensor(0.0043, device='cuda:0'), 'validation_loss_bbox': tensor(0.0109, device='cuda:0'), 'validation_loss_giou': tensor(0.1123, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2833, device='cuda:0'), 'train_loss_ce': tensor(0.0043, device='cuda:0'), 'train_loss_bbox': tensor(0.0109, device='cuda:0'), 'train_loss_giou': tensor(0.1123, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2426, device='cuda:0'), 'validation_loss_ce': tensor(0.0041, device='cuda:0'), 'validation_loss_bbox': tensor(0.0111, device='cuda:0'), 'validation_loss_giou': tensor(0.0914, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2426, device='cuda:0'), 'train_loss_ce': tensor(0.0041, device='cuda:0'), 'train_loss_bbox': tensor(0.0111, device='cuda:0'), 'train_loss_giou': tensor(0.0914, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2213, device='cuda:0'), 'validation_loss_ce': tensor(0.0039, device='cuda:0'), 'validation_loss_bbox': tensor(0.0091, device='cuda:0'), 'validation_loss_giou': tensor(0.0860, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2213, device='cuda:0'), 'train_loss_ce': tensor(0.0039, device='cuda:0'), 'train_loss_bbox': tensor(0.0091, device='cuda:0'), 'train_loss_giou': tensor(0.0860, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2305, device='cuda:0'), 'validation_loss_ce': tensor(0.0038, device='cuda:0'), 'validation_loss_bbox': tensor(0.0082, device='cuda:0'), 'validation_loss_giou': tensor(0.0928, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2305, device='cuda:0'), 'train_loss_ce': tensor(0.0038, device='cuda:0'), 'train_loss_bbox': tensor(0.0082, device='cuda:0'), 'train_loss_giou': tensor(0.0928, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2132, device='cuda:0'), 'validation_loss_ce': tensor(0.0038, device='cuda:0'), 'validation_loss_bbox': tensor(0.0063, device='cuda:0'), 'validation_loss_giou': tensor(0.0890, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2132, device='cuda:0'), 'train_loss_ce': tensor(0.0038, device='cuda:0'), 'train_loss_bbox': tensor(0.0063, device='cuda:0'), 'train_loss_giou': tensor(0.0890, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1254, device='cuda:0'), 'validation_loss_ce': tensor(0.0038, device='cuda:0'), 'validation_loss_bbox': tensor(0.0052, device='cuda:0'), 'validation_loss_giou': tensor(0.0478, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1254, device='cuda:0'), 'train_loss_ce': tensor(0.0038, device='cuda:0'), 'train_loss_bbox': tensor(0.0052, device='cuda:0'), 'train_loss_giou': tensor(0.0478, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2625, device='cuda:0'), 'validation_loss_ce': tensor(0.0037, device='cuda:0'), 'validation_loss_bbox': tensor(0.0088, device='cuda:0'), 'validation_loss_giou': tensor(0.1075, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2625, device='cuda:0'), 'train_loss_ce': tensor(0.0037, device='cuda:0'), 'train_loss_bbox': tensor(0.0088, device='cuda:0'), 'train_loss_giou': tensor(0.1075, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2253, device='cuda:0'), 'validation_loss_ce': tensor(0.0036, device='cuda:0'), 'validation_loss_bbox': tensor(0.0076, device='cuda:0'), 'validation_loss_giou': tensor(0.0917, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2253, device='cuda:0'), 'train_loss_ce': tensor(0.0036, device='cuda:0'), 'train_loss_bbox': tensor(0.0076, device='cuda:0'), 'train_loss_giou': tensor(0.0917, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2171, device='cuda:0'), 'validation_loss_ce': tensor(0.0035, device='cuda:0'), 'validation_loss_bbox': tensor(0.0080, device='cuda:0'), 'validation_loss_giou': tensor(0.0868, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2171, device='cuda:0'), 'train_loss_ce': tensor(0.0035, device='cuda:0'), 'train_loss_bbox': tensor(0.0080, device='cuda:0'), 'train_loss_giou': tensor(0.0868, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2711, device='cuda:0'), 'validation_loss_ce': tensor(0.0035, device='cuda:0'), 'validation_loss_bbox': tensor(0.0109, device='cuda:0'), 'validation_loss_giou': tensor(0.1065, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2711, device='cuda:0'), 'train_loss_ce': tensor(0.0035, device='cuda:0'), 'train_loss_bbox': tensor(0.0109, device='cuda:0'), 'train_loss_giou': tensor(0.1065, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2463, device='cuda:0'), 'validation_loss_ce': tensor(0.0034, device='cuda:0'), 'validation_loss_bbox': tensor(0.0098, device='cuda:0'), 'validation_loss_giou': tensor(0.0971, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2463, device='cuda:0'), 'train_loss_ce': tensor(0.0034, device='cuda:0'), 'train_loss_bbox': tensor(0.0098, device='cuda:0'), 'train_loss_giou': tensor(0.0971, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.0935, device='cuda:0'), 'validation_loss_ce': tensor(0.0033, device='cuda:0'), 'validation_loss_bbox': tensor(0.0044, device='cuda:0'), 'validation_loss_giou': tensor(0.0341, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.0935, device='cuda:0'), 'train_loss_ce': tensor(0.0033, device='cuda:0'), 'train_loss_bbox': tensor(0.0044, device='cuda:0'), 'train_loss_giou': tensor(0.0341, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2686, device='cuda:0'), 'validation_loss_ce': tensor(0.0033, device='cuda:0'), 'validation_loss_bbox': tensor(0.0093, device='cuda:0'), 'validation_loss_giou': tensor(0.1093, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2686, device='cuda:0'), 'train_loss_ce': tensor(0.0033, device='cuda:0'), 'train_loss_bbox': tensor(0.0093, device='cuda:0'), 'train_loss_giou': tensor(0.1093, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3041, device='cuda:0'), 'validation_loss_ce': tensor(0.0033, device='cuda:0'), 'validation_loss_bbox': tensor(0.0127, device='cuda:0'), 'validation_loss_giou': tensor(0.1188, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3041, device='cuda:0'), 'train_loss_ce': tensor(0.0033, device='cuda:0'), 'train_loss_bbox': tensor(0.0127, device='cuda:0'), 'train_loss_giou': tensor(0.1188, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2423, device='cuda:0'), 'validation_loss_ce': tensor(0.0033, device='cuda:0'), 'validation_loss_bbox': tensor(0.0104, device='cuda:0'), 'validation_loss_giou': tensor(0.0933, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2423, device='cuda:0'), 'train_loss_ce': tensor(0.0033, device='cuda:0'), 'train_loss_bbox': tensor(0.0104, device='cuda:0'), 'train_loss_giou': tensor(0.0933, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2410, device='cuda:0'), 'validation_loss_ce': tensor(0.0033, device='cuda:0'), 'validation_loss_bbox': tensor(0.0105, device='cuda:0'), 'validation_loss_giou': tensor(0.0925, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2410, device='cuda:0'), 'train_loss_ce': tensor(0.0033, device='cuda:0'), 'train_loss_bbox': tensor(0.0105, device='cuda:0'), 'train_loss_giou': tensor(0.0925, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2773, device='cuda:0'), 'validation_loss_ce': tensor(0.0033, device='cuda:0'), 'validation_loss_bbox': tensor(0.0107, device='cuda:0'), 'validation_loss_giou': tensor(0.1103, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2773, device='cuda:0'), 'train_loss_ce': tensor(0.0033, device='cuda:0'), 'train_loss_bbox': tensor(0.0107, device='cuda:0'), 'train_loss_giou': tensor(0.1103, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1628, device='cuda:0'), 'validation_loss_ce': tensor(0.0033, device='cuda:0'), 'validation_loss_bbox': tensor(0.0071, device='cuda:0'), 'validation_loss_giou': tensor(0.0619, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1628, device='cuda:0'), 'train_loss_ce': tensor(0.0033, device='cuda:0'), 'train_loss_bbox': tensor(0.0071, device='cuda:0'), 'train_loss_giou': tensor(0.0619, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2424, device='cuda:0'), 'validation_loss_ce': tensor(0.0033, device='cuda:0'), 'validation_loss_bbox': tensor(0.0100, device='cuda:0'), 'validation_loss_giou': tensor(0.0945, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2424, device='cuda:0'), 'train_loss_ce': tensor(0.0033, device='cuda:0'), 'train_loss_bbox': tensor(0.0100, device='cuda:0'), 'train_loss_giou': tensor(0.0945, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3781, device='cuda:0'), 'validation_loss_ce': tensor(0.0033, device='cuda:0'), 'validation_loss_bbox': tensor(0.0131, device='cuda:0'), 'validation_loss_giou': tensor(0.1547, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3781, device='cuda:0'), 'train_loss_ce': tensor(0.0033, device='cuda:0'), 'train_loss_bbox': tensor(0.0131, device='cuda:0'), 'train_loss_giou': tensor(0.1547, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3194, device='cuda:0'), 'validation_loss_ce': tensor(0.0033, device='cuda:0'), 'validation_loss_bbox': tensor(0.0100, device='cuda:0'), 'validation_loss_giou': tensor(0.1330, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.3194, device='cuda:0'), 'train_loss_ce': tensor(0.0033, device='cuda:0'), 'train_loss_bbox': tensor(0.0100, device='cuda:0'), 'train_loss_giou': tensor(0.1330, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2167, device='cuda:0'), 'validation_loss_ce': tensor(0.0033, device='cuda:0'), 'validation_loss_bbox': tensor(0.0094, device='cuda:0'), 'validation_loss_giou': tensor(0.0832, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2167, device='cuda:0'), 'train_loss_ce': tensor(0.0033, device='cuda:0'), 'train_loss_bbox': tensor(0.0094, device='cuda:0'), 'train_loss_giou': tensor(0.0832, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1862, device='cuda:0'), 'validation_loss_ce': tensor(0.0033, device='cuda:0'), 'validation_loss_bbox': tensor(0.0097, device='cuda:0'), 'validation_loss_giou': tensor(0.0672, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1862, device='cuda:0'), 'train_loss_ce': tensor(0.0033, device='cuda:0'), 'train_loss_bbox': tensor(0.0097, device='cuda:0'), 'train_loss_giou': tensor(0.0672, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2871, device='cuda:0'), 'validation_loss_ce': tensor(0.0033, device='cuda:0'), 'validation_loss_bbox': tensor(0.0123, device='cuda:0'), 'validation_loss_giou': tensor(0.1112, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2871, device='cuda:0'), 'train_loss_ce': tensor(0.0033, device='cuda:0'), 'train_loss_bbox': tensor(0.0123, device='cuda:0'), 'train_loss_giou': tensor(0.1112, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2668, device='cuda:0'), 'validation_loss_ce': tensor(0.0033, device='cuda:0'), 'validation_loss_bbox': tensor(0.0117, device='cuda:0'), 'validation_loss_giou': tensor(0.1025, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.2668, device='cuda:0'), 'train_loss_ce': tensor(0.0033, device='cuda:0'), 'train_loss_bbox': tensor(0.0117, device='cuda:0'), 'train_loss_giou': tensor(0.1025, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1305, device='cuda:0'), 'validation_loss_ce': tensor(0.0032, device='cuda:0'), 'validation_loss_bbox': tensor(0.0065, device='cuda:0'), 'validation_loss_giou': tensor(0.0475, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
{'training_loss': tensor(0.1305, device='cuda:0'), 'train_loss_ce': tensor(0.0032, device='cuda:0'), 'train_loss_bbox': tensor(0.0065, device='cuda:0'), 'train_loss_giou': tensor(0.0475, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2405, device='cuda:0'), 'validation_loss_ce': tensor(0.0031, device='cuda:0'), 'validation_loss_bbox': tensor(0.0114, device='cuda:0'), 'validation_loss_giou': tensor(0.0903, device='cuda:0'), 'validation_cardinality_error': tensor(0., device='cuda:0')}
```
## Examples
{'size': tensor([512, 512]), 'image_id': tensor([735]), 'class_labels': tensor([5]), 'boxes': tensor([[0.7651, 0.5307, 0.0952, 0.0942]]), 'area': tensor([2351.3042]), 'iscrowd': tensor([0]), 'orig_size': tensor([1024, 1024])}

|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
mrdbourke/detr_finetuned_trashify_box_detector_synthetic_and_real_data
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"bin",
"hand",
"not_bin",
"not_hand",
"not_trash",
"trash"
] |
MedicalVision/yolos_tiny_300ep
|
## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.001
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.004
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.004
```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.016
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.028
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.020
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.016
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.068
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.123
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.135
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.136
```
## Config
- dataset: NIH
- original model: hustvl/yolos-tiny
- lr: 5e-06
- dropout_rate: 0.1
- weight_decay: 0.05
- max_epochs: 300
- train samples: 885
## Logging
### Training process
```
{'validation_loss': tensor(6.3551, device='cuda:0'), 'validation_loss_ce': tensor(2.0319, device='cuda:0'), 'validation_loss_bbox': tensor(0.4981, device='cuda:0'), 'validation_loss_giou': tensor(0.9164, device='cuda:0'), 'validation_cardinality_error': tensor(96., device='cuda:0')}
{'training_loss': tensor(3.8686, device='cuda:0'), 'train_loss_ce': tensor(1.4275, device='cuda:0'), 'train_loss_bbox': tensor(0.2086, device='cuda:0'), 'train_loss_giou': tensor(0.6991, device='cuda:0'), 'train_cardinality_error': tensor(8.2000, device='cuda:0'), 'validation_loss': tensor(3.8399, device='cuda:0'), 'validation_loss_ce': tensor(1.3733, device='cuda:0'), 'validation_loss_bbox': tensor(0.2313, device='cuda:0'), 'validation_loss_giou': tensor(0.6552, device='cuda:0'), 'validation_cardinality_error': tensor(4.0505, device='cuda:0')}
{'training_loss': tensor(3.0059, device='cuda:0'), 'train_loss_ce': tensor(0.8301, device='cuda:0'), 'train_loss_bbox': tensor(0.2366, device='cuda:0'), 'train_loss_giou': tensor(0.4965, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(3.0026, device='cuda:0'), 'validation_loss_ce': tensor(0.8374, device='cuda:0'), 'validation_loss_bbox': tensor(0.1967, device='cuda:0'), 'validation_loss_giou': tensor(0.5910, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(3.2795, device='cuda:0'), 'train_loss_ce': tensor(0.5039, device='cuda:0'), 'train_loss_bbox': tensor(0.2495, device='cuda:0'), 'train_loss_giou': tensor(0.7642, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7219, device='cuda:0'), 'validation_loss_ce': tensor(0.6121, device='cuda:0'), 'validation_loss_bbox': tensor(0.1947, device='cuda:0'), 'validation_loss_giou': tensor(0.5681, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5843, device='cuda:0'), 'train_loss_ce': tensor(0.5903, device='cuda:0'), 'train_loss_bbox': tensor(0.2148, device='cuda:0'), 'train_loss_giou': tensor(0.4599, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5849, device='cuda:0'), 'validation_loss_ce': tensor(0.5367, device='cuda:0'), 'validation_loss_bbox': tensor(0.1875, device='cuda:0'), 'validation_loss_giou': tensor(0.5553, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4757, device='cuda:0'), 'train_loss_ce': tensor(0.4582, device='cuda:0'), 'train_loss_bbox': tensor(0.1827, device='cuda:0'), 'train_loss_giou': tensor(0.5521, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.4713, device='cuda:0'), 'validation_loss_ce': tensor(0.5069, device='cuda:0'), 'validation_loss_bbox': tensor(0.1724, device='cuda:0'), 'validation_loss_giou': tensor(0.5513, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9878, device='cuda:0'), 'train_loss_ce': tensor(0.4444, device='cuda:0'), 'train_loss_bbox': tensor(0.1463, device='cuda:0'), 'train_loss_giou': tensor(0.4060, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3751, device='cuda:0'), 'validation_loss_ce': tensor(0.4881, device='cuda:0'), 'validation_loss_bbox': tensor(0.1688, device='cuda:0'), 'validation_loss_giou': tensor(0.5215, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6438, device='cuda:0'), 'train_loss_ce': tensor(0.4633, device='cuda:0'), 'train_loss_bbox': tensor(0.0898, device='cuda:0'), 'train_loss_giou': tensor(0.3658, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3053, device='cuda:0'), 'validation_loss_ce': tensor(0.4833, device='cuda:0'), 'validation_loss_bbox': tensor(0.1621, device='cuda:0'), 'validation_loss_giou': tensor(0.5056, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8098, device='cuda:0'), 'train_loss_ce': tensor(0.4950, device='cuda:0'), 'train_loss_bbox': tensor(0.0967, device='cuda:0'), 'train_loss_giou': tensor(0.4157, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3156, device='cuda:0'), 'validation_loss_ce': tensor(0.4742, device='cuda:0'), 'validation_loss_bbox': tensor(0.1612, device='cuda:0'), 'validation_loss_giou': tensor(0.5177, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6268, device='cuda:0'), 'train_loss_ce': tensor(0.3514, device='cuda:0'), 'train_loss_bbox': tensor(0.0844, device='cuda:0'), 'train_loss_giou': tensor(0.4268, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3000, device='cuda:0'), 'validation_loss_ce': tensor(0.4702, device='cuda:0'), 'validation_loss_bbox': tensor(0.1597, device='cuda:0'), 'validation_loss_giou': tensor(0.5156, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6466, device='cuda:0'), 'train_loss_ce': tensor(0.4935, device='cuda:0'), 'train_loss_bbox': tensor(0.0983, device='cuda:0'), 'train_loss_giou': tensor(0.3308, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2545, device='cuda:0'), 'validation_loss_ce': tensor(0.4656, device='cuda:0'), 'validation_loss_bbox': tensor(0.1571, device='cuda:0'), 'validation_loss_giou': tensor(0.5017, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5635, device='cuda:0'), 'train_loss_ce': tensor(0.4944, device='cuda:0'), 'train_loss_bbox': tensor(0.1826, device='cuda:0'), 'train_loss_giou': tensor(0.5780, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2482, device='cuda:0'), 'validation_loss_ce': tensor(0.4628, device='cuda:0'), 'validation_loss_bbox': tensor(0.1543, device='cuda:0'), 'validation_loss_giou': tensor(0.5069, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9408, device='cuda:0'), 'train_loss_ce': tensor(0.5024, device='cuda:0'), 'train_loss_bbox': tensor(0.1479, device='cuda:0'), 'train_loss_giou': tensor(0.3494, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2500, device='cuda:0'), 'validation_loss_ce': tensor(0.4599, device='cuda:0'), 'validation_loss_bbox': tensor(0.1556, device='cuda:0'), 'validation_loss_giou': tensor(0.5060, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6938, device='cuda:0'), 'train_loss_ce': tensor(0.4453, device='cuda:0'), 'train_loss_bbox': tensor(0.1092, device='cuda:0'), 'train_loss_giou': tensor(0.3512, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2386, device='cuda:0'), 'validation_loss_ce': tensor(0.4577, device='cuda:0'), 'validation_loss_bbox': tensor(0.1561, device='cuda:0'), 'validation_loss_giou': tensor(0.5003, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6329, device='cuda:0'), 'train_loss_ce': tensor(0.4196, device='cuda:0'), 'train_loss_bbox': tensor(0.1089, device='cuda:0'), 'train_loss_giou': tensor(0.3345, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2528, device='cuda:0'), 'validation_loss_ce': tensor(0.4561, device='cuda:0'), 'validation_loss_bbox': tensor(0.1565, device='cuda:0'), 'validation_loss_giou': tensor(0.5070, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9582, device='cuda:0'), 'train_loss_ce': tensor(0.4065, device='cuda:0'), 'train_loss_bbox': tensor(0.1210, device='cuda:0'), 'train_loss_giou': tensor(0.4733, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2365, device='cuda:0'), 'validation_loss_ce': tensor(0.4566, device='cuda:0'), 'validation_loss_bbox': tensor(0.1545, device='cuda:0'), 'validation_loss_giou': tensor(0.5038, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6332, device='cuda:0'), 'train_loss_ce': tensor(0.3199, device='cuda:0'), 'train_loss_bbox': tensor(0.1091, device='cuda:0'), 'train_loss_giou': tensor(0.3840, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2012, device='cuda:0'), 'validation_loss_ce': tensor(0.4546, device='cuda:0'), 'validation_loss_bbox': tensor(0.1512, device='cuda:0'), 'validation_loss_giou': tensor(0.4953, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3603, device='cuda:0'), 'train_loss_ce': tensor(0.4111, device='cuda:0'), 'train_loss_bbox': tensor(0.0855, device='cuda:0'), 'train_loss_giou': tensor(0.2610, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1961, device='cuda:0'), 'validation_loss_ce': tensor(0.4541, device='cuda:0'), 'validation_loss_bbox': tensor(0.1517, device='cuda:0'), 'validation_loss_giou': tensor(0.4918, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4230, device='cuda:0'), 'train_loss_ce': tensor(0.5000, device='cuda:0'), 'train_loss_bbox': tensor(0.0834, device='cuda:0'), 'train_loss_giou': tensor(0.2529, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1946, device='cuda:0'), 'validation_loss_ce': tensor(0.4517, device='cuda:0'), 'validation_loss_bbox': tensor(0.1500, device='cuda:0'), 'validation_loss_giou': tensor(0.4964, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8213, device='cuda:0'), 'train_loss_ce': tensor(0.4711, device='cuda:0'), 'train_loss_bbox': tensor(0.1082, device='cuda:0'), 'train_loss_giou': tensor(0.4045, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1989, device='cuda:0'), 'validation_loss_ce': tensor(0.4510, device='cuda:0'), 'validation_loss_bbox': tensor(0.1503, device='cuda:0'), 'validation_loss_giou': tensor(0.4981, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3762, device='cuda:0'), 'train_loss_ce': tensor(0.3125, device='cuda:0'), 'train_loss_bbox': tensor(0.0919, device='cuda:0'), 'train_loss_giou': tensor(0.3020, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1571, device='cuda:0'), 'validation_loss_ce': tensor(0.4496, device='cuda:0'), 'validation_loss_bbox': tensor(0.1472, device='cuda:0'), 'validation_loss_giou': tensor(0.4858, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3659, device='cuda:0'), 'train_loss_ce': tensor(0.5008, device='cuda:0'), 'train_loss_bbox': tensor(0.0820, device='cuda:0'), 'train_loss_giou': tensor(0.2275, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1996, device='cuda:0'), 'validation_loss_ce': tensor(0.4474, device='cuda:0'), 'validation_loss_bbox': tensor(0.1493, device='cuda:0'), 'validation_loss_giou': tensor(0.5029, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7695, device='cuda:0'), 'train_loss_ce': tensor(0.4664, device='cuda:0'), 'train_loss_bbox': tensor(0.1091, device='cuda:0'), 'train_loss_giou': tensor(0.3787, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1645, device='cuda:0'), 'validation_loss_ce': tensor(0.4454, device='cuda:0'), 'validation_loss_bbox': tensor(0.1481, device='cuda:0'), 'validation_loss_giou': tensor(0.4892, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7409, device='cuda:0'), 'train_loss_ce': tensor(0.4821, device='cuda:0'), 'train_loss_bbox': tensor(0.0834, device='cuda:0'), 'train_loss_giou': tensor(0.4209, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1920, device='cuda:0'), 'validation_loss_ce': tensor(0.4463, device='cuda:0'), 'validation_loss_bbox': tensor(0.1495, device='cuda:0'), 'validation_loss_giou': tensor(0.4990, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5965, device='cuda:0'), 'train_loss_ce': tensor(0.4497, device='cuda:0'), 'train_loss_bbox': tensor(0.0918, device='cuda:0'), 'train_loss_giou': tensor(0.3440, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2019, device='cuda:0'), 'validation_loss_ce': tensor(0.4460, device='cuda:0'), 'validation_loss_bbox': tensor(0.1507, device='cuda:0'), 'validation_loss_giou': tensor(0.5011, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0771, device='cuda:0'), 'train_loss_ce': tensor(0.4590, device='cuda:0'), 'train_loss_bbox': tensor(0.0383, device='cuda:0'), 'train_loss_giou': tensor(0.2133, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1664, device='cuda:0'), 'validation_loss_ce': tensor(0.4448, device='cuda:0'), 'validation_loss_bbox': tensor(0.1458, device='cuda:0'), 'validation_loss_giou': tensor(0.4963, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3705, device='cuda:0'), 'train_loss_ce': tensor(0.4571, device='cuda:0'), 'train_loss_bbox': tensor(0.0807, device='cuda:0'), 'train_loss_giou': tensor(0.2551, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1832, device='cuda:0'), 'validation_loss_ce': tensor(0.4440, device='cuda:0'), 'validation_loss_bbox': tensor(0.1471, device='cuda:0'), 'validation_loss_giou': tensor(0.5018, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1473, device='cuda:0'), 'train_loss_ce': tensor(0.4680, device='cuda:0'), 'train_loss_bbox': tensor(0.1257, device='cuda:0'), 'train_loss_giou': tensor(0.5253, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1702, device='cuda:0'), 'validation_loss_ce': tensor(0.4420, device='cuda:0'), 'validation_loss_bbox': tensor(0.1464, device='cuda:0'), 'validation_loss_giou': tensor(0.4982, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6266, device='cuda:0'), 'train_loss_ce': tensor(0.4664, device='cuda:0'), 'train_loss_bbox': tensor(0.1000, device='cuda:0'), 'train_loss_giou': tensor(0.3301, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1513, device='cuda:0'), 'validation_loss_ce': tensor(0.4402, device='cuda:0'), 'validation_loss_bbox': tensor(0.1458, device='cuda:0'), 'validation_loss_giou': tensor(0.4910, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7776, device='cuda:0'), 'train_loss_ce': tensor(0.3886, device='cuda:0'), 'train_loss_bbox': tensor(0.1236, device='cuda:0'), 'train_loss_giou': tensor(0.3854, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1466, device='cuda:0'), 'validation_loss_ce': tensor(0.4381, device='cuda:0'), 'validation_loss_bbox': tensor(0.1435, device='cuda:0'), 'validation_loss_giou': tensor(0.4956, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3147, device='cuda:0'), 'train_loss_ce': tensor(0.4570, device='cuda:0'), 'train_loss_bbox': tensor(0.0611, device='cuda:0'), 'train_loss_giou': tensor(0.2762, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1664, device='cuda:0'), 'validation_loss_ce': tensor(0.4374, device='cuda:0'), 'validation_loss_bbox': tensor(0.1464, device='cuda:0'), 'validation_loss_giou': tensor(0.4984, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4885, device='cuda:0'), 'train_loss_ce': tensor(0.4312, device='cuda:0'), 'train_loss_bbox': tensor(0.0751, device='cuda:0'), 'train_loss_giou': tensor(0.3409, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1982, device='cuda:0'), 'validation_loss_ce': tensor(0.4374, device='cuda:0'), 'validation_loss_bbox': tensor(0.1471, device='cuda:0'), 'validation_loss_giou': tensor(0.5127, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5245, device='cuda:0'), 'train_loss_ce': tensor(0.4474, device='cuda:0'), 'train_loss_bbox': tensor(0.0892, device='cuda:0'), 'train_loss_giou': tensor(0.3155, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1588, device='cuda:0'), 'validation_loss_ce': tensor(0.4384, device='cuda:0'), 'validation_loss_bbox': tensor(0.1432, device='cuda:0'), 'validation_loss_giou': tensor(0.5022, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8700, device='cuda:0'), 'train_loss_ce': tensor(0.3720, device='cuda:0'), 'train_loss_bbox': tensor(0.1406, device='cuda:0'), 'train_loss_giou': tensor(0.3975, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1682, device='cuda:0'), 'validation_loss_ce': tensor(0.4377, device='cuda:0'), 'validation_loss_bbox': tensor(0.1451, device='cuda:0'), 'validation_loss_giou': tensor(0.5026, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0291, device='cuda:0'), 'train_loss_ce': tensor(0.3621, device='cuda:0'), 'train_loss_bbox': tensor(0.1128, device='cuda:0'), 'train_loss_giou': tensor(0.5514, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1600, device='cuda:0'), 'validation_loss_ce': tensor(0.4344, device='cuda:0'), 'validation_loss_bbox': tensor(0.1409, device='cuda:0'), 'validation_loss_giou': tensor(0.5106, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2899, device='cuda:0'), 'train_loss_ce': tensor(0.4574, device='cuda:0'), 'train_loss_bbox': tensor(0.0554, device='cuda:0'), 'train_loss_giou': tensor(0.2777, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1804, device='cuda:0'), 'validation_loss_ce': tensor(0.4367, device='cuda:0'), 'validation_loss_bbox': tensor(0.1457, device='cuda:0'), 'validation_loss_giou': tensor(0.5075, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2337, device='cuda:0'), 'train_loss_ce': tensor(0.4605, device='cuda:0'), 'train_loss_bbox': tensor(0.0546, device='cuda:0'), 'train_loss_giou': tensor(0.2501, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1866, device='cuda:0'), 'validation_loss_ce': tensor(0.4349, device='cuda:0'), 'validation_loss_bbox': tensor(0.1470, device='cuda:0'), 'validation_loss_giou': tensor(0.5084, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7220, device='cuda:0'), 'train_loss_ce': tensor(0.3982, device='cuda:0'), 'train_loss_bbox': tensor(0.1026, device='cuda:0'), 'train_loss_giou': tensor(0.4054, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1689, device='cuda:0'), 'validation_loss_ce': tensor(0.4327, device='cuda:0'), 'validation_loss_bbox': tensor(0.1400, device='cuda:0'), 'validation_loss_giou': tensor(0.5180, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4932, device='cuda:0'), 'train_loss_ce': tensor(0.3845, device='cuda:0'), 'train_loss_bbox': tensor(0.0818, device='cuda:0'), 'train_loss_giou': tensor(0.3498, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1685, device='cuda:0'), 'validation_loss_ce': tensor(0.4323, device='cuda:0'), 'validation_loss_bbox': tensor(0.1420, device='cuda:0'), 'validation_loss_giou': tensor(0.5131, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9332, device='cuda:0'), 'train_loss_ce': tensor(0.3997, device='cuda:0'), 'train_loss_bbox': tensor(0.0508, device='cuda:0'), 'train_loss_giou': tensor(0.1398, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1769, device='cuda:0'), 'validation_loss_ce': tensor(0.4351, device='cuda:0'), 'validation_loss_bbox': tensor(0.1469, device='cuda:0'), 'validation_loss_giou': tensor(0.5037, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7956, device='cuda:0'), 'train_loss_ce': tensor(0.4638, device='cuda:0'), 'train_loss_bbox': tensor(0.0325, device='cuda:0'), 'train_loss_giou': tensor(0.0847, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1220, device='cuda:0'), 'validation_loss_ce': tensor(0.4324, device='cuda:0'), 'validation_loss_bbox': tensor(0.1402, device='cuda:0'), 'validation_loss_giou': tensor(0.4943, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3231, device='cuda:0'), 'train_loss_ce': tensor(0.3657, device='cuda:0'), 'train_loss_bbox': tensor(0.0604, device='cuda:0'), 'train_loss_giou': tensor(0.3278, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1470, device='cuda:0'), 'validation_loss_ce': tensor(0.4289, device='cuda:0'), 'validation_loss_bbox': tensor(0.1406, device='cuda:0'), 'validation_loss_giou': tensor(0.5077, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4693, device='cuda:0'), 'train_loss_ce': tensor(0.4525, device='cuda:0'), 'train_loss_bbox': tensor(0.0919, device='cuda:0'), 'train_loss_giou': tensor(0.2787, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1629, device='cuda:0'), 'validation_loss_ce': tensor(0.4302, device='cuda:0'), 'validation_loss_bbox': tensor(0.1427, device='cuda:0'), 'validation_loss_giou': tensor(0.5095, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8024, device='cuda:0'), 'train_loss_ce': tensor(0.3117, device='cuda:0'), 'train_loss_bbox': tensor(0.0465, device='cuda:0'), 'train_loss_giou': tensor(0.1290, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1588, device='cuda:0'), 'validation_loss_ce': tensor(0.4318, device='cuda:0'), 'validation_loss_bbox': tensor(0.1447, device='cuda:0'), 'validation_loss_giou': tensor(0.5018, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6990, device='cuda:0'), 'train_loss_ce': tensor(0.4795, device='cuda:0'), 'train_loss_bbox': tensor(0.0811, device='cuda:0'), 'train_loss_giou': tensor(0.4070, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1408, device='cuda:0'), 'validation_loss_ce': tensor(0.4271, device='cuda:0'), 'validation_loss_bbox': tensor(0.1408, device='cuda:0'), 'validation_loss_giou': tensor(0.5050, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1012, device='cuda:0'), 'train_loss_ce': tensor(0.4060, device='cuda:0'), 'train_loss_bbox': tensor(0.0482, device='cuda:0'), 'train_loss_giou': tensor(0.2270, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1507, device='cuda:0'), 'validation_loss_ce': tensor(0.4297, device='cuda:0'), 'validation_loss_bbox': tensor(0.1440, device='cuda:0'), 'validation_loss_giou': tensor(0.5005, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0869, device='cuda:0'), 'train_loss_ce': tensor(0.4446, device='cuda:0'), 'train_loss_bbox': tensor(0.0564, device='cuda:0'), 'train_loss_giou': tensor(0.1801, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1633, device='cuda:0'), 'validation_loss_ce': tensor(0.4274, device='cuda:0'), 'validation_loss_bbox': tensor(0.1456, device='cuda:0'), 'validation_loss_giou': tensor(0.5040, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1224, device='cuda:0'), 'train_loss_ce': tensor(0.4045, device='cuda:0'), 'train_loss_bbox': tensor(0.0616, device='cuda:0'), 'train_loss_giou': tensor(0.2051, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1646, device='cuda:0'), 'validation_loss_ce': tensor(0.4282, device='cuda:0'), 'validation_loss_bbox': tensor(0.1432, device='cuda:0'), 'validation_loss_giou': tensor(0.5101, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9336, device='cuda:0'), 'train_loss_ce': tensor(0.4451, device='cuda:0'), 'train_loss_bbox': tensor(0.0435, device='cuda:0'), 'train_loss_giou': tensor(0.1356, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1725, device='cuda:0'), 'validation_loss_ce': tensor(0.4266, device='cuda:0'), 'validation_loss_bbox': tensor(0.1443, device='cuda:0'), 'validation_loss_giou': tensor(0.5121, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6394, device='cuda:0'), 'train_loss_ce': tensor(0.4665, device='cuda:0'), 'train_loss_bbox': tensor(0.0643, device='cuda:0'), 'train_loss_giou': tensor(0.4258, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1520, device='cuda:0'), 'validation_loss_ce': tensor(0.4254, device='cuda:0'), 'validation_loss_bbox': tensor(0.1442, device='cuda:0'), 'validation_loss_giou': tensor(0.5029, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8319, device='cuda:0'), 'train_loss_ce': tensor(0.2916, device='cuda:0'), 'train_loss_bbox': tensor(0.0360, device='cuda:0'), 'train_loss_giou': tensor(0.1802, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1496, device='cuda:0'), 'validation_loss_ce': tensor(0.4246, device='cuda:0'), 'validation_loss_bbox': tensor(0.1425, device='cuda:0'), 'validation_loss_giou': tensor(0.5063, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1886, device='cuda:0'), 'train_loss_ce': tensor(0.4719, device='cuda:0'), 'train_loss_bbox': tensor(0.0459, device='cuda:0'), 'train_loss_giou': tensor(0.2437, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1612, device='cuda:0'), 'validation_loss_ce': tensor(0.4236, device='cuda:0'), 'validation_loss_bbox': tensor(0.1422, device='cuda:0'), 'validation_loss_giou': tensor(0.5134, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2835, device='cuda:0'), 'train_loss_ce': tensor(0.4254, device='cuda:0'), 'train_loss_bbox': tensor(0.0607, device='cuda:0'), 'train_loss_giou': tensor(0.2772, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1730, device='cuda:0'), 'validation_loss_ce': tensor(0.4238, device='cuda:0'), 'validation_loss_bbox': tensor(0.1450, device='cuda:0'), 'validation_loss_giou': tensor(0.5120, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0314, device='cuda:0'), 'train_loss_ce': tensor(0.3168, device='cuda:0'), 'train_loss_bbox': tensor(0.0474, device='cuda:0'), 'train_loss_giou': tensor(0.2388, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1479, device='cuda:0'), 'validation_loss_ce': tensor(0.4247, device='cuda:0'), 'validation_loss_bbox': tensor(0.1429, device='cuda:0'), 'validation_loss_giou': tensor(0.5042, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7841, device='cuda:0'), 'train_loss_ce': tensor(0.3689, device='cuda:0'), 'train_loss_bbox': tensor(0.0296, device='cuda:0'), 'train_loss_giou': tensor(0.1336, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1606, device='cuda:0'), 'validation_loss_ce': tensor(0.4199, device='cuda:0'), 'validation_loss_bbox': tensor(0.1444, device='cuda:0'), 'validation_loss_giou': tensor(0.5094, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7609, device='cuda:0'), 'train_loss_ce': tensor(0.4600, device='cuda:0'), 'train_loss_bbox': tensor(0.0851, device='cuda:0'), 'train_loss_giou': tensor(0.4377, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1264, device='cuda:0'), 'validation_loss_ce': tensor(0.4221, device='cuda:0'), 'validation_loss_bbox': tensor(0.1419, device='cuda:0'), 'validation_loss_giou': tensor(0.4974, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0897, device='cuda:0'), 'train_loss_ce': tensor(0.4400, device='cuda:0'), 'train_loss_bbox': tensor(0.0443, device='cuda:0'), 'train_loss_giou': tensor(0.2140, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1639, device='cuda:0'), 'validation_loss_ce': tensor(0.4223, device='cuda:0'), 'validation_loss_bbox': tensor(0.1470, device='cuda:0'), 'validation_loss_giou': tensor(0.5034, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4059, device='cuda:0'), 'train_loss_ce': tensor(0.4357, device='cuda:0'), 'train_loss_bbox': tensor(0.0744, device='cuda:0'), 'train_loss_giou': tensor(0.2991, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1409, device='cuda:0'), 'validation_loss_ce': tensor(0.4210, device='cuda:0'), 'validation_loss_bbox': tensor(0.1406, device='cuda:0'), 'validation_loss_giou': tensor(0.5085, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4300, device='cuda:0'), 'train_loss_ce': tensor(0.3468, device='cuda:0'), 'train_loss_bbox': tensor(0.0812, device='cuda:0'), 'train_loss_giou': tensor(0.3387, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1252, device='cuda:0'), 'validation_loss_ce': tensor(0.4213, device='cuda:0'), 'validation_loss_bbox': tensor(0.1403, device='cuda:0'), 'validation_loss_giou': tensor(0.5012, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1199, device='cuda:0'), 'train_loss_ce': tensor(0.3511, device='cuda:0'), 'train_loss_bbox': tensor(0.0419, device='cuda:0'), 'train_loss_giou': tensor(0.2797, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1407, device='cuda:0'), 'validation_loss_ce': tensor(0.4169, device='cuda:0'), 'validation_loss_bbox': tensor(0.1420, device='cuda:0'), 'validation_loss_giou': tensor(0.5068, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8634, device='cuda:0'), 'train_loss_ce': tensor(0.4054, device='cuda:0'), 'train_loss_bbox': tensor(0.0378, device='cuda:0'), 'train_loss_giou': tensor(0.1344, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1486, device='cuda:0'), 'validation_loss_ce': tensor(0.4178, device='cuda:0'), 'validation_loss_bbox': tensor(0.1451, device='cuda:0'), 'validation_loss_giou': tensor(0.5026, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2295, device='cuda:0'), 'train_loss_ce': tensor(0.4299, device='cuda:0'), 'train_loss_bbox': tensor(0.0757, device='cuda:0'), 'train_loss_giou': tensor(0.2105, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1645, device='cuda:0'), 'validation_loss_ce': tensor(0.4165, device='cuda:0'), 'validation_loss_bbox': tensor(0.1448, device='cuda:0'), 'validation_loss_giou': tensor(0.5121, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9311, device='cuda:0'), 'train_loss_ce': tensor(0.4234, device='cuda:0'), 'train_loss_bbox': tensor(0.0337, device='cuda:0'), 'train_loss_giou': tensor(0.1696, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1277, device='cuda:0'), 'validation_loss_ce': tensor(0.4165, device='cuda:0'), 'validation_loss_bbox': tensor(0.1402, device='cuda:0'), 'validation_loss_giou': tensor(0.5051, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0929, device='cuda:0'), 'train_loss_ce': tensor(0.4552, device='cuda:0'), 'train_loss_bbox': tensor(0.0473, device='cuda:0'), 'train_loss_giou': tensor(0.2006, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1496, device='cuda:0'), 'validation_loss_ce': tensor(0.4176, device='cuda:0'), 'validation_loss_bbox': tensor(0.1450, device='cuda:0'), 'validation_loss_giou': tensor(0.5034, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3975, device='cuda:0'), 'train_loss_ce': tensor(0.4237, device='cuda:0'), 'train_loss_bbox': tensor(0.0901, device='cuda:0'), 'train_loss_giou': tensor(0.2617, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1299, device='cuda:0'), 'validation_loss_ce': tensor(0.4137, device='cuda:0'), 'validation_loss_bbox': tensor(0.1402, device='cuda:0'), 'validation_loss_giou': tensor(0.5077, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9148, device='cuda:0'), 'train_loss_ce': tensor(0.4622, device='cuda:0'), 'train_loss_bbox': tensor(0.0363, device='cuda:0'), 'train_loss_giou': tensor(0.1355, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1225, device='cuda:0'), 'validation_loss_ce': tensor(0.4134, device='cuda:0'), 'validation_loss_bbox': tensor(0.1391, device='cuda:0'), 'validation_loss_giou': tensor(0.5068, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3019, device='cuda:0'), 'train_loss_ce': tensor(0.3112, device='cuda:0'), 'train_loss_bbox': tensor(0.0796, device='cuda:0'), 'train_loss_giou': tensor(0.2962, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1178, device='cuda:0'), 'validation_loss_ce': tensor(0.4132, device='cuda:0'), 'validation_loss_bbox': tensor(0.1410, device='cuda:0'), 'validation_loss_giou': tensor(0.4998, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1525, device='cuda:0'), 'train_loss_ce': tensor(0.4719, device='cuda:0'), 'train_loss_bbox': tensor(0.0472, device='cuda:0'), 'train_loss_giou': tensor(0.2224, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1250, device='cuda:0'), 'validation_loss_ce': tensor(0.4134, device='cuda:0'), 'validation_loss_bbox': tensor(0.1414, device='cuda:0'), 'validation_loss_giou': tensor(0.5024, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2827, device='cuda:0'), 'train_loss_ce': tensor(0.4394, device='cuda:0'), 'train_loss_bbox': tensor(0.0746, device='cuda:0'), 'train_loss_giou': tensor(0.2352, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1405, device='cuda:0'), 'validation_loss_ce': tensor(0.4138, device='cuda:0'), 'validation_loss_bbox': tensor(0.1436, device='cuda:0'), 'validation_loss_giou': tensor(0.5044, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8148, device='cuda:0'), 'train_loss_ce': tensor(0.3956, device='cuda:0'), 'train_loss_bbox': tensor(0.0289, device='cuda:0'), 'train_loss_giou': tensor(0.1374, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1228, device='cuda:0'), 'validation_loss_ce': tensor(0.4125, device='cuda:0'), 'validation_loss_bbox': tensor(0.1409, device='cuda:0'), 'validation_loss_giou': tensor(0.5031, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9214, device='cuda:0'), 'train_loss_ce': tensor(0.3907, device='cuda:0'), 'train_loss_bbox': tensor(0.0302, device='cuda:0'), 'train_loss_giou': tensor(0.1898, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1118, device='cuda:0'), 'validation_loss_ce': tensor(0.4104, device='cuda:0'), 'validation_loss_bbox': tensor(0.1421, device='cuda:0'), 'validation_loss_giou': tensor(0.4956, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5057, device='cuda:0'), 'train_loss_ce': tensor(0.4483, device='cuda:0'), 'train_loss_bbox': tensor(0.0721, device='cuda:0'), 'train_loss_giou': tensor(0.3483, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1317, device='cuda:0'), 'validation_loss_ce': tensor(0.4090, device='cuda:0'), 'validation_loss_bbox': tensor(0.1404, device='cuda:0'), 'validation_loss_giou': tensor(0.5103, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1221, device='cuda:0'), 'train_loss_ce': tensor(0.4493, device='cuda:0'), 'train_loss_bbox': tensor(0.0508, device='cuda:0'), 'train_loss_giou': tensor(0.2095, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1367, device='cuda:0'), 'validation_loss_ce': tensor(0.4114, device='cuda:0'), 'validation_loss_bbox': tensor(0.1411, device='cuda:0'), 'validation_loss_giou': tensor(0.5098, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1368, device='cuda:0'), 'train_loss_ce': tensor(0.4356, device='cuda:0'), 'train_loss_bbox': tensor(0.0438, device='cuda:0'), 'train_loss_giou': tensor(0.2411, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1336, device='cuda:0'), 'validation_loss_ce': tensor(0.4083, device='cuda:0'), 'validation_loss_bbox': tensor(0.1421, device='cuda:0'), 'validation_loss_giou': tensor(0.5075, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1612, device='cuda:0'), 'train_loss_ce': tensor(0.4113, device='cuda:0'), 'train_loss_bbox': tensor(0.0482, device='cuda:0'), 'train_loss_giou': tensor(0.2545, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1117, device='cuda:0'), 'validation_loss_ce': tensor(0.4079, device='cuda:0'), 'validation_loss_bbox': tensor(0.1421, device='cuda:0'), 'validation_loss_giou': tensor(0.4967, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1185, device='cuda:0'), 'train_loss_ce': tensor(0.2943, device='cuda:0'), 'train_loss_bbox': tensor(0.0621, device='cuda:0'), 'train_loss_giou': tensor(0.2568, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1248, device='cuda:0'), 'validation_loss_ce': tensor(0.4074, device='cuda:0'), 'validation_loss_bbox': tensor(0.1398, device='cuda:0'), 'validation_loss_giou': tensor(0.5093, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9206, device='cuda:0'), 'train_loss_ce': tensor(0.4064, device='cuda:0'), 'train_loss_bbox': tensor(0.0445, device='cuda:0'), 'train_loss_giou': tensor(0.1458, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1173, device='cuda:0'), 'validation_loss_ce': tensor(0.4072, device='cuda:0'), 'validation_loss_bbox': tensor(0.1396, device='cuda:0'), 'validation_loss_giou': tensor(0.5062, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7730, device='cuda:0'), 'train_loss_ce': tensor(0.3887, device='cuda:0'), 'train_loss_bbox': tensor(0.0164, device='cuda:0'), 'train_loss_giou': tensor(0.1512, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1291, device='cuda:0'), 'validation_loss_ce': tensor(0.4060, device='cuda:0'), 'validation_loss_bbox': tensor(0.1427, device='cuda:0'), 'validation_loss_giou': tensor(0.5048, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6132, device='cuda:0'), 'train_loss_ce': tensor(0.3289, device='cuda:0'), 'train_loss_bbox': tensor(0.0193, device='cuda:0'), 'train_loss_giou': tensor(0.0939, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1423, device='cuda:0'), 'validation_loss_ce': tensor(0.4038, device='cuda:0'), 'validation_loss_bbox': tensor(0.1443, device='cuda:0'), 'validation_loss_giou': tensor(0.5086, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8009, device='cuda:0'), 'train_loss_ce': tensor(0.3546, device='cuda:0'), 'train_loss_bbox': tensor(0.0367, device='cuda:0'), 'train_loss_giou': tensor(0.1314, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1200, device='cuda:0'), 'validation_loss_ce': tensor(0.4053, device='cuda:0'), 'validation_loss_bbox': tensor(0.1417, device='cuda:0'), 'validation_loss_giou': tensor(0.5030, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8336, device='cuda:0'), 'train_loss_ce': tensor(0.3254, device='cuda:0'), 'train_loss_bbox': tensor(0.0249, device='cuda:0'), 'train_loss_giou': tensor(0.1918, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1083, device='cuda:0'), 'validation_loss_ce': tensor(0.4022, device='cuda:0'), 'validation_loss_bbox': tensor(0.1392, device='cuda:0'), 'validation_loss_giou': tensor(0.5050, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9585, device='cuda:0'), 'train_loss_ce': tensor(0.3453, device='cuda:0'), 'train_loss_bbox': tensor(0.0339, device='cuda:0'), 'train_loss_giou': tensor(0.2219, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1192, device='cuda:0'), 'validation_loss_ce': tensor(0.4019, device='cuda:0'), 'validation_loss_bbox': tensor(0.1412, device='cuda:0'), 'validation_loss_giou': tensor(0.5058, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7495, device='cuda:0'), 'train_loss_ce': tensor(0.2481, device='cuda:0'), 'train_loss_bbox': tensor(0.0339, device='cuda:0'), 'train_loss_giou': tensor(0.1659, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1336, device='cuda:0'), 'validation_loss_ce': tensor(0.4017, device='cuda:0'), 'validation_loss_bbox': tensor(0.1430, device='cuda:0'), 'validation_loss_giou': tensor(0.5084, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7292, device='cuda:0'), 'train_loss_ce': tensor(0.3458, device='cuda:0'), 'train_loss_bbox': tensor(0.0222, device='cuda:0'), 'train_loss_giou': tensor(0.1362, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1332, device='cuda:0'), 'validation_loss_ce': tensor(0.4023, device='cuda:0'), 'validation_loss_bbox': tensor(0.1412, device='cuda:0'), 'validation_loss_giou': tensor(0.5125, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8255, device='cuda:0'), 'train_loss_ce': tensor(0.3942, device='cuda:0'), 'train_loss_bbox': tensor(0.0250, device='cuda:0'), 'train_loss_giou': tensor(0.1531, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1243, device='cuda:0'), 'validation_loss_ce': tensor(0.4007, device='cuda:0'), 'validation_loss_bbox': tensor(0.1420, device='cuda:0'), 'validation_loss_giou': tensor(0.5067, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0749, device='cuda:0'), 'train_loss_ce': tensor(0.3056, device='cuda:0'), 'train_loss_bbox': tensor(0.0469, device='cuda:0'), 'train_loss_giou': tensor(0.2673, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0999, device='cuda:0'), 'validation_loss_ce': tensor(0.3984, device='cuda:0'), 'validation_loss_bbox': tensor(0.1404, device='cuda:0'), 'validation_loss_giou': tensor(0.4997, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4790, device='cuda:0'), 'train_loss_ce': tensor(0.2947, device='cuda:0'), 'train_loss_bbox': tensor(0.0190, device='cuda:0'), 'train_loss_giou': tensor(0.0447, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1151, device='cuda:0'), 'validation_loss_ce': tensor(0.3988, device='cuda:0'), 'validation_loss_bbox': tensor(0.1405, device='cuda:0'), 'validation_loss_giou': tensor(0.5069, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8207, device='cuda:0'), 'train_loss_ce': tensor(0.3944, device='cuda:0'), 'train_loss_bbox': tensor(0.0246, device='cuda:0'), 'train_loss_giou': tensor(0.1516, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1153, device='cuda:0'), 'validation_loss_ce': tensor(0.3988, device='cuda:0'), 'validation_loss_bbox': tensor(0.1416, device='cuda:0'), 'validation_loss_giou': tensor(0.5042, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8922, device='cuda:0'), 'train_loss_ce': tensor(0.3801, device='cuda:0'), 'train_loss_bbox': tensor(0.0283, device='cuda:0'), 'train_loss_giou': tensor(0.1852, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1091, device='cuda:0'), 'validation_loss_ce': tensor(0.3963, device='cuda:0'), 'validation_loss_bbox': tensor(0.1413, device='cuda:0'), 'validation_loss_giou': tensor(0.5032, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7544, device='cuda:0'), 'train_loss_ce': tensor(0.3679, device='cuda:0'), 'train_loss_bbox': tensor(0.0226, device='cuda:0'), 'train_loss_giou': tensor(0.1369, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1037, device='cuda:0'), 'validation_loss_ce': tensor(0.3945, device='cuda:0'), 'validation_loss_bbox': tensor(0.1408, device='cuda:0'), 'validation_loss_giou': tensor(0.5026, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8494, device='cuda:0'), 'train_loss_ce': tensor(0.4021, device='cuda:0'), 'train_loss_bbox': tensor(0.0319, device='cuda:0'), 'train_loss_giou': tensor(0.1439, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1075, device='cuda:0'), 'validation_loss_ce': tensor(0.3955, device='cuda:0'), 'validation_loss_bbox': tensor(0.1394, device='cuda:0'), 'validation_loss_giou': tensor(0.5075, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1011, device='cuda:0'), 'train_loss_ce': tensor(0.2965, device='cuda:0'), 'train_loss_bbox': tensor(0.0545, device='cuda:0'), 'train_loss_giou': tensor(0.2661, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1005, device='cuda:0'), 'validation_loss_ce': tensor(0.3948, device='cuda:0'), 'validation_loss_bbox': tensor(0.1392, device='cuda:0'), 'validation_loss_giou': tensor(0.5049, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8811, device='cuda:0'), 'train_loss_ce': tensor(0.4220, device='cuda:0'), 'train_loss_bbox': tensor(0.0271, device='cuda:0'), 'train_loss_giou': tensor(0.1617, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1075, device='cuda:0'), 'validation_loss_ce': tensor(0.3922, device='cuda:0'), 'validation_loss_bbox': tensor(0.1402, device='cuda:0'), 'validation_loss_giou': tensor(0.5072, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9507, device='cuda:0'), 'train_loss_ce': tensor(0.4123, device='cuda:0'), 'train_loss_bbox': tensor(0.0467, device='cuda:0'), 'train_loss_giou': tensor(0.1525, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0923, device='cuda:0'), 'validation_loss_ce': tensor(0.3927, device='cuda:0'), 'validation_loss_bbox': tensor(0.1381, device='cuda:0'), 'validation_loss_giou': tensor(0.5046, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7475, device='cuda:0'), 'train_loss_ce': tensor(0.3125, device='cuda:0'), 'train_loss_bbox': tensor(0.0212, device='cuda:0'), 'train_loss_giou': tensor(0.1645, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1237, device='cuda:0'), 'validation_loss_ce': tensor(0.3954, device='cuda:0'), 'validation_loss_bbox': tensor(0.1422, device='cuda:0'), 'validation_loss_giou': tensor(0.5087, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6469, device='cuda:0'), 'train_loss_ce': tensor(0.2878, device='cuda:0'), 'train_loss_bbox': tensor(0.0293, device='cuda:0'), 'train_loss_giou': tensor(0.1064, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0848, device='cuda:0'), 'validation_loss_ce': tensor(0.3916, device='cuda:0'), 'validation_loss_bbox': tensor(0.1392, device='cuda:0'), 'validation_loss_giou': tensor(0.4985, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8933, device='cuda:0'), 'train_loss_ce': tensor(0.3662, device='cuda:0'), 'train_loss_bbox': tensor(0.0229, device='cuda:0'), 'train_loss_giou': tensor(0.2063, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0869, device='cuda:0'), 'validation_loss_ce': tensor(0.3917, device='cuda:0'), 'validation_loss_bbox': tensor(0.1381, device='cuda:0'), 'validation_loss_giou': tensor(0.5022, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0633, device='cuda:0'), 'train_loss_ce': tensor(0.3324, device='cuda:0'), 'train_loss_bbox': tensor(0.0659, device='cuda:0'), 'train_loss_giou': tensor(0.2006, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1042, device='cuda:0'), 'validation_loss_ce': tensor(0.3922, device='cuda:0'), 'validation_loss_bbox': tensor(0.1409, device='cuda:0'), 'validation_loss_giou': tensor(0.5037, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8239, device='cuda:0'), 'train_loss_ce': tensor(0.3101, device='cuda:0'), 'train_loss_bbox': tensor(0.0372, device='cuda:0'), 'train_loss_giou': tensor(0.1639, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0758, device='cuda:0'), 'validation_loss_ce': tensor(0.3884, device='cuda:0'), 'validation_loss_bbox': tensor(0.1387, device='cuda:0'), 'validation_loss_giou': tensor(0.4970, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9384, device='cuda:0'), 'train_loss_ce': tensor(0.2510, device='cuda:0'), 'train_loss_bbox': tensor(0.0533, device='cuda:0'), 'train_loss_giou': tensor(0.2104, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0869, device='cuda:0'), 'validation_loss_ce': tensor(0.3901, device='cuda:0'), 'validation_loss_bbox': tensor(0.1379, device='cuda:0'), 'validation_loss_giou': tensor(0.5038, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8744, device='cuda:0'), 'train_loss_ce': tensor(0.3924, device='cuda:0'), 'train_loss_bbox': tensor(0.0174, device='cuda:0'), 'train_loss_giou': tensor(0.1976, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0885, device='cuda:0'), 'validation_loss_ce': tensor(0.3889, device='cuda:0'), 'validation_loss_bbox': tensor(0.1385, device='cuda:0'), 'validation_loss_giou': tensor(0.5036, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1609, device='cuda:0'), 'train_loss_ce': tensor(0.3478, device='cuda:0'), 'train_loss_bbox': tensor(0.0622, device='cuda:0'), 'train_loss_giou': tensor(0.2510, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1033, device='cuda:0'), 'validation_loss_ce': tensor(0.3886, device='cuda:0'), 'validation_loss_bbox': tensor(0.1396, device='cuda:0'), 'validation_loss_giou': tensor(0.5083, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9203, device='cuda:0'), 'train_loss_ce': tensor(0.3487, device='cuda:0'), 'train_loss_bbox': tensor(0.0344, device='cuda:0'), 'train_loss_giou': tensor(0.1998, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0921, device='cuda:0'), 'validation_loss_ce': tensor(0.3887, device='cuda:0'), 'validation_loss_bbox': tensor(0.1370, device='cuda:0'), 'validation_loss_giou': tensor(0.5091, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6096, device='cuda:0'), 'train_loss_ce': tensor(0.3470, device='cuda:0'), 'train_loss_bbox': tensor(0.0188, device='cuda:0'), 'train_loss_giou': tensor(0.0844, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1010, device='cuda:0'), 'validation_loss_ce': tensor(0.3869, device='cuda:0'), 'validation_loss_bbox': tensor(0.1409, device='cuda:0'), 'validation_loss_giou': tensor(0.5049, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7825, device='cuda:0'), 'train_loss_ce': tensor(0.4104, device='cuda:0'), 'train_loss_bbox': tensor(0.0248, device='cuda:0'), 'train_loss_giou': tensor(0.1241, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0836, device='cuda:0'), 'validation_loss_ce': tensor(0.3899, device='cuda:0'), 'validation_loss_bbox': tensor(0.1396, device='cuda:0'), 'validation_loss_giou': tensor(0.4978, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7054, device='cuda:0'), 'train_loss_ce': tensor(0.3113, device='cuda:0'), 'train_loss_bbox': tensor(0.0258, device='cuda:0'), 'train_loss_giou': tensor(0.1326, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0793, device='cuda:0'), 'validation_loss_ce': tensor(0.3873, device='cuda:0'), 'validation_loss_bbox': tensor(0.1378, device='cuda:0'), 'validation_loss_giou': tensor(0.5015, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7914, device='cuda:0'), 'train_loss_ce': tensor(0.3711, device='cuda:0'), 'train_loss_bbox': tensor(0.0306, device='cuda:0'), 'train_loss_giou': tensor(0.1337, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0996, device='cuda:0'), 'validation_loss_ce': tensor(0.3848, device='cuda:0'), 'validation_loss_bbox': tensor(0.1405, device='cuda:0'), 'validation_loss_giou': tensor(0.5062, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6059, device='cuda:0'), 'train_loss_ce': tensor(0.3615, device='cuda:0'), 'train_loss_bbox': tensor(0.0192, device='cuda:0'), 'train_loss_giou': tensor(0.0742, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0854, device='cuda:0'), 'validation_loss_ce': tensor(0.3865, device='cuda:0'), 'validation_loss_bbox': tensor(0.1399, device='cuda:0'), 'validation_loss_giou': tensor(0.4997, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6933, device='cuda:0'), 'train_loss_ce': tensor(0.3069, device='cuda:0'), 'train_loss_bbox': tensor(0.0314, device='cuda:0'), 'train_loss_giou': tensor(0.1147, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0872, device='cuda:0'), 'validation_loss_ce': tensor(0.3882, device='cuda:0'), 'validation_loss_bbox': tensor(0.1390, device='cuda:0'), 'validation_loss_giou': tensor(0.5020, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6293, device='cuda:0'), 'train_loss_ce': tensor(0.3646, device='cuda:0'), 'train_loss_bbox': tensor(0.0262, device='cuda:0'), 'train_loss_giou': tensor(0.0668, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0842, device='cuda:0'), 'validation_loss_ce': tensor(0.3905, device='cuda:0'), 'validation_loss_bbox': tensor(0.1379, device='cuda:0'), 'validation_loss_giou': tensor(0.5021, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5778, device='cuda:0'), 'train_loss_ce': tensor(0.3826, device='cuda:0'), 'train_loss_bbox': tensor(0.0159, device='cuda:0'), 'train_loss_giou': tensor(0.0578, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0900, device='cuda:0'), 'validation_loss_ce': tensor(0.3868, device='cuda:0'), 'validation_loss_bbox': tensor(0.1387, device='cuda:0'), 'validation_loss_giou': tensor(0.5049, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6921, device='cuda:0'), 'train_loss_ce': tensor(0.3410, device='cuda:0'), 'train_loss_bbox': tensor(0.0238, device='cuda:0'), 'train_loss_giou': tensor(0.1161, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0823, device='cuda:0'), 'validation_loss_ce': tensor(0.3850, device='cuda:0'), 'validation_loss_bbox': tensor(0.1378, device='cuda:0'), 'validation_loss_giou': tensor(0.5041, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8882, device='cuda:0'), 'train_loss_ce': tensor(0.3605, device='cuda:0'), 'train_loss_bbox': tensor(0.0249, device='cuda:0'), 'train_loss_giou': tensor(0.2017, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1003, device='cuda:0'), 'validation_loss_ce': tensor(0.3853, device='cuda:0'), 'validation_loss_bbox': tensor(0.1408, device='cuda:0'), 'validation_loss_giou': tensor(0.5055, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5992, device='cuda:0'), 'train_loss_ce': tensor(0.3464, device='cuda:0'), 'train_loss_bbox': tensor(0.0156, device='cuda:0'), 'train_loss_giou': tensor(0.0875, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0879, device='cuda:0'), 'validation_loss_ce': tensor(0.3851, device='cuda:0'), 'validation_loss_bbox': tensor(0.1388, device='cuda:0'), 'validation_loss_giou': tensor(0.5043, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6096, device='cuda:0'), 'train_loss_ce': tensor(0.3343, device='cuda:0'), 'train_loss_bbox': tensor(0.0236, device='cuda:0'), 'train_loss_giou': tensor(0.0787, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0906, device='cuda:0'), 'validation_loss_ce': tensor(0.3812, device='cuda:0'), 'validation_loss_bbox': tensor(0.1412, device='cuda:0'), 'validation_loss_giou': tensor(0.5016, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6267, device='cuda:0'), 'train_loss_ce': tensor(0.3777, device='cuda:0'), 'train_loss_bbox': tensor(0.0232, device='cuda:0'), 'train_loss_giou': tensor(0.0664, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0913, device='cuda:0'), 'validation_loss_ce': tensor(0.3798, device='cuda:0'), 'validation_loss_bbox': tensor(0.1406, device='cuda:0'), 'validation_loss_giou': tensor(0.5041, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6255, device='cuda:0'), 'train_loss_ce': tensor(0.3450, device='cuda:0'), 'train_loss_bbox': tensor(0.0175, device='cuda:0'), 'train_loss_giou': tensor(0.0964, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0844, device='cuda:0'), 'validation_loss_ce': tensor(0.3822, device='cuda:0'), 'validation_loss_bbox': tensor(0.1404, device='cuda:0'), 'validation_loss_giou': tensor(0.5000, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3939, device='cuda:0'), 'train_loss_ce': tensor(0.2742, device='cuda:0'), 'train_loss_bbox': tensor(0.0105, device='cuda:0'), 'train_loss_giou': tensor(0.0335, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0746, device='cuda:0'), 'validation_loss_ce': tensor(0.3791, device='cuda:0'), 'validation_loss_bbox': tensor(0.1388, device='cuda:0'), 'validation_loss_giou': tensor(0.5007, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7852, device='cuda:0'), 'train_loss_ce': tensor(0.3263, device='cuda:0'), 'train_loss_bbox': tensor(0.0293, device='cuda:0'), 'train_loss_giou': tensor(0.1562, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0869, device='cuda:0'), 'validation_loss_ce': tensor(0.3811, device='cuda:0'), 'validation_loss_bbox': tensor(0.1396, device='cuda:0'), 'validation_loss_giou': tensor(0.5040, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6884, device='cuda:0'), 'train_loss_ce': tensor(0.4830, device='cuda:0'), 'train_loss_bbox': tensor(0.0154, device='cuda:0'), 'train_loss_giou': tensor(0.0642, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0760, device='cuda:0'), 'validation_loss_ce': tensor(0.3808, device='cuda:0'), 'validation_loss_bbox': tensor(0.1379, device='cuda:0'), 'validation_loss_giou': tensor(0.5029, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6881, device='cuda:0'), 'train_loss_ce': tensor(0.3336, device='cuda:0'), 'train_loss_bbox': tensor(0.0220, device='cuda:0'), 'train_loss_giou': tensor(0.1222, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0817, device='cuda:0'), 'validation_loss_ce': tensor(0.3799, device='cuda:0'), 'validation_loss_bbox': tensor(0.1396, device='cuda:0'), 'validation_loss_giou': tensor(0.5020, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.8012, device='cuda:0'), 'train_loss_ce': tensor(0.4237, device='cuda:0'), 'train_loss_bbox': tensor(0.0208, device='cuda:0'), 'train_loss_giou': tensor(0.1367, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0825, device='cuda:0'), 'validation_loss_ce': tensor(0.3828, device='cuda:0'), 'validation_loss_bbox': tensor(0.1376, device='cuda:0'), 'validation_loss_giou': tensor(0.5057, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.7837, device='cuda:0'), 'train_loss_ce': tensor(0.3133, device='cuda:0'), 'train_loss_bbox': tensor(0.0273, device='cuda:0'), 'train_loss_giou': tensor(0.1670, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0761, device='cuda:0'), 'validation_loss_ce': tensor(0.3789, device='cuda:0'), 'validation_loss_bbox': tensor(0.1383, device='cuda:0'), 'validation_loss_giou': tensor(0.5027, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.5054, device='cuda:0'), 'train_loss_ce': tensor(0.3288, device='cuda:0'), 'train_loss_bbox': tensor(0.0099, device='cuda:0'), 'train_loss_giou': tensor(0.0635, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0716, device='cuda:0'), 'validation_loss_ce': tensor(0.3820, device='cuda:0'), 'validation_loss_bbox': tensor(0.1376, device='cuda:0'), 'validation_loss_giou': tensor(0.5007, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.8877, device='cuda:0'), 'train_loss_ce': tensor(0.3558, device='cuda:0'), 'train_loss_bbox': tensor(0.0270, device='cuda:0'), 'train_loss_giou': tensor(0.1985, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0796, device='cuda:0'), 'validation_loss_ce': tensor(0.3807, device='cuda:0'), 'validation_loss_bbox': tensor(0.1388, device='cuda:0'), 'validation_loss_giou': tensor(0.5024, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.6979, device='cuda:0'), 'train_loss_ce': tensor(0.3572, device='cuda:0'), 'train_loss_bbox': tensor(0.0290, device='cuda:0'), 'train_loss_giou': tensor(0.0979, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0847, device='cuda:0'), 'validation_loss_ce': tensor(0.3765, device='cuda:0'), 'validation_loss_bbox': tensor(0.1413, device='cuda:0'), 'validation_loss_giou': tensor(0.5009, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.5082, device='cuda:0'), 'train_loss_ce': tensor(0.2928, device='cuda:0'), 'train_loss_bbox': tensor(0.0114, device='cuda:0'), 'train_loss_giou': tensor(0.0792, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0553, device='cuda:0'), 'validation_loss_ce': tensor(0.3742, device='cuda:0'), 'validation_loss_bbox': tensor(0.1359, device='cuda:0'), 'validation_loss_giou': tensor(0.5007, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.8845, device='cuda:0'), 'train_loss_ce': tensor(0.2864, device='cuda:0'), 'train_loss_bbox': tensor(0.0290, device='cuda:0'), 'train_loss_giou': tensor(0.2266, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0861, device='cuda:0'), 'validation_loss_ce': tensor(0.3785, device='cuda:0'), 'validation_loss_bbox': tensor(0.1407, device='cuda:0'), 'validation_loss_giou': tensor(0.5020, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.5974, device='cuda:0'), 'train_loss_ce': tensor(0.4018, device='cuda:0'), 'train_loss_bbox': tensor(0.0144, device='cuda:0'), 'train_loss_giou': tensor(0.0619, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0752, device='cuda:0'), 'validation_loss_ce': tensor(0.3750, device='cuda:0'), 'validation_loss_bbox': tensor(0.1402, device='cuda:0'), 'validation_loss_giou': tensor(0.4996, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.3637, device='cuda:0'), 'train_loss_ce': tensor(0.2744, device='cuda:0'), 'train_loss_bbox': tensor(0.0064, device='cuda:0'), 'train_loss_giou': tensor(0.0287, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0774, device='cuda:0'), 'validation_loss_ce': tensor(0.3770, device='cuda:0'), 'validation_loss_bbox': tensor(0.1392, device='cuda:0'), 'validation_loss_giou': tensor(0.5023, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.6040, device='cuda:0'), 'train_loss_ce': tensor(0.3040, device='cuda:0'), 'train_loss_bbox': tensor(0.0241, device='cuda:0'), 'train_loss_giou': tensor(0.0898, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0845, device='cuda:0'), 'validation_loss_ce': tensor(0.3792, device='cuda:0'), 'validation_loss_bbox': tensor(0.1406, device='cuda:0'), 'validation_loss_giou': tensor(0.5011, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.7578, device='cuda:0'), 'train_loss_ce': tensor(0.3810, device='cuda:0'), 'train_loss_bbox': tensor(0.0169, device='cuda:0'), 'train_loss_giou': tensor(0.1462, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0668, device='cuda:0'), 'validation_loss_ce': tensor(0.3782, device='cuda:0'), 'validation_loss_bbox': tensor(0.1396, device='cuda:0'), 'validation_loss_giou': tensor(0.4953, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.4867, device='cuda:0'), 'train_loss_ce': tensor(0.2905, device='cuda:0'), 'train_loss_bbox': tensor(0.0166, device='cuda:0'), 'train_loss_giou': tensor(0.0567, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0872, device='cuda:0'), 'validation_loss_ce': tensor(0.3776, device='cuda:0'), 'validation_loss_bbox': tensor(0.1399, device='cuda:0'), 'validation_loss_giou': tensor(0.5051, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.9170, device='cuda:0'), 'train_loss_ce': tensor(0.2549, device='cuda:0'), 'train_loss_bbox': tensor(0.0464, device='cuda:0'), 'train_loss_giou': tensor(0.2150, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0781, device='cuda:0'), 'validation_loss_ce': tensor(0.3727, device='cuda:0'), 'validation_loss_bbox': tensor(0.1397, device='cuda:0'), 'validation_loss_giou': tensor(0.5034, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.6368, device='cuda:0'), 'train_loss_ce': tensor(0.3867, device='cuda:0'), 'train_loss_bbox': tensor(0.0184, device='cuda:0'), 'train_loss_giou': tensor(0.0790, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0737, device='cuda:0'), 'validation_loss_ce': tensor(0.3775, device='cuda:0'), 'validation_loss_bbox': tensor(0.1386, device='cuda:0'), 'validation_loss_giou': tensor(0.5016, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.7610, device='cuda:0'), 'train_loss_ce': tensor(0.4092, device='cuda:0'), 'train_loss_bbox': tensor(0.0278, device='cuda:0'), 'train_loss_giou': tensor(0.1063, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0573, device='cuda:0'), 'validation_loss_ce': tensor(0.3726, device='cuda:0'), 'validation_loss_bbox': tensor(0.1388, device='cuda:0'), 'validation_loss_giou': tensor(0.4954, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.6094, device='cuda:0'), 'train_loss_ce': tensor(0.4369, device='cuda:0'), 'train_loss_bbox': tensor(0.0119, device='cuda:0'), 'train_loss_giou': tensor(0.0565, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0580, device='cuda:0'), 'validation_loss_ce': tensor(0.3753, device='cuda:0'), 'validation_loss_bbox': tensor(0.1364, device='cuda:0'), 'validation_loss_giou': tensor(0.5004, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.8891, device='cuda:0'), 'train_loss_ce': tensor(0.3163, device='cuda:0'), 'train_loss_bbox': tensor(0.0437, device='cuda:0'), 'train_loss_giou': tensor(0.1771, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0650, device='cuda:0'), 'validation_loss_ce': tensor(0.3748, device='cuda:0'), 'validation_loss_bbox': tensor(0.1377, device='cuda:0'), 'validation_loss_giou': tensor(0.5010, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.6166, device='cuda:0'), 'train_loss_ce': tensor(0.3856, device='cuda:0'), 'train_loss_bbox': tensor(0.0235, device='cuda:0'), 'train_loss_giou': tensor(0.0567, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0606, device='cuda:0'), 'validation_loss_ce': tensor(0.3746, device='cuda:0'), 'validation_loss_bbox': tensor(0.1382, device='cuda:0'), 'validation_loss_giou': tensor(0.4975, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.9550, device='cuda:0'), 'train_loss_ce': tensor(0.2673, device='cuda:0'), 'train_loss_bbox': tensor(0.0452, device='cuda:0'), 'train_loss_giou': tensor(0.2309, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0650, device='cuda:0'), 'validation_loss_ce': tensor(0.3723, device='cuda:0'), 'validation_loss_bbox': tensor(0.1395, device='cuda:0'), 'validation_loss_giou': tensor(0.4976, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.5078, device='cuda:0'), 'train_loss_ce': tensor(0.3627, device='cuda:0'), 'train_loss_bbox': tensor(0.0084, device='cuda:0'), 'train_loss_giou': tensor(0.0515, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0666, device='cuda:0'), 'validation_loss_ce': tensor(0.3718, device='cuda:0'), 'validation_loss_bbox': tensor(0.1378, device='cuda:0'), 'validation_loss_giou': tensor(0.5030, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.8282, device='cuda:0'), 'train_loss_ce': tensor(0.3588, device='cuda:0'), 'train_loss_bbox': tensor(0.0271, device='cuda:0'), 'train_loss_giou': tensor(0.1669, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0642, device='cuda:0'), 'validation_loss_ce': tensor(0.3708, device='cuda:0'), 'validation_loss_bbox': tensor(0.1373, device='cuda:0'), 'validation_loss_giou': tensor(0.5034, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.6075, device='cuda:0'), 'train_loss_ce': tensor(0.3511, device='cuda:0'), 'train_loss_bbox': tensor(0.0315, device='cuda:0'), 'train_loss_giou': tensor(0.0493, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0689, device='cuda:0'), 'validation_loss_ce': tensor(0.3734, device='cuda:0'), 'validation_loss_bbox': tensor(0.1377, device='cuda:0'), 'validation_loss_giou': tensor(0.5036, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.4473, device='cuda:0'), 'train_loss_ce': tensor(0.3391, device='cuda:0'), 'train_loss_bbox': tensor(0.0099, device='cuda:0'), 'train_loss_giou': tensor(0.0294, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0685, device='cuda:0'), 'validation_loss_ce': tensor(0.3731, device='cuda:0'), 'validation_loss_bbox': tensor(0.1395, device='cuda:0'), 'validation_loss_giou': tensor(0.4989, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.7634, device='cuda:0'), 'train_loss_ce': tensor(0.4019, device='cuda:0'), 'train_loss_bbox': tensor(0.0215, device='cuda:0'), 'train_loss_giou': tensor(0.1271, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0531, device='cuda:0'), 'validation_loss_ce': tensor(0.3737, device='cuda:0'), 'validation_loss_bbox': tensor(0.1369, device='cuda:0'), 'validation_loss_giou': tensor(0.4976, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.8903, device='cuda:0'), 'train_loss_ce': tensor(0.3676, device='cuda:0'), 'train_loss_bbox': tensor(0.0298, device='cuda:0'), 'train_loss_giou': tensor(0.1868, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0586, device='cuda:0'), 'validation_loss_ce': tensor(0.3717, device='cuda:0'), 'validation_loss_bbox': tensor(0.1383, device='cuda:0'), 'validation_loss_giou': tensor(0.4978, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.5254, device='cuda:0'), 'train_loss_ce': tensor(0.3838, device='cuda:0'), 'train_loss_bbox': tensor(0.0105, device='cuda:0'), 'train_loss_giou': tensor(0.0444, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0697, device='cuda:0'), 'validation_loss_ce': tensor(0.3752, device='cuda:0'), 'validation_loss_bbox': tensor(0.1405, device='cuda:0'), 'validation_loss_giou': tensor(0.4960, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.5613, device='cuda:0'), 'train_loss_ce': tensor(0.2707, device='cuda:0'), 'train_loss_bbox': tensor(0.0204, device='cuda:0'), 'train_loss_giou': tensor(0.0944, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0661, device='cuda:0'), 'validation_loss_ce': tensor(0.3714, device='cuda:0'), 'validation_loss_bbox': tensor(0.1389, device='cuda:0'), 'validation_loss_giou': tensor(0.5000, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.6561, device='cuda:0'), 'train_loss_ce': tensor(0.3416, device='cuda:0'), 'train_loss_bbox': tensor(0.0226, device='cuda:0'), 'train_loss_giou': tensor(0.1008, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0750, device='cuda:0'), 'validation_loss_ce': tensor(0.3704, device='cuda:0'), 'validation_loss_bbox': tensor(0.1389, device='cuda:0'), 'validation_loss_giou': tensor(0.5050, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.8509, device='cuda:0'), 'train_loss_ce': tensor(0.4440, device='cuda:0'), 'train_loss_bbox': tensor(0.0331, device='cuda:0'), 'train_loss_giou': tensor(0.1208, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0697, device='cuda:0'), 'validation_loss_ce': tensor(0.3714, device='cuda:0'), 'validation_loss_bbox': tensor(0.1391, device='cuda:0'), 'validation_loss_giou': tensor(0.5015, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.5880, device='cuda:0'), 'train_loss_ce': tensor(0.3605, device='cuda:0'), 'train_loss_bbox': tensor(0.0203, device='cuda:0'), 'train_loss_giou': tensor(0.0630, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0712, device='cuda:0'), 'validation_loss_ce': tensor(0.3725, device='cuda:0'), 'validation_loss_bbox': tensor(0.1375, device='cuda:0'), 'validation_loss_giou': tensor(0.5055, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.6613, device='cuda:0'), 'train_loss_ce': tensor(0.3570, device='cuda:0'), 'train_loss_bbox': tensor(0.0202, device='cuda:0'), 'train_loss_giou': tensor(0.1016, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0475, device='cuda:0'), 'validation_loss_ce': tensor(0.3679, device='cuda:0'), 'validation_loss_bbox': tensor(0.1373, device='cuda:0'), 'validation_loss_giou': tensor(0.4964, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.4277, device='cuda:0'), 'train_loss_ce': tensor(0.2422, device='cuda:0'), 'train_loss_bbox': tensor(0.0163, device='cuda:0'), 'train_loss_giou': tensor(0.0520, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0461, device='cuda:0'), 'validation_loss_ce': tensor(0.3711, device='cuda:0'), 'validation_loss_bbox': tensor(0.1372, device='cuda:0'), 'validation_loss_giou': tensor(0.4944, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.5886, device='cuda:0'), 'train_loss_ce': tensor(0.3693, device='cuda:0'), 'train_loss_bbox': tensor(0.0112, device='cuda:0'), 'train_loss_giou': tensor(0.0816, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0708, device='cuda:0'), 'validation_loss_ce': tensor(0.3704, device='cuda:0'), 'validation_loss_bbox': tensor(0.1402, device='cuda:0'), 'validation_loss_giou': tensor(0.4997, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.6053, device='cuda:0'), 'train_loss_ce': tensor(0.3835, device='cuda:0'), 'train_loss_bbox': tensor(0.0173, device='cuda:0'), 'train_loss_giou': tensor(0.0676, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0450, device='cuda:0'), 'validation_loss_ce': tensor(0.3638, device='cuda:0'), 'validation_loss_bbox': tensor(0.1367, device='cuda:0'), 'validation_loss_giou': tensor(0.4988, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.4158, device='cuda:0'), 'train_loss_ce': tensor(0.2725, device='cuda:0'), 'train_loss_bbox': tensor(0.0144, device='cuda:0'), 'train_loss_giou': tensor(0.0357, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0566, device='cuda:0'), 'validation_loss_ce': tensor(0.3707, device='cuda:0'), 'validation_loss_bbox': tensor(0.1398, device='cuda:0'), 'validation_loss_giou': tensor(0.4934, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.8418, device='cuda:0'), 'train_loss_ce': tensor(0.2625, device='cuda:0'), 'train_loss_bbox': tensor(0.0204, device='cuda:0'), 'train_loss_giou': tensor(0.2386, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0334, device='cuda:0'), 'validation_loss_ce': tensor(0.3697, device='cuda:0'), 'validation_loss_bbox': tensor(0.1364, device='cuda:0'), 'validation_loss_giou': tensor(0.4908, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.5034, device='cuda:0'), 'train_loss_ce': tensor(0.2941, device='cuda:0'), 'train_loss_bbox': tensor(0.0111, device='cuda:0'), 'train_loss_giou': tensor(0.0770, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0674, device='cuda:0'), 'validation_loss_ce': tensor(0.3723, device='cuda:0'), 'validation_loss_bbox': tensor(0.1410, device='cuda:0'), 'validation_loss_giou': tensor(0.4950, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.6523, device='cuda:0'), 'train_loss_ce': tensor(0.3584, device='cuda:0'), 'train_loss_bbox': tensor(0.0188, device='cuda:0'), 'train_loss_giou': tensor(0.1001, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0598, device='cuda:0'), 'validation_loss_ce': tensor(0.3679, device='cuda:0'), 'validation_loss_bbox': tensor(0.1397, device='cuda:0'), 'validation_loss_giou': tensor(0.4967, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.5348, device='cuda:0'), 'train_loss_ce': tensor(0.3375, device='cuda:0'), 'train_loss_bbox': tensor(0.0183, device='cuda:0'), 'train_loss_giou': tensor(0.0528, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0531, device='cuda:0'), 'validation_loss_ce': tensor(0.3673, device='cuda:0'), 'validation_loss_bbox': tensor(0.1379, device='cuda:0'), 'validation_loss_giou': tensor(0.4981, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.5354, device='cuda:0'), 'train_loss_ce': tensor(0.3549, device='cuda:0'), 'train_loss_bbox': tensor(0.0126, device='cuda:0'), 'train_loss_giou': tensor(0.0587, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0501, device='cuda:0'), 'validation_loss_ce': tensor(0.3677, device='cuda:0'), 'validation_loss_bbox': tensor(0.1380, device='cuda:0'), 'validation_loss_giou': tensor(0.4962, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.9326, device='cuda:0'), 'train_loss_ce': tensor(0.3911, device='cuda:0'), 'train_loss_bbox': tensor(0.0306, device='cuda:0'), 'train_loss_giou': tensor(0.1942, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0663, device='cuda:0'), 'validation_loss_ce': tensor(0.3731, device='cuda:0'), 'validation_loss_bbox': tensor(0.1390, device='cuda:0'), 'validation_loss_giou': tensor(0.4992, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.8335, device='cuda:0'), 'train_loss_ce': tensor(0.4057, device='cuda:0'), 'train_loss_bbox': tensor(0.0261, device='cuda:0'), 'train_loss_giou': tensor(0.1486, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0627, device='cuda:0'), 'validation_loss_ce': tensor(0.3686, device='cuda:0'), 'validation_loss_bbox': tensor(0.1393, device='cuda:0'), 'validation_loss_giou': tensor(0.4987, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.6832, device='cuda:0'), 'train_loss_ce': tensor(0.3229, device='cuda:0'), 'train_loss_bbox': tensor(0.0227, device='cuda:0'), 'train_loss_giou': tensor(0.1233, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0661, device='cuda:0'), 'validation_loss_ce': tensor(0.3711, device='cuda:0'), 'validation_loss_bbox': tensor(0.1400, device='cuda:0'), 'validation_loss_giou': tensor(0.4975, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.6278, device='cuda:0'), 'train_loss_ce': tensor(0.3236, device='cuda:0'), 'train_loss_bbox': tensor(0.0166, device='cuda:0'), 'train_loss_giou': tensor(0.1105, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0666, device='cuda:0'), 'validation_loss_ce': tensor(0.3676, device='cuda:0'), 'validation_loss_bbox': tensor(0.1379, device='cuda:0'), 'validation_loss_giou': tensor(0.5046, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.5830, device='cuda:0'), 'train_loss_ce': tensor(0.2978, device='cuda:0'), 'train_loss_bbox': tensor(0.0179, device='cuda:0'), 'train_loss_giou': tensor(0.0979, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0478, device='cuda:0'), 'validation_loss_ce': tensor(0.3677, device='cuda:0'), 'validation_loss_bbox': tensor(0.1365, device='cuda:0'), 'validation_loss_giou': tensor(0.4987, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4302, device='cuda:0'), 'train_loss_ce': tensor(0.2734, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.0577, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0563, device='cuda:0'), 'validation_loss_ce': tensor(0.3698, device='cuda:0'), 'validation_loss_bbox': tensor(0.1381, device='cuda:0'), 'validation_loss_giou': tensor(0.4979, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.6049, device='cuda:0'), 'train_loss_ce': tensor(0.2658, device='cuda:0'), 'train_loss_bbox': tensor(0.0185, device='cuda:0'), 'train_loss_giou': tensor(0.1233, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0496, device='cuda:0'), 'validation_loss_ce': tensor(0.3684, device='cuda:0'), 'validation_loss_bbox': tensor(0.1378, device='cuda:0'), 'validation_loss_giou': tensor(0.4962, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.5396, device='cuda:0'), 'train_loss_ce': tensor(0.2976, device='cuda:0'), 'train_loss_bbox': tensor(0.0187, device='cuda:0'), 'train_loss_giou': tensor(0.0743, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0548, device='cuda:0'), 'validation_loss_ce': tensor(0.3689, device='cuda:0'), 'validation_loss_bbox': tensor(0.1370, device='cuda:0'), 'validation_loss_giou': tensor(0.5004, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.5493, device='cuda:0'), 'train_loss_ce': tensor(0.2518, device='cuda:0'), 'train_loss_bbox': tensor(0.0162, device='cuda:0'), 'train_loss_giou': tensor(0.1081, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.0487, device='cuda:0'), 'validation_loss_ce': tensor(0.3697, device='cuda:0'), 'validation_loss_bbox': tensor(0.1388, device='cuda:0'), 'validation_loss_giou': tensor(0.4926, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.4591, device='cuda:0'), 'train_loss_ce': tensor(0.2785, device='cuda:0'), 'train_loss_bbox': tensor(0.0163, device='cuda:0'), 'train_loss_giou': tensor(0.0495, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0402, device='cuda:0'), 'validation_loss_ce': tensor(0.3676, device='cuda:0'), 'validation_loss_bbox': tensor(0.1371, device='cuda:0'), 'validation_loss_giou': tensor(0.4936, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.5917, device='cuda:0'), 'train_loss_ce': tensor(0.3426, device='cuda:0'), 'train_loss_bbox': tensor(0.0118, device='cuda:0'), 'train_loss_giou': tensor(0.0951, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0535, device='cuda:0'), 'validation_loss_ce': tensor(0.3665, device='cuda:0'), 'validation_loss_bbox': tensor(0.1391, device='cuda:0'), 'validation_loss_giou': tensor(0.4959, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.5547, device='cuda:0'), 'train_loss_ce': tensor(0.2345, device='cuda:0'), 'train_loss_bbox': tensor(0.0240, device='cuda:0'), 'train_loss_giou': tensor(0.1001, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0608, device='cuda:0'), 'validation_loss_ce': tensor(0.3674, device='cuda:0'), 'validation_loss_bbox': tensor(0.1384, device='cuda:0'), 'validation_loss_giou': tensor(0.5008, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.5960, device='cuda:0'), 'train_loss_ce': tensor(0.3333, device='cuda:0'), 'train_loss_bbox': tensor(0.0123, device='cuda:0'), 'train_loss_giou': tensor(0.1006, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0545, device='cuda:0'), 'validation_loss_ce': tensor(0.3621, device='cuda:0'), 'validation_loss_bbox': tensor(0.1391, device='cuda:0'), 'validation_loss_giou': tensor(0.4985, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.6674, device='cuda:0'), 'train_loss_ce': tensor(0.3912, device='cuda:0'), 'train_loss_bbox': tensor(0.0248, device='cuda:0'), 'train_loss_giou': tensor(0.0760, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0435, device='cuda:0'), 'validation_loss_ce': tensor(0.3657, device='cuda:0'), 'validation_loss_bbox': tensor(0.1368, device='cuda:0'), 'validation_loss_giou': tensor(0.4968, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.5891, device='cuda:0'), 'train_loss_ce': tensor(0.2502, device='cuda:0'), 'train_loss_bbox': tensor(0.0322, device='cuda:0'), 'train_loss_giou': tensor(0.0889, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0493, device='cuda:0'), 'validation_loss_ce': tensor(0.3645, device='cuda:0'), 'validation_loss_bbox': tensor(0.1365, device='cuda:0'), 'validation_loss_giou': tensor(0.5011, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4692, device='cuda:0'), 'train_loss_ce': tensor(0.3298, device='cuda:0'), 'train_loss_bbox': tensor(0.0112, device='cuda:0'), 'train_loss_giou': tensor(0.0418, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0610, device='cuda:0'), 'validation_loss_ce': tensor(0.3639, device='cuda:0'), 'validation_loss_bbox': tensor(0.1385, device='cuda:0'), 'validation_loss_giou': tensor(0.5023, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.5152, device='cuda:0'), 'train_loss_ce': tensor(0.3155, device='cuda:0'), 'train_loss_bbox': tensor(0.0094, device='cuda:0'), 'train_loss_giou': tensor(0.0765, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0628, device='cuda:0'), 'validation_loss_ce': tensor(0.3684, device='cuda:0'), 'validation_loss_bbox': tensor(0.1391, device='cuda:0'), 'validation_loss_giou': tensor(0.4993, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.6465, device='cuda:0'), 'train_loss_ce': tensor(0.3462, device='cuda:0'), 'train_loss_bbox': tensor(0.0150, device='cuda:0'), 'train_loss_giou': tensor(0.1127, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0497, device='cuda:0'), 'validation_loss_ce': tensor(0.3638, device='cuda:0'), 'validation_loss_bbox': tensor(0.1392, device='cuda:0'), 'validation_loss_giou': tensor(0.4949, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.8643, device='cuda:0'), 'train_loss_ce': tensor(0.3190, device='cuda:0'), 'train_loss_bbox': tensor(0.0326, device='cuda:0'), 'train_loss_giou': tensor(0.1911, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0464, device='cuda:0'), 'validation_loss_ce': tensor(0.3647, device='cuda:0'), 'validation_loss_bbox': tensor(0.1374, device='cuda:0'), 'validation_loss_giou': tensor(0.4974, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.5726, device='cuda:0'), 'train_loss_ce': tensor(0.3466, device='cuda:0'), 'train_loss_bbox': tensor(0.0145, device='cuda:0'), 'train_loss_giou': tensor(0.0768, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0343, device='cuda:0'), 'validation_loss_ce': tensor(0.3672, device='cuda:0'), 'validation_loss_bbox': tensor(0.1371, device='cuda:0'), 'validation_loss_giou': tensor(0.4909, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.6339, device='cuda:0'), 'train_loss_ce': tensor(0.2690, device='cuda:0'), 'train_loss_bbox': tensor(0.0302, device='cuda:0'), 'train_loss_giou': tensor(0.1069, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0432, device='cuda:0'), 'validation_loss_ce': tensor(0.3640, device='cuda:0'), 'validation_loss_bbox': tensor(0.1363, device='cuda:0'), 'validation_loss_giou': tensor(0.4989, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.4857, device='cuda:0'), 'train_loss_ce': tensor(0.2442, device='cuda:0'), 'train_loss_bbox': tensor(0.0124, device='cuda:0'), 'train_loss_giou': tensor(0.0898, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0525, device='cuda:0'), 'validation_loss_ce': tensor(0.3651, device='cuda:0'), 'validation_loss_bbox': tensor(0.1377, device='cuda:0'), 'validation_loss_giou': tensor(0.4994, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.3888, device='cuda:0'), 'train_loss_ce': tensor(0.2466, device='cuda:0'), 'train_loss_bbox': tensor(0.0086, device='cuda:0'), 'train_loss_giou': tensor(0.0496, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0449, device='cuda:0'), 'validation_loss_ce': tensor(0.3660, device='cuda:0'), 'validation_loss_bbox': tensor(0.1378, device='cuda:0'), 'validation_loss_giou': tensor(0.4950, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.6585, device='cuda:0'), 'train_loss_ce': tensor(0.3248, device='cuda:0'), 'train_loss_bbox': tensor(0.0221, device='cuda:0'), 'train_loss_giou': tensor(0.1115, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0485, device='cuda:0'), 'validation_loss_ce': tensor(0.3656, device='cuda:0'), 'validation_loss_bbox': tensor(0.1383, device='cuda:0'), 'validation_loss_giou': tensor(0.4956, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.5130, device='cuda:0'), 'train_loss_ce': tensor(0.3364, device='cuda:0'), 'train_loss_bbox': tensor(0.0156, device='cuda:0'), 'train_loss_giou': tensor(0.0493, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0493, device='cuda:0'), 'validation_loss_ce': tensor(0.3620, device='cuda:0'), 'validation_loss_bbox': tensor(0.1385, device='cuda:0'), 'validation_loss_giou': tensor(0.4973, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.6056, device='cuda:0'), 'train_loss_ce': tensor(0.3136, device='cuda:0'), 'train_loss_bbox': tensor(0.0142, device='cuda:0'), 'train_loss_giou': tensor(0.1105, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0433, device='cuda:0'), 'validation_loss_ce': tensor(0.3654, device='cuda:0'), 'validation_loss_bbox': tensor(0.1370, device='cuda:0'), 'validation_loss_giou': tensor(0.4965, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.4942, device='cuda:0'), 'train_loss_ce': tensor(0.3139, device='cuda:0'), 'train_loss_bbox': tensor(0.0166, device='cuda:0'), 'train_loss_giou': tensor(0.0487, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0316, device='cuda:0'), 'validation_loss_ce': tensor(0.3642, device='cuda:0'), 'validation_loss_bbox': tensor(0.1379, device='cuda:0'), 'validation_loss_giou': tensor(0.4889, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.4191, device='cuda:0'), 'train_loss_ce': tensor(0.2339, device='cuda:0'), 'train_loss_bbox': tensor(0.0165, device='cuda:0'), 'train_loss_giou': tensor(0.0512, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0297, device='cuda:0'), 'validation_loss_ce': tensor(0.3602, device='cuda:0'), 'validation_loss_bbox': tensor(0.1358, device='cuda:0'), 'validation_loss_giou': tensor(0.4953, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.4990, device='cuda:0'), 'train_loss_ce': tensor(0.2711, device='cuda:0'), 'train_loss_bbox': tensor(0.0127, device='cuda:0'), 'train_loss_giou': tensor(0.0822, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0425, device='cuda:0'), 'validation_loss_ce': tensor(0.3615, device='cuda:0'), 'validation_loss_bbox': tensor(0.1359, device='cuda:0'), 'validation_loss_giou': tensor(0.5007, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.8494, device='cuda:0'), 'train_loss_ce': tensor(0.4000, device='cuda:0'), 'train_loss_bbox': tensor(0.0291, device='cuda:0'), 'train_loss_giou': tensor(0.1519, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0399, device='cuda:0'), 'validation_loss_ce': tensor(0.3619, device='cuda:0'), 'validation_loss_bbox': tensor(0.1374, device='cuda:0'), 'validation_loss_giou': tensor(0.4956, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.4167, device='cuda:0'), 'train_loss_ce': tensor(0.2385, device='cuda:0'), 'train_loss_bbox': tensor(0.0114, device='cuda:0'), 'train_loss_giou': tensor(0.0607, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0723, device='cuda:0'), 'validation_loss_ce': tensor(0.3610, device='cuda:0'), 'validation_loss_bbox': tensor(0.1403, device='cuda:0'), 'validation_loss_giou': tensor(0.5049, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4089, device='cuda:0'), 'train_loss_ce': tensor(0.2351, device='cuda:0'), 'train_loss_bbox': tensor(0.0100, device='cuda:0'), 'train_loss_giou': tensor(0.0620, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0439, device='cuda:0'), 'validation_loss_ce': tensor(0.3606, device='cuda:0'), 'validation_loss_bbox': tensor(0.1391, device='cuda:0'), 'validation_loss_giou': tensor(0.4938, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.3118, device='cuda:0'), 'train_loss_ce': tensor(0.2193, device='cuda:0'), 'train_loss_bbox': tensor(0.0082, device='cuda:0'), 'train_loss_giou': tensor(0.0257, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0424, device='cuda:0'), 'validation_loss_ce': tensor(0.3624, device='cuda:0'), 'validation_loss_bbox': tensor(0.1363, device='cuda:0'), 'validation_loss_giou': tensor(0.4992, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.3934, device='cuda:0'), 'train_loss_ce': tensor(0.2702, device='cuda:0'), 'train_loss_bbox': tensor(0.0079, device='cuda:0'), 'train_loss_giou': tensor(0.0420, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0310, device='cuda:0'), 'validation_loss_ce': tensor(0.3617, device='cuda:0'), 'validation_loss_bbox': tensor(0.1361, device='cuda:0'), 'validation_loss_giou': tensor(0.4945, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.6778, device='cuda:0'), 'train_loss_ce': tensor(0.2908, device='cuda:0'), 'train_loss_bbox': tensor(0.0159, device='cuda:0'), 'train_loss_giou': tensor(0.1538, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0415, device='cuda:0'), 'validation_loss_ce': tensor(0.3633, device='cuda:0'), 'validation_loss_bbox': tensor(0.1372, device='cuda:0'), 'validation_loss_giou': tensor(0.4960, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.4055, device='cuda:0'), 'train_loss_ce': tensor(0.2330, device='cuda:0'), 'train_loss_bbox': tensor(0.0136, device='cuda:0'), 'train_loss_giou': tensor(0.0521, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0478, device='cuda:0'), 'validation_loss_ce': tensor(0.3655, device='cuda:0'), 'validation_loss_bbox': tensor(0.1387, device='cuda:0'), 'validation_loss_giou': tensor(0.4945, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.5781, device='cuda:0'), 'train_loss_ce': tensor(0.2787, device='cuda:0'), 'train_loss_bbox': tensor(0.0145, device='cuda:0'), 'train_loss_giou': tensor(0.1134, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0468, device='cuda:0'), 'validation_loss_ce': tensor(0.3624, device='cuda:0'), 'validation_loss_bbox': tensor(0.1396, device='cuda:0'), 'validation_loss_giou': tensor(0.4933, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.5564, device='cuda:0'), 'train_loss_ce': tensor(0.3392, device='cuda:0'), 'train_loss_bbox': tensor(0.0185, device='cuda:0'), 'train_loss_giou': tensor(0.0625, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0432, device='cuda:0'), 'validation_loss_ce': tensor(0.3648, device='cuda:0'), 'validation_loss_bbox': tensor(0.1379, device='cuda:0'), 'validation_loss_giou': tensor(0.4945, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.6028, device='cuda:0'), 'train_loss_ce': tensor(0.3735, device='cuda:0'), 'train_loss_bbox': tensor(0.0174, device='cuda:0'), 'train_loss_giou': tensor(0.0710, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0325, device='cuda:0'), 'validation_loss_ce': tensor(0.3605, device='cuda:0'), 'validation_loss_bbox': tensor(0.1366, device='cuda:0'), 'validation_loss_giou': tensor(0.4944, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4906, device='cuda:0'), 'train_loss_ce': tensor(0.3001, device='cuda:0'), 'train_loss_bbox': tensor(0.0142, device='cuda:0'), 'train_loss_giou': tensor(0.0597, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0338, device='cuda:0'), 'validation_loss_ce': tensor(0.3623, device='cuda:0'), 'validation_loss_bbox': tensor(0.1366, device='cuda:0'), 'validation_loss_giou': tensor(0.4942, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.4967, device='cuda:0'), 'train_loss_ce': tensor(0.3098, device='cuda:0'), 'train_loss_bbox': tensor(0.0070, device='cuda:0'), 'train_loss_giou': tensor(0.0760, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0513, device='cuda:0'), 'validation_loss_ce': tensor(0.3639, device='cuda:0'), 'validation_loss_bbox': tensor(0.1391, device='cuda:0'), 'validation_loss_giou': tensor(0.4960, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.6037, device='cuda:0'), 'train_loss_ce': tensor(0.3064, device='cuda:0'), 'train_loss_bbox': tensor(0.0267, device='cuda:0'), 'train_loss_giou': tensor(0.0819, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0361, device='cuda:0'), 'validation_loss_ce': tensor(0.3624, device='cuda:0'), 'validation_loss_bbox': tensor(0.1372, device='cuda:0'), 'validation_loss_giou': tensor(0.4939, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.6187, device='cuda:0'), 'train_loss_ce': tensor(0.3508, device='cuda:0'), 'train_loss_bbox': tensor(0.0119, device='cuda:0'), 'train_loss_giou': tensor(0.1041, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0303, device='cuda:0'), 'validation_loss_ce': tensor(0.3620, device='cuda:0'), 'validation_loss_bbox': tensor(0.1370, device='cuda:0'), 'validation_loss_giou': tensor(0.4915, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.4406, device='cuda:0'), 'train_loss_ce': tensor(0.3039, device='cuda:0'), 'train_loss_bbox': tensor(0.0124, device='cuda:0'), 'train_loss_giou': tensor(0.0374, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0509, device='cuda:0'), 'validation_loss_ce': tensor(0.3631, device='cuda:0'), 'validation_loss_bbox': tensor(0.1377, device='cuda:0'), 'validation_loss_giou': tensor(0.4996, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.4122, device='cuda:0'), 'train_loss_ce': tensor(0.3305, device='cuda:0'), 'train_loss_bbox': tensor(0.0056, device='cuda:0'), 'train_loss_giou': tensor(0.0268, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0316, device='cuda:0'), 'validation_loss_ce': tensor(0.3626, device='cuda:0'), 'validation_loss_bbox': tensor(0.1373, device='cuda:0'), 'validation_loss_giou': tensor(0.4912, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.4850, device='cuda:0'), 'train_loss_ce': tensor(0.2601, device='cuda:0'), 'train_loss_bbox': tensor(0.0141, device='cuda:0'), 'train_loss_giou': tensor(0.0773, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0361, device='cuda:0'), 'validation_loss_ce': tensor(0.3647, device='cuda:0'), 'validation_loss_bbox': tensor(0.1395, device='cuda:0'), 'validation_loss_giou': tensor(0.4869, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.5281, device='cuda:0'), 'train_loss_ce': tensor(0.3924, device='cuda:0'), 'train_loss_bbox': tensor(0.0146, device='cuda:0'), 'train_loss_giou': tensor(0.0313, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0547, device='cuda:0'), 'validation_loss_ce': tensor(0.3592, device='cuda:0'), 'validation_loss_bbox': tensor(0.1376, device='cuda:0'), 'validation_loss_giou': tensor(0.5037, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.6603, device='cuda:0'), 'train_loss_ce': tensor(0.2691, device='cuda:0'), 'train_loss_bbox': tensor(0.0272, device='cuda:0'), 'train_loss_giou': tensor(0.1277, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0100, device='cuda:0'), 'validation_loss_ce': tensor(0.3594, device='cuda:0'), 'validation_loss_bbox': tensor(0.1351, device='cuda:0'), 'validation_loss_giou': tensor(0.4875, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.4058, device='cuda:0'), 'train_loss_ce': tensor(0.2253, device='cuda:0'), 'train_loss_bbox': tensor(0.0133, device='cuda:0'), 'train_loss_giou': tensor(0.0570, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0277, device='cuda:0'), 'validation_loss_ce': tensor(0.3626, device='cuda:0'), 'validation_loss_bbox': tensor(0.1368, device='cuda:0'), 'validation_loss_giou': tensor(0.4905, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.7306, device='cuda:0'), 'train_loss_ce': tensor(0.3383, device='cuda:0'), 'train_loss_bbox': tensor(0.0284, device='cuda:0'), 'train_loss_giou': tensor(0.1251, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0236, device='cuda:0'), 'validation_loss_ce': tensor(0.3624, device='cuda:0'), 'validation_loss_bbox': tensor(0.1359, device='cuda:0'), 'validation_loss_giou': tensor(0.4909, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.5640, device='cuda:0'), 'train_loss_ce': tensor(0.3541, device='cuda:0'), 'train_loss_bbox': tensor(0.0218, device='cuda:0'), 'train_loss_giou': tensor(0.0505, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0291, device='cuda:0'), 'validation_loss_ce': tensor(0.3625, device='cuda:0'), 'validation_loss_bbox': tensor(0.1370, device='cuda:0'), 'validation_loss_giou': tensor(0.4909, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.5082, device='cuda:0'), 'train_loss_ce': tensor(0.3727, device='cuda:0'), 'train_loss_bbox': tensor(0.0096, device='cuda:0'), 'train_loss_giou': tensor(0.0438, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0388, device='cuda:0'), 'validation_loss_ce': tensor(0.3617, device='cuda:0'), 'validation_loss_bbox': tensor(0.1340, device='cuda:0'), 'validation_loss_giou': tensor(0.5035, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.4152, device='cuda:0'), 'train_loss_ce': tensor(0.2288, device='cuda:0'), 'train_loss_bbox': tensor(0.0145, device='cuda:0'), 'train_loss_giou': tensor(0.0568, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0347, device='cuda:0'), 'validation_loss_ce': tensor(0.3640, device='cuda:0'), 'validation_loss_bbox': tensor(0.1357, device='cuda:0'), 'validation_loss_giou': tensor(0.4960, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.5949, device='cuda:0'), 'train_loss_ce': tensor(0.3790, device='cuda:0'), 'train_loss_bbox': tensor(0.0149, device='cuda:0'), 'train_loss_giou': tensor(0.0708, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.0368, device='cuda:0'), 'validation_loss_ce': tensor(0.3581, device='cuda:0'), 'validation_loss_bbox': tensor(0.1368, device='cuda:0'), 'validation_loss_giou': tensor(0.4973, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.6885, device='cuda:0'), 'train_loss_ce': tensor(0.2315, device='cuda:0'), 'train_loss_bbox': tensor(0.0182, device='cuda:0'), 'train_loss_giou': tensor(0.1830, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0455, device='cuda:0'), 'validation_loss_ce': tensor(0.3619, device='cuda:0'), 'validation_loss_bbox': tensor(0.1368, device='cuda:0'), 'validation_loss_giou': tensor(0.4997, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.7153, device='cuda:0'), 'train_loss_ce': tensor(0.3822, device='cuda:0'), 'train_loss_bbox': tensor(0.0349, device='cuda:0'), 'train_loss_giou': tensor(0.0793, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0255, device='cuda:0'), 'validation_loss_ce': tensor(0.3571, device='cuda:0'), 'validation_loss_bbox': tensor(0.1356, device='cuda:0'), 'validation_loss_giou': tensor(0.4953, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.7475, device='cuda:0'), 'train_loss_ce': tensor(0.3716, device='cuda:0'), 'train_loss_bbox': tensor(0.0273, device='cuda:0'), 'train_loss_giou': tensor(0.1197, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0288, device='cuda:0'), 'validation_loss_ce': tensor(0.3628, device='cuda:0'), 'validation_loss_bbox': tensor(0.1368, device='cuda:0'), 'validation_loss_giou': tensor(0.4911, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.5192, device='cuda:0'), 'train_loss_ce': tensor(0.3116, device='cuda:0'), 'train_loss_bbox': tensor(0.0164, device='cuda:0'), 'train_loss_giou': tensor(0.0629, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0330, device='cuda:0'), 'validation_loss_ce': tensor(0.3568, device='cuda:0'), 'validation_loss_bbox': tensor(0.1382, device='cuda:0'), 'validation_loss_giou': tensor(0.4927, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.6829, device='cuda:0'), 'train_loss_ce': tensor(0.3120, device='cuda:0'), 'train_loss_bbox': tensor(0.0112, device='cuda:0'), 'train_loss_giou': tensor(0.1575, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0185, device='cuda:0'), 'validation_loss_ce': tensor(0.3604, device='cuda:0'), 'validation_loss_bbox': tensor(0.1367, device='cuda:0'), 'validation_loss_giou': tensor(0.4873, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.4845, device='cuda:0'), 'train_loss_ce': tensor(0.3617, device='cuda:0'), 'train_loss_bbox': tensor(0.0089, device='cuda:0'), 'train_loss_giou': tensor(0.0392, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0209, device='cuda:0'), 'validation_loss_ce': tensor(0.3578, device='cuda:0'), 'validation_loss_bbox': tensor(0.1362, device='cuda:0'), 'validation_loss_giou': tensor(0.4911, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.3852, device='cuda:0'), 'train_loss_ce': tensor(0.2701, device='cuda:0'), 'train_loss_bbox': tensor(0.0108, device='cuda:0'), 'train_loss_giou': tensor(0.0307, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0438, device='cuda:0'), 'validation_loss_ce': tensor(0.3605, device='cuda:0'), 'validation_loss_bbox': tensor(0.1367, device='cuda:0'), 'validation_loss_giou': tensor(0.4999, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.4716, device='cuda:0'), 'train_loss_ce': tensor(0.2753, device='cuda:0'), 'train_loss_bbox': tensor(0.0160, device='cuda:0'), 'train_loss_giou': tensor(0.0580, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0299, device='cuda:0'), 'validation_loss_ce': tensor(0.3603, device='cuda:0'), 'validation_loss_bbox': tensor(0.1366, device='cuda:0'), 'validation_loss_giou': tensor(0.4934, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.4955, device='cuda:0'), 'train_loss_ce': tensor(0.2762, device='cuda:0'), 'train_loss_bbox': tensor(0.0109, device='cuda:0'), 'train_loss_giou': tensor(0.0823, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0254, device='cuda:0'), 'validation_loss_ce': tensor(0.3617, device='cuda:0'), 'validation_loss_bbox': tensor(0.1368, device='cuda:0'), 'validation_loss_giou': tensor(0.4898, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.5306, device='cuda:0'), 'train_loss_ce': tensor(0.3455, device='cuda:0'), 'train_loss_bbox': tensor(0.0101, device='cuda:0'), 'train_loss_giou': tensor(0.0674, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0112, device='cuda:0'), 'validation_loss_ce': tensor(0.3596, device='cuda:0'), 'validation_loss_bbox': tensor(0.1361, device='cuda:0'), 'validation_loss_giou': tensor(0.4856, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.3781, device='cuda:0'), 'train_loss_ce': tensor(0.2351, device='cuda:0'), 'train_loss_bbox': tensor(0.0112, device='cuda:0'), 'train_loss_giou': tensor(0.0436, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0208, device='cuda:0'), 'validation_loss_ce': tensor(0.3565, device='cuda:0'), 'validation_loss_bbox': tensor(0.1343, device='cuda:0'), 'validation_loss_giou': tensor(0.4965, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.4573, device='cuda:0'), 'train_loss_ce': tensor(0.2423, device='cuda:0'), 'train_loss_bbox': tensor(0.0175, device='cuda:0'), 'train_loss_giou': tensor(0.0637, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0452, device='cuda:0'), 'validation_loss_ce': tensor(0.3614, device='cuda:0'), 'validation_loss_bbox': tensor(0.1373, device='cuda:0'), 'validation_loss_giou': tensor(0.4986, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.4450, device='cuda:0'), 'train_loss_ce': tensor(0.2708, device='cuda:0'), 'train_loss_bbox': tensor(0.0115, device='cuda:0'), 'train_loss_giou': tensor(0.0583, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0119, device='cuda:0'), 'validation_loss_ce': tensor(0.3592, device='cuda:0'), 'validation_loss_bbox': tensor(0.1346, device='cuda:0'), 'validation_loss_giou': tensor(0.4898, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.4789, device='cuda:0'), 'train_loss_ce': tensor(0.3308, device='cuda:0'), 'train_loss_bbox': tensor(0.0136, device='cuda:0'), 'train_loss_giou': tensor(0.0399, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0419, device='cuda:0'), 'validation_loss_ce': tensor(0.3583, device='cuda:0'), 'validation_loss_bbox': tensor(0.1371, device='cuda:0'), 'validation_loss_giou': tensor(0.4991, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.6478, device='cuda:0'), 'train_loss_ce': tensor(0.4107, device='cuda:0'), 'train_loss_bbox': tensor(0.0130, device='cuda:0'), 'train_loss_giou': tensor(0.0861, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0154, device='cuda:0'), 'validation_loss_ce': tensor(0.3627, device='cuda:0'), 'validation_loss_bbox': tensor(0.1351, device='cuda:0'), 'validation_loss_giou': tensor(0.4886, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.6499, device='cuda:0'), 'train_loss_ce': tensor(0.2812, device='cuda:0'), 'train_loss_bbox': tensor(0.0207, device='cuda:0'), 'train_loss_giou': tensor(0.1325, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0335, device='cuda:0'), 'validation_loss_ce': tensor(0.3596, device='cuda:0'), 'validation_loss_bbox': tensor(0.1353, device='cuda:0'), 'validation_loss_giou': tensor(0.4988, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.5725, device='cuda:0'), 'train_loss_ce': tensor(0.3746, device='cuda:0'), 'train_loss_bbox': tensor(0.0104, device='cuda:0'), 'train_loss_giou': tensor(0.0730, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0246, device='cuda:0'), 'validation_loss_ce': tensor(0.3544, device='cuda:0'), 'validation_loss_bbox': tensor(0.1355, device='cuda:0'), 'validation_loss_giou': tensor(0.4964, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4563, device='cuda:0'), 'train_loss_ce': tensor(0.2761, device='cuda:0'), 'train_loss_bbox': tensor(0.0134, device='cuda:0'), 'train_loss_giou': tensor(0.0565, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0236, device='cuda:0'), 'validation_loss_ce': tensor(0.3580, device='cuda:0'), 'validation_loss_bbox': tensor(0.1371, device='cuda:0'), 'validation_loss_giou': tensor(0.4899, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.4374, device='cuda:0'), 'train_loss_ce': tensor(0.2674, device='cuda:0'), 'train_loss_bbox': tensor(0.0116, device='cuda:0'), 'train_loss_giou': tensor(0.0559, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0331, device='cuda:0'), 'validation_loss_ce': tensor(0.3597, device='cuda:0'), 'validation_loss_bbox': tensor(0.1374, device='cuda:0'), 'validation_loss_giou': tensor(0.4931, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.5414, device='cuda:0'), 'train_loss_ce': tensor(0.3151, device='cuda:0'), 'train_loss_bbox': tensor(0.0114, device='cuda:0'), 'train_loss_giou': tensor(0.0848, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0296, device='cuda:0'), 'validation_loss_ce': tensor(0.3566, device='cuda:0'), 'validation_loss_bbox': tensor(0.1373, device='cuda:0'), 'validation_loss_giou': tensor(0.4933, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.6388, device='cuda:0'), 'train_loss_ce': tensor(0.3041, device='cuda:0'), 'train_loss_bbox': tensor(0.0180, device='cuda:0'), 'train_loss_giou': tensor(0.1224, device='cuda:0'), 'train_cardinality_error': tensor(1.6000, device='cuda:0'), 'validation_loss': tensor(2.0176, device='cuda:0'), 'validation_loss_ce': tensor(0.3586, device='cuda:0'), 'validation_loss_bbox': tensor(0.1346, device='cuda:0'), 'validation_loss_giou': tensor(0.4929, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.6275, device='cuda:0'), 'train_loss_ce': tensor(0.3081, device='cuda:0'), 'train_loss_bbox': tensor(0.0226, device='cuda:0'), 'train_loss_giou': tensor(0.1032, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0253, device='cuda:0'), 'validation_loss_ce': tensor(0.3586, device='cuda:0'), 'validation_loss_bbox': tensor(0.1347, device='cuda:0'), 'validation_loss_giou': tensor(0.4965, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.5219, device='cuda:0'), 'train_loss_ce': tensor(0.2454, device='cuda:0'), 'train_loss_bbox': tensor(0.0204, device='cuda:0'), 'train_loss_giou': tensor(0.0872, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0038, device='cuda:0'), 'validation_loss_ce': tensor(0.3586, device='cuda:0'), 'validation_loss_bbox': tensor(0.1324, device='cuda:0'), 'validation_loss_giou': tensor(0.4915, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.7775, device='cuda:0'), 'train_loss_ce': tensor(0.3379, device='cuda:0'), 'train_loss_bbox': tensor(0.0230, device='cuda:0'), 'train_loss_giou': tensor(0.1624, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0351, device='cuda:0'), 'validation_loss_ce': tensor(0.3605, device='cuda:0'), 'validation_loss_bbox': tensor(0.1375, device='cuda:0'), 'validation_loss_giou': tensor(0.4937, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.2831, device='cuda:0'), 'train_loss_ce': tensor(0.1647, device='cuda:0'), 'train_loss_bbox': tensor(0.0099, device='cuda:0'), 'train_loss_giou': tensor(0.0344, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0214, device='cuda:0'), 'validation_loss_ce': tensor(0.3583, device='cuda:0'), 'validation_loss_bbox': tensor(0.1353, device='cuda:0'), 'validation_loss_giou': tensor(0.4932, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.3923, device='cuda:0'), 'train_loss_ce': tensor(0.2249, device='cuda:0'), 'train_loss_bbox': tensor(0.0101, device='cuda:0'), 'train_loss_giou': tensor(0.0584, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0110, device='cuda:0'), 'validation_loss_ce': tensor(0.3574, device='cuda:0'), 'validation_loss_bbox': tensor(0.1336, device='cuda:0'), 'validation_loss_giou': tensor(0.4929, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.4221, device='cuda:0'), 'train_loss_ce': tensor(0.2623, device='cuda:0'), 'train_loss_bbox': tensor(0.0126, device='cuda:0'), 'train_loss_giou': tensor(0.0483, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0426, device='cuda:0'), 'validation_loss_ce': tensor(0.3594, device='cuda:0'), 'validation_loss_bbox': tensor(0.1355, device='cuda:0'), 'validation_loss_giou': tensor(0.5028, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.5682, device='cuda:0'), 'train_loss_ce': tensor(0.3207, device='cuda:0'), 'train_loss_bbox': tensor(0.0221, device='cuda:0'), 'train_loss_giou': tensor(0.0686, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0204, device='cuda:0'), 'validation_loss_ce': tensor(0.3605, device='cuda:0'), 'validation_loss_bbox': tensor(0.1344, device='cuda:0'), 'validation_loss_giou': tensor(0.4940, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.4645, device='cuda:0'), 'train_loss_ce': tensor(0.2950, device='cuda:0'), 'train_loss_bbox': tensor(0.0097, device='cuda:0'), 'train_loss_giou': tensor(0.0604, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0387, device='cuda:0'), 'validation_loss_ce': tensor(0.3598, device='cuda:0'), 'validation_loss_bbox': tensor(0.1364, device='cuda:0'), 'validation_loss_giou': tensor(0.4985, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4292, device='cuda:0'), 'train_loss_ce': tensor(0.2658, device='cuda:0'), 'train_loss_bbox': tensor(0.0154, device='cuda:0'), 'train_loss_giou': tensor(0.0432, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0261, device='cuda:0'), 'validation_loss_ce': tensor(0.3587, device='cuda:0'), 'validation_loss_bbox': tensor(0.1368, device='cuda:0'), 'validation_loss_giou': tensor(0.4917, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.5546, device='cuda:0'), 'train_loss_ce': tensor(0.2919, device='cuda:0'), 'train_loss_bbox': tensor(0.0078, device='cuda:0'), 'train_loss_giou': tensor(0.1120, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0196, device='cuda:0'), 'validation_loss_ce': tensor(0.3593, device='cuda:0'), 'validation_loss_bbox': tensor(0.1350, device='cuda:0'), 'validation_loss_giou': tensor(0.4926, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.4491, device='cuda:0'), 'train_loss_ce': tensor(0.2665, device='cuda:0'), 'train_loss_bbox': tensor(0.0108, device='cuda:0'), 'train_loss_giou': tensor(0.0643, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0228, device='cuda:0'), 'validation_loss_ce': tensor(0.3541, device='cuda:0'), 'validation_loss_bbox': tensor(0.1350, device='cuda:0'), 'validation_loss_giou': tensor(0.4968, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.6436, device='cuda:0'), 'train_loss_ce': tensor(0.3531, device='cuda:0'), 'train_loss_bbox': tensor(0.0190, device='cuda:0'), 'train_loss_giou': tensor(0.0977, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.0299, device='cuda:0'), 'validation_loss_ce': tensor(0.3609, device='cuda:0'), 'validation_loss_bbox': tensor(0.1372, device='cuda:0'), 'validation_loss_giou': tensor(0.4915, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4709, device='cuda:0'), 'train_loss_ce': tensor(0.2586, device='cuda:0'), 'train_loss_bbox': tensor(0.0204, device='cuda:0'), 'train_loss_giou': tensor(0.0552, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0260, device='cuda:0'), 'validation_loss_ce': tensor(0.3589, device='cuda:0'), 'validation_loss_bbox': tensor(0.1352, device='cuda:0'), 'validation_loss_giou': tensor(0.4955, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.5302, device='cuda:0'), 'train_loss_ce': tensor(0.2748, device='cuda:0'), 'train_loss_bbox': tensor(0.0187, device='cuda:0'), 'train_loss_giou': tensor(0.0809, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0332, device='cuda:0'), 'validation_loss_ce': tensor(0.3627, device='cuda:0'), 'validation_loss_bbox': tensor(0.1358, device='cuda:0'), 'validation_loss_giou': tensor(0.4958, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4512, device='cuda:0'), 'train_loss_ce': tensor(0.3162, device='cuda:0'), 'train_loss_bbox': tensor(0.0097, device='cuda:0'), 'train_loss_giou': tensor(0.0434, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0341, device='cuda:0'), 'validation_loss_ce': tensor(0.3605, device='cuda:0'), 'validation_loss_bbox': tensor(0.1362, device='cuda:0'), 'validation_loss_giou': tensor(0.4964, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4807, device='cuda:0'), 'train_loss_ce': tensor(0.2580, device='cuda:0'), 'train_loss_bbox': tensor(0.0159, device='cuda:0'), 'train_loss_giou': tensor(0.0717, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.0197, device='cuda:0'), 'validation_loss_ce': tensor(0.3594, device='cuda:0'), 'validation_loss_bbox': tensor(0.1353, device='cuda:0'), 'validation_loss_giou': tensor(0.4918, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.4451, device='cuda:0'), 'train_loss_ce': tensor(0.2829, device='cuda:0'), 'train_loss_bbox': tensor(0.0143, device='cuda:0'), 'train_loss_giou': tensor(0.0454, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0325, device='cuda:0'), 'validation_loss_ce': tensor(0.3563, device='cuda:0'), 'validation_loss_bbox': tensor(0.1339, device='cuda:0'), 'validation_loss_giou': tensor(0.5034, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.5018, device='cuda:0'), 'train_loss_ce': tensor(0.2932, device='cuda:0'), 'train_loss_bbox': tensor(0.0103, device='cuda:0'), 'train_loss_giou': tensor(0.0785, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0331, device='cuda:0'), 'validation_loss_ce': tensor(0.3615, device='cuda:0'), 'validation_loss_bbox': tensor(0.1370, device='cuda:0'), 'validation_loss_giou': tensor(0.4932, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.4653, device='cuda:0'), 'train_loss_ce': tensor(0.3143, device='cuda:0'), 'train_loss_bbox': tensor(0.0151, device='cuda:0'), 'train_loss_giou': tensor(0.0377, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0132, device='cuda:0'), 'validation_loss_ce': tensor(0.3581, device='cuda:0'), 'validation_loss_bbox': tensor(0.1338, device='cuda:0'), 'validation_loss_giou': tensor(0.4931, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.4530, device='cuda:0'), 'train_loss_ce': tensor(0.3130, device='cuda:0'), 'train_loss_bbox': tensor(0.0124, device='cuda:0'), 'train_loss_giou': tensor(0.0390, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0342, device='cuda:0'), 'validation_loss_ce': tensor(0.3590, device='cuda:0'), 'validation_loss_bbox': tensor(0.1363, device='cuda:0'), 'validation_loss_giou': tensor(0.4969, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.5065, device='cuda:0'), 'train_loss_ce': tensor(0.2712, device='cuda:0'), 'train_loss_bbox': tensor(0.0182, device='cuda:0'), 'train_loss_giou': tensor(0.0721, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0289, device='cuda:0'), 'validation_loss_ce': tensor(0.3596, device='cuda:0'), 'validation_loss_bbox': tensor(0.1351, device='cuda:0'), 'validation_loss_giou': tensor(0.4969, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.3214, device='cuda:0'), 'train_loss_ce': tensor(0.1909, device='cuda:0'), 'train_loss_bbox': tensor(0.0107, device='cuda:0'), 'train_loss_giou': tensor(0.0385, device='cuda:0'), 'train_cardinality_error': tensor(1.8000, device='cuda:0'), 'validation_loss': tensor(2.0277, device='cuda:0'), 'validation_loss_ce': tensor(0.3598, device='cuda:0'), 'validation_loss_bbox': tensor(0.1357, device='cuda:0'), 'validation_loss_giou': tensor(0.4946, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.5255, device='cuda:0'), 'train_loss_ce': tensor(0.3217, device='cuda:0'), 'train_loss_bbox': tensor(0.0132, device='cuda:0'), 'train_loss_giou': tensor(0.0689, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0012, device='cuda:0'), 'validation_loss_ce': tensor(0.3556, device='cuda:0'), 'validation_loss_bbox': tensor(0.1336, device='cuda:0'), 'validation_loss_giou': tensor(0.4889, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.4508, device='cuda:0'), 'train_loss_ce': tensor(0.2157, device='cuda:0'), 'train_loss_bbox': tensor(0.0145, device='cuda:0'), 'train_loss_giou': tensor(0.0813, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0333, device='cuda:0'), 'validation_loss_ce': tensor(0.3568, device='cuda:0'), 'validation_loss_bbox': tensor(0.1361, device='cuda:0'), 'validation_loss_giou': tensor(0.4979, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.4670, device='cuda:0'), 'train_loss_ce': tensor(0.3399, device='cuda:0'), 'train_loss_bbox': tensor(0.0110, device='cuda:0'), 'train_loss_giou': tensor(0.0361, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0257, device='cuda:0'), 'validation_loss_ce': tensor(0.3612, device='cuda:0'), 'validation_loss_bbox': tensor(0.1351, device='cuda:0'), 'validation_loss_giou': tensor(0.4945, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4350, device='cuda:0'), 'train_loss_ce': tensor(0.2435, device='cuda:0'), 'train_loss_bbox': tensor(0.0106, device='cuda:0'), 'train_loss_giou': tensor(0.0692, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.0149, device='cuda:0'), 'validation_loss_ce': tensor(0.3557, device='cuda:0'), 'validation_loss_bbox': tensor(0.1339, device='cuda:0'), 'validation_loss_giou': tensor(0.4949, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4513, device='cuda:0'), 'train_loss_ce': tensor(0.2376, device='cuda:0'), 'train_loss_bbox': tensor(0.0120, device='cuda:0'), 'train_loss_giou': tensor(0.0770, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0228, device='cuda:0'), 'validation_loss_ce': tensor(0.3604, device='cuda:0'), 'validation_loss_bbox': tensor(0.1347, device='cuda:0'), 'validation_loss_giou': tensor(0.4944, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.4888, device='cuda:0'), 'train_loss_ce': tensor(0.2359, device='cuda:0'), 'train_loss_bbox': tensor(0.0147, device='cuda:0'), 'train_loss_giou': tensor(0.0896, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0157, device='cuda:0'), 'validation_loss_ce': tensor(0.3559, device='cuda:0'), 'validation_loss_bbox': tensor(0.1339, device='cuda:0'), 'validation_loss_giou': tensor(0.4952, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.5803, device='cuda:0'), 'train_loss_ce': tensor(0.3557, device='cuda:0'), 'train_loss_bbox': tensor(0.0168, device='cuda:0'), 'train_loss_giou': tensor(0.0703, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0271, device='cuda:0'), 'validation_loss_ce': tensor(0.3576, device='cuda:0'), 'validation_loss_bbox': tensor(0.1353, device='cuda:0'), 'validation_loss_giou': tensor(0.4966, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.5284, device='cuda:0'), 'train_loss_ce': tensor(0.2576, device='cuda:0'), 'train_loss_bbox': tensor(0.0190, device='cuda:0'), 'train_loss_giou': tensor(0.0879, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0229, device='cuda:0'), 'validation_loss_ce': tensor(0.3574, device='cuda:0'), 'validation_loss_bbox': tensor(0.1338, device='cuda:0'), 'validation_loss_giou': tensor(0.4983, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.5508, device='cuda:0'), 'train_loss_ce': tensor(0.3414, device='cuda:0'), 'train_loss_bbox': tensor(0.0147, device='cuda:0'), 'train_loss_giou': tensor(0.0679, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0248, device='cuda:0'), 'validation_loss_ce': tensor(0.3598, device='cuda:0'), 'validation_loss_bbox': tensor(0.1350, device='cuda:0'), 'validation_loss_giou': tensor(0.4950, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4451, device='cuda:0'), 'train_loss_ce': tensor(0.2366, device='cuda:0'), 'train_loss_bbox': tensor(0.0152, device='cuda:0'), 'train_loss_giou': tensor(0.0663, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0235, device='cuda:0'), 'validation_loss_ce': tensor(0.3567, device='cuda:0'), 'validation_loss_bbox': tensor(0.1350, device='cuda:0'), 'validation_loss_giou': tensor(0.4960, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.7667, device='cuda:0'), 'train_loss_ce': tensor(0.3762, device='cuda:0'), 'train_loss_bbox': tensor(0.0192, device='cuda:0'), 'train_loss_giou': tensor(0.1473, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0253, device='cuda:0'), 'validation_loss_ce': tensor(0.3576, device='cuda:0'), 'validation_loss_bbox': tensor(0.1347, device='cuda:0'), 'validation_loss_giou': tensor(0.4970, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4548, device='cuda:0'), 'train_loss_ce': tensor(0.2783, device='cuda:0'), 'train_loss_bbox': tensor(0.0150, device='cuda:0'), 'train_loss_giou': tensor(0.0507, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0143, device='cuda:0'), 'validation_loss_ce': tensor(0.3578, device='cuda:0'), 'validation_loss_bbox': tensor(0.1350, device='cuda:0'), 'validation_loss_giou': tensor(0.4908, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.4627, device='cuda:0'), 'train_loss_ce': tensor(0.2908, device='cuda:0'), 'train_loss_bbox': tensor(0.0086, device='cuda:0'), 'train_loss_giou': tensor(0.0644, device='cuda:0'), 'train_cardinality_error': tensor(1.6000, device='cuda:0'), 'validation_loss': tensor(2.0125, device='cuda:0'), 'validation_loss_ce': tensor(0.3583, device='cuda:0'), 'validation_loss_bbox': tensor(0.1341, device='cuda:0'), 'validation_loss_giou': tensor(0.4918, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.3277, device='cuda:0'), 'train_loss_ce': tensor(0.2379, device='cuda:0'), 'train_loss_bbox': tensor(0.0072, device='cuda:0'), 'train_loss_giou': tensor(0.0269, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0142, device='cuda:0'), 'validation_loss_ce': tensor(0.3582, device='cuda:0'), 'validation_loss_bbox': tensor(0.1342, device='cuda:0'), 'validation_loss_giou': tensor(0.4926, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.3558, device='cuda:0'), 'train_loss_ce': tensor(0.2072, device='cuda:0'), 'train_loss_bbox': tensor(0.0124, device='cuda:0'), 'train_loss_giou': tensor(0.0433, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0181, device='cuda:0'), 'validation_loss_ce': tensor(0.3558, device='cuda:0'), 'validation_loss_bbox': tensor(0.1329, device='cuda:0'), 'validation_loss_giou': tensor(0.4989, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.5721, device='cuda:0'), 'train_loss_ce': tensor(0.3258, device='cuda:0'), 'train_loss_bbox': tensor(0.0146, device='cuda:0'), 'train_loss_giou': tensor(0.0866, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0141, device='cuda:0'), 'validation_loss_ce': tensor(0.3592, device='cuda:0'), 'validation_loss_bbox': tensor(0.1340, device='cuda:0'), 'validation_loss_giou': tensor(0.4925, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.3870, device='cuda:0'), 'train_loss_ce': tensor(0.2768, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0326, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0182, device='cuda:0'), 'validation_loss_ce': tensor(0.3595, device='cuda:0'), 'validation_loss_bbox': tensor(0.1365, device='cuda:0'), 'validation_loss_giou': tensor(0.4882, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.3275, device='cuda:0'), 'train_loss_ce': tensor(0.1982, device='cuda:0'), 'train_loss_bbox': tensor(0.0085, device='cuda:0'), 'train_loss_giou': tensor(0.0435, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0117, device='cuda:0'), 'validation_loss_ce': tensor(0.3573, device='cuda:0'), 'validation_loss_bbox': tensor(0.1341, device='cuda:0'), 'validation_loss_giou': tensor(0.4919, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.3809, device='cuda:0'), 'train_loss_ce': tensor(0.2411, device='cuda:0'), 'train_loss_bbox': tensor(0.0064, device='cuda:0'), 'train_loss_giou': tensor(0.0540, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0179, device='cuda:0'), 'validation_loss_ce': tensor(0.3596, device='cuda:0'), 'validation_loss_bbox': tensor(0.1341, device='cuda:0'), 'validation_loss_giou': tensor(0.4940, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4484, device='cuda:0'), 'train_loss_ce': tensor(0.3006, device='cuda:0'), 'train_loss_bbox': tensor(0.0139, device='cuda:0'), 'train_loss_giou': tensor(0.0390, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0291, device='cuda:0'), 'validation_loss_ce': tensor(0.3587, device='cuda:0'), 'validation_loss_bbox': tensor(0.1356, device='cuda:0'), 'validation_loss_giou': tensor(0.4963, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.3258, device='cuda:0'), 'train_loss_ce': tensor(0.2118, device='cuda:0'), 'train_loss_bbox': tensor(0.0096, device='cuda:0'), 'train_loss_giou': tensor(0.0331, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0262, device='cuda:0'), 'validation_loss_ce': tensor(0.3572, device='cuda:0'), 'validation_loss_bbox': tensor(0.1345, device='cuda:0'), 'validation_loss_giou': tensor(0.4981, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.5439, device='cuda:0'), 'train_loss_ce': tensor(0.2955, device='cuda:0'), 'train_loss_bbox': tensor(0.0243, device='cuda:0'), 'train_loss_giou': tensor(0.0634, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0286, device='cuda:0'), 'validation_loss_ce': tensor(0.3589, device='cuda:0'), 'validation_loss_bbox': tensor(0.1353, device='cuda:0'), 'validation_loss_giou': tensor(0.4967, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.5502, device='cuda:0'), 'train_loss_ce': tensor(0.2571, device='cuda:0'), 'train_loss_bbox': tensor(0.0171, device='cuda:0'), 'train_loss_giou': tensor(0.1038, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0074, device='cuda:0'), 'validation_loss_ce': tensor(0.3590, device='cuda:0'), 'validation_loss_bbox': tensor(0.1326, device='cuda:0'), 'validation_loss_giou': tensor(0.4926, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.4078, device='cuda:0'), 'train_loss_ce': tensor(0.2383, device='cuda:0'), 'train_loss_bbox': tensor(0.0094, device='cuda:0'), 'train_loss_giou': tensor(0.0612, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0149, device='cuda:0'), 'validation_loss_ce': tensor(0.3589, device='cuda:0'), 'validation_loss_bbox': tensor(0.1341, device='cuda:0'), 'validation_loss_giou': tensor(0.4928, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.3988, device='cuda:0'), 'train_loss_ce': tensor(0.2871, device='cuda:0'), 'train_loss_bbox': tensor(0.0115, device='cuda:0'), 'train_loss_giou': tensor(0.0272, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0245, device='cuda:0'), 'validation_loss_ce': tensor(0.3592, device='cuda:0'), 'validation_loss_bbox': tensor(0.1349, device='cuda:0'), 'validation_loss_giou': tensor(0.4955, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.4468, device='cuda:0'), 'train_loss_ce': tensor(0.2733, device='cuda:0'), 'train_loss_bbox': tensor(0.0132, device='cuda:0'), 'train_loss_giou': tensor(0.0538, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0293, device='cuda:0'), 'validation_loss_ce': tensor(0.3599, device='cuda:0'), 'validation_loss_bbox': tensor(0.1340, device='cuda:0'), 'validation_loss_giou': tensor(0.4997, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.4795, device='cuda:0'), 'train_loss_ce': tensor(0.3216, device='cuda:0'), 'train_loss_bbox': tensor(0.0119, device='cuda:0'), 'train_loss_giou': tensor(0.0491, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0378, device='cuda:0'), 'validation_loss_ce': tensor(0.3623, device='cuda:0'), 'validation_loss_bbox': tensor(0.1368, device='cuda:0'), 'validation_loss_giou': tensor(0.4958, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.3870, device='cuda:0'), 'train_loss_ce': tensor(0.2235, device='cuda:0'), 'train_loss_bbox': tensor(0.0110, device='cuda:0'), 'train_loss_giou': tensor(0.0544, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0343, device='cuda:0'), 'validation_loss_ce': tensor(0.3611, device='cuda:0'), 'validation_loss_bbox': tensor(0.1362, device='cuda:0'), 'validation_loss_giou': tensor(0.4960, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.4713, device='cuda:0'), 'train_loss_ce': tensor(0.2068, device='cuda:0'), 'train_loss_bbox': tensor(0.0136, device='cuda:0'), 'train_loss_giou': tensor(0.0983, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0351, device='cuda:0'), 'validation_loss_ce': tensor(0.3585, device='cuda:0'), 'validation_loss_bbox': tensor(0.1361, device='cuda:0'), 'validation_loss_giou': tensor(0.4982, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.6179, device='cuda:0'), 'train_loss_ce': tensor(0.3417, device='cuda:0'), 'train_loss_bbox': tensor(0.0224, device='cuda:0'), 'train_loss_giou': tensor(0.0822, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0385, device='cuda:0'), 'validation_loss_ce': tensor(0.3633, device='cuda:0'), 'validation_loss_bbox': tensor(0.1353, device='cuda:0'), 'validation_loss_giou': tensor(0.4993, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.4371, device='cuda:0'), 'train_loss_ce': tensor(0.2985, device='cuda:0'), 'train_loss_bbox': tensor(0.0094, device='cuda:0'), 'train_loss_giou': tensor(0.0457, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0230, device='cuda:0'), 'validation_loss_ce': tensor(0.3610, device='cuda:0'), 'validation_loss_bbox': tensor(0.1354, device='cuda:0'), 'validation_loss_giou': tensor(0.4925, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4349, device='cuda:0'), 'train_loss_ce': tensor(0.2412, device='cuda:0'), 'train_loss_bbox': tensor(0.0213, device='cuda:0'), 'train_loss_giou': tensor(0.0435, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0175, device='cuda:0'), 'validation_loss_ce': tensor(0.3576, device='cuda:0'), 'validation_loss_bbox': tensor(0.1343, device='cuda:0'), 'validation_loss_giou': tensor(0.4943, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4637, device='cuda:0'), 'train_loss_ce': tensor(0.3402, device='cuda:0'), 'train_loss_bbox': tensor(0.0062, device='cuda:0'), 'train_loss_giou': tensor(0.0462, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0215, device='cuda:0'), 'validation_loss_ce': tensor(0.3611, device='cuda:0'), 'validation_loss_bbox': tensor(0.1342, device='cuda:0'), 'validation_loss_giou': tensor(0.4946, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.4619, device='cuda:0'), 'train_loss_ce': tensor(0.2955, device='cuda:0'), 'train_loss_bbox': tensor(0.0128, device='cuda:0'), 'train_loss_giou': tensor(0.0511, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0306, device='cuda:0'), 'validation_loss_ce': tensor(0.3593, device='cuda:0'), 'validation_loss_bbox': tensor(0.1347, device='cuda:0'), 'validation_loss_giou': tensor(0.4990, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.3886, device='cuda:0'), 'train_loss_ce': tensor(0.2701, device='cuda:0'), 'train_loss_bbox': tensor(0.0109, device='cuda:0'), 'train_loss_giou': tensor(0.0320, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0300, device='cuda:0'), 'validation_loss_ce': tensor(0.3592, device='cuda:0'), 'validation_loss_bbox': tensor(0.1342, device='cuda:0'), 'validation_loss_giou': tensor(0.4998, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.3016, device='cuda:0'), 'train_loss_ce': tensor(0.1853, device='cuda:0'), 'train_loss_bbox': tensor(0.0109, device='cuda:0'), 'train_loss_giou': tensor(0.0309, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0257, device='cuda:0'), 'validation_loss_ce': tensor(0.3619, device='cuda:0'), 'validation_loss_bbox': tensor(0.1343, device='cuda:0'), 'validation_loss_giou': tensor(0.4961, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.6802, device='cuda:0'), 'train_loss_ce': tensor(0.3639, device='cuda:0'), 'train_loss_bbox': tensor(0.0185, device='cuda:0'), 'train_loss_giou': tensor(0.1119, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0305, device='cuda:0'), 'validation_loss_ce': tensor(0.3592, device='cuda:0'), 'validation_loss_bbox': tensor(0.1345, device='cuda:0'), 'validation_loss_giou': tensor(0.4993, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.3330, device='cuda:0'), 'train_loss_ce': tensor(0.2249, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0317, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0316, device='cuda:0'), 'validation_loss_ce': tensor(0.3598, device='cuda:0'), 'validation_loss_bbox': tensor(0.1350, device='cuda:0'), 'validation_loss_giou': tensor(0.4985, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.4286, device='cuda:0'), 'train_loss_ce': tensor(0.2678, device='cuda:0'), 'train_loss_bbox': tensor(0.0076, device='cuda:0'), 'train_loss_giou': tensor(0.0615, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0223, device='cuda:0'), 'validation_loss_ce': tensor(0.3601, device='cuda:0'), 'validation_loss_bbox': tensor(0.1343, device='cuda:0'), 'validation_loss_giou': tensor(0.4953, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(0.4372, device='cuda:0'), 'train_loss_ce': tensor(0.2876, device='cuda:0'), 'train_loss_bbox': tensor(0.0120, device='cuda:0'), 'train_loss_giou': tensor(0.0449, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0332, device='cuda:0'), 'validation_loss_ce': tensor(0.3591, device='cuda:0'), 'validation_loss_bbox': tensor(0.1348, device='cuda:0'), 'validation_loss_giou': tensor(0.4999, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.4195, device='cuda:0'), 'train_loss_ce': tensor(0.2297, device='cuda:0'), 'train_loss_bbox': tensor(0.0168, device='cuda:0'), 'train_loss_giou': tensor(0.0530, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0240, device='cuda:0'), 'validation_loss_ce': tensor(0.3607, device='cuda:0'), 'validation_loss_bbox': tensor(0.1351, device='cuda:0'), 'validation_loss_giou': tensor(0.4939, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.4228, device='cuda:0'), 'train_loss_ce': tensor(0.2680, device='cuda:0'), 'train_loss_bbox': tensor(0.0133, device='cuda:0'), 'train_loss_giou': tensor(0.0442, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0364, device='cuda:0'), 'validation_loss_ce': tensor(0.3581, device='cuda:0'), 'validation_loss_bbox': tensor(0.1353, device='cuda:0'), 'validation_loss_giou': tensor(0.5009, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.5344, device='cuda:0'), 'train_loss_ce': tensor(0.3058, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0917, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0196, device='cuda:0'), 'validation_loss_ce': tensor(0.3588, device='cuda:0'), 'validation_loss_bbox': tensor(0.1336, device='cuda:0'), 'validation_loss_giou': tensor(0.4964, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
```
## Examples
{'size': tensor([512, 512]), 'image_id': tensor([1]), 'class_labels': tensor([4]), 'boxes': tensor([[0.2622, 0.5729, 0.0847, 0.0773]]), 'area': tensor([1717.9431]), 'iscrowd': tensor([0]), 'orig_size': tensor([1024, 1024])}

|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
MedicalVision/yolos_tiny_500ep
|
## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.004
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.005
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.005
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.005
```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.031
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.061
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.026
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.031
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.063
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.097
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.110
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.112
```
## Config
- dataset: NIH
- original model: hustvl/yolos-tiny
- lr: 5e-06
- dropout_rate: 0.1
- weight_decay: 0.05
- max_epochs: 500
- train samples: 885
## Logging
### Training process
```
{'validation_loss': tensor(6.6117, device='cuda:0'), 'validation_loss_ce': tensor(1.8345, device='cuda:0'), 'validation_loss_bbox': tensor(0.5845, device='cuda:0'), 'validation_loss_giou': tensor(0.9274, device='cuda:0'), 'validation_cardinality_error': tensor(16.9062, device='cuda:0')}
{'training_loss': tensor(3.7877, device='cuda:0'), 'train_loss_ce': tensor(1.4007, device='cuda:0'), 'train_loss_bbox': tensor(0.2434, device='cuda:0'), 'train_loss_giou': tensor(0.5849, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(3.8850, device='cuda:0'), 'validation_loss_ce': tensor(1.3982, device='cuda:0'), 'validation_loss_bbox': tensor(0.2301, device='cuda:0'), 'validation_loss_giou': tensor(0.6682, device='cuda:0'), 'validation_cardinality_error': tensor(1.3737, device='cuda:0')}
{'training_loss': tensor(2.6493, device='cuda:0'), 'train_loss_ce': tensor(0.9938, device='cuda:0'), 'train_loss_bbox': tensor(0.1606, device='cuda:0'), 'train_loss_giou': tensor(0.4261, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(3.0517, device='cuda:0'), 'validation_loss_ce': tensor(0.9154, device='cuda:0'), 'validation_loss_bbox': tensor(0.1932, device='cuda:0'), 'validation_loss_giou': tensor(0.5851, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3105, device='cuda:0'), 'train_loss_ce': tensor(0.6409, device='cuda:0'), 'train_loss_bbox': tensor(0.1369, device='cuda:0'), 'train_loss_giou': tensor(0.4925, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6600, device='cuda:0'), 'validation_loss_ce': tensor(0.6187, device='cuda:0'), 'validation_loss_bbox': tensor(0.1830, device='cuda:0'), 'validation_loss_giou': tensor(0.5632, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5868, device='cuda:0'), 'train_loss_ce': tensor(0.5758, device='cuda:0'), 'train_loss_bbox': tensor(0.1599, device='cuda:0'), 'train_loss_giou': tensor(0.6059, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.4380, device='cuda:0'), 'validation_loss_ce': tensor(0.5228, device='cuda:0'), 'validation_loss_bbox': tensor(0.1709, device='cuda:0'), 'validation_loss_giou': tensor(0.5304, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(3.4898, device='cuda:0'), 'train_loss_ce': tensor(0.4776, device='cuda:0'), 'train_loss_bbox': tensor(0.2742, device='cuda:0'), 'train_loss_giou': tensor(0.8205, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3762, device='cuda:0'), 'validation_loss_ce': tensor(0.4881, device='cuda:0'), 'validation_loss_bbox': tensor(0.1695, device='cuda:0'), 'validation_loss_giou': tensor(0.5203, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5921, device='cuda:0'), 'train_loss_ce': tensor(0.5037, device='cuda:0'), 'train_loss_bbox': tensor(0.1734, device='cuda:0'), 'train_loss_giou': tensor(0.6107, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3251, device='cuda:0'), 'validation_loss_ce': tensor(0.4740, device='cuda:0'), 'validation_loss_bbox': tensor(0.1611, device='cuda:0'), 'validation_loss_giou': tensor(0.5228, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4599, device='cuda:0'), 'train_loss_ce': tensor(0.4689, device='cuda:0'), 'train_loss_bbox': tensor(0.1985, device='cuda:0'), 'train_loss_giou': tensor(0.4993, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2920, device='cuda:0'), 'validation_loss_ce': tensor(0.4707, device='cuda:0'), 'validation_loss_bbox': tensor(0.1590, device='cuda:0'), 'validation_loss_giou': tensor(0.5131, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.7901, device='cuda:0'), 'train_loss_ce': tensor(0.4981, device='cuda:0'), 'train_loss_bbox': tensor(0.2066, device='cuda:0'), 'train_loss_giou': tensor(0.6295, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2956, device='cuda:0'), 'validation_loss_ce': tensor(0.4642, device='cuda:0'), 'validation_loss_bbox': tensor(0.1588, device='cuda:0'), 'validation_loss_giou': tensor(0.5186, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0130, device='cuda:0'), 'train_loss_ce': tensor(0.4078, device='cuda:0'), 'train_loss_bbox': tensor(0.1327, device='cuda:0'), 'train_loss_giou': tensor(0.4709, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2643, device='cuda:0'), 'validation_loss_ce': tensor(0.4618, device='cuda:0'), 'validation_loss_bbox': tensor(0.1567, device='cuda:0'), 'validation_loss_giou': tensor(0.5094, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4042, device='cuda:0'), 'train_loss_ce': tensor(0.4736, device='cuda:0'), 'train_loss_bbox': tensor(0.1544, device='cuda:0'), 'train_loss_giou': tensor(0.5793, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2567, device='cuda:0'), 'validation_loss_ce': tensor(0.4585, device='cuda:0'), 'validation_loss_bbox': tensor(0.1576, device='cuda:0'), 'validation_loss_giou': tensor(0.5052, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7940, device='cuda:0'), 'train_loss_ce': tensor(0.4404, device='cuda:0'), 'train_loss_bbox': tensor(0.1034, device='cuda:0'), 'train_loss_giou': tensor(0.4184, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2797, device='cuda:0'), 'validation_loss_ce': tensor(0.4573, device='cuda:0'), 'validation_loss_bbox': tensor(0.1560, device='cuda:0'), 'validation_loss_giou': tensor(0.5212, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6154, device='cuda:0'), 'train_loss_ce': tensor(0.4752, device='cuda:0'), 'train_loss_bbox': tensor(0.0726, device='cuda:0'), 'train_loss_giou': tensor(0.3886, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2474, device='cuda:0'), 'validation_loss_ce': tensor(0.4553, device='cuda:0'), 'validation_loss_bbox': tensor(0.1540, device='cuda:0'), 'validation_loss_giou': tensor(0.5111, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3645, device='cuda:0'), 'train_loss_ce': tensor(0.4737, device='cuda:0'), 'train_loss_bbox': tensor(0.0791, device='cuda:0'), 'train_loss_giou': tensor(0.2477, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2384, device='cuda:0'), 'validation_loss_ce': tensor(0.4535, device='cuda:0'), 'validation_loss_bbox': tensor(0.1513, device='cuda:0'), 'validation_loss_giou': tensor(0.5142, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7470, device='cuda:0'), 'train_loss_ce': tensor(0.4391, device='cuda:0'), 'train_loss_bbox': tensor(0.1233, device='cuda:0'), 'train_loss_giou': tensor(0.3458, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2185, device='cuda:0'), 'validation_loss_ce': tensor(0.4519, device='cuda:0'), 'validation_loss_bbox': tensor(0.1487, device='cuda:0'), 'validation_loss_giou': tensor(0.5115, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5639, device='cuda:0'), 'train_loss_ce': tensor(0.4665, device='cuda:0'), 'train_loss_bbox': tensor(0.0815, device='cuda:0'), 'train_loss_giou': tensor(0.3450, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2069, device='cuda:0'), 'validation_loss_ce': tensor(0.4491, device='cuda:0'), 'validation_loss_bbox': tensor(0.1468, device='cuda:0'), 'validation_loss_giou': tensor(0.5119, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5821, device='cuda:0'), 'train_loss_ce': tensor(0.4593, device='cuda:0'), 'train_loss_bbox': tensor(0.1810, device='cuda:0'), 'train_loss_giou': tensor(0.6090, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2030, device='cuda:0'), 'validation_loss_ce': tensor(0.4491, device='cuda:0'), 'validation_loss_bbox': tensor(0.1477, device='cuda:0'), 'validation_loss_giou': tensor(0.5077, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7751, device='cuda:0'), 'train_loss_ce': tensor(0.3964, device='cuda:0'), 'train_loss_bbox': tensor(0.1050, device='cuda:0'), 'train_loss_giou': tensor(0.4267, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1861, device='cuda:0'), 'validation_loss_ce': tensor(0.4478, device='cuda:0'), 'validation_loss_bbox': tensor(0.1470, device='cuda:0'), 'validation_loss_giou': tensor(0.5016, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7359, device='cuda:0'), 'train_loss_ce': tensor(0.4205, device='cuda:0'), 'train_loss_bbox': tensor(0.0854, device='cuda:0'), 'train_loss_giou': tensor(0.4442, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1794, device='cuda:0'), 'validation_loss_ce': tensor(0.4472, device='cuda:0'), 'validation_loss_bbox': tensor(0.1450, device='cuda:0'), 'validation_loss_giou': tensor(0.5036, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8151, device='cuda:0'), 'train_loss_ce': tensor(0.4777, device='cuda:0'), 'train_loss_bbox': tensor(0.0983, device='cuda:0'), 'train_loss_giou': tensor(0.4229, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1683, device='cuda:0'), 'validation_loss_ce': tensor(0.4460, device='cuda:0'), 'validation_loss_bbox': tensor(0.1468, device='cuda:0'), 'validation_loss_giou': tensor(0.4942, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2079, device='cuda:0'), 'train_loss_ce': tensor(0.4700, device='cuda:0'), 'train_loss_bbox': tensor(0.1281, device='cuda:0'), 'train_loss_giou': tensor(0.5488, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1771, device='cuda:0'), 'validation_loss_ce': tensor(0.4440, device='cuda:0'), 'validation_loss_bbox': tensor(0.1458, device='cuda:0'), 'validation_loss_giou': tensor(0.5021, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5167, device='cuda:0'), 'train_loss_ce': tensor(0.2610, device='cuda:0'), 'train_loss_bbox': tensor(0.0746, device='cuda:0'), 'train_loss_giou': tensor(0.4415, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1808, device='cuda:0'), 'validation_loss_ce': tensor(0.4419, device='cuda:0'), 'validation_loss_bbox': tensor(0.1469, device='cuda:0'), 'validation_loss_giou': tensor(0.5022, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5375, device='cuda:0'), 'train_loss_ce': tensor(0.4769, device='cuda:0'), 'train_loss_bbox': tensor(0.1634, device='cuda:0'), 'train_loss_giou': tensor(0.6218, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1687, device='cuda:0'), 'validation_loss_ce': tensor(0.4408, device='cuda:0'), 'validation_loss_bbox': tensor(0.1441, device='cuda:0'), 'validation_loss_giou': tensor(0.5036, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2994, device='cuda:0'), 'train_loss_ce': tensor(0.4999, device='cuda:0'), 'train_loss_bbox': tensor(0.0687, device='cuda:0'), 'train_loss_giou': tensor(0.2281, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1636, device='cuda:0'), 'validation_loss_ce': tensor(0.4406, device='cuda:0'), 'validation_loss_bbox': tensor(0.1452, device='cuda:0'), 'validation_loss_giou': tensor(0.4984, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4150, device='cuda:0'), 'train_loss_ce': tensor(0.3386, device='cuda:0'), 'train_loss_bbox': tensor(0.0794, device='cuda:0'), 'train_loss_giou': tensor(0.3396, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1540, device='cuda:0'), 'validation_loss_ce': tensor(0.4405, device='cuda:0'), 'validation_loss_bbox': tensor(0.1449, device='cuda:0'), 'validation_loss_giou': tensor(0.4945, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6975, device='cuda:0'), 'train_loss_ce': tensor(0.4467, device='cuda:0'), 'train_loss_bbox': tensor(0.0894, device='cuda:0'), 'train_loss_giou': tensor(0.4019, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1578, device='cuda:0'), 'validation_loss_ce': tensor(0.4395, device='cuda:0'), 'validation_loss_bbox': tensor(0.1429, device='cuda:0'), 'validation_loss_giou': tensor(0.5019, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3297, device='cuda:0'), 'train_loss_ce': tensor(0.5093, device='cuda:0'), 'train_loss_bbox': tensor(0.0605, device='cuda:0'), 'train_loss_giou': tensor(0.2589, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1508, device='cuda:0'), 'validation_loss_ce': tensor(0.4384, device='cuda:0'), 'validation_loss_bbox': tensor(0.1443, device='cuda:0'), 'validation_loss_giou': tensor(0.4954, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8651, device='cuda:0'), 'train_loss_ce': tensor(0.4694, device='cuda:0'), 'train_loss_bbox': tensor(0.0994, device='cuda:0'), 'train_loss_giou': tensor(0.4495, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1258, device='cuda:0'), 'validation_loss_ce': tensor(0.4376, device='cuda:0'), 'validation_loss_bbox': tensor(0.1413, device='cuda:0'), 'validation_loss_giou': tensor(0.4909, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9032, device='cuda:0'), 'train_loss_ce': tensor(0.4022, device='cuda:0'), 'train_loss_bbox': tensor(0.0422, device='cuda:0'), 'train_loss_giou': tensor(0.1449, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1180, device='cuda:0'), 'validation_loss_ce': tensor(0.4364, device='cuda:0'), 'validation_loss_bbox': tensor(0.1372, device='cuda:0'), 'validation_loss_giou': tensor(0.4979, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2751, device='cuda:0'), 'train_loss_ce': tensor(0.3935, device='cuda:0'), 'train_loss_bbox': tensor(0.0490, device='cuda:0'), 'train_loss_giou': tensor(0.3182, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1415, device='cuda:0'), 'validation_loss_ce': tensor(0.4361, device='cuda:0'), 'validation_loss_bbox': tensor(0.1417, device='cuda:0'), 'validation_loss_giou': tensor(0.4983, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6710, device='cuda:0'), 'train_loss_ce': tensor(0.4722, device='cuda:0'), 'train_loss_bbox': tensor(0.0835, device='cuda:0'), 'train_loss_giou': tensor(0.3906, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1517, device='cuda:0'), 'validation_loss_ce': tensor(0.4354, device='cuda:0'), 'validation_loss_bbox': tensor(0.1400, device='cuda:0'), 'validation_loss_giou': tensor(0.5081, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7325, device='cuda:0'), 'train_loss_ce': tensor(0.3879, device='cuda:0'), 'train_loss_bbox': tensor(0.1074, device='cuda:0'), 'train_loss_giou': tensor(0.4038, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1185, device='cuda:0'), 'validation_loss_ce': tensor(0.4337, device='cuda:0'), 'validation_loss_bbox': tensor(0.1420, device='cuda:0'), 'validation_loss_giou': tensor(0.4874, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3289, device='cuda:0'), 'train_loss_ce': tensor(0.4729, device='cuda:0'), 'train_loss_bbox': tensor(0.0719, device='cuda:0'), 'train_loss_giou': tensor(0.2481, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1386, device='cuda:0'), 'validation_loss_ce': tensor(0.4334, device='cuda:0'), 'validation_loss_bbox': tensor(0.1414, device='cuda:0'), 'validation_loss_giou': tensor(0.4990, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9648, device='cuda:0'), 'train_loss_ce': tensor(0.4115, device='cuda:0'), 'train_loss_bbox': tensor(0.0522, device='cuda:0'), 'train_loss_giou': tensor(0.1461, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1321, device='cuda:0'), 'validation_loss_ce': tensor(0.4324, device='cuda:0'), 'validation_loss_bbox': tensor(0.1413, device='cuda:0'), 'validation_loss_giou': tensor(0.4965, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4688, device='cuda:0'), 'train_loss_ce': tensor(0.3740, device='cuda:0'), 'train_loss_bbox': tensor(0.0809, device='cuda:0'), 'train_loss_giou': tensor(0.3451, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1398, device='cuda:0'), 'validation_loss_ce': tensor(0.4321, device='cuda:0'), 'validation_loss_bbox': tensor(0.1419, device='cuda:0'), 'validation_loss_giou': tensor(0.4991, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9035, device='cuda:0'), 'train_loss_ce': tensor(0.3896, device='cuda:0'), 'train_loss_bbox': tensor(0.0985, device='cuda:0'), 'train_loss_giou': tensor(0.5108, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0821, device='cuda:0'), 'validation_loss_ce': tensor(0.4311, device='cuda:0'), 'validation_loss_bbox': tensor(0.1353, device='cuda:0'), 'validation_loss_giou': tensor(0.4873, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2511, device='cuda:0'), 'train_loss_ce': tensor(0.4246, device='cuda:0'), 'train_loss_bbox': tensor(0.0551, device='cuda:0'), 'train_loss_giou': tensor(0.2755, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1037, device='cuda:0'), 'validation_loss_ce': tensor(0.4313, device='cuda:0'), 'validation_loss_bbox': tensor(0.1402, device='cuda:0'), 'validation_loss_giou': tensor(0.4857, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7004, device='cuda:0'), 'train_loss_ce': tensor(0.4725, device='cuda:0'), 'train_loss_bbox': tensor(0.0950, device='cuda:0'), 'train_loss_giou': tensor(0.3765, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1031, device='cuda:0'), 'validation_loss_ce': tensor(0.4295, device='cuda:0'), 'validation_loss_bbox': tensor(0.1360, device='cuda:0'), 'validation_loss_giou': tensor(0.4969, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4348, device='cuda:0'), 'train_loss_ce': tensor(0.3344, device='cuda:0'), 'train_loss_bbox': tensor(0.1123, device='cuda:0'), 'train_loss_giou': tensor(0.2694, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1218, device='cuda:0'), 'validation_loss_ce': tensor(0.4284, device='cuda:0'), 'validation_loss_bbox': tensor(0.1408, device='cuda:0'), 'validation_loss_giou': tensor(0.4946, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3111, device='cuda:0'), 'train_loss_ce': tensor(0.3693, device='cuda:0'), 'train_loss_bbox': tensor(0.0731, device='cuda:0'), 'train_loss_giou': tensor(0.2883, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0990, device='cuda:0'), 'validation_loss_ce': tensor(0.4280, device='cuda:0'), 'validation_loss_bbox': tensor(0.1349, device='cuda:0'), 'validation_loss_giou': tensor(0.4983, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2460, device='cuda:0'), 'train_loss_ce': tensor(0.3982, device='cuda:0'), 'train_loss_bbox': tensor(0.0590, device='cuda:0'), 'train_loss_giou': tensor(0.2765, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1076, device='cuda:0'), 'validation_loss_ce': tensor(0.4264, device='cuda:0'), 'validation_loss_bbox': tensor(0.1381, device='cuda:0'), 'validation_loss_giou': tensor(0.4953, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8500, device='cuda:0'), 'train_loss_ce': tensor(0.4012, device='cuda:0'), 'train_loss_bbox': tensor(0.0342, device='cuda:0'), 'train_loss_giou': tensor(0.1388, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0902, device='cuda:0'), 'validation_loss_ce': tensor(0.4257, device='cuda:0'), 'validation_loss_bbox': tensor(0.1359, device='cuda:0'), 'validation_loss_giou': tensor(0.4925, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0892, device='cuda:0'), 'train_loss_ce': tensor(0.4078, device='cuda:0'), 'train_loss_bbox': tensor(0.0574, device='cuda:0'), 'train_loss_giou': tensor(0.1973, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0869, device='cuda:0'), 'validation_loss_ce': tensor(0.4255, device='cuda:0'), 'validation_loss_bbox': tensor(0.1369, device='cuda:0'), 'validation_loss_giou': tensor(0.4885, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4944, device='cuda:0'), 'train_loss_ce': tensor(0.4437, device='cuda:0'), 'train_loss_bbox': tensor(0.1047, device='cuda:0'), 'train_loss_giou': tensor(0.2636, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0867, device='cuda:0'), 'validation_loss_ce': tensor(0.4237, device='cuda:0'), 'validation_loss_bbox': tensor(0.1348, device='cuda:0'), 'validation_loss_giou': tensor(0.4944, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4388, device='cuda:0'), 'train_loss_ce': tensor(0.3293, device='cuda:0'), 'train_loss_bbox': tensor(0.0784, device='cuda:0'), 'train_loss_giou': tensor(0.3588, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1164, device='cuda:0'), 'validation_loss_ce': tensor(0.4232, device='cuda:0'), 'validation_loss_bbox': tensor(0.1400, device='cuda:0'), 'validation_loss_giou': tensor(0.4967, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1736, device='cuda:0'), 'train_loss_ce': tensor(0.4019, device='cuda:0'), 'train_loss_bbox': tensor(0.0641, device='cuda:0'), 'train_loss_giou': tensor(0.2257, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0861, device='cuda:0'), 'validation_loss_ce': tensor(0.4221, device='cuda:0'), 'validation_loss_bbox': tensor(0.1381, device='cuda:0'), 'validation_loss_giou': tensor(0.4868, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7668, device='cuda:0'), 'train_loss_ce': tensor(0.4508, device='cuda:0'), 'train_loss_bbox': tensor(0.1215, device='cuda:0'), 'train_loss_giou': tensor(0.3543, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1044, device='cuda:0'), 'validation_loss_ce': tensor(0.4223, device='cuda:0'), 'validation_loss_bbox': tensor(0.1413, device='cuda:0'), 'validation_loss_giou': tensor(0.4879, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4063, device='cuda:0'), 'train_loss_ce': tensor(0.3645, device='cuda:0'), 'train_loss_bbox': tensor(0.1010, device='cuda:0'), 'train_loss_giou': tensor(0.2684, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0978, device='cuda:0'), 'validation_loss_ce': tensor(0.4208, device='cuda:0'), 'validation_loss_bbox': tensor(0.1368, device='cuda:0'), 'validation_loss_giou': tensor(0.4966, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4230, device='cuda:0'), 'train_loss_ce': tensor(0.3336, device='cuda:0'), 'train_loss_bbox': tensor(0.0778, device='cuda:0'), 'train_loss_giou': tensor(0.3503, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1051, device='cuda:0'), 'validation_loss_ce': tensor(0.4205, device='cuda:0'), 'validation_loss_bbox': tensor(0.1402, device='cuda:0'), 'validation_loss_giou': tensor(0.4918, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0929, device='cuda:0'), 'train_loss_ce': tensor(0.4184, device='cuda:0'), 'train_loss_bbox': tensor(0.0463, device='cuda:0'), 'train_loss_giou': tensor(0.2214, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1051, device='cuda:0'), 'validation_loss_ce': tensor(0.4204, device='cuda:0'), 'validation_loss_bbox': tensor(0.1383, device='cuda:0'), 'validation_loss_giou': tensor(0.4965, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3986, device='cuda:0'), 'train_loss_ce': tensor(0.4549, device='cuda:0'), 'train_loss_bbox': tensor(0.0721, device='cuda:0'), 'train_loss_giou': tensor(0.2915, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0981, device='cuda:0'), 'validation_loss_ce': tensor(0.4193, device='cuda:0'), 'validation_loss_bbox': tensor(0.1406, device='cuda:0'), 'validation_loss_giou': tensor(0.4880, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4323, device='cuda:0'), 'train_loss_ce': tensor(0.3595, device='cuda:0'), 'train_loss_bbox': tensor(0.0731, device='cuda:0'), 'train_loss_giou': tensor(0.3535, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0947, device='cuda:0'), 'validation_loss_ce': tensor(0.4170, device='cuda:0'), 'validation_loss_bbox': tensor(0.1371, device='cuda:0'), 'validation_loss_giou': tensor(0.4960, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7406, device='cuda:0'), 'train_loss_ce': tensor(0.2892, device='cuda:0'), 'train_loss_bbox': tensor(0.0333, device='cuda:0'), 'train_loss_giou': tensor(0.1425, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0956, device='cuda:0'), 'validation_loss_ce': tensor(0.4166, device='cuda:0'), 'validation_loss_bbox': tensor(0.1389, device='cuda:0'), 'validation_loss_giou': tensor(0.4923, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0063, device='cuda:0'), 'train_loss_ce': tensor(0.4580, device='cuda:0'), 'train_loss_bbox': tensor(0.1223, device='cuda:0'), 'train_loss_giou': tensor(0.4684, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1112, device='cuda:0'), 'validation_loss_ce': tensor(0.4160, device='cuda:0'), 'validation_loss_bbox': tensor(0.1384, device='cuda:0'), 'validation_loss_giou': tensor(0.5015, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9253, device='cuda:0'), 'train_loss_ce': tensor(0.4450, device='cuda:0'), 'train_loss_bbox': tensor(0.0426, device='cuda:0'), 'train_loss_giou': tensor(0.1337, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0801, device='cuda:0'), 'validation_loss_ce': tensor(0.4145, device='cuda:0'), 'validation_loss_bbox': tensor(0.1373, device='cuda:0'), 'validation_loss_giou': tensor(0.4896, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9494, device='cuda:0'), 'train_loss_ce': tensor(0.4879, device='cuda:0'), 'train_loss_bbox': tensor(0.0345, device='cuda:0'), 'train_loss_giou': tensor(0.1446, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0886, device='cuda:0'), 'validation_loss_ce': tensor(0.4134, device='cuda:0'), 'validation_loss_bbox': tensor(0.1374, device='cuda:0'), 'validation_loss_giou': tensor(0.4940, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9217, device='cuda:0'), 'train_loss_ce': tensor(0.4062, device='cuda:0'), 'train_loss_bbox': tensor(0.0516, device='cuda:0'), 'train_loss_giou': tensor(0.1287, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0918, device='cuda:0'), 'validation_loss_ce': tensor(0.4128, device='cuda:0'), 'validation_loss_bbox': tensor(0.1404, device='cuda:0'), 'validation_loss_giou': tensor(0.4884, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9082, device='cuda:0'), 'train_loss_ce': tensor(0.3944, device='cuda:0'), 'train_loss_bbox': tensor(0.0443, device='cuda:0'), 'train_loss_giou': tensor(0.1461, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1008, device='cuda:0'), 'validation_loss_ce': tensor(0.4120, device='cuda:0'), 'validation_loss_bbox': tensor(0.1391, device='cuda:0'), 'validation_loss_giou': tensor(0.4967, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8723, device='cuda:0'), 'train_loss_ce': tensor(0.3738, device='cuda:0'), 'train_loss_bbox': tensor(0.0420, device='cuda:0'), 'train_loss_giou': tensor(0.1442, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0671, device='cuda:0'), 'validation_loss_ce': tensor(0.4131, device='cuda:0'), 'validation_loss_bbox': tensor(0.1371, device='cuda:0'), 'validation_loss_giou': tensor(0.4842, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0571, device='cuda:0'), 'train_loss_ce': tensor(0.4445, device='cuda:0'), 'train_loss_bbox': tensor(0.0437, device='cuda:0'), 'train_loss_giou': tensor(0.1971, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0917, device='cuda:0'), 'validation_loss_ce': tensor(0.4117, device='cuda:0'), 'validation_loss_bbox': tensor(0.1371, device='cuda:0'), 'validation_loss_giou': tensor(0.4971, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0129, device='cuda:0'), 'train_loss_ce': tensor(0.3632, device='cuda:0'), 'train_loss_bbox': tensor(0.0545, device='cuda:0'), 'train_loss_giou': tensor(0.1886, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0755, device='cuda:0'), 'validation_loss_ce': tensor(0.4109, device='cuda:0'), 'validation_loss_bbox': tensor(0.1369, device='cuda:0'), 'validation_loss_giou': tensor(0.4901, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8933, device='cuda:0'), 'train_loss_ce': tensor(0.4266, device='cuda:0'), 'train_loss_bbox': tensor(0.0316, device='cuda:0'), 'train_loss_giou': tensor(0.1544, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0727, device='cuda:0'), 'validation_loss_ce': tensor(0.4077, device='cuda:0'), 'validation_loss_bbox': tensor(0.1373, device='cuda:0'), 'validation_loss_giou': tensor(0.4892, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3993, device='cuda:0'), 'train_loss_ce': tensor(0.4284, device='cuda:0'), 'train_loss_bbox': tensor(0.0571, device='cuda:0'), 'train_loss_giou': tensor(0.3427, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1019, device='cuda:0'), 'validation_loss_ce': tensor(0.4070, device='cuda:0'), 'validation_loss_bbox': tensor(0.1389, device='cuda:0'), 'validation_loss_giou': tensor(0.5003, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4553, device='cuda:0'), 'train_loss_ce': tensor(0.3660, device='cuda:0'), 'train_loss_bbox': tensor(0.1012, device='cuda:0'), 'train_loss_giou': tensor(0.2917, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0838, device='cuda:0'), 'validation_loss_ce': tensor(0.4059, device='cuda:0'), 'validation_loss_bbox': tensor(0.1370, device='cuda:0'), 'validation_loss_giou': tensor(0.4965, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0819, device='cuda:0'), 'train_loss_ce': tensor(0.3479, device='cuda:0'), 'train_loss_bbox': tensor(0.0463, device='cuda:0'), 'train_loss_giou': tensor(0.2513, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0863, device='cuda:0'), 'validation_loss_ce': tensor(0.4070, device='cuda:0'), 'validation_loss_bbox': tensor(0.1388, device='cuda:0'), 'validation_loss_giou': tensor(0.4925, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1000, device='cuda:0'), 'train_loss_ce': tensor(0.4087, device='cuda:0'), 'train_loss_bbox': tensor(0.0458, device='cuda:0'), 'train_loss_giou': tensor(0.2313, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0938, device='cuda:0'), 'validation_loss_ce': tensor(0.4068, device='cuda:0'), 'validation_loss_bbox': tensor(0.1384, device='cuda:0'), 'validation_loss_giou': tensor(0.4976, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8745, device='cuda:0'), 'train_loss_ce': tensor(0.3761, device='cuda:0'), 'train_loss_bbox': tensor(0.0376, device='cuda:0'), 'train_loss_giou': tensor(0.1552, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0952, device='cuda:0'), 'validation_loss_ce': tensor(0.4062, device='cuda:0'), 'validation_loss_bbox': tensor(0.1374, device='cuda:0'), 'validation_loss_giou': tensor(0.5010, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4879, device='cuda:0'), 'train_loss_ce': tensor(0.4263, device='cuda:0'), 'train_loss_bbox': tensor(0.0627, device='cuda:0'), 'train_loss_giou': tensor(0.3739, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0985, device='cuda:0'), 'validation_loss_ce': tensor(0.4047, device='cuda:0'), 'validation_loss_bbox': tensor(0.1385, device='cuda:0'), 'validation_loss_giou': tensor(0.5007, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2754, device='cuda:0'), 'train_loss_ce': tensor(0.4116, device='cuda:0'), 'train_loss_bbox': tensor(0.0694, device='cuda:0'), 'train_loss_giou': tensor(0.2585, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1001, device='cuda:0'), 'validation_loss_ce': tensor(0.4029, device='cuda:0'), 'validation_loss_bbox': tensor(0.1417, device='cuda:0'), 'validation_loss_giou': tensor(0.4944, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9490, device='cuda:0'), 'train_loss_ce': tensor(0.4739, device='cuda:0'), 'train_loss_bbox': tensor(0.0407, device='cuda:0'), 'train_loss_giou': tensor(0.1358, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0811, device='cuda:0'), 'validation_loss_ce': tensor(0.4024, device='cuda:0'), 'validation_loss_bbox': tensor(0.1371, device='cuda:0'), 'validation_loss_giou': tensor(0.4967, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5866, device='cuda:0'), 'train_loss_ce': tensor(0.2551, device='cuda:0'), 'train_loss_bbox': tensor(0.0258, device='cuda:0'), 'train_loss_giou': tensor(0.1011, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0968, device='cuda:0'), 'validation_loss_ce': tensor(0.4022, device='cuda:0'), 'validation_loss_bbox': tensor(0.1378, device='cuda:0'), 'validation_loss_giou': tensor(0.5029, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9721, device='cuda:0'), 'train_loss_ce': tensor(0.3862, device='cuda:0'), 'train_loss_bbox': tensor(0.0490, device='cuda:0'), 'train_loss_giou': tensor(0.1705, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0927, device='cuda:0'), 'validation_loss_ce': tensor(0.4012, device='cuda:0'), 'validation_loss_bbox': tensor(0.1415, device='cuda:0'), 'validation_loss_giou': tensor(0.4920, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1011, device='cuda:0'), 'train_loss_ce': tensor(0.3148, device='cuda:0'), 'train_loss_bbox': tensor(0.0588, device='cuda:0'), 'train_loss_giou': tensor(0.2461, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0956, device='cuda:0'), 'validation_loss_ce': tensor(0.4007, device='cuda:0'), 'validation_loss_bbox': tensor(0.1412, device='cuda:0'), 'validation_loss_giou': tensor(0.4945, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8660, device='cuda:0'), 'train_loss_ce': tensor(0.3824, device='cuda:0'), 'train_loss_bbox': tensor(0.0451, device='cuda:0'), 'train_loss_giou': tensor(0.1291, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1089, device='cuda:0'), 'validation_loss_ce': tensor(0.4007, device='cuda:0'), 'validation_loss_bbox': tensor(0.1410, device='cuda:0'), 'validation_loss_giou': tensor(0.5017, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8836, device='cuda:0'), 'train_loss_ce': tensor(0.4261, device='cuda:0'), 'train_loss_bbox': tensor(0.0260, device='cuda:0'), 'train_loss_giou': tensor(0.1638, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1174, device='cuda:0'), 'validation_loss_ce': tensor(0.4009, device='cuda:0'), 'validation_loss_bbox': tensor(0.1431, device='cuda:0'), 'validation_loss_giou': tensor(0.5006, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1641, device='cuda:0'), 'train_loss_ce': tensor(0.4108, device='cuda:0'), 'train_loss_bbox': tensor(0.0408, device='cuda:0'), 'train_loss_giou': tensor(0.2746, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0851, device='cuda:0'), 'validation_loss_ce': tensor(0.3989, device='cuda:0'), 'validation_loss_bbox': tensor(0.1388, device='cuda:0'), 'validation_loss_giou': tensor(0.4961, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7509, device='cuda:0'), 'train_loss_ce': tensor(0.3990, device='cuda:0'), 'train_loss_bbox': tensor(0.0273, device='cuda:0'), 'train_loss_giou': tensor(0.1076, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0834, device='cuda:0'), 'validation_loss_ce': tensor(0.3969, device='cuda:0'), 'validation_loss_bbox': tensor(0.1404, device='cuda:0'), 'validation_loss_giou': tensor(0.4923, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9175, device='cuda:0'), 'train_loss_ce': tensor(0.4502, device='cuda:0'), 'train_loss_bbox': tensor(0.0460, device='cuda:0'), 'train_loss_giou': tensor(0.1185, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1008, device='cuda:0'), 'validation_loss_ce': tensor(0.3980, device='cuda:0'), 'validation_loss_bbox': tensor(0.1405, device='cuda:0'), 'validation_loss_giou': tensor(0.5002, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0066, device='cuda:0'), 'train_loss_ce': tensor(0.4555, device='cuda:0'), 'train_loss_bbox': tensor(0.0554, device='cuda:0'), 'train_loss_giou': tensor(0.1370, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0969, device='cuda:0'), 'validation_loss_ce': tensor(0.3982, device='cuda:0'), 'validation_loss_bbox': tensor(0.1419, device='cuda:0'), 'validation_loss_giou': tensor(0.4946, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7703, device='cuda:0'), 'train_loss_ce': tensor(0.3351, device='cuda:0'), 'train_loss_bbox': tensor(0.0396, device='cuda:0'), 'train_loss_giou': tensor(0.1186, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1150, device='cuda:0'), 'validation_loss_ce': tensor(0.3958, device='cuda:0'), 'validation_loss_bbox': tensor(0.1435, device='cuda:0'), 'validation_loss_giou': tensor(0.5009, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8856, device='cuda:0'), 'train_loss_ce': tensor(0.3963, device='cuda:0'), 'train_loss_bbox': tensor(0.0453, device='cuda:0'), 'train_loss_giou': tensor(0.1315, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0681, device='cuda:0'), 'validation_loss_ce': tensor(0.3955, device='cuda:0'), 'validation_loss_bbox': tensor(0.1408, device='cuda:0'), 'validation_loss_giou': tensor(0.4843, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7172, device='cuda:0'), 'train_loss_ce': tensor(0.4747, device='cuda:0'), 'train_loss_bbox': tensor(0.0198, device='cuda:0'), 'train_loss_giou': tensor(0.0718, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1073, device='cuda:0'), 'validation_loss_ce': tensor(0.3953, device='cuda:0'), 'validation_loss_bbox': tensor(0.1405, device='cuda:0'), 'validation_loss_giou': tensor(0.5047, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7883, device='cuda:0'), 'train_loss_ce': tensor(0.3036, device='cuda:0'), 'train_loss_bbox': tensor(0.0271, device='cuda:0'), 'train_loss_giou': tensor(0.1747, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0915, device='cuda:0'), 'validation_loss_ce': tensor(0.3949, device='cuda:0'), 'validation_loss_bbox': tensor(0.1405, device='cuda:0'), 'validation_loss_giou': tensor(0.4971, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7683, device='cuda:0'), 'train_loss_ce': tensor(0.3373, device='cuda:0'), 'train_loss_bbox': tensor(0.0423, device='cuda:0'), 'train_loss_giou': tensor(0.1099, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0995, device='cuda:0'), 'validation_loss_ce': tensor(0.3943, device='cuda:0'), 'validation_loss_bbox': tensor(0.1440, device='cuda:0'), 'validation_loss_giou': tensor(0.4926, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2454, device='cuda:0'), 'train_loss_ce': tensor(0.4245, device='cuda:0'), 'train_loss_bbox': tensor(0.0489, device='cuda:0'), 'train_loss_giou': tensor(0.2882, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0798, device='cuda:0'), 'validation_loss_ce': tensor(0.3924, device='cuda:0'), 'validation_loss_bbox': tensor(0.1397, device='cuda:0'), 'validation_loss_giou': tensor(0.4944, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0463, device='cuda:0'), 'train_loss_ce': tensor(0.4437, device='cuda:0'), 'train_loss_bbox': tensor(0.0505, device='cuda:0'), 'train_loss_giou': tensor(0.1751, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0989, device='cuda:0'), 'validation_loss_ce': tensor(0.3923, device='cuda:0'), 'validation_loss_bbox': tensor(0.1416, device='cuda:0'), 'validation_loss_giou': tensor(0.4993, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7309, device='cuda:0'), 'train_loss_ce': tensor(0.4453, device='cuda:0'), 'train_loss_bbox': tensor(0.0218, device='cuda:0'), 'train_loss_giou': tensor(0.0884, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1211, device='cuda:0'), 'validation_loss_ce': tensor(0.3937, device='cuda:0'), 'validation_loss_bbox': tensor(0.1451, device='cuda:0'), 'validation_loss_giou': tensor(0.5008, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0416, device='cuda:0'), 'train_loss_ce': tensor(0.3642, device='cuda:0'), 'train_loss_bbox': tensor(0.0528, device='cuda:0'), 'train_loss_giou': tensor(0.2066, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0825, device='cuda:0'), 'validation_loss_ce': tensor(0.3900, device='cuda:0'), 'validation_loss_bbox': tensor(0.1422, device='cuda:0'), 'validation_loss_giou': tensor(0.4906, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1317, device='cuda:0'), 'train_loss_ce': tensor(0.2214, device='cuda:0'), 'train_loss_bbox': tensor(0.0879, device='cuda:0'), 'train_loss_giou': tensor(0.2355, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1016, device='cuda:0'), 'validation_loss_ce': tensor(0.3919, device='cuda:0'), 'validation_loss_bbox': tensor(0.1434, device='cuda:0'), 'validation_loss_giou': tensor(0.4964, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9220, device='cuda:0'), 'train_loss_ce': tensor(0.3962, device='cuda:0'), 'train_loss_bbox': tensor(0.0369, device='cuda:0'), 'train_loss_giou': tensor(0.1708, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0994, device='cuda:0'), 'validation_loss_ce': tensor(0.3911, device='cuda:0'), 'validation_loss_bbox': tensor(0.1419, device='cuda:0'), 'validation_loss_giou': tensor(0.4994, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5615, device='cuda:0'), 'train_loss_ce': tensor(0.3885, device='cuda:0'), 'train_loss_bbox': tensor(0.0122, device='cuda:0'), 'train_loss_giou': tensor(0.0560, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0921, device='cuda:0'), 'validation_loss_ce': tensor(0.3879, device='cuda:0'), 'validation_loss_bbox': tensor(0.1407, device='cuda:0'), 'validation_loss_giou': tensor(0.5002, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2709, device='cuda:0'), 'train_loss_ce': tensor(0.3410, device='cuda:0'), 'train_loss_bbox': tensor(0.0506, device='cuda:0'), 'train_loss_giou': tensor(0.3385, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1019, device='cuda:0'), 'validation_loss_ce': tensor(0.3891, device='cuda:0'), 'validation_loss_bbox': tensor(0.1426, device='cuda:0'), 'validation_loss_giou': tensor(0.5000, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8540, device='cuda:0'), 'train_loss_ce': tensor(0.4064, device='cuda:0'), 'train_loss_bbox': tensor(0.0323, device='cuda:0'), 'train_loss_giou': tensor(0.1431, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0888, device='cuda:0'), 'validation_loss_ce': tensor(0.3880, device='cuda:0'), 'validation_loss_bbox': tensor(0.1421, device='cuda:0'), 'validation_loss_giou': tensor(0.4951, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7087, device='cuda:0'), 'train_loss_ce': tensor(0.3983, device='cuda:0'), 'train_loss_bbox': tensor(0.0310, device='cuda:0'), 'train_loss_giou': tensor(0.0778, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1018, device='cuda:0'), 'validation_loss_ce': tensor(0.3891, device='cuda:0'), 'validation_loss_bbox': tensor(0.1429, device='cuda:0'), 'validation_loss_giou': tensor(0.4990, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9751, device='cuda:0'), 'train_loss_ce': tensor(0.3362, device='cuda:0'), 'train_loss_bbox': tensor(0.0586, device='cuda:0'), 'train_loss_giou': tensor(0.1730, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0808, device='cuda:0'), 'validation_loss_ce': tensor(0.3887, device='cuda:0'), 'validation_loss_bbox': tensor(0.1424, device='cuda:0'), 'validation_loss_giou': tensor(0.4899, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9407, device='cuda:0'), 'train_loss_ce': tensor(0.3872, device='cuda:0'), 'train_loss_bbox': tensor(0.0280, device='cuda:0'), 'train_loss_giou': tensor(0.2067, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0911, device='cuda:0'), 'validation_loss_ce': tensor(0.3890, device='cuda:0'), 'validation_loss_bbox': tensor(0.1407, device='cuda:0'), 'validation_loss_giou': tensor(0.4992, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5128, device='cuda:0'), 'train_loss_ce': tensor(0.2901, device='cuda:0'), 'train_loss_bbox': tensor(0.0141, device='cuda:0'), 'train_loss_giou': tensor(0.0761, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0820, device='cuda:0'), 'validation_loss_ce': tensor(0.3886, device='cuda:0'), 'validation_loss_bbox': tensor(0.1402, device='cuda:0'), 'validation_loss_giou': tensor(0.4962, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6186, device='cuda:0'), 'train_loss_ce': tensor(0.3715, device='cuda:0'), 'train_loss_bbox': tensor(0.0177, device='cuda:0'), 'train_loss_giou': tensor(0.0793, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0846, device='cuda:0'), 'validation_loss_ce': tensor(0.3871, device='cuda:0'), 'validation_loss_bbox': tensor(0.1420, device='cuda:0'), 'validation_loss_giou': tensor(0.4937, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7100, device='cuda:0'), 'train_loss_ce': tensor(0.4129, device='cuda:0'), 'train_loss_bbox': tensor(0.0219, device='cuda:0'), 'train_loss_giou': tensor(0.0939, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0916, device='cuda:0'), 'validation_loss_ce': tensor(0.3869, device='cuda:0'), 'validation_loss_bbox': tensor(0.1423, device='cuda:0'), 'validation_loss_giou': tensor(0.4965, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7891, device='cuda:0'), 'train_loss_ce': tensor(0.3259, device='cuda:0'), 'train_loss_bbox': tensor(0.0262, device='cuda:0'), 'train_loss_giou': tensor(0.1661, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0995, device='cuda:0'), 'validation_loss_ce': tensor(0.3861, device='cuda:0'), 'validation_loss_bbox': tensor(0.1423, device='cuda:0'), 'validation_loss_giou': tensor(0.5010, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6908, device='cuda:0'), 'train_loss_ce': tensor(0.4154, device='cuda:0'), 'train_loss_bbox': tensor(0.0176, device='cuda:0'), 'train_loss_giou': tensor(0.0938, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0993, device='cuda:0'), 'validation_loss_ce': tensor(0.3860, device='cuda:0'), 'validation_loss_bbox': tensor(0.1441, device='cuda:0'), 'validation_loss_giou': tensor(0.4964, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7032, device='cuda:0'), 'train_loss_ce': tensor(0.3474, device='cuda:0'), 'train_loss_bbox': tensor(0.0360, device='cuda:0'), 'train_loss_giou': tensor(0.0880, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0982, device='cuda:0'), 'validation_loss_ce': tensor(0.3860, device='cuda:0'), 'validation_loss_bbox': tensor(0.1427, device='cuda:0'), 'validation_loss_giou': tensor(0.4994, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7668, device='cuda:0'), 'train_loss_ce': tensor(0.3098, device='cuda:0'), 'train_loss_bbox': tensor(0.0382, device='cuda:0'), 'train_loss_giou': tensor(0.1329, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0792, device='cuda:0'), 'validation_loss_ce': tensor(0.3831, device='cuda:0'), 'validation_loss_bbox': tensor(0.1437, device='cuda:0'), 'validation_loss_giou': tensor(0.4887, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9776, device='cuda:0'), 'train_loss_ce': tensor(0.3965, device='cuda:0'), 'train_loss_bbox': tensor(0.0380, device='cuda:0'), 'train_loss_giou': tensor(0.1954, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0923, device='cuda:0'), 'validation_loss_ce': tensor(0.3841, device='cuda:0'), 'validation_loss_bbox': tensor(0.1468, device='cuda:0'), 'validation_loss_giou': tensor(0.4872, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5626, device='cuda:0'), 'train_loss_ce': tensor(0.2560, device='cuda:0'), 'train_loss_bbox': tensor(0.0228, device='cuda:0'), 'train_loss_giou': tensor(0.0964, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0862, device='cuda:0'), 'validation_loss_ce': tensor(0.3844, device='cuda:0'), 'validation_loss_bbox': tensor(0.1421, device='cuda:0'), 'validation_loss_giou': tensor(0.4957, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8129, device='cuda:0'), 'train_loss_ce': tensor(0.4078, device='cuda:0'), 'train_loss_bbox': tensor(0.0371, device='cuda:0'), 'train_loss_giou': tensor(0.1097, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0911, device='cuda:0'), 'validation_loss_ce': tensor(0.3836, device='cuda:0'), 'validation_loss_bbox': tensor(0.1428, device='cuda:0'), 'validation_loss_giou': tensor(0.4969, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5992, device='cuda:0'), 'train_loss_ce': tensor(0.3970, device='cuda:0'), 'train_loss_bbox': tensor(0.0118, device='cuda:0'), 'train_loss_giou': tensor(0.0716, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1013, device='cuda:0'), 'validation_loss_ce': tensor(0.3846, device='cuda:0'), 'validation_loss_bbox': tensor(0.1445, device='cuda:0'), 'validation_loss_giou': tensor(0.4970, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1661, device='cuda:0'), 'train_loss_ce': tensor(0.3874, device='cuda:0'), 'train_loss_bbox': tensor(0.0621, device='cuda:0'), 'train_loss_giou': tensor(0.2342, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0857, device='cuda:0'), 'validation_loss_ce': tensor(0.3846, device='cuda:0'), 'validation_loss_bbox': tensor(0.1418, device='cuda:0'), 'validation_loss_giou': tensor(0.4961, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8454, device='cuda:0'), 'train_loss_ce': tensor(0.3913, device='cuda:0'), 'train_loss_bbox': tensor(0.0410, device='cuda:0'), 'train_loss_giou': tensor(0.1246, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0738, device='cuda:0'), 'validation_loss_ce': tensor(0.3835, device='cuda:0'), 'validation_loss_bbox': tensor(0.1421, device='cuda:0'), 'validation_loss_giou': tensor(0.4899, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5814, device='cuda:0'), 'train_loss_ce': tensor(0.2588, device='cuda:0'), 'train_loss_bbox': tensor(0.0220, device='cuda:0'), 'train_loss_giou': tensor(0.1063, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1019, device='cuda:0'), 'validation_loss_ce': tensor(0.3838, device='cuda:0'), 'validation_loss_bbox': tensor(0.1445, device='cuda:0'), 'validation_loss_giou': tensor(0.4977, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9158, device='cuda:0'), 'train_loss_ce': tensor(0.3974, device='cuda:0'), 'train_loss_bbox': tensor(0.0294, device='cuda:0'), 'train_loss_giou': tensor(0.1857, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0808, device='cuda:0'), 'validation_loss_ce': tensor(0.3816, device='cuda:0'), 'validation_loss_bbox': tensor(0.1423, device='cuda:0'), 'validation_loss_giou': tensor(0.4938, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4654, device='cuda:0'), 'train_loss_ce': tensor(0.2938, device='cuda:0'), 'train_loss_bbox': tensor(0.0127, device='cuda:0'), 'train_loss_giou': tensor(0.0541, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0947, device='cuda:0'), 'validation_loss_ce': tensor(0.3819, device='cuda:0'), 'validation_loss_bbox': tensor(0.1443, device='cuda:0'), 'validation_loss_giou': tensor(0.4957, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9825, device='cuda:0'), 'train_loss_ce': tensor(0.4225, device='cuda:0'), 'train_loss_bbox': tensor(0.0290, device='cuda:0'), 'train_loss_giou': tensor(0.2075, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0854, device='cuda:0'), 'validation_loss_ce': tensor(0.3805, device='cuda:0'), 'validation_loss_bbox': tensor(0.1429, device='cuda:0'), 'validation_loss_giou': tensor(0.4952, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6758, device='cuda:0'), 'train_loss_ce': tensor(0.4066, device='cuda:0'), 'train_loss_bbox': tensor(0.0168, device='cuda:0'), 'train_loss_giou': tensor(0.0925, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0747, device='cuda:0'), 'validation_loss_ce': tensor(0.3792, device='cuda:0'), 'validation_loss_bbox': tensor(0.1421, device='cuda:0'), 'validation_loss_giou': tensor(0.4924, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.9951, device='cuda:0'), 'train_loss_ce': tensor(0.4190, device='cuda:0'), 'train_loss_bbox': tensor(0.0386, device='cuda:0'), 'train_loss_giou': tensor(0.1916, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0882, device='cuda:0'), 'validation_loss_ce': tensor(0.3800, device='cuda:0'), 'validation_loss_bbox': tensor(0.1432, device='cuda:0'), 'validation_loss_giou': tensor(0.4962, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.9602, device='cuda:0'), 'train_loss_ce': tensor(0.3465, device='cuda:0'), 'train_loss_bbox': tensor(0.0319, device='cuda:0'), 'train_loss_giou': tensor(0.2271, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0830, device='cuda:0'), 'validation_loss_ce': tensor(0.3790, device='cuda:0'), 'validation_loss_bbox': tensor(0.1434, device='cuda:0'), 'validation_loss_giou': tensor(0.4935, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.7765, device='cuda:0'), 'train_loss_ce': tensor(0.3531, device='cuda:0'), 'train_loss_bbox': tensor(0.0255, device='cuda:0'), 'train_loss_giou': tensor(0.1479, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0721, device='cuda:0'), 'validation_loss_ce': tensor(0.3812, device='cuda:0'), 'validation_loss_bbox': tensor(0.1425, device='cuda:0'), 'validation_loss_giou': tensor(0.4891, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8799, device='cuda:0'), 'train_loss_ce': tensor(0.3987, device='cuda:0'), 'train_loss_bbox': tensor(0.0339, device='cuda:0'), 'train_loss_giou': tensor(0.1558, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0841, device='cuda:0'), 'validation_loss_ce': tensor(0.3808, device='cuda:0'), 'validation_loss_bbox': tensor(0.1426, device='cuda:0'), 'validation_loss_giou': tensor(0.4951, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.7907, device='cuda:0'), 'train_loss_ce': tensor(0.3430, device='cuda:0'), 'train_loss_bbox': tensor(0.0325, device='cuda:0'), 'train_loss_giou': tensor(0.1427, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0760, device='cuda:0'), 'validation_loss_ce': tensor(0.3790, device='cuda:0'), 'validation_loss_bbox': tensor(0.1419, device='cuda:0'), 'validation_loss_giou': tensor(0.4938, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.7382, device='cuda:0'), 'train_loss_ce': tensor(0.3446, device='cuda:0'), 'train_loss_bbox': tensor(0.0150, device='cuda:0'), 'train_loss_giou': tensor(0.1593, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0766, device='cuda:0'), 'validation_loss_ce': tensor(0.3808, device='cuda:0'), 'validation_loss_bbox': tensor(0.1421, device='cuda:0'), 'validation_loss_giou': tensor(0.4927, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.6971, device='cuda:0'), 'train_loss_ce': tensor(0.3193, device='cuda:0'), 'train_loss_bbox': tensor(0.0293, device='cuda:0'), 'train_loss_giou': tensor(0.1157, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0842, device='cuda:0'), 'validation_loss_ce': tensor(0.3789, device='cuda:0'), 'validation_loss_bbox': tensor(0.1429, device='cuda:0'), 'validation_loss_giou': tensor(0.4954, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.7365, device='cuda:0'), 'train_loss_ce': tensor(0.3500, device='cuda:0'), 'train_loss_bbox': tensor(0.0248, device='cuda:0'), 'train_loss_giou': tensor(0.1312, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0849, device='cuda:0'), 'validation_loss_ce': tensor(0.3794, device='cuda:0'), 'validation_loss_bbox': tensor(0.1420, device='cuda:0'), 'validation_loss_giou': tensor(0.4978, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.7784, device='cuda:0'), 'train_loss_ce': tensor(0.3997, device='cuda:0'), 'train_loss_bbox': tensor(0.0203, device='cuda:0'), 'train_loss_giou': tensor(0.1386, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0685, device='cuda:0'), 'validation_loss_ce': tensor(0.3792, device='cuda:0'), 'validation_loss_bbox': tensor(0.1406, device='cuda:0'), 'validation_loss_giou': tensor(0.4932, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.8461, device='cuda:0'), 'train_loss_ce': tensor(0.4363, device='cuda:0'), 'train_loss_bbox': tensor(0.0272, device='cuda:0'), 'train_loss_giou': tensor(0.1370, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0728, device='cuda:0'), 'validation_loss_ce': tensor(0.3767, device='cuda:0'), 'validation_loss_bbox': tensor(0.1437, device='cuda:0'), 'validation_loss_giou': tensor(0.4889, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(1.1986, device='cuda:0'), 'train_loss_ce': tensor(0.4073, device='cuda:0'), 'train_loss_bbox': tensor(0.0447, device='cuda:0'), 'train_loss_giou': tensor(0.2838, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0697, device='cuda:0'), 'validation_loss_ce': tensor(0.3772, device='cuda:0'), 'validation_loss_bbox': tensor(0.1400, device='cuda:0'), 'validation_loss_giou': tensor(0.4963, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.8608, device='cuda:0'), 'train_loss_ce': tensor(0.3537, device='cuda:0'), 'train_loss_bbox': tensor(0.0285, device='cuda:0'), 'train_loss_giou': tensor(0.1823, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0880, device='cuda:0'), 'validation_loss_ce': tensor(0.3759, device='cuda:0'), 'validation_loss_bbox': tensor(0.1432, device='cuda:0'), 'validation_loss_giou': tensor(0.4981, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.8489, device='cuda:0'), 'train_loss_ce': tensor(0.4313, device='cuda:0'), 'train_loss_bbox': tensor(0.0297, device='cuda:0'), 'train_loss_giou': tensor(0.1346, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0823, device='cuda:0'), 'validation_loss_ce': tensor(0.3777, device='cuda:0'), 'validation_loss_bbox': tensor(0.1426, device='cuda:0'), 'validation_loss_giou': tensor(0.4957, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.6425, device='cuda:0'), 'train_loss_ce': tensor(0.4109, device='cuda:0'), 'train_loss_bbox': tensor(0.0208, device='cuda:0'), 'train_loss_giou': tensor(0.0639, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0774, device='cuda:0'), 'validation_loss_ce': tensor(0.3747, device='cuda:0'), 'validation_loss_bbox': tensor(0.1407, device='cuda:0'), 'validation_loss_giou': tensor(0.4995, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.7525, device='cuda:0'), 'train_loss_ce': tensor(0.3877, device='cuda:0'), 'train_loss_bbox': tensor(0.0339, device='cuda:0'), 'train_loss_giou': tensor(0.0978, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0804, device='cuda:0'), 'validation_loss_ce': tensor(0.3766, device='cuda:0'), 'validation_loss_bbox': tensor(0.1419, device='cuda:0'), 'validation_loss_giou': tensor(0.4972, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.6334, device='cuda:0'), 'train_loss_ce': tensor(0.3684, device='cuda:0'), 'train_loss_bbox': tensor(0.0209, device='cuda:0'), 'train_loss_giou': tensor(0.0803, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0746, device='cuda:0'), 'validation_loss_ce': tensor(0.3771, device='cuda:0'), 'validation_loss_bbox': tensor(0.1422, device='cuda:0'), 'validation_loss_giou': tensor(0.4933, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.4665, device='cuda:0'), 'train_loss_ce': tensor(0.2620, device='cuda:0'), 'train_loss_bbox': tensor(0.0144, device='cuda:0'), 'train_loss_giou': tensor(0.0662, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0940, device='cuda:0'), 'validation_loss_ce': tensor(0.3748, device='cuda:0'), 'validation_loss_bbox': tensor(0.1413, device='cuda:0'), 'validation_loss_giou': tensor(0.5063, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.7626, device='cuda:0'), 'train_loss_ce': tensor(0.3529, device='cuda:0'), 'train_loss_bbox': tensor(0.0298, device='cuda:0'), 'train_loss_giou': tensor(0.1303, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0646, device='cuda:0'), 'validation_loss_ce': tensor(0.3742, device='cuda:0'), 'validation_loss_bbox': tensor(0.1402, device='cuda:0'), 'validation_loss_giou': tensor(0.4948, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.6900, device='cuda:0'), 'train_loss_ce': tensor(0.3017, device='cuda:0'), 'train_loss_bbox': tensor(0.0314, device='cuda:0'), 'train_loss_giou': tensor(0.1156, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0811, device='cuda:0'), 'validation_loss_ce': tensor(0.3760, device='cuda:0'), 'validation_loss_bbox': tensor(0.1413, device='cuda:0'), 'validation_loss_giou': tensor(0.4994, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.6045, device='cuda:0'), 'train_loss_ce': tensor(0.3696, device='cuda:0'), 'train_loss_bbox': tensor(0.0186, device='cuda:0'), 'train_loss_giou': tensor(0.0709, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0606, device='cuda:0'), 'validation_loss_ce': tensor(0.3745, device='cuda:0'), 'validation_loss_bbox': tensor(0.1403, device='cuda:0'), 'validation_loss_giou': tensor(0.4924, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(1.0117, device='cuda:0'), 'train_loss_ce': tensor(0.3311, device='cuda:0'), 'train_loss_bbox': tensor(0.0454, device='cuda:0'), 'train_loss_giou': tensor(0.2267, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0767, device='cuda:0'), 'validation_loss_ce': tensor(0.3742, device='cuda:0'), 'validation_loss_bbox': tensor(0.1411, device='cuda:0'), 'validation_loss_giou': tensor(0.4986, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.5831, device='cuda:0'), 'train_loss_ce': tensor(0.3296, device='cuda:0'), 'train_loss_bbox': tensor(0.0124, device='cuda:0'), 'train_loss_giou': tensor(0.0957, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0611, device='cuda:0'), 'validation_loss_ce': tensor(0.3736, device='cuda:0'), 'validation_loss_bbox': tensor(0.1404, device='cuda:0'), 'validation_loss_giou': tensor(0.4927, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.5987, device='cuda:0'), 'train_loss_ce': tensor(0.2892, device='cuda:0'), 'train_loss_bbox': tensor(0.0219, device='cuda:0'), 'train_loss_giou': tensor(0.1001, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0854, device='cuda:0'), 'validation_loss_ce': tensor(0.3727, device='cuda:0'), 'validation_loss_bbox': tensor(0.1455, device='cuda:0'), 'validation_loss_giou': tensor(0.4926, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.5855, device='cuda:0'), 'train_loss_ce': tensor(0.3563, device='cuda:0'), 'train_loss_bbox': tensor(0.0179, device='cuda:0'), 'train_loss_giou': tensor(0.0697, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0625, device='cuda:0'), 'validation_loss_ce': tensor(0.3732, device='cuda:0'), 'validation_loss_bbox': tensor(0.1407, device='cuda:0'), 'validation_loss_giou': tensor(0.4928, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.7652, device='cuda:0'), 'train_loss_ce': tensor(0.3467, device='cuda:0'), 'train_loss_bbox': tensor(0.0220, device='cuda:0'), 'train_loss_giou': tensor(0.1542, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0640, device='cuda:0'), 'validation_loss_ce': tensor(0.3697, device='cuda:0'), 'validation_loss_bbox': tensor(0.1406, device='cuda:0'), 'validation_loss_giou': tensor(0.4956, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4944, device='cuda:0'), 'train_loss_ce': tensor(0.2518, device='cuda:0'), 'train_loss_bbox': tensor(0.0132, device='cuda:0'), 'train_loss_giou': tensor(0.0883, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0697, device='cuda:0'), 'validation_loss_ce': tensor(0.3726, device='cuda:0'), 'validation_loss_bbox': tensor(0.1388, device='cuda:0'), 'validation_loss_giou': tensor(0.5015, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.7974, device='cuda:0'), 'train_loss_ce': tensor(0.3676, device='cuda:0'), 'train_loss_bbox': tensor(0.0154, device='cuda:0'), 'train_loss_giou': tensor(0.1763, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0536, device='cuda:0'), 'validation_loss_ce': tensor(0.3717, device='cuda:0'), 'validation_loss_bbox': tensor(0.1378, device='cuda:0'), 'validation_loss_giou': tensor(0.4965, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.6857, device='cuda:0'), 'train_loss_ce': tensor(0.3400, device='cuda:0'), 'train_loss_bbox': tensor(0.0251, device='cuda:0'), 'train_loss_giou': tensor(0.1100, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0629, device='cuda:0'), 'validation_loss_ce': tensor(0.3701, device='cuda:0'), 'validation_loss_bbox': tensor(0.1398, device='cuda:0'), 'validation_loss_giou': tensor(0.4970, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.6709, device='cuda:0'), 'train_loss_ce': tensor(0.4094, device='cuda:0'), 'train_loss_bbox': tensor(0.0214, device='cuda:0'), 'train_loss_giou': tensor(0.0771, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0747, device='cuda:0'), 'validation_loss_ce': tensor(0.3715, device='cuda:0'), 'validation_loss_bbox': tensor(0.1396, device='cuda:0'), 'validation_loss_giou': tensor(0.5026, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.7083, device='cuda:0'), 'train_loss_ce': tensor(0.2611, device='cuda:0'), 'train_loss_bbox': tensor(0.0517, device='cuda:0'), 'train_loss_giou': tensor(0.0944, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0685, device='cuda:0'), 'validation_loss_ce': tensor(0.3704, device='cuda:0'), 'validation_loss_bbox': tensor(0.1395, device='cuda:0'), 'validation_loss_giou': tensor(0.5003, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.5538, device='cuda:0'), 'train_loss_ce': tensor(0.2397, device='cuda:0'), 'train_loss_bbox': tensor(0.0234, device='cuda:0'), 'train_loss_giou': tensor(0.0986, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0907, device='cuda:0'), 'validation_loss_ce': tensor(0.3724, device='cuda:0'), 'validation_loss_bbox': tensor(0.1461, device='cuda:0'), 'validation_loss_giou': tensor(0.4940, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.7793, device='cuda:0'), 'train_loss_ce': tensor(0.2966, device='cuda:0'), 'train_loss_bbox': tensor(0.0442, device='cuda:0'), 'train_loss_giou': tensor(0.1310, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0629, device='cuda:0'), 'validation_loss_ce': tensor(0.3728, device='cuda:0'), 'validation_loss_bbox': tensor(0.1425, device='cuda:0'), 'validation_loss_giou': tensor(0.4889, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.9370, device='cuda:0'), 'train_loss_ce': tensor(0.3364, device='cuda:0'), 'train_loss_bbox': tensor(0.0397, device='cuda:0'), 'train_loss_giou': tensor(0.2011, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0629, device='cuda:0'), 'validation_loss_ce': tensor(0.3690, device='cuda:0'), 'validation_loss_bbox': tensor(0.1400, device='cuda:0'), 'validation_loss_giou': tensor(0.4970, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.4724, device='cuda:0'), 'train_loss_ce': tensor(0.3225, device='cuda:0'), 'train_loss_bbox': tensor(0.0109, device='cuda:0'), 'train_loss_giou': tensor(0.0478, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0822, device='cuda:0'), 'validation_loss_ce': tensor(0.3686, device='cuda:0'), 'validation_loss_bbox': tensor(0.1409, device='cuda:0'), 'validation_loss_giou': tensor(0.5047, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(1.1247, device='cuda:0'), 'train_loss_ce': tensor(0.3806, device='cuda:0'), 'train_loss_bbox': tensor(0.0473, device='cuda:0'), 'train_loss_giou': tensor(0.2537, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0498, device='cuda:0'), 'validation_loss_ce': tensor(0.3677, device='cuda:0'), 'validation_loss_bbox': tensor(0.1374, device='cuda:0'), 'validation_loss_giou': tensor(0.4976, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.3152, device='cuda:0'), 'train_loss_ce': tensor(0.2106, device='cuda:0'), 'train_loss_bbox': tensor(0.0119, device='cuda:0'), 'train_loss_giou': tensor(0.0226, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0732, device='cuda:0'), 'validation_loss_ce': tensor(0.3678, device='cuda:0'), 'validation_loss_bbox': tensor(0.1402, device='cuda:0'), 'validation_loss_giou': tensor(0.5021, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.6065, device='cuda:0'), 'train_loss_ce': tensor(0.3948, device='cuda:0'), 'train_loss_bbox': tensor(0.0121, device='cuda:0'), 'train_loss_giou': tensor(0.0757, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0622, device='cuda:0'), 'validation_loss_ce': tensor(0.3696, device='cuda:0'), 'validation_loss_bbox': tensor(0.1401, device='cuda:0'), 'validation_loss_giou': tensor(0.4960, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.5343, device='cuda:0'), 'train_loss_ce': tensor(0.3468, device='cuda:0'), 'train_loss_bbox': tensor(0.0169, device='cuda:0'), 'train_loss_giou': tensor(0.0515, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0599, device='cuda:0'), 'validation_loss_ce': tensor(0.3711, device='cuda:0'), 'validation_loss_bbox': tensor(0.1417, device='cuda:0'), 'validation_loss_giou': tensor(0.4902, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(0.6806, device='cuda:0'), 'train_loss_ce': tensor(0.1509, device='cuda:0'), 'train_loss_bbox': tensor(0.0471, device='cuda:0'), 'train_loss_giou': tensor(0.1472, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0832, device='cuda:0'), 'validation_loss_ce': tensor(0.3687, device='cuda:0'), 'validation_loss_bbox': tensor(0.1432, device='cuda:0'), 'validation_loss_giou': tensor(0.4992, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.6467, device='cuda:0'), 'train_loss_ce': tensor(0.3665, device='cuda:0'), 'train_loss_bbox': tensor(0.0113, device='cuda:0'), 'train_loss_giou': tensor(0.1119, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0768, device='cuda:0'), 'validation_loss_ce': tensor(0.3705, device='cuda:0'), 'validation_loss_bbox': tensor(0.1434, device='cuda:0'), 'validation_loss_giou': tensor(0.4947, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.6325, device='cuda:0'), 'train_loss_ce': tensor(0.3338, device='cuda:0'), 'train_loss_bbox': tensor(0.0174, device='cuda:0'), 'train_loss_giou': tensor(0.1058, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0590, device='cuda:0'), 'validation_loss_ce': tensor(0.3710, device='cuda:0'), 'validation_loss_bbox': tensor(0.1415, device='cuda:0'), 'validation_loss_giou': tensor(0.4902, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.7026, device='cuda:0'), 'train_loss_ce': tensor(0.3470, device='cuda:0'), 'train_loss_bbox': tensor(0.0195, device='cuda:0'), 'train_loss_giou': tensor(0.1290, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0626, device='cuda:0'), 'validation_loss_ce': tensor(0.3687, device='cuda:0'), 'validation_loss_bbox': tensor(0.1390, device='cuda:0'), 'validation_loss_giou': tensor(0.4994, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.6189, device='cuda:0'), 'train_loss_ce': tensor(0.3663, device='cuda:0'), 'train_loss_bbox': tensor(0.0182, device='cuda:0'), 'train_loss_giou': tensor(0.0808, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0598, device='cuda:0'), 'validation_loss_ce': tensor(0.3677, device='cuda:0'), 'validation_loss_bbox': tensor(0.1413, device='cuda:0'), 'validation_loss_giou': tensor(0.4928, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.6532, device='cuda:0'), 'train_loss_ce': tensor(0.4357, device='cuda:0'), 'train_loss_bbox': tensor(0.0148, device='cuda:0'), 'train_loss_giou': tensor(0.0718, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0682, device='cuda:0'), 'validation_loss_ce': tensor(0.3683, device='cuda:0'), 'validation_loss_bbox': tensor(0.1420, device='cuda:0'), 'validation_loss_giou': tensor(0.4950, device='cuda:0'), 'validation_cardinality_error': tensor(0.8889, device='cuda:0')}
{'training_loss': tensor(0.6666, device='cuda:0'), 'train_loss_ce': tensor(0.3585, device='cuda:0'), 'train_loss_bbox': tensor(0.0222, device='cuda:0'), 'train_loss_giou': tensor(0.0985, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0720, device='cuda:0'), 'validation_loss_ce': tensor(0.3707, device='cuda:0'), 'validation_loss_bbox': tensor(0.1426, device='cuda:0'), 'validation_loss_giou': tensor(0.4941, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.5689, device='cuda:0'), 'train_loss_ce': tensor(0.3388, device='cuda:0'), 'train_loss_bbox': tensor(0.0164, device='cuda:0'), 'train_loss_giou': tensor(0.0740, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0645, device='cuda:0'), 'validation_loss_ce': tensor(0.3688, device='cuda:0'), 'validation_loss_bbox': tensor(0.1396, device='cuda:0'), 'validation_loss_giou': tensor(0.4988, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.5102, device='cuda:0'), 'train_loss_ce': tensor(0.2188, device='cuda:0'), 'train_loss_bbox': tensor(0.0256, device='cuda:0'), 'train_loss_giou': tensor(0.0816, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0579, device='cuda:0'), 'validation_loss_ce': tensor(0.3712, device='cuda:0'), 'validation_loss_bbox': tensor(0.1406, device='cuda:0'), 'validation_loss_giou': tensor(0.4918, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.5585, device='cuda:0'), 'train_loss_ce': tensor(0.3712, device='cuda:0'), 'train_loss_bbox': tensor(0.0125, device='cuda:0'), 'train_loss_giou': tensor(0.0623, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0492, device='cuda:0'), 'validation_loss_ce': tensor(0.3685, device='cuda:0'), 'validation_loss_bbox': tensor(0.1393, device='cuda:0'), 'validation_loss_giou': tensor(0.4921, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(0.6535, device='cuda:0'), 'train_loss_ce': tensor(0.2912, device='cuda:0'), 'train_loss_bbox': tensor(0.0122, device='cuda:0'), 'train_loss_giou': tensor(0.1506, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0590, device='cuda:0'), 'validation_loss_ce': tensor(0.3681, device='cuda:0'), 'validation_loss_bbox': tensor(0.1384, device='cuda:0'), 'validation_loss_giou': tensor(0.4993, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.7205, device='cuda:0'), 'train_loss_ce': tensor(0.3172, device='cuda:0'), 'train_loss_bbox': tensor(0.0241, device='cuda:0'), 'train_loss_giou': tensor(0.1413, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0775, device='cuda:0'), 'validation_loss_ce': tensor(0.3670, device='cuda:0'), 'validation_loss_bbox': tensor(0.1420, device='cuda:0'), 'validation_loss_giou': tensor(0.5002, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(0.5128, device='cuda:0'), 'train_loss_ce': tensor(0.3459, device='cuda:0'), 'train_loss_bbox': tensor(0.0129, device='cuda:0'), 'train_loss_giou': tensor(0.0511, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0722, device='cuda:0'), 'validation_loss_ce': tensor(0.3659, device='cuda:0'), 'validation_loss_bbox': tensor(0.1413, device='cuda:0'), 'validation_loss_giou': tensor(0.4998, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.7485, device='cuda:0'), 'train_loss_ce': tensor(0.4132, device='cuda:0'), 'train_loss_bbox': tensor(0.0330, device='cuda:0'), 'train_loss_giou': tensor(0.0850, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0618, device='cuda:0'), 'validation_loss_ce': tensor(0.3663, device='cuda:0'), 'validation_loss_bbox': tensor(0.1407, device='cuda:0'), 'validation_loss_giou': tensor(0.4959, device='cuda:0'), 'validation_cardinality_error': tensor(0.8889, device='cuda:0')}
{'training_loss': tensor(0.5343, device='cuda:0'), 'train_loss_ce': tensor(0.3460, device='cuda:0'), 'train_loss_bbox': tensor(0.0138, device='cuda:0'), 'train_loss_giou': tensor(0.0598, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0642, device='cuda:0'), 'validation_loss_ce': tensor(0.3684, device='cuda:0'), 'validation_loss_bbox': tensor(0.1413, device='cuda:0'), 'validation_loss_giou': tensor(0.4946, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.4576, device='cuda:0'), 'train_loss_ce': tensor(0.2708, device='cuda:0'), 'train_loss_bbox': tensor(0.0140, device='cuda:0'), 'train_loss_giou': tensor(0.0584, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0645, device='cuda:0'), 'validation_loss_ce': tensor(0.3683, device='cuda:0'), 'validation_loss_bbox': tensor(0.1403, device='cuda:0'), 'validation_loss_giou': tensor(0.4974, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(0.8226, device='cuda:0'), 'train_loss_ce': tensor(0.3134, device='cuda:0'), 'train_loss_bbox': tensor(0.0257, device='cuda:0'), 'train_loss_giou': tensor(0.1904, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0501, device='cuda:0'), 'validation_loss_ce': tensor(0.3651, device='cuda:0'), 'validation_loss_bbox': tensor(0.1383, device='cuda:0'), 'validation_loss_giou': tensor(0.4969, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(0.4385, device='cuda:0'), 'train_loss_ce': tensor(0.2438, device='cuda:0'), 'train_loss_bbox': tensor(0.0174, device='cuda:0'), 'train_loss_giou': tensor(0.0539, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0559, device='cuda:0'), 'validation_loss_ce': tensor(0.3663, device='cuda:0'), 'validation_loss_bbox': tensor(0.1386, device='cuda:0'), 'validation_loss_giou': tensor(0.4982, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(0.7857, device='cuda:0'), 'train_loss_ce': tensor(0.3672, device='cuda:0'), 'train_loss_bbox': tensor(0.0177, device='cuda:0'), 'train_loss_giou': tensor(0.1649, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0522, device='cuda:0'), 'validation_loss_ce': tensor(0.3671, device='cuda:0'), 'validation_loss_bbox': tensor(0.1395, device='cuda:0'), 'validation_loss_giou': tensor(0.4938, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(0.5710, device='cuda:0'), 'train_loss_ce': tensor(0.3585, device='cuda:0'), 'train_loss_bbox': tensor(0.0173, device='cuda:0'), 'train_loss_giou': tensor(0.0630, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0413, device='cuda:0'), 'validation_loss_ce': tensor(0.3658, device='cuda:0'), 'validation_loss_bbox': tensor(0.1368, device='cuda:0'), 'validation_loss_giou': tensor(0.4958, device='cuda:0'), 'validation_cardinality_error': tensor(0.8687, device='cuda:0')}
{'training_loss': tensor(0.4770, device='cuda:0'), 'train_loss_ce': tensor(0.3362, device='cuda:0'), 'train_loss_bbox': tensor(0.0077, device='cuda:0'), 'train_loss_giou': tensor(0.0511, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0535, device='cuda:0'), 'validation_loss_ce': tensor(0.3657, device='cuda:0'), 'validation_loss_bbox': tensor(0.1388, device='cuda:0'), 'validation_loss_giou': tensor(0.4970, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.7670, device='cuda:0'), 'train_loss_ce': tensor(0.4303, device='cuda:0'), 'train_loss_bbox': tensor(0.0228, device='cuda:0'), 'train_loss_giou': tensor(0.1114, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0626, device='cuda:0'), 'validation_loss_ce': tensor(0.3650, device='cuda:0'), 'validation_loss_bbox': tensor(0.1408, device='cuda:0'), 'validation_loss_giou': tensor(0.4968, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(0.7869, device='cuda:0'), 'train_loss_ce': tensor(0.4469, device='cuda:0'), 'train_loss_bbox': tensor(0.0178, device='cuda:0'), 'train_loss_giou': tensor(0.1254, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0649, device='cuda:0'), 'validation_loss_ce': tensor(0.3680, device='cuda:0'), 'validation_loss_bbox': tensor(0.1430, device='cuda:0'), 'validation_loss_giou': tensor(0.4909, device='cuda:0'), 'validation_cardinality_error': tensor(0.8889, device='cuda:0')}
{'training_loss': tensor(0.4238, device='cuda:0'), 'train_loss_ce': tensor(0.2165, device='cuda:0'), 'train_loss_bbox': tensor(0.0133, device='cuda:0'), 'train_loss_giou': tensor(0.0705, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0484, device='cuda:0'), 'validation_loss_ce': tensor(0.3675, device='cuda:0'), 'validation_loss_bbox': tensor(0.1386, device='cuda:0'), 'validation_loss_giou': tensor(0.4939, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(0.6010, device='cuda:0'), 'train_loss_ce': tensor(0.3584, device='cuda:0'), 'train_loss_bbox': tensor(0.0187, device='cuda:0'), 'train_loss_giou': tensor(0.0746, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0612, device='cuda:0'), 'validation_loss_ce': tensor(0.3661, device='cuda:0'), 'validation_loss_bbox': tensor(0.1406, device='cuda:0'), 'validation_loss_giou': tensor(0.4961, device='cuda:0'), 'validation_cardinality_error': tensor(0.8889, device='cuda:0')}
{'training_loss': tensor(0.5886, device='cuda:0'), 'train_loss_ce': tensor(0.3594, device='cuda:0'), 'train_loss_bbox': tensor(0.0180, device='cuda:0'), 'train_loss_giou': tensor(0.0696, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0541, device='cuda:0'), 'validation_loss_ce': tensor(0.3645, device='cuda:0'), 'validation_loss_bbox': tensor(0.1405, device='cuda:0'), 'validation_loss_giou': tensor(0.4935, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(0.5275, device='cuda:0'), 'train_loss_ce': tensor(0.2989, device='cuda:0'), 'train_loss_bbox': tensor(0.0198, device='cuda:0'), 'train_loss_giou': tensor(0.0648, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0563, device='cuda:0'), 'validation_loss_ce': tensor(0.3657, device='cuda:0'), 'validation_loss_bbox': tensor(0.1407, device='cuda:0'), 'validation_loss_giou': tensor(0.4935, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(0.5131, device='cuda:0'), 'train_loss_ce': tensor(0.3809, device='cuda:0'), 'train_loss_bbox': tensor(0.0108, device='cuda:0'), 'train_loss_giou': tensor(0.0390, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0527, device='cuda:0'), 'validation_loss_ce': tensor(0.3629, device='cuda:0'), 'validation_loss_bbox': tensor(0.1398, device='cuda:0'), 'validation_loss_giou': tensor(0.4954, device='cuda:0'), 'validation_cardinality_error': tensor(0.8687, device='cuda:0')}
{'training_loss': tensor(0.7255, device='cuda:0'), 'train_loss_ce': tensor(0.3675, device='cuda:0'), 'train_loss_bbox': tensor(0.0300, device='cuda:0'), 'train_loss_giou': tensor(0.1039, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0712, device='cuda:0'), 'validation_loss_ce': tensor(0.3684, device='cuda:0'), 'validation_loss_bbox': tensor(0.1430, device='cuda:0'), 'validation_loss_giou': tensor(0.4939, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(0.5143, device='cuda:0'), 'train_loss_ce': tensor(0.3321, device='cuda:0'), 'train_loss_bbox': tensor(0.0154, device='cuda:0'), 'train_loss_giou': tensor(0.0525, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0350, device='cuda:0'), 'validation_loss_ce': tensor(0.3641, device='cuda:0'), 'validation_loss_bbox': tensor(0.1338, device='cuda:0'), 'validation_loss_giou': tensor(0.5009, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(0.6233, device='cuda:0'), 'train_loss_ce': tensor(0.4005, device='cuda:0'), 'train_loss_bbox': tensor(0.0148, device='cuda:0'), 'train_loss_giou': tensor(0.0744, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0519, device='cuda:0'), 'validation_loss_ce': tensor(0.3654, device='cuda:0'), 'validation_loss_bbox': tensor(0.1399, device='cuda:0'), 'validation_loss_giou': tensor(0.4935, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(0.5085, device='cuda:0'), 'train_loss_ce': tensor(0.3201, device='cuda:0'), 'train_loss_bbox': tensor(0.0123, device='cuda:0'), 'train_loss_giou': tensor(0.0633, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0316, device='cuda:0'), 'validation_loss_ce': tensor(0.3646, device='cuda:0'), 'validation_loss_bbox': tensor(0.1363, device='cuda:0'), 'validation_loss_giou': tensor(0.4927, device='cuda:0'), 'validation_cardinality_error': tensor(0.8687, device='cuda:0')}
{'training_loss': tensor(0.4335, device='cuda:0'), 'train_loss_ce': tensor(0.3307, device='cuda:0'), 'train_loss_bbox': tensor(0.0062, device='cuda:0'), 'train_loss_giou': tensor(0.0359, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0598, device='cuda:0'), 'validation_loss_ce': tensor(0.3648, device='cuda:0'), 'validation_loss_bbox': tensor(0.1423, device='cuda:0'), 'validation_loss_giou': tensor(0.4918, device='cuda:0'), 'validation_cardinality_error': tensor(0.8687, device='cuda:0')}
{'training_loss': tensor(0.5664, device='cuda:0'), 'train_loss_ce': tensor(0.2853, device='cuda:0'), 'train_loss_bbox': tensor(0.0190, device='cuda:0'), 'train_loss_giou': tensor(0.0931, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0490, device='cuda:0'), 'validation_loss_ce': tensor(0.3667, device='cuda:0'), 'validation_loss_bbox': tensor(0.1383, device='cuda:0'), 'validation_loss_giou': tensor(0.4954, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(0.4022, device='cuda:0'), 'train_loss_ce': tensor(0.3009, device='cuda:0'), 'train_loss_bbox': tensor(0.0068, device='cuda:0'), 'train_loss_giou': tensor(0.0338, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0527, device='cuda:0'), 'validation_loss_ce': tensor(0.3642, device='cuda:0'), 'validation_loss_bbox': tensor(0.1406, device='cuda:0'), 'validation_loss_giou': tensor(0.4928, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(0.5020, device='cuda:0'), 'train_loss_ce': tensor(0.3499, device='cuda:0'), 'train_loss_bbox': tensor(0.0098, device='cuda:0'), 'train_loss_giou': tensor(0.0515, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0463, device='cuda:0'), 'validation_loss_ce': tensor(0.3664, device='cuda:0'), 'validation_loss_bbox': tensor(0.1381, device='cuda:0'), 'validation_loss_giou': tensor(0.4946, device='cuda:0'), 'validation_cardinality_error': tensor(0.8586, device='cuda:0')}
{'training_loss': tensor(0.6565, device='cuda:0'), 'train_loss_ce': tensor(0.3485, device='cuda:0'), 'train_loss_bbox': tensor(0.0214, device='cuda:0'), 'train_loss_giou': tensor(0.1005, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0535, device='cuda:0'), 'validation_loss_ce': tensor(0.3649, device='cuda:0'), 'validation_loss_bbox': tensor(0.1405, device='cuda:0'), 'validation_loss_giou': tensor(0.4931, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(0.4432, device='cuda:0'), 'train_loss_ce': tensor(0.2640, device='cuda:0'), 'train_loss_bbox': tensor(0.0172, device='cuda:0'), 'train_loss_giou': tensor(0.0467, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0495, device='cuda:0'), 'validation_loss_ce': tensor(0.3609, device='cuda:0'), 'validation_loss_bbox': tensor(0.1390, device='cuda:0'), 'validation_loss_giou': tensor(0.4968, device='cuda:0'), 'validation_cardinality_error': tensor(0.8586, device='cuda:0')}
{'training_loss': tensor(0.7030, device='cuda:0'), 'train_loss_ce': tensor(0.3131, device='cuda:0'), 'train_loss_bbox': tensor(0.0315, device='cuda:0'), 'train_loss_giou': tensor(0.1162, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0595, device='cuda:0'), 'validation_loss_ce': tensor(0.3657, device='cuda:0'), 'validation_loss_bbox': tensor(0.1445, device='cuda:0'), 'validation_loss_giou': tensor(0.4856, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(0.6045, device='cuda:0'), 'train_loss_ce': tensor(0.2995, device='cuda:0'), 'train_loss_bbox': tensor(0.0242, device='cuda:0'), 'train_loss_giou': tensor(0.0919, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0666, device='cuda:0'), 'validation_loss_ce': tensor(0.3617, device='cuda:0'), 'validation_loss_bbox': tensor(0.1408, device='cuda:0'), 'validation_loss_giou': tensor(0.5005, device='cuda:0'), 'validation_cardinality_error': tensor(0.8889, device='cuda:0')}
{'training_loss': tensor(0.6731, device='cuda:0'), 'train_loss_ce': tensor(0.3009, device='cuda:0'), 'train_loss_bbox': tensor(0.0261, device='cuda:0'), 'train_loss_giou': tensor(0.1208, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0481, device='cuda:0'), 'validation_loss_ce': tensor(0.3631, device='cuda:0'), 'validation_loss_bbox': tensor(0.1395, device='cuda:0'), 'validation_loss_giou': tensor(0.4938, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(0.4989, device='cuda:0'), 'train_loss_ce': tensor(0.3280, device='cuda:0'), 'train_loss_bbox': tensor(0.0156, device='cuda:0'), 'train_loss_giou': tensor(0.0466, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0615, device='cuda:0'), 'validation_loss_ce': tensor(0.3623, device='cuda:0'), 'validation_loss_bbox': tensor(0.1398, device='cuda:0'), 'validation_loss_giou': tensor(0.5002, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(0.4159, device='cuda:0'), 'train_loss_ce': tensor(0.2730, device='cuda:0'), 'train_loss_bbox': tensor(0.0086, device='cuda:0'), 'train_loss_giou': tensor(0.0499, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0618, device='cuda:0'), 'validation_loss_ce': tensor(0.3632, device='cuda:0'), 'validation_loss_bbox': tensor(0.1437, device='cuda:0'), 'validation_loss_giou': tensor(0.4900, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(0.4872, device='cuda:0'), 'train_loss_ce': tensor(0.2989, device='cuda:0'), 'train_loss_bbox': tensor(0.0157, device='cuda:0'), 'train_loss_giou': tensor(0.0548, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0315, device='cuda:0'), 'validation_loss_ce': tensor(0.3605, device='cuda:0'), 'validation_loss_bbox': tensor(0.1374, device='cuda:0'), 'validation_loss_giou': tensor(0.4919, device='cuda:0'), 'validation_cardinality_error': tensor(0.8889, device='cuda:0')}
{'training_loss': tensor(0.4763, device='cuda:0'), 'train_loss_ce': tensor(0.3661, device='cuda:0'), 'train_loss_bbox': tensor(0.0093, device='cuda:0'), 'train_loss_giou': tensor(0.0319, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0445, device='cuda:0'), 'validation_loss_ce': tensor(0.3619, device='cuda:0'), 'validation_loss_bbox': tensor(0.1397, device='cuda:0'), 'validation_loss_giou': tensor(0.4919, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(0.7201, device='cuda:0'), 'train_loss_ce': tensor(0.2935, device='cuda:0'), 'train_loss_bbox': tensor(0.0235, device='cuda:0'), 'train_loss_giou': tensor(0.1545, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0415, device='cuda:0'), 'validation_loss_ce': tensor(0.3611, device='cuda:0'), 'validation_loss_bbox': tensor(0.1378, device='cuda:0'), 'validation_loss_giou': tensor(0.4958, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(0.4480, device='cuda:0'), 'train_loss_ce': tensor(0.2549, device='cuda:0'), 'train_loss_bbox': tensor(0.0119, device='cuda:0'), 'train_loss_giou': tensor(0.0669, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0612, device='cuda:0'), 'validation_loss_ce': tensor(0.3632, device='cuda:0'), 'validation_loss_bbox': tensor(0.1415, device='cuda:0'), 'validation_loss_giou': tensor(0.4952, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(0.3948, device='cuda:0'), 'train_loss_ce': tensor(0.2928, device='cuda:0'), 'train_loss_bbox': tensor(0.0093, device='cuda:0'), 'train_loss_giou': tensor(0.0279, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0522, device='cuda:0'), 'validation_loss_ce': tensor(0.3625, device='cuda:0'), 'validation_loss_bbox': tensor(0.1409, device='cuda:0'), 'validation_loss_giou': tensor(0.4925, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(0.5319, device='cuda:0'), 'train_loss_ce': tensor(0.3148, device='cuda:0'), 'train_loss_bbox': tensor(0.0110, device='cuda:0'), 'train_loss_giou': tensor(0.0811, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0374, device='cuda:0'), 'validation_loss_ce': tensor(0.3619, device='cuda:0'), 'validation_loss_bbox': tensor(0.1394, device='cuda:0'), 'validation_loss_giou': tensor(0.4892, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(0.4250, device='cuda:0'), 'train_loss_ce': tensor(0.2507, device='cuda:0'), 'train_loss_bbox': tensor(0.0113, device='cuda:0'), 'train_loss_giou': tensor(0.0589, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0480, device='cuda:0'), 'validation_loss_ce': tensor(0.3596, device='cuda:0'), 'validation_loss_bbox': tensor(0.1381, device='cuda:0'), 'validation_loss_giou': tensor(0.4990, device='cuda:0'), 'validation_cardinality_error': tensor(0.8687, device='cuda:0')}
{'training_loss': tensor(0.6185, device='cuda:0'), 'train_loss_ce': tensor(0.3761, device='cuda:0'), 'train_loss_bbox': tensor(0.0108, device='cuda:0'), 'train_loss_giou': tensor(0.0943, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0553, device='cuda:0'), 'validation_loss_ce': tensor(0.3636, device='cuda:0'), 'validation_loss_bbox': tensor(0.1414, device='cuda:0'), 'validation_loss_giou': tensor(0.4923, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(0.5814, device='cuda:0'), 'train_loss_ce': tensor(0.3501, device='cuda:0'), 'train_loss_bbox': tensor(0.0193, device='cuda:0'), 'train_loss_giou': tensor(0.0675, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0426, device='cuda:0'), 'validation_loss_ce': tensor(0.3617, device='cuda:0'), 'validation_loss_bbox': tensor(0.1401, device='cuda:0'), 'validation_loss_giou': tensor(0.4901, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(0.6180, device='cuda:0'), 'train_loss_ce': tensor(0.3433, device='cuda:0'), 'train_loss_bbox': tensor(0.0188, device='cuda:0'), 'train_loss_giou': tensor(0.0903, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0565, device='cuda:0'), 'validation_loss_ce': tensor(0.3623, device='cuda:0'), 'validation_loss_bbox': tensor(0.1415, device='cuda:0'), 'validation_loss_giou': tensor(0.4934, device='cuda:0'), 'validation_cardinality_error': tensor(0.8889, device='cuda:0')}
{'training_loss': tensor(0.5158, device='cuda:0'), 'train_loss_ce': tensor(0.2864, device='cuda:0'), 'train_loss_bbox': tensor(0.0215, device='cuda:0'), 'train_loss_giou': tensor(0.0609, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0452, device='cuda:0'), 'validation_loss_ce': tensor(0.3647, device='cuda:0'), 'validation_loss_bbox': tensor(0.1392, device='cuda:0'), 'validation_loss_giou': tensor(0.4923, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(0.3885, device='cuda:0'), 'train_loss_ce': tensor(0.2456, device='cuda:0'), 'train_loss_bbox': tensor(0.0087, device='cuda:0'), 'train_loss_giou': tensor(0.0496, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0583, device='cuda:0'), 'validation_loss_ce': tensor(0.3610, device='cuda:0'), 'validation_loss_bbox': tensor(0.1403, device='cuda:0'), 'validation_loss_giou': tensor(0.4979, device='cuda:0'), 'validation_cardinality_error': tensor(0.8687, device='cuda:0')}
{'training_loss': tensor(0.6993, device='cuda:0'), 'train_loss_ce': tensor(0.1978, device='cuda:0'), 'train_loss_bbox': tensor(0.0232, device='cuda:0'), 'train_loss_giou': tensor(0.1927, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0473, device='cuda:0'), 'validation_loss_ce': tensor(0.3628, device='cuda:0'), 'validation_loss_bbox': tensor(0.1406, device='cuda:0'), 'validation_loss_giou': tensor(0.4908, device='cuda:0'), 'validation_cardinality_error': tensor(0.8889, device='cuda:0')}
{'training_loss': tensor(0.4940, device='cuda:0'), 'train_loss_ce': tensor(0.2853, device='cuda:0'), 'train_loss_bbox': tensor(0.0156, device='cuda:0'), 'train_loss_giou': tensor(0.0653, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0557, device='cuda:0'), 'validation_loss_ce': tensor(0.3597, device='cuda:0'), 'validation_loss_bbox': tensor(0.1408, device='cuda:0'), 'validation_loss_giou': tensor(0.4959, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(0.7817, device='cuda:0'), 'train_loss_ce': tensor(0.3277, device='cuda:0'), 'train_loss_bbox': tensor(0.0260, device='cuda:0'), 'train_loss_giou': tensor(0.1620, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0360, device='cuda:0'), 'validation_loss_ce': tensor(0.3623, device='cuda:0'), 'validation_loss_bbox': tensor(0.1411, device='cuda:0'), 'validation_loss_giou': tensor(0.4841, device='cuda:0'), 'validation_cardinality_error': tensor(0.8889, device='cuda:0')}
{'training_loss': tensor(0.4793, device='cuda:0'), 'train_loss_ce': tensor(0.2706, device='cuda:0'), 'train_loss_bbox': tensor(0.0137, device='cuda:0'), 'train_loss_giou': tensor(0.0700, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0358, device='cuda:0'), 'validation_loss_ce': tensor(0.3624, device='cuda:0'), 'validation_loss_bbox': tensor(0.1392, device='cuda:0'), 'validation_loss_giou': tensor(0.4888, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(0.4822, device='cuda:0'), 'train_loss_ce': tensor(0.3016, device='cuda:0'), 'train_loss_bbox': tensor(0.0164, device='cuda:0'), 'train_loss_giou': tensor(0.0494, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0551, device='cuda:0'), 'validation_loss_ce': tensor(0.3573, device='cuda:0'), 'validation_loss_bbox': tensor(0.1399, device='cuda:0'), 'validation_loss_giou': tensor(0.4992, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(0.4229, device='cuda:0'), 'train_loss_ce': tensor(0.2661, device='cuda:0'), 'train_loss_bbox': tensor(0.0129, device='cuda:0'), 'train_loss_giou': tensor(0.0461, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0377, device='cuda:0'), 'validation_loss_ce': tensor(0.3621, device='cuda:0'), 'validation_loss_bbox': tensor(0.1404, device='cuda:0'), 'validation_loss_giou': tensor(0.4869, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(0.4394, device='cuda:0'), 'train_loss_ce': tensor(0.3423, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.0278, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0566, device='cuda:0'), 'validation_loss_ce': tensor(0.3657, device='cuda:0'), 'validation_loss_bbox': tensor(0.1392, device='cuda:0'), 'validation_loss_giou': tensor(0.4976, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(0.3928, device='cuda:0'), 'train_loss_ce': tensor(0.2290, device='cuda:0'), 'train_loss_bbox': tensor(0.0137, device='cuda:0'), 'train_loss_giou': tensor(0.0476, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0488, device='cuda:0'), 'validation_loss_ce': tensor(0.3563, device='cuda:0'), 'validation_loss_bbox': tensor(0.1387, device='cuda:0'), 'validation_loss_giou': tensor(0.4994, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(0.4643, device='cuda:0'), 'train_loss_ce': tensor(0.2684, device='cuda:0'), 'train_loss_bbox': tensor(0.0122, device='cuda:0'), 'train_loss_giou': tensor(0.0674, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0472, device='cuda:0'), 'validation_loss_ce': tensor(0.3634, device='cuda:0'), 'validation_loss_bbox': tensor(0.1415, device='cuda:0'), 'validation_loss_giou': tensor(0.4881, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(0.4689, device='cuda:0'), 'train_loss_ce': tensor(0.3914, device='cuda:0'), 'train_loss_bbox': tensor(0.0070, device='cuda:0'), 'train_loss_giou': tensor(0.0212, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0409, device='cuda:0'), 'validation_loss_ce': tensor(0.3612, device='cuda:0'), 'validation_loss_bbox': tensor(0.1403, device='cuda:0'), 'validation_loss_giou': tensor(0.4891, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(0.5823, device='cuda:0'), 'train_loss_ce': tensor(0.3081, device='cuda:0'), 'train_loss_bbox': tensor(0.0121, device='cuda:0'), 'train_loss_giou': tensor(0.1068, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0367, device='cuda:0'), 'validation_loss_ce': tensor(0.3608, device='cuda:0'), 'validation_loss_bbox': tensor(0.1398, device='cuda:0'), 'validation_loss_giou': tensor(0.4885, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(0.8387, device='cuda:0'), 'train_loss_ce': tensor(0.3519, device='cuda:0'), 'train_loss_bbox': tensor(0.0219, device='cuda:0'), 'train_loss_giou': tensor(0.1887, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0599, device='cuda:0'), 'validation_loss_ce': tensor(0.3566, device='cuda:0'), 'validation_loss_bbox': tensor(0.1393, device='cuda:0'), 'validation_loss_giou': tensor(0.5033, device='cuda:0'), 'validation_cardinality_error': tensor(0.8889, device='cuda:0')}
{'training_loss': tensor(0.4673, device='cuda:0'), 'train_loss_ce': tensor(0.3166, device='cuda:0'), 'train_loss_bbox': tensor(0.0107, device='cuda:0'), 'train_loss_giou': tensor(0.0485, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0446, device='cuda:0'), 'validation_loss_ce': tensor(0.3585, device='cuda:0'), 'validation_loss_bbox': tensor(0.1403, device='cuda:0'), 'validation_loss_giou': tensor(0.4924, device='cuda:0'), 'validation_cardinality_error': tensor(0.8889, device='cuda:0')}
{'training_loss': tensor(0.5953, device='cuda:0'), 'train_loss_ce': tensor(0.3563, device='cuda:0'), 'train_loss_bbox': tensor(0.0180, device='cuda:0'), 'train_loss_giou': tensor(0.0744, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.0454, device='cuda:0'), 'validation_loss_ce': tensor(0.3632, device='cuda:0'), 'validation_loss_bbox': tensor(0.1404, device='cuda:0'), 'validation_loss_giou': tensor(0.4901, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(0.8778, device='cuda:0'), 'train_loss_ce': tensor(0.3928, device='cuda:0'), 'train_loss_bbox': tensor(0.0337, device='cuda:0'), 'train_loss_giou': tensor(0.1583, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0606, device='cuda:0'), 'validation_loss_ce': tensor(0.3609, device='cuda:0'), 'validation_loss_bbox': tensor(0.1435, device='cuda:0'), 'validation_loss_giou': tensor(0.4910, device='cuda:0'), 'validation_cardinality_error': tensor(0.8889, device='cuda:0')}
{'training_loss': tensor(0.8248, device='cuda:0'), 'train_loss_ce': tensor(0.3314, device='cuda:0'), 'train_loss_bbox': tensor(0.0104, device='cuda:0'), 'train_loss_giou': tensor(0.2207, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0408, device='cuda:0'), 'validation_loss_ce': tensor(0.3594, device='cuda:0'), 'validation_loss_bbox': tensor(0.1399, device='cuda:0'), 'validation_loss_giou': tensor(0.4909, device='cuda:0'), 'validation_cardinality_error': tensor(0.8788, device='cuda:0')}
{'training_loss': tensor(0.4948, device='cuda:0'), 'train_loss_ce': tensor(0.2844, device='cuda:0'), 'train_loss_bbox': tensor(0.0123, device='cuda:0'), 'train_loss_giou': tensor(0.0743, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0301, device='cuda:0'), 'validation_loss_ce': tensor(0.3558, device='cuda:0'), 'validation_loss_bbox': tensor(0.1384, device='cuda:0'), 'validation_loss_giou': tensor(0.4912, device='cuda:0'), 'validation_cardinality_error': tensor(0.8687, device='cuda:0')}
{'training_loss': tensor(0.6212, device='cuda:0'), 'train_loss_ce': tensor(0.3337, device='cuda:0'), 'train_loss_bbox': tensor(0.0235, device='cuda:0'), 'train_loss_giou': tensor(0.0849, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0366, device='cuda:0'), 'validation_loss_ce': tensor(0.3602, device='cuda:0'), 'validation_loss_bbox': tensor(0.1412, device='cuda:0'), 'validation_loss_giou': tensor(0.4852, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(0.5194, device='cuda:0'), 'train_loss_ce': tensor(0.3776, device='cuda:0'), 'train_loss_bbox': tensor(0.0081, device='cuda:0'), 'train_loss_giou': tensor(0.0506, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0293, device='cuda:0'), 'validation_loss_ce': tensor(0.3575, device='cuda:0'), 'validation_loss_bbox': tensor(0.1392, device='cuda:0'), 'validation_loss_giou': tensor(0.4879, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(0.6628, device='cuda:0'), 'train_loss_ce': tensor(0.2938, device='cuda:0'), 'train_loss_bbox': tensor(0.0105, device='cuda:0'), 'train_loss_giou': tensor(0.1583, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0536, device='cuda:0'), 'validation_loss_ce': tensor(0.3592, device='cuda:0'), 'validation_loss_bbox': tensor(0.1413, device='cuda:0'), 'validation_loss_giou': tensor(0.4940, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(0.5241, device='cuda:0'), 'train_loss_ce': tensor(0.2854, device='cuda:0'), 'train_loss_bbox': tensor(0.0121, device='cuda:0'), 'train_loss_giou': tensor(0.0890, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0391, device='cuda:0'), 'validation_loss_ce': tensor(0.3577, device='cuda:0'), 'validation_loss_bbox': tensor(0.1391, device='cuda:0'), 'validation_loss_giou': tensor(0.4930, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(0.4468, device='cuda:0'), 'train_loss_ce': tensor(0.3349, device='cuda:0'), 'train_loss_bbox': tensor(0.0089, device='cuda:0'), 'train_loss_giou': tensor(0.0337, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0396, device='cuda:0'), 'validation_loss_ce': tensor(0.3592, device='cuda:0'), 'validation_loss_bbox': tensor(0.1393, device='cuda:0'), 'validation_loss_giou': tensor(0.4920, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.4790, device='cuda:0'), 'train_loss_ce': tensor(0.2760, device='cuda:0'), 'train_loss_bbox': tensor(0.0119, device='cuda:0'), 'train_loss_giou': tensor(0.0718, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0550, device='cuda:0'), 'validation_loss_ce': tensor(0.3605, device='cuda:0'), 'validation_loss_bbox': tensor(0.1421, device='cuda:0'), 'validation_loss_giou': tensor(0.4919, device='cuda:0'), 'validation_cardinality_error': tensor(0.8889, device='cuda:0')}
{'training_loss': tensor(0.4341, device='cuda:0'), 'train_loss_ce': tensor(0.2170, device='cuda:0'), 'train_loss_bbox': tensor(0.0155, device='cuda:0'), 'train_loss_giou': tensor(0.0699, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0356, device='cuda:0'), 'validation_loss_ce': tensor(0.3568, device='cuda:0'), 'validation_loss_bbox': tensor(0.1369, device='cuda:0'), 'validation_loss_giou': tensor(0.4972, device='cuda:0'), 'validation_cardinality_error': tensor(0.8889, device='cuda:0')}
{'training_loss': tensor(0.5700, device='cuda:0'), 'train_loss_ce': tensor(0.3149, device='cuda:0'), 'train_loss_bbox': tensor(0.0098, device='cuda:0'), 'train_loss_giou': tensor(0.1030, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0325, device='cuda:0'), 'validation_loss_ce': tensor(0.3592, device='cuda:0'), 'validation_loss_bbox': tensor(0.1389, device='cuda:0'), 'validation_loss_giou': tensor(0.4893, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.6103, device='cuda:0'), 'train_loss_ce': tensor(0.2828, device='cuda:0'), 'train_loss_bbox': tensor(0.0230, device='cuda:0'), 'train_loss_giou': tensor(0.1062, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0401, device='cuda:0'), 'validation_loss_ce': tensor(0.3609, device='cuda:0'), 'validation_loss_bbox': tensor(0.1408, device='cuda:0'), 'validation_loss_giou': tensor(0.4875, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.4100, device='cuda:0'), 'train_loss_ce': tensor(0.2834, device='cuda:0'), 'train_loss_bbox': tensor(0.0069, device='cuda:0'), 'train_loss_giou': tensor(0.0462, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0244, device='cuda:0'), 'validation_loss_ce': tensor(0.3561, device='cuda:0'), 'validation_loss_bbox': tensor(0.1375, device='cuda:0'), 'validation_loss_giou': tensor(0.4905, device='cuda:0'), 'validation_cardinality_error': tensor(0.8889, device='cuda:0')}
{'training_loss': tensor(0.5269, device='cuda:0'), 'train_loss_ce': tensor(0.3395, device='cuda:0'), 'train_loss_bbox': tensor(0.0106, device='cuda:0'), 'train_loss_giou': tensor(0.0672, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0283, device='cuda:0'), 'validation_loss_ce': tensor(0.3609, device='cuda:0'), 'validation_loss_bbox': tensor(0.1383, device='cuda:0'), 'validation_loss_giou': tensor(0.4880, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.4701, device='cuda:0'), 'train_loss_ce': tensor(0.3179, device='cuda:0'), 'train_loss_bbox': tensor(0.0128, device='cuda:0'), 'train_loss_giou': tensor(0.0442, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0321, device='cuda:0'), 'validation_loss_ce': tensor(0.3600, device='cuda:0'), 'validation_loss_bbox': tensor(0.1391, device='cuda:0'), 'validation_loss_giou': tensor(0.4882, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(0.7578, device='cuda:0'), 'train_loss_ce': tensor(0.4363, device='cuda:0'), 'train_loss_bbox': tensor(0.0231, device='cuda:0'), 'train_loss_giou': tensor(0.1030, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0183, device='cuda:0'), 'validation_loss_ce': tensor(0.3610, device='cuda:0'), 'validation_loss_bbox': tensor(0.1361, device='cuda:0'), 'validation_loss_giou': tensor(0.4885, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.5341, device='cuda:0'), 'train_loss_ce': tensor(0.3518, device='cuda:0'), 'train_loss_bbox': tensor(0.0128, device='cuda:0'), 'train_loss_giou': tensor(0.0591, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0262, device='cuda:0'), 'validation_loss_ce': tensor(0.3604, device='cuda:0'), 'validation_loss_bbox': tensor(0.1394, device='cuda:0'), 'validation_loss_giou': tensor(0.4844, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.4432, device='cuda:0'), 'train_loss_ce': tensor(0.3028, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.0493, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0323, device='cuda:0'), 'validation_loss_ce': tensor(0.3539, device='cuda:0'), 'validation_loss_bbox': tensor(0.1356, device='cuda:0'), 'validation_loss_giou': tensor(0.5001, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.4005, device='cuda:0'), 'train_loss_ce': tensor(0.2751, device='cuda:0'), 'train_loss_bbox': tensor(0.0094, device='cuda:0'), 'train_loss_giou': tensor(0.0392, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0272, device='cuda:0'), 'validation_loss_ce': tensor(0.3575, device='cuda:0'), 'validation_loss_bbox': tensor(0.1368, device='cuda:0'), 'validation_loss_giou': tensor(0.4929, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.3523, device='cuda:0'), 'train_loss_ce': tensor(0.2031, device='cuda:0'), 'train_loss_bbox': tensor(0.0105, device='cuda:0'), 'train_loss_giou': tensor(0.0483, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0395, device='cuda:0'), 'validation_loss_ce': tensor(0.3550, device='cuda:0'), 'validation_loss_bbox': tensor(0.1376, device='cuda:0'), 'validation_loss_giou': tensor(0.4982, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.4218, device='cuda:0'), 'train_loss_ce': tensor(0.2825, device='cuda:0'), 'train_loss_bbox': tensor(0.0122, device='cuda:0'), 'train_loss_giou': tensor(0.0392, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0319, device='cuda:0'), 'validation_loss_ce': tensor(0.3590, device='cuda:0'), 'validation_loss_bbox': tensor(0.1401, device='cuda:0'), 'validation_loss_giou': tensor(0.4861, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.5167, device='cuda:0'), 'train_loss_ce': tensor(0.2409, device='cuda:0'), 'train_loss_bbox': tensor(0.0183, device='cuda:0'), 'train_loss_giou': tensor(0.0923, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0313, device='cuda:0'), 'validation_loss_ce': tensor(0.3577, device='cuda:0'), 'validation_loss_bbox': tensor(0.1389, device='cuda:0'), 'validation_loss_giou': tensor(0.4895, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.3718, device='cuda:0'), 'train_loss_ce': tensor(0.1999, device='cuda:0'), 'train_loss_bbox': tensor(0.0139, device='cuda:0'), 'train_loss_giou': tensor(0.0513, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0269, device='cuda:0'), 'validation_loss_ce': tensor(0.3545, device='cuda:0'), 'validation_loss_bbox': tensor(0.1372, device='cuda:0'), 'validation_loss_giou': tensor(0.4931, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4599, device='cuda:0'), 'train_loss_ce': tensor(0.3116, device='cuda:0'), 'train_loss_bbox': tensor(0.0122, device='cuda:0'), 'train_loss_giou': tensor(0.0436, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0299, device='cuda:0'), 'validation_loss_ce': tensor(0.3600, device='cuda:0'), 'validation_loss_bbox': tensor(0.1390, device='cuda:0'), 'validation_loss_giou': tensor(0.4874, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.4432, device='cuda:0'), 'train_loss_ce': tensor(0.2670, device='cuda:0'), 'train_loss_bbox': tensor(0.0076, device='cuda:0'), 'train_loss_giou': tensor(0.0691, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0288, device='cuda:0'), 'validation_loss_ce': tensor(0.3540, device='cuda:0'), 'validation_loss_bbox': tensor(0.1367, device='cuda:0'), 'validation_loss_giou': tensor(0.4958, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.6164, device='cuda:0'), 'train_loss_ce': tensor(0.2946, device='cuda:0'), 'train_loss_bbox': tensor(0.0265, device='cuda:0'), 'train_loss_giou': tensor(0.0947, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0197, device='cuda:0'), 'validation_loss_ce': tensor(0.3546, device='cuda:0'), 'validation_loss_bbox': tensor(0.1370, device='cuda:0'), 'validation_loss_giou': tensor(0.4900, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.5318, device='cuda:0'), 'train_loss_ce': tensor(0.3045, device='cuda:0'), 'train_loss_bbox': tensor(0.0169, device='cuda:0'), 'train_loss_giou': tensor(0.0713, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0299, device='cuda:0'), 'validation_loss_ce': tensor(0.3603, device='cuda:0'), 'validation_loss_bbox': tensor(0.1379, device='cuda:0'), 'validation_loss_giou': tensor(0.4900, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.4317, device='cuda:0'), 'train_loss_ce': tensor(0.3049, device='cuda:0'), 'train_loss_bbox': tensor(0.0078, device='cuda:0'), 'train_loss_giou': tensor(0.0439, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0281, device='cuda:0'), 'validation_loss_ce': tensor(0.3599, device='cuda:0'), 'validation_loss_bbox': tensor(0.1396, device='cuda:0'), 'validation_loss_giou': tensor(0.4850, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.4307, device='cuda:0'), 'train_loss_ce': tensor(0.2557, device='cuda:0'), 'train_loss_bbox': tensor(0.0141, device='cuda:0'), 'train_loss_giou': tensor(0.0523, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0202, device='cuda:0'), 'validation_loss_ce': tensor(0.3606, device='cuda:0'), 'validation_loss_bbox': tensor(0.1381, device='cuda:0'), 'validation_loss_giou': tensor(0.4846, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.5290, device='cuda:0'), 'train_loss_ce': tensor(0.3454, device='cuda:0'), 'train_loss_bbox': tensor(0.0084, device='cuda:0'), 'train_loss_giou': tensor(0.0708, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0302, device='cuda:0'), 'validation_loss_ce': tensor(0.3564, device='cuda:0'), 'validation_loss_bbox': tensor(0.1386, device='cuda:0'), 'validation_loss_giou': tensor(0.4903, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.5713, device='cuda:0'), 'train_loss_ce': tensor(0.3022, device='cuda:0'), 'train_loss_bbox': tensor(0.0123, device='cuda:0'), 'train_loss_giou': tensor(0.1039, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0289, device='cuda:0'), 'validation_loss_ce': tensor(0.3569, device='cuda:0'), 'validation_loss_bbox': tensor(0.1381, device='cuda:0'), 'validation_loss_giou': tensor(0.4908, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.5044, device='cuda:0'), 'train_loss_ce': tensor(0.3258, device='cuda:0'), 'train_loss_bbox': tensor(0.0099, device='cuda:0'), 'train_loss_giou': tensor(0.0647, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.0139, device='cuda:0'), 'validation_loss_ce': tensor(0.3577, device='cuda:0'), 'validation_loss_bbox': tensor(0.1354, device='cuda:0'), 'validation_loss_giou': tensor(0.4897, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.4306, device='cuda:0'), 'train_loss_ce': tensor(0.3434, device='cuda:0'), 'train_loss_bbox': tensor(0.0092, device='cuda:0'), 'train_loss_giou': tensor(0.0207, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0080, device='cuda:0'), 'validation_loss_ce': tensor(0.3580, device='cuda:0'), 'validation_loss_bbox': tensor(0.1363, device='cuda:0'), 'validation_loss_giou': tensor(0.4842, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.4394, device='cuda:0'), 'train_loss_ce': tensor(0.2526, device='cuda:0'), 'train_loss_bbox': tensor(0.0148, device='cuda:0'), 'train_loss_giou': tensor(0.0564, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0244, device='cuda:0'), 'validation_loss_ce': tensor(0.3539, device='cuda:0'), 'validation_loss_bbox': tensor(0.1368, device='cuda:0'), 'validation_loss_giou': tensor(0.4933, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.7506, device='cuda:0'), 'train_loss_ce': tensor(0.3094, device='cuda:0'), 'train_loss_bbox': tensor(0.0240, device='cuda:0'), 'train_loss_giou': tensor(0.1607, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0295, device='cuda:0'), 'validation_loss_ce': tensor(0.3577, device='cuda:0'), 'validation_loss_bbox': tensor(0.1399, device='cuda:0'), 'validation_loss_giou': tensor(0.4862, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.4010, device='cuda:0'), 'train_loss_ce': tensor(0.2291, device='cuda:0'), 'train_loss_bbox': tensor(0.0140, device='cuda:0'), 'train_loss_giou': tensor(0.0510, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0279, device='cuda:0'), 'validation_loss_ce': tensor(0.3583, device='cuda:0'), 'validation_loss_bbox': tensor(0.1394, device='cuda:0'), 'validation_loss_giou': tensor(0.4863, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.6273, device='cuda:0'), 'train_loss_ce': tensor(0.3611, device='cuda:0'), 'train_loss_bbox': tensor(0.0152, device='cuda:0'), 'train_loss_giou': tensor(0.0951, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0243, device='cuda:0'), 'validation_loss_ce': tensor(0.3576, device='cuda:0'), 'validation_loss_bbox': tensor(0.1379, device='cuda:0'), 'validation_loss_giou': tensor(0.4887, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.3397, device='cuda:0'), 'train_loss_ce': tensor(0.2303, device='cuda:0'), 'train_loss_bbox': tensor(0.0076, device='cuda:0'), 'train_loss_giou': tensor(0.0356, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0212, device='cuda:0'), 'validation_loss_ce': tensor(0.3605, device='cuda:0'), 'validation_loss_bbox': tensor(0.1387, device='cuda:0'), 'validation_loss_giou': tensor(0.4837, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.3519, device='cuda:0'), 'train_loss_ce': tensor(0.2562, device='cuda:0'), 'train_loss_bbox': tensor(0.0075, device='cuda:0'), 'train_loss_giou': tensor(0.0291, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0166, device='cuda:0'), 'validation_loss_ce': tensor(0.3554, device='cuda:0'), 'validation_loss_bbox': tensor(0.1378, device='cuda:0'), 'validation_loss_giou': tensor(0.4862, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4677, device='cuda:0'), 'train_loss_ce': tensor(0.3267, device='cuda:0'), 'train_loss_bbox': tensor(0.0112, device='cuda:0'), 'train_loss_giou': tensor(0.0426, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0176, device='cuda:0'), 'validation_loss_ce': tensor(0.3582, device='cuda:0'), 'validation_loss_bbox': tensor(0.1379, device='cuda:0'), 'validation_loss_giou': tensor(0.4851, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.3485, device='cuda:0'), 'train_loss_ce': tensor(0.1895, device='cuda:0'), 'train_loss_bbox': tensor(0.0130, device='cuda:0'), 'train_loss_giou': tensor(0.0469, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.0103, device='cuda:0'), 'validation_loss_ce': tensor(0.3567, device='cuda:0'), 'validation_loss_bbox': tensor(0.1363, device='cuda:0'), 'validation_loss_giou': tensor(0.4860, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.5266, device='cuda:0'), 'train_loss_ce': tensor(0.4085, device='cuda:0'), 'train_loss_bbox': tensor(0.0058, device='cuda:0'), 'train_loss_giou': tensor(0.0445, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0300, device='cuda:0'), 'validation_loss_ce': tensor(0.3591, device='cuda:0'), 'validation_loss_bbox': tensor(0.1387, device='cuda:0'), 'validation_loss_giou': tensor(0.4887, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.5596, device='cuda:0'), 'train_loss_ce': tensor(0.2839, device='cuda:0'), 'train_loss_bbox': tensor(0.0140, device='cuda:0'), 'train_loss_giou': tensor(0.1028, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0287, device='cuda:0'), 'validation_loss_ce': tensor(0.3625, device='cuda:0'), 'validation_loss_bbox': tensor(0.1396, device='cuda:0'), 'validation_loss_giou': tensor(0.4840, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.3804, device='cuda:0'), 'train_loss_ce': tensor(0.2599, device='cuda:0'), 'train_loss_bbox': tensor(0.0108, device='cuda:0'), 'train_loss_giou': tensor(0.0333, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0072, device='cuda:0'), 'validation_loss_ce': tensor(0.3570, device='cuda:0'), 'validation_loss_bbox': tensor(0.1356, device='cuda:0'), 'validation_loss_giou': tensor(0.4861, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.5120, device='cuda:0'), 'train_loss_ce': tensor(0.2244, device='cuda:0'), 'train_loss_bbox': tensor(0.0165, device='cuda:0'), 'train_loss_giou': tensor(0.1025, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0316, device='cuda:0'), 'validation_loss_ce': tensor(0.3636, device='cuda:0'), 'validation_loss_bbox': tensor(0.1392, device='cuda:0'), 'validation_loss_giou': tensor(0.4860, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.5142, device='cuda:0'), 'train_loss_ce': tensor(0.3086, device='cuda:0'), 'train_loss_bbox': tensor(0.0119, device='cuda:0'), 'train_loss_giou': tensor(0.0730, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0224, device='cuda:0'), 'validation_loss_ce': tensor(0.3588, device='cuda:0'), 'validation_loss_bbox': tensor(0.1377, device='cuda:0'), 'validation_loss_giou': tensor(0.4875, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.4265, device='cuda:0'), 'train_loss_ce': tensor(0.2586, device='cuda:0'), 'train_loss_bbox': tensor(0.0082, device='cuda:0'), 'train_loss_giou': tensor(0.0634, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0262, device='cuda:0'), 'validation_loss_ce': tensor(0.3571, device='cuda:0'), 'validation_loss_bbox': tensor(0.1378, device='cuda:0'), 'validation_loss_giou': tensor(0.4901, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.4543, device='cuda:0'), 'train_loss_ce': tensor(0.2674, device='cuda:0'), 'train_loss_bbox': tensor(0.0105, device='cuda:0'), 'train_loss_giou': tensor(0.0673, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0260, device='cuda:0'), 'validation_loss_ce': tensor(0.3569, device='cuda:0'), 'validation_loss_bbox': tensor(0.1380, device='cuda:0'), 'validation_loss_giou': tensor(0.4895, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.4624, device='cuda:0'), 'train_loss_ce': tensor(0.2685, device='cuda:0'), 'train_loss_bbox': tensor(0.0125, device='cuda:0'), 'train_loss_giou': tensor(0.0657, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0116, device='cuda:0'), 'validation_loss_ce': tensor(0.3586, device='cuda:0'), 'validation_loss_bbox': tensor(0.1385, device='cuda:0'), 'validation_loss_giou': tensor(0.4802, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.6364, device='cuda:0'), 'train_loss_ce': tensor(0.2596, device='cuda:0'), 'train_loss_bbox': tensor(0.0214, device='cuda:0'), 'train_loss_giou': tensor(0.1348, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0185, device='cuda:0'), 'validation_loss_ce': tensor(0.3577, device='cuda:0'), 'validation_loss_bbox': tensor(0.1364, device='cuda:0'), 'validation_loss_giou': tensor(0.4894, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.5200, device='cuda:0'), 'train_loss_ce': tensor(0.2456, device='cuda:0'), 'train_loss_bbox': tensor(0.0134, device='cuda:0'), 'train_loss_giou': tensor(0.1037, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0257, device='cuda:0'), 'validation_loss_ce': tensor(0.3577, device='cuda:0'), 'validation_loss_bbox': tensor(0.1369, device='cuda:0'), 'validation_loss_giou': tensor(0.4918, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.7817, device='cuda:0'), 'train_loss_ce': tensor(0.2722, device='cuda:0'), 'train_loss_bbox': tensor(0.0334, device='cuda:0'), 'train_loss_giou': tensor(0.1714, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0032, device='cuda:0'), 'validation_loss_ce': tensor(0.3559, device='cuda:0'), 'validation_loss_bbox': tensor(0.1356, device='cuda:0'), 'validation_loss_giou': tensor(0.4847, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.3886, device='cuda:0'), 'train_loss_ce': tensor(0.2548, device='cuda:0'), 'train_loss_bbox': tensor(0.0089, device='cuda:0'), 'train_loss_giou': tensor(0.0447, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0299, device='cuda:0'), 'validation_loss_ce': tensor(0.3591, device='cuda:0'), 'validation_loss_bbox': tensor(0.1398, device='cuda:0'), 'validation_loss_giou': tensor(0.4860, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.4296, device='cuda:0'), 'train_loss_ce': tensor(0.1788, device='cuda:0'), 'train_loss_bbox': tensor(0.0165, device='cuda:0'), 'train_loss_giou': tensor(0.0840, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0238, device='cuda:0'), 'validation_loss_ce': tensor(0.3569, device='cuda:0'), 'validation_loss_bbox': tensor(0.1385, device='cuda:0'), 'validation_loss_giou': tensor(0.4871, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(0.4389, device='cuda:0'), 'train_loss_ce': tensor(0.3094, device='cuda:0'), 'train_loss_bbox': tensor(0.0111, device='cuda:0'), 'train_loss_giou': tensor(0.0369, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0142, device='cuda:0'), 'validation_loss_ce': tensor(0.3612, device='cuda:0'), 'validation_loss_bbox': tensor(0.1383, device='cuda:0'), 'validation_loss_giou': tensor(0.4808, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.3930, device='cuda:0'), 'train_loss_ce': tensor(0.2669, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0406, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0294, device='cuda:0'), 'validation_loss_ce': tensor(0.3564, device='cuda:0'), 'validation_loss_bbox': tensor(0.1366, device='cuda:0'), 'validation_loss_giou': tensor(0.4949, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.4259, device='cuda:0'), 'train_loss_ce': tensor(0.3074, device='cuda:0'), 'train_loss_bbox': tensor(0.0093, device='cuda:0'), 'train_loss_giou': tensor(0.0360, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0103, device='cuda:0'), 'validation_loss_ce': tensor(0.3588, device='cuda:0'), 'validation_loss_bbox': tensor(0.1377, device='cuda:0'), 'validation_loss_giou': tensor(0.4816, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.5277, device='cuda:0'), 'train_loss_ce': tensor(0.2883, device='cuda:0'), 'train_loss_bbox': tensor(0.0087, device='cuda:0'), 'train_loss_giou': tensor(0.0979, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0216, device='cuda:0'), 'validation_loss_ce': tensor(0.3568, device='cuda:0'), 'validation_loss_bbox': tensor(0.1372, device='cuda:0'), 'validation_loss_giou': tensor(0.4895, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.4440, device='cuda:0'), 'train_loss_ce': tensor(0.3152, device='cuda:0'), 'train_loss_bbox': tensor(0.0084, device='cuda:0'), 'train_loss_giou': tensor(0.0433, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0125, device='cuda:0'), 'validation_loss_ce': tensor(0.3603, device='cuda:0'), 'validation_loss_bbox': tensor(0.1367, device='cuda:0'), 'validation_loss_giou': tensor(0.4842, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.3860, device='cuda:0'), 'train_loss_ce': tensor(0.2225, device='cuda:0'), 'train_loss_bbox': tensor(0.0078, device='cuda:0'), 'train_loss_giou': tensor(0.0623, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0374, device='cuda:0'), 'validation_loss_ce': tensor(0.3599, device='cuda:0'), 'validation_loss_bbox': tensor(0.1395, device='cuda:0'), 'validation_loss_giou': tensor(0.4901, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.4630, device='cuda:0'), 'train_loss_ce': tensor(0.3445, device='cuda:0'), 'train_loss_bbox': tensor(0.0097, device='cuda:0'), 'train_loss_giou': tensor(0.0350, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0253, device='cuda:0'), 'validation_loss_ce': tensor(0.3598, device='cuda:0'), 'validation_loss_bbox': tensor(0.1383, device='cuda:0'), 'validation_loss_giou': tensor(0.4870, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4710, device='cuda:0'), 'train_loss_ce': tensor(0.2856, device='cuda:0'), 'train_loss_bbox': tensor(0.0131, device='cuda:0'), 'train_loss_giou': tensor(0.0598, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0125, device='cuda:0'), 'validation_loss_ce': tensor(0.3580, device='cuda:0'), 'validation_loss_bbox': tensor(0.1372, device='cuda:0'), 'validation_loss_giou': tensor(0.4843, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.2996, device='cuda:0'), 'train_loss_ce': tensor(0.2158, device='cuda:0'), 'train_loss_bbox': tensor(0.0057, device='cuda:0'), 'train_loss_giou': tensor(0.0278, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0255, device='cuda:0'), 'validation_loss_ce': tensor(0.3577, device='cuda:0'), 'validation_loss_bbox': tensor(0.1377, device='cuda:0'), 'validation_loss_giou': tensor(0.4897, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.3067, device='cuda:0'), 'train_loss_ce': tensor(0.1965, device='cuda:0'), 'train_loss_bbox': tensor(0.0097, device='cuda:0'), 'train_loss_giou': tensor(0.0310, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.0096, device='cuda:0'), 'validation_loss_ce': tensor(0.3569, device='cuda:0'), 'validation_loss_bbox': tensor(0.1366, device='cuda:0'), 'validation_loss_giou': tensor(0.4847, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.5371, device='cuda:0'), 'train_loss_ce': tensor(0.2652, device='cuda:0'), 'train_loss_bbox': tensor(0.0280, device='cuda:0'), 'train_loss_giou': tensor(0.0661, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0127, device='cuda:0'), 'validation_loss_ce': tensor(0.3545, device='cuda:0'), 'validation_loss_bbox': tensor(0.1360, device='cuda:0'), 'validation_loss_giou': tensor(0.4891, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(0.3266, device='cuda:0'), 'train_loss_ce': tensor(0.2277, device='cuda:0'), 'train_loss_bbox': tensor(0.0094, device='cuda:0'), 'train_loss_giou': tensor(0.0260, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0273, device='cuda:0'), 'validation_loss_ce': tensor(0.3595, device='cuda:0'), 'validation_loss_bbox': tensor(0.1370, device='cuda:0'), 'validation_loss_giou': tensor(0.4914, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.3755, device='cuda:0'), 'train_loss_ce': tensor(0.2399, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.0470, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0162, device='cuda:0'), 'validation_loss_ce': tensor(0.3567, device='cuda:0'), 'validation_loss_bbox': tensor(0.1359, device='cuda:0'), 'validation_loss_giou': tensor(0.4900, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.3956, device='cuda:0'), 'train_loss_ce': tensor(0.1738, device='cuda:0'), 'train_loss_bbox': tensor(0.0155, device='cuda:0'), 'train_loss_giou': tensor(0.0722, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.0278, device='cuda:0'), 'validation_loss_ce': tensor(0.3586, device='cuda:0'), 'validation_loss_bbox': tensor(0.1385, device='cuda:0'), 'validation_loss_giou': tensor(0.4883, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.3586, device='cuda:0'), 'train_loss_ce': tensor(0.2253, device='cuda:0'), 'train_loss_bbox': tensor(0.0108, device='cuda:0'), 'train_loss_giou': tensor(0.0398, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0250, device='cuda:0'), 'validation_loss_ce': tensor(0.3570, device='cuda:0'), 'validation_loss_bbox': tensor(0.1380, device='cuda:0'), 'validation_loss_giou': tensor(0.4891, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.3680, device='cuda:0'), 'train_loss_ce': tensor(0.1445, device='cuda:0'), 'train_loss_bbox': tensor(0.0192, device='cuda:0'), 'train_loss_giou': tensor(0.0639, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0326, device='cuda:0'), 'validation_loss_ce': tensor(0.3599, device='cuda:0'), 'validation_loss_bbox': tensor(0.1404, device='cuda:0'), 'validation_loss_giou': tensor(0.4853, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.4885, device='cuda:0'), 'train_loss_ce': tensor(0.2070, device='cuda:0'), 'train_loss_bbox': tensor(0.0241, device='cuda:0'), 'train_loss_giou': tensor(0.0804, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0094, device='cuda:0'), 'validation_loss_ce': tensor(0.3531, device='cuda:0'), 'validation_loss_bbox': tensor(0.1331, device='cuda:0'), 'validation_loss_giou': tensor(0.4954, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.4520, device='cuda:0'), 'train_loss_ce': tensor(0.2736, device='cuda:0'), 'train_loss_bbox': tensor(0.0136, device='cuda:0'), 'train_loss_giou': tensor(0.0553, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.9979, device='cuda:0'), 'validation_loss_ce': tensor(0.3567, device='cuda:0'), 'validation_loss_bbox': tensor(0.1353, device='cuda:0'), 'validation_loss_giou': tensor(0.4823, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.3437, device='cuda:0'), 'train_loss_ce': tensor(0.2190, device='cuda:0'), 'train_loss_bbox': tensor(0.0093, device='cuda:0'), 'train_loss_giou': tensor(0.0391, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0209, device='cuda:0'), 'validation_loss_ce': tensor(0.3566, device='cuda:0'), 'validation_loss_bbox': tensor(0.1378, device='cuda:0'), 'validation_loss_giou': tensor(0.4877, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.6394, device='cuda:0'), 'train_loss_ce': tensor(0.3474, device='cuda:0'), 'train_loss_bbox': tensor(0.0147, device='cuda:0'), 'train_loss_giou': tensor(0.1093, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0118, device='cuda:0'), 'validation_loss_ce': tensor(0.3601, device='cuda:0'), 'validation_loss_bbox': tensor(0.1364, device='cuda:0'), 'validation_loss_giou': tensor(0.4850, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.5213, device='cuda:0'), 'train_loss_ce': tensor(0.2782, device='cuda:0'), 'train_loss_bbox': tensor(0.0175, device='cuda:0'), 'train_loss_giou': tensor(0.0778, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0021, device='cuda:0'), 'validation_loss_ce': tensor(0.3628, device='cuda:0'), 'validation_loss_bbox': tensor(0.1370, device='cuda:0'), 'validation_loss_giou': tensor(0.4771, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.4838, device='cuda:0'), 'train_loss_ce': tensor(0.2836, device='cuda:0'), 'train_loss_bbox': tensor(0.0199, device='cuda:0'), 'train_loss_giou': tensor(0.0504, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0289, device='cuda:0'), 'validation_loss_ce': tensor(0.3616, device='cuda:0'), 'validation_loss_bbox': tensor(0.1385, device='cuda:0'), 'validation_loss_giou': tensor(0.4873, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.3901, device='cuda:0'), 'train_loss_ce': tensor(0.2191, device='cuda:0'), 'train_loss_bbox': tensor(0.0147, device='cuda:0'), 'train_loss_giou': tensor(0.0488, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0000, device='cuda:0'), 'validation_loss_ce': tensor(0.3509, device='cuda:0'), 'validation_loss_bbox': tensor(0.1351, device='cuda:0'), 'validation_loss_giou': tensor(0.4869, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4126, device='cuda:0'), 'train_loss_ce': tensor(0.2142, device='cuda:0'), 'train_loss_bbox': tensor(0.0060, device='cuda:0'), 'train_loss_giou': tensor(0.0842, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.0047, device='cuda:0'), 'validation_loss_ce': tensor(0.3576, device='cuda:0'), 'validation_loss_bbox': tensor(0.1364, device='cuda:0'), 'validation_loss_giou': tensor(0.4826, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.2430, device='cuda:0'), 'train_loss_ce': tensor(0.1527, device='cuda:0'), 'train_loss_bbox': tensor(0.0071, device='cuda:0'), 'train_loss_giou': tensor(0.0275, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0031, device='cuda:0'), 'validation_loss_ce': tensor(0.3551, device='cuda:0'), 'validation_loss_bbox': tensor(0.1353, device='cuda:0'), 'validation_loss_giou': tensor(0.4858, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(0.6561, device='cuda:0'), 'train_loss_ce': tensor(0.4155, device='cuda:0'), 'train_loss_bbox': tensor(0.0176, device='cuda:0'), 'train_loss_giou': tensor(0.0762, device='cuda:0'), 'train_cardinality_error': tensor(1.6000, device='cuda:0'), 'validation_loss': tensor(2.0277, device='cuda:0'), 'validation_loss_ce': tensor(0.3596, device='cuda:0'), 'validation_loss_bbox': tensor(0.1388, device='cuda:0'), 'validation_loss_giou': tensor(0.4870, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.4406, device='cuda:0'), 'train_loss_ce': tensor(0.2869, device='cuda:0'), 'train_loss_bbox': tensor(0.0108, device='cuda:0'), 'train_loss_giou': tensor(0.0498, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0107, device='cuda:0'), 'validation_loss_ce': tensor(0.3625, device='cuda:0'), 'validation_loss_bbox': tensor(0.1378, device='cuda:0'), 'validation_loss_giou': tensor(0.4796, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4643, device='cuda:0'), 'train_loss_ce': tensor(0.2780, device='cuda:0'), 'train_loss_bbox': tensor(0.0097, device='cuda:0'), 'train_loss_giou': tensor(0.0689, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0241, device='cuda:0'), 'validation_loss_ce': tensor(0.3630, device='cuda:0'), 'validation_loss_bbox': tensor(0.1402, device='cuda:0'), 'validation_loss_giou': tensor(0.4800, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.3646, device='cuda:0'), 'train_loss_ce': tensor(0.1924, device='cuda:0'), 'train_loss_bbox': tensor(0.0131, device='cuda:0'), 'train_loss_giou': tensor(0.0532, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0038, device='cuda:0'), 'validation_loss_ce': tensor(0.3629, device='cuda:0'), 'validation_loss_bbox': tensor(0.1375, device='cuda:0'), 'validation_loss_giou': tensor(0.4767, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.3866, device='cuda:0'), 'train_loss_ce': tensor(0.1988, device='cuda:0'), 'train_loss_bbox': tensor(0.0135, device='cuda:0'), 'train_loss_giou': tensor(0.0602, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.0133, device='cuda:0'), 'validation_loss_ce': tensor(0.3592, device='cuda:0'), 'validation_loss_bbox': tensor(0.1391, device='cuda:0'), 'validation_loss_giou': tensor(0.4794, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.3627, device='cuda:0'), 'train_loss_ce': tensor(0.2524, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.0343, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0224, device='cuda:0'), 'validation_loss_ce': tensor(0.3602, device='cuda:0'), 'validation_loss_bbox': tensor(0.1388, device='cuda:0'), 'validation_loss_giou': tensor(0.4841, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.3589, device='cuda:0'), 'train_loss_ce': tensor(0.2254, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.0460, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0205, device='cuda:0'), 'validation_loss_ce': tensor(0.3594, device='cuda:0'), 'validation_loss_bbox': tensor(0.1390, device='cuda:0'), 'validation_loss_giou': tensor(0.4831, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.5896, device='cuda:0'), 'train_loss_ce': tensor(0.3289, device='cuda:0'), 'train_loss_bbox': tensor(0.0190, device='cuda:0'), 'train_loss_giou': tensor(0.0829, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0273, device='cuda:0'), 'validation_loss_ce': tensor(0.3585, device='cuda:0'), 'validation_loss_bbox': tensor(0.1375, device='cuda:0'), 'validation_loss_giou': tensor(0.4906, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.4750, device='cuda:0'), 'train_loss_ce': tensor(0.2692, device='cuda:0'), 'train_loss_bbox': tensor(0.0140, device='cuda:0'), 'train_loss_giou': tensor(0.0679, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0197, device='cuda:0'), 'validation_loss_ce': tensor(0.3623, device='cuda:0'), 'validation_loss_bbox': tensor(0.1390, device='cuda:0'), 'validation_loss_giou': tensor(0.4812, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.3133, device='cuda:0'), 'train_loss_ce': tensor(0.1674, device='cuda:0'), 'train_loss_bbox': tensor(0.0150, device='cuda:0'), 'train_loss_giou': tensor(0.0355, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0188, device='cuda:0'), 'validation_loss_ce': tensor(0.3648, device='cuda:0'), 'validation_loss_bbox': tensor(0.1397, device='cuda:0'), 'validation_loss_giou': tensor(0.4777, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.4453, device='cuda:0'), 'train_loss_ce': tensor(0.2576, device='cuda:0'), 'train_loss_bbox': tensor(0.0114, device='cuda:0'), 'train_loss_giou': tensor(0.0654, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0222, device='cuda:0'), 'validation_loss_ce': tensor(0.3659, device='cuda:0'), 'validation_loss_bbox': tensor(0.1393, device='cuda:0'), 'validation_loss_giou': tensor(0.4798, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.3563, device='cuda:0'), 'train_loss_ce': tensor(0.1687, device='cuda:0'), 'train_loss_bbox': tensor(0.0165, device='cuda:0'), 'train_loss_giou': tensor(0.0524, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0206, device='cuda:0'), 'validation_loss_ce': tensor(0.3593, device='cuda:0'), 'validation_loss_bbox': tensor(0.1377, device='cuda:0'), 'validation_loss_giou': tensor(0.4864, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.5525, device='cuda:0'), 'train_loss_ce': tensor(0.2720, device='cuda:0'), 'train_loss_bbox': tensor(0.0237, device='cuda:0'), 'train_loss_giou': tensor(0.0811, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0251, device='cuda:0'), 'validation_loss_ce': tensor(0.3657, device='cuda:0'), 'validation_loss_bbox': tensor(0.1390, device='cuda:0'), 'validation_loss_giou': tensor(0.4823, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.5397, device='cuda:0'), 'train_loss_ce': tensor(0.2966, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.1032, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0040, device='cuda:0'), 'validation_loss_ce': tensor(0.3592, device='cuda:0'), 'validation_loss_bbox': tensor(0.1373, device='cuda:0'), 'validation_loss_giou': tensor(0.4791, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.4554, device='cuda:0'), 'train_loss_ce': tensor(0.2874, device='cuda:0'), 'train_loss_bbox': tensor(0.0128, device='cuda:0'), 'train_loss_giou': tensor(0.0521, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0147, device='cuda:0'), 'validation_loss_ce': tensor(0.3612, device='cuda:0'), 'validation_loss_bbox': tensor(0.1358, device='cuda:0'), 'validation_loss_giou': tensor(0.4872, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.3666, device='cuda:0'), 'train_loss_ce': tensor(0.1905, device='cuda:0'), 'train_loss_bbox': tensor(0.0067, device='cuda:0'), 'train_loss_giou': tensor(0.0713, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0122, device='cuda:0'), 'validation_loss_ce': tensor(0.3591, device='cuda:0'), 'validation_loss_bbox': tensor(0.1373, device='cuda:0'), 'validation_loss_giou': tensor(0.4834, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4424, device='cuda:0'), 'train_loss_ce': tensor(0.3160, device='cuda:0'), 'train_loss_bbox': tensor(0.0078, device='cuda:0'), 'train_loss_giou': tensor(0.0437, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0329, device='cuda:0'), 'validation_loss_ce': tensor(0.3654, device='cuda:0'), 'validation_loss_bbox': tensor(0.1405, device='cuda:0'), 'validation_loss_giou': tensor(0.4825, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.4849, device='cuda:0'), 'train_loss_ce': tensor(0.2364, device='cuda:0'), 'train_loss_bbox': tensor(0.0189, device='cuda:0'), 'train_loss_giou': tensor(0.0771, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0247, device='cuda:0'), 'validation_loss_ce': tensor(0.3572, device='cuda:0'), 'validation_loss_bbox': tensor(0.1353, device='cuda:0'), 'validation_loss_giou': tensor(0.4955, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.3338, device='cuda:0'), 'train_loss_ce': tensor(0.1623, device='cuda:0'), 'train_loss_bbox': tensor(0.0080, device='cuda:0'), 'train_loss_giou': tensor(0.0658, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(1.9963, device='cuda:0'), 'validation_loss_ce': tensor(0.3621, device='cuda:0'), 'validation_loss_bbox': tensor(0.1365, device='cuda:0'), 'validation_loss_giou': tensor(0.4759, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.3896, device='cuda:0'), 'train_loss_ce': tensor(0.2398, device='cuda:0'), 'train_loss_bbox': tensor(0.0077, device='cuda:0'), 'train_loss_giou': tensor(0.0555, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0091, device='cuda:0'), 'validation_loss_ce': tensor(0.3589, device='cuda:0'), 'validation_loss_bbox': tensor(0.1375, device='cuda:0'), 'validation_loss_giou': tensor(0.4813, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.4561, device='cuda:0'), 'train_loss_ce': tensor(0.3441, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0377, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0345, device='cuda:0'), 'validation_loss_ce': tensor(0.3667, device='cuda:0'), 'validation_loss_bbox': tensor(0.1413, device='cuda:0'), 'validation_loss_giou': tensor(0.4808, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.4431, device='cuda:0'), 'train_loss_ce': tensor(0.2337, device='cuda:0'), 'train_loss_bbox': tensor(0.0143, device='cuda:0'), 'train_loss_giou': tensor(0.0689, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0092, device='cuda:0'), 'validation_loss_ce': tensor(0.3607, device='cuda:0'), 'validation_loss_bbox': tensor(0.1371, device='cuda:0'), 'validation_loss_giou': tensor(0.4815, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.6506, device='cuda:0'), 'train_loss_ce': tensor(0.2559, device='cuda:0'), 'train_loss_bbox': tensor(0.0249, device='cuda:0'), 'train_loss_giou': tensor(0.1352, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0296, device='cuda:0'), 'validation_loss_ce': tensor(0.3650, device='cuda:0'), 'validation_loss_bbox': tensor(0.1398, device='cuda:0'), 'validation_loss_giou': tensor(0.4829, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.3126, device='cuda:0'), 'train_loss_ce': tensor(0.2575, device='cuda:0'), 'train_loss_bbox': tensor(0.0054, device='cuda:0'), 'train_loss_giou': tensor(0.0141, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0239, device='cuda:0'), 'validation_loss_ce': tensor(0.3636, device='cuda:0'), 'validation_loss_bbox': tensor(0.1393, device='cuda:0'), 'validation_loss_giou': tensor(0.4819, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.5570, device='cuda:0'), 'train_loss_ce': tensor(0.3705, device='cuda:0'), 'train_loss_bbox': tensor(0.0118, device='cuda:0'), 'train_loss_giou': tensor(0.0638, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0176, device='cuda:0'), 'validation_loss_ce': tensor(0.3642, device='cuda:0'), 'validation_loss_bbox': tensor(0.1392, device='cuda:0'), 'validation_loss_giou': tensor(0.4788, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.3552, device='cuda:0'), 'train_loss_ce': tensor(0.2399, device='cuda:0'), 'train_loss_bbox': tensor(0.0057, device='cuda:0'), 'train_loss_giou': tensor(0.0433, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0060, device='cuda:0'), 'validation_loss_ce': tensor(0.3602, device='cuda:0'), 'validation_loss_bbox': tensor(0.1358, device='cuda:0'), 'validation_loss_giou': tensor(0.4833, device='cuda:0'), 'validation_cardinality_error': tensor(1.0101, device='cuda:0')}
{'training_loss': tensor(0.4545, device='cuda:0'), 'train_loss_ce': tensor(0.3217, device='cuda:0'), 'train_loss_bbox': tensor(0.0116, device='cuda:0'), 'train_loss_giou': tensor(0.0373, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0098, device='cuda:0'), 'validation_loss_ce': tensor(0.3635, device='cuda:0'), 'validation_loss_bbox': tensor(0.1380, device='cuda:0'), 'validation_loss_giou': tensor(0.4782, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.3672, device='cuda:0'), 'train_loss_ce': tensor(0.2130, device='cuda:0'), 'train_loss_bbox': tensor(0.0132, device='cuda:0'), 'train_loss_giou': tensor(0.0442, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0138, device='cuda:0'), 'validation_loss_ce': tensor(0.3659, device='cuda:0'), 'validation_loss_bbox': tensor(0.1375, device='cuda:0'), 'validation_loss_giou': tensor(0.4803, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.3424, device='cuda:0'), 'train_loss_ce': tensor(0.2407, device='cuda:0'), 'train_loss_bbox': tensor(0.0062, device='cuda:0'), 'train_loss_giou': tensor(0.0353, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0267, device='cuda:0'), 'validation_loss_ce': tensor(0.3662, device='cuda:0'), 'validation_loss_bbox': tensor(0.1399, device='cuda:0'), 'validation_loss_giou': tensor(0.4804, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.5344, device='cuda:0'), 'train_loss_ce': tensor(0.3626, device='cuda:0'), 'train_loss_bbox': tensor(0.0099, device='cuda:0'), 'train_loss_giou': tensor(0.0610, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0258, device='cuda:0'), 'validation_loss_ce': tensor(0.3653, device='cuda:0'), 'validation_loss_bbox': tensor(0.1380, device='cuda:0'), 'validation_loss_giou': tensor(0.4853, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4043, device='cuda:0'), 'train_loss_ce': tensor(0.2512, device='cuda:0'), 'train_loss_bbox': tensor(0.0106, device='cuda:0'), 'train_loss_giou': tensor(0.0499, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0112, device='cuda:0'), 'validation_loss_ce': tensor(0.3594, device='cuda:0'), 'validation_loss_bbox': tensor(0.1378, device='cuda:0'), 'validation_loss_giou': tensor(0.4814, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.6475, device='cuda:0'), 'train_loss_ce': tensor(0.1793, device='cuda:0'), 'train_loss_bbox': tensor(0.0429, device='cuda:0'), 'train_loss_giou': tensor(0.1269, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0394, device='cuda:0'), 'validation_loss_ce': tensor(0.3672, device='cuda:0'), 'validation_loss_bbox': tensor(0.1415, device='cuda:0'), 'validation_loss_giou': tensor(0.4823, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.8018, device='cuda:0'), 'train_loss_ce': tensor(0.3185, device='cuda:0'), 'train_loss_bbox': tensor(0.0277, device='cuda:0'), 'train_loss_giou': tensor(0.1724, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0111, device='cuda:0'), 'validation_loss_ce': tensor(0.3637, device='cuda:0'), 'validation_loss_bbox': tensor(0.1368, device='cuda:0'), 'validation_loss_giou': tensor(0.4816, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.3126, device='cuda:0'), 'train_loss_ce': tensor(0.2134, device='cuda:0'), 'train_loss_bbox': tensor(0.0085, device='cuda:0'), 'train_loss_giou': tensor(0.0284, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.0405, device='cuda:0'), 'validation_loss_ce': tensor(0.3629, device='cuda:0'), 'validation_loss_bbox': tensor(0.1403, device='cuda:0'), 'validation_loss_giou': tensor(0.4881, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.4091, device='cuda:0'), 'train_loss_ce': tensor(0.2227, device='cuda:0'), 'train_loss_bbox': tensor(0.0102, device='cuda:0'), 'train_loss_giou': tensor(0.0677, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0234, device='cuda:0'), 'validation_loss_ce': tensor(0.3590, device='cuda:0'), 'validation_loss_bbox': tensor(0.1377, device='cuda:0'), 'validation_loss_giou': tensor(0.4880, device='cuda:0'), 'validation_cardinality_error': tensor(1.0202, device='cuda:0')}
{'training_loss': tensor(0.3300, device='cuda:0'), 'train_loss_ce': tensor(0.2424, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.0253, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0230, device='cuda:0'), 'validation_loss_ce': tensor(0.3656, device='cuda:0'), 'validation_loss_bbox': tensor(0.1386, device='cuda:0'), 'validation_loss_giou': tensor(0.4822, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.3831, device='cuda:0'), 'train_loss_ce': tensor(0.2780, device='cuda:0'), 'train_loss_bbox': tensor(0.0057, device='cuda:0'), 'train_loss_giou': tensor(0.0383, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0410, device='cuda:0'), 'validation_loss_ce': tensor(0.3663, device='cuda:0'), 'validation_loss_bbox': tensor(0.1411, device='cuda:0'), 'validation_loss_giou': tensor(0.4846, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.4879, device='cuda:0'), 'train_loss_ce': tensor(0.1612, device='cuda:0'), 'train_loss_bbox': tensor(0.0180, device='cuda:0'), 'train_loss_giou': tensor(0.1185, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0203, device='cuda:0'), 'validation_loss_ce': tensor(0.3694, device='cuda:0'), 'validation_loss_bbox': tensor(0.1386, device='cuda:0'), 'validation_loss_giou': tensor(0.4790, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.3480, device='cuda:0'), 'train_loss_ce': tensor(0.1823, device='cuda:0'), 'train_loss_bbox': tensor(0.0063, device='cuda:0'), 'train_loss_giou': tensor(0.0670, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0390, device='cuda:0'), 'validation_loss_ce': tensor(0.3715, device='cuda:0'), 'validation_loss_bbox': tensor(0.1409, device='cuda:0'), 'validation_loss_giou': tensor(0.4816, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.2849, device='cuda:0'), 'train_loss_ce': tensor(0.1564, device='cuda:0'), 'train_loss_bbox': tensor(0.0088, device='cuda:0'), 'train_loss_giou': tensor(0.0422, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0278, device='cuda:0'), 'validation_loss_ce': tensor(0.3658, device='cuda:0'), 'validation_loss_bbox': tensor(0.1400, device='cuda:0'), 'validation_loss_giou': tensor(0.4811, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.3320, device='cuda:0'), 'train_loss_ce': tensor(0.1775, device='cuda:0'), 'train_loss_bbox': tensor(0.0108, device='cuda:0'), 'train_loss_giou': tensor(0.0502, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0268, device='cuda:0'), 'validation_loss_ce': tensor(0.3663, device='cuda:0'), 'validation_loss_bbox': tensor(0.1403, device='cuda:0'), 'validation_loss_giou': tensor(0.4795, device='cuda:0'), 'validation_cardinality_error': tensor(1.0101, device='cuda:0')}
{'training_loss': tensor(0.5455, device='cuda:0'), 'train_loss_ce': tensor(0.2568, device='cuda:0'), 'train_loss_bbox': tensor(0.0229, device='cuda:0'), 'train_loss_giou': tensor(0.0870, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0227, device='cuda:0'), 'validation_loss_ce': tensor(0.3616, device='cuda:0'), 'validation_loss_bbox': tensor(0.1372, device='cuda:0'), 'validation_loss_giou': tensor(0.4875, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.4455, device='cuda:0'), 'train_loss_ce': tensor(0.2504, device='cuda:0'), 'train_loss_bbox': tensor(0.0127, device='cuda:0'), 'train_loss_giou': tensor(0.0657, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0120, device='cuda:0'), 'validation_loss_ce': tensor(0.3666, device='cuda:0'), 'validation_loss_bbox': tensor(0.1386, device='cuda:0'), 'validation_loss_giou': tensor(0.4762, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3495, device='cuda:0'), 'train_loss_ce': tensor(0.2319, device='cuda:0'), 'train_loss_bbox': tensor(0.0099, device='cuda:0'), 'train_loss_giou': tensor(0.0339, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0407, device='cuda:0'), 'validation_loss_ce': tensor(0.3657, device='cuda:0'), 'validation_loss_bbox': tensor(0.1393, device='cuda:0'), 'validation_loss_giou': tensor(0.4892, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.3420, device='cuda:0'), 'train_loss_ce': tensor(0.1946, device='cuda:0'), 'train_loss_bbox': tensor(0.0112, device='cuda:0'), 'train_loss_giou': tensor(0.0457, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0391, device='cuda:0'), 'validation_loss_ce': tensor(0.3667, device='cuda:0'), 'validation_loss_bbox': tensor(0.1393, device='cuda:0'), 'validation_loss_giou': tensor(0.4879, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.3427, device='cuda:0'), 'train_loss_ce': tensor(0.1871, device='cuda:0'), 'train_loss_bbox': tensor(0.0104, device='cuda:0'), 'train_loss_giou': tensor(0.0518, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0238, device='cuda:0'), 'validation_loss_ce': tensor(0.3713, device='cuda:0'), 'validation_loss_bbox': tensor(0.1391, device='cuda:0'), 'validation_loss_giou': tensor(0.4785, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.3611, device='cuda:0'), 'train_loss_ce': tensor(0.2278, device='cuda:0'), 'train_loss_bbox': tensor(0.0051, device='cuda:0'), 'train_loss_giou': tensor(0.0540, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0333, device='cuda:0'), 'validation_loss_ce': tensor(0.3676, device='cuda:0'), 'validation_loss_bbox': tensor(0.1397, device='cuda:0'), 'validation_loss_giou': tensor(0.4836, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.4166, device='cuda:0'), 'train_loss_ce': tensor(0.2094, device='cuda:0'), 'train_loss_bbox': tensor(0.0138, device='cuda:0'), 'train_loss_giou': tensor(0.0690, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.0386, device='cuda:0'), 'validation_loss_ce': tensor(0.3732, device='cuda:0'), 'validation_loss_bbox': tensor(0.1408, device='cuda:0'), 'validation_loss_giou': tensor(0.4806, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.2690, device='cuda:0'), 'train_loss_ce': tensor(0.1781, device='cuda:0'), 'train_loss_bbox': tensor(0.0059, device='cuda:0'), 'train_loss_giou': tensor(0.0306, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0337, device='cuda:0'), 'validation_loss_ce': tensor(0.3646, device='cuda:0'), 'validation_loss_bbox': tensor(0.1382, device='cuda:0'), 'validation_loss_giou': tensor(0.4891, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.3758, device='cuda:0'), 'train_loss_ce': tensor(0.2299, device='cuda:0'), 'train_loss_bbox': tensor(0.0080, device='cuda:0'), 'train_loss_giou': tensor(0.0529, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0318, device='cuda:0'), 'validation_loss_ce': tensor(0.3642, device='cuda:0'), 'validation_loss_bbox': tensor(0.1401, device='cuda:0'), 'validation_loss_giou': tensor(0.4836, device='cuda:0'), 'validation_cardinality_error': tensor(1.0202, device='cuda:0')}
{'training_loss': tensor(0.4407, device='cuda:0'), 'train_loss_ce': tensor(0.1741, device='cuda:0'), 'train_loss_bbox': tensor(0.0219, device='cuda:0'), 'train_loss_giou': tensor(0.0786, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0275, device='cuda:0'), 'validation_loss_ce': tensor(0.3651, device='cuda:0'), 'validation_loss_bbox': tensor(0.1381, device='cuda:0'), 'validation_loss_giou': tensor(0.4860, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.2807, device='cuda:0'), 'train_loss_ce': tensor(0.1511, device='cuda:0'), 'train_loss_bbox': tensor(0.0069, device='cuda:0'), 'train_loss_giou': tensor(0.0477, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0291, device='cuda:0'), 'validation_loss_ce': tensor(0.3702, device='cuda:0'), 'validation_loss_bbox': tensor(0.1401, device='cuda:0'), 'validation_loss_giou': tensor(0.4791, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.4052, device='cuda:0'), 'train_loss_ce': tensor(0.2429, device='cuda:0'), 'train_loss_bbox': tensor(0.0100, device='cuda:0'), 'train_loss_giou': tensor(0.0561, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0359, device='cuda:0'), 'validation_loss_ce': tensor(0.3695, device='cuda:0'), 'validation_loss_bbox': tensor(0.1404, device='cuda:0'), 'validation_loss_giou': tensor(0.4822, device='cuda:0'), 'validation_cardinality_error': tensor(1.0101, device='cuda:0')}
{'training_loss': tensor(0.3345, device='cuda:0'), 'train_loss_ce': tensor(0.2132, device='cuda:0'), 'train_loss_bbox': tensor(0.0092, device='cuda:0'), 'train_loss_giou': tensor(0.0376, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0350, device='cuda:0'), 'validation_loss_ce': tensor(0.3746, device='cuda:0'), 'validation_loss_bbox': tensor(0.1398, device='cuda:0'), 'validation_loss_giou': tensor(0.4808, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.5061, device='cuda:0'), 'train_loss_ce': tensor(0.1734, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.1478, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0321, device='cuda:0'), 'validation_loss_ce': tensor(0.3714, device='cuda:0'), 'validation_loss_bbox': tensor(0.1406, device='cuda:0'), 'validation_loss_giou': tensor(0.4789, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4672, device='cuda:0'), 'train_loss_ce': tensor(0.3100, device='cuda:0'), 'train_loss_bbox': tensor(0.0097, device='cuda:0'), 'train_loss_giou': tensor(0.0543, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0205, device='cuda:0'), 'validation_loss_ce': tensor(0.3719, device='cuda:0'), 'validation_loss_bbox': tensor(0.1406, device='cuda:0'), 'validation_loss_giou': tensor(0.4728, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.4559, device='cuda:0'), 'train_loss_ce': tensor(0.2924, device='cuda:0'), 'train_loss_bbox': tensor(0.0124, device='cuda:0'), 'train_loss_giou': tensor(0.0508, device='cuda:0'), 'train_cardinality_error': tensor(1.8000, device='cuda:0'), 'validation_loss': tensor(2.0349, device='cuda:0'), 'validation_loss_ce': tensor(0.3716, device='cuda:0'), 'validation_loss_bbox': tensor(0.1410, device='cuda:0'), 'validation_loss_giou': tensor(0.4792, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.3737, device='cuda:0'), 'train_loss_ce': tensor(0.2149, device='cuda:0'), 'train_loss_bbox': tensor(0.0141, device='cuda:0'), 'train_loss_giou': tensor(0.0442, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0321, device='cuda:0'), 'validation_loss_ce': tensor(0.3688, device='cuda:0'), 'validation_loss_bbox': tensor(0.1395, device='cuda:0'), 'validation_loss_giou': tensor(0.4828, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.3495, device='cuda:0'), 'train_loss_ce': tensor(0.2064, device='cuda:0'), 'train_loss_bbox': tensor(0.0080, device='cuda:0'), 'train_loss_giou': tensor(0.0516, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0362, device='cuda:0'), 'validation_loss_ce': tensor(0.3726, device='cuda:0'), 'validation_loss_bbox': tensor(0.1408, device='cuda:0'), 'validation_loss_giou': tensor(0.4798, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.2678, device='cuda:0'), 'train_loss_ce': tensor(0.1193, device='cuda:0'), 'train_loss_bbox': tensor(0.0093, device='cuda:0'), 'train_loss_giou': tensor(0.0511, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0263, device='cuda:0'), 'validation_loss_ce': tensor(0.3693, device='cuda:0'), 'validation_loss_bbox': tensor(0.1397, device='cuda:0'), 'validation_loss_giou': tensor(0.4792, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.5067, device='cuda:0'), 'train_loss_ce': tensor(0.3271, device='cuda:0'), 'train_loss_bbox': tensor(0.0120, device='cuda:0'), 'train_loss_giou': tensor(0.0597, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.0298, device='cuda:0'), 'validation_loss_ce': tensor(0.3717, device='cuda:0'), 'validation_loss_bbox': tensor(0.1396, device='cuda:0'), 'validation_loss_giou': tensor(0.4800, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.7776, device='cuda:0'), 'train_loss_ce': tensor(0.3374, device='cuda:0'), 'train_loss_bbox': tensor(0.0281, device='cuda:0'), 'train_loss_giou': tensor(0.1499, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0288, device='cuda:0'), 'validation_loss_ce': tensor(0.3713, device='cuda:0'), 'validation_loss_bbox': tensor(0.1409, device='cuda:0'), 'validation_loss_giou': tensor(0.4765, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.3805, device='cuda:0'), 'train_loss_ce': tensor(0.2105, device='cuda:0'), 'train_loss_bbox': tensor(0.0118, device='cuda:0'), 'train_loss_giou': tensor(0.0554, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0333, device='cuda:0'), 'validation_loss_ce': tensor(0.3678, device='cuda:0'), 'validation_loss_bbox': tensor(0.1390, device='cuda:0'), 'validation_loss_giou': tensor(0.4854, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.5274, device='cuda:0'), 'train_loss_ce': tensor(0.2925, device='cuda:0'), 'train_loss_bbox': tensor(0.0219, device='cuda:0'), 'train_loss_giou': tensor(0.0627, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0393, device='cuda:0'), 'validation_loss_ce': tensor(0.3765, device='cuda:0'), 'validation_loss_bbox': tensor(0.1398, device='cuda:0'), 'validation_loss_giou': tensor(0.4818, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.6439, device='cuda:0'), 'train_loss_ce': tensor(0.2599, device='cuda:0'), 'train_loss_bbox': tensor(0.0106, device='cuda:0'), 'train_loss_giou': tensor(0.1654, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0358, device='cuda:0'), 'validation_loss_ce': tensor(0.3743, device='cuda:0'), 'validation_loss_bbox': tensor(0.1385, device='cuda:0'), 'validation_loss_giou': tensor(0.4844, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.3519, device='cuda:0'), 'train_loss_ce': tensor(0.1881, device='cuda:0'), 'train_loss_bbox': tensor(0.0126, device='cuda:0'), 'train_loss_giou': tensor(0.0504, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0403, device='cuda:0'), 'validation_loss_ce': tensor(0.3735, device='cuda:0'), 'validation_loss_bbox': tensor(0.1407, device='cuda:0'), 'validation_loss_giou': tensor(0.4818, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.4439, device='cuda:0'), 'train_loss_ce': tensor(0.2111, device='cuda:0'), 'train_loss_bbox': tensor(0.0235, device='cuda:0'), 'train_loss_giou': tensor(0.0575, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0451, device='cuda:0'), 'validation_loss_ce': tensor(0.3718, device='cuda:0'), 'validation_loss_bbox': tensor(0.1395, device='cuda:0'), 'validation_loss_giou': tensor(0.4879, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.4685, device='cuda:0'), 'train_loss_ce': tensor(0.2110, device='cuda:0'), 'train_loss_bbox': tensor(0.0134, device='cuda:0'), 'train_loss_giou': tensor(0.0952, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0516, device='cuda:0'), 'validation_loss_ce': tensor(0.3751, device='cuda:0'), 'validation_loss_bbox': tensor(0.1406, device='cuda:0'), 'validation_loss_giou': tensor(0.4867, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.3116, device='cuda:0'), 'train_loss_ce': tensor(0.2092, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0288, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0343, device='cuda:0'), 'validation_loss_ce': tensor(0.3711, device='cuda:0'), 'validation_loss_bbox': tensor(0.1381, device='cuda:0'), 'validation_loss_giou': tensor(0.4864, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2066, device='cuda:0'), 'train_loss_ce': tensor(0.1206, device='cuda:0'), 'train_loss_bbox': tensor(0.0071, device='cuda:0'), 'train_loss_giou': tensor(0.0251, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0433, device='cuda:0'), 'validation_loss_ce': tensor(0.3783, device='cuda:0'), 'validation_loss_bbox': tensor(0.1402, device='cuda:0'), 'validation_loss_giou': tensor(0.4819, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.3569, device='cuda:0'), 'train_loss_ce': tensor(0.2205, device='cuda:0'), 'train_loss_bbox': tensor(0.0108, device='cuda:0'), 'train_loss_giou': tensor(0.0413, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0431, device='cuda:0'), 'validation_loss_ce': tensor(0.3776, device='cuda:0'), 'validation_loss_bbox': tensor(0.1420, device='cuda:0'), 'validation_loss_giou': tensor(0.4777, device='cuda:0'), 'validation_cardinality_error': tensor(1.0101, device='cuda:0')}
{'training_loss': tensor(0.2369, device='cuda:0'), 'train_loss_ce': tensor(0.1325, device='cuda:0'), 'train_loss_bbox': tensor(0.0108, device='cuda:0'), 'train_loss_giou': tensor(0.0253, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0385, device='cuda:0'), 'validation_loss_ce': tensor(0.3715, device='cuda:0'), 'validation_loss_bbox': tensor(0.1399, device='cuda:0'), 'validation_loss_giou': tensor(0.4838, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.2057, device='cuda:0'), 'train_loss_ce': tensor(0.0945, device='cuda:0'), 'train_loss_bbox': tensor(0.0086, device='cuda:0'), 'train_loss_giou': tensor(0.0340, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0440, device='cuda:0'), 'validation_loss_ce': tensor(0.3781, device='cuda:0'), 'validation_loss_bbox': tensor(0.1405, device='cuda:0'), 'validation_loss_giou': tensor(0.4817, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.1685, device='cuda:0'), 'train_loss_ce': tensor(0.0995, device='cuda:0'), 'train_loss_bbox': tensor(0.0067, device='cuda:0'), 'train_loss_giou': tensor(0.0178, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0468, device='cuda:0'), 'validation_loss_ce': tensor(0.3783, device='cuda:0'), 'validation_loss_bbox': tensor(0.1412, device='cuda:0'), 'validation_loss_giou': tensor(0.4812, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.3501, device='cuda:0'), 'train_loss_ce': tensor(0.2332, device='cuda:0'), 'train_loss_bbox': tensor(0.0067, device='cuda:0'), 'train_loss_giou': tensor(0.0418, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0373, device='cuda:0'), 'validation_loss_ce': tensor(0.3789, device='cuda:0'), 'validation_loss_bbox': tensor(0.1403, device='cuda:0'), 'validation_loss_giou': tensor(0.4785, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.4063, device='cuda:0'), 'train_loss_ce': tensor(0.1645, device='cuda:0'), 'train_loss_bbox': tensor(0.0202, device='cuda:0'), 'train_loss_giou': tensor(0.0705, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0265, device='cuda:0'), 'validation_loss_ce': tensor(0.3758, device='cuda:0'), 'validation_loss_bbox': tensor(0.1397, device='cuda:0'), 'validation_loss_giou': tensor(0.4762, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.4584, device='cuda:0'), 'train_loss_ce': tensor(0.2259, device='cuda:0'), 'train_loss_bbox': tensor(0.0167, device='cuda:0'), 'train_loss_giou': tensor(0.0744, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0470, device='cuda:0'), 'validation_loss_ce': tensor(0.3730, device='cuda:0'), 'validation_loss_bbox': tensor(0.1392, device='cuda:0'), 'validation_loss_giou': tensor(0.4891, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(0.3708, device='cuda:0'), 'train_loss_ce': tensor(0.2020, device='cuda:0'), 'train_loss_bbox': tensor(0.0161, device='cuda:0'), 'train_loss_giou': tensor(0.0441, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0323, device='cuda:0'), 'validation_loss_ce': tensor(0.3775, device='cuda:0'), 'validation_loss_bbox': tensor(0.1400, device='cuda:0'), 'validation_loss_giou': tensor(0.4775, device='cuda:0'), 'validation_cardinality_error': tensor(0.8990, device='cuda:0')}
{'training_loss': tensor(0.4032, device='cuda:0'), 'train_loss_ce': tensor(0.1900, device='cuda:0'), 'train_loss_bbox': tensor(0.0130, device='cuda:0'), 'train_loss_giou': tensor(0.0740, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0335, device='cuda:0'), 'validation_loss_ce': tensor(0.3794, device='cuda:0'), 'validation_loss_bbox': tensor(0.1400, device='cuda:0'), 'validation_loss_giou': tensor(0.4770, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.4344, device='cuda:0'), 'train_loss_ce': tensor(0.1633, device='cuda:0'), 'train_loss_bbox': tensor(0.0158, device='cuda:0'), 'train_loss_giou': tensor(0.0960, device='cuda:0'), 'train_cardinality_error': tensor(2.2000, device='cuda:0'), 'validation_loss': tensor(2.0377, device='cuda:0'), 'validation_loss_ce': tensor(0.3829, device='cuda:0'), 'validation_loss_bbox': tensor(0.1399, device='cuda:0'), 'validation_loss_giou': tensor(0.4777, device='cuda:0'), 'validation_cardinality_error': tensor(0.8889, device='cuda:0')}
{'training_loss': tensor(0.3498, device='cuda:0'), 'train_loss_ce': tensor(0.2261, device='cuda:0'), 'train_loss_bbox': tensor(0.0064, device='cuda:0'), 'train_loss_giou': tensor(0.0460, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0627, device='cuda:0'), 'validation_loss_ce': tensor(0.3862, device='cuda:0'), 'validation_loss_bbox': tensor(0.1435, device='cuda:0'), 'validation_loss_giou': tensor(0.4794, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(0.3111, device='cuda:0'), 'train_loss_ce': tensor(0.1693, device='cuda:0'), 'train_loss_bbox': tensor(0.0077, device='cuda:0'), 'train_loss_giou': tensor(0.0516, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0414, device='cuda:0'), 'validation_loss_ce': tensor(0.3799, device='cuda:0'), 'validation_loss_bbox': tensor(0.1402, device='cuda:0'), 'validation_loss_giou': tensor(0.4803, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.6679, device='cuda:0'), 'train_loss_ce': tensor(0.2692, device='cuda:0'), 'train_loss_bbox': tensor(0.0271, device='cuda:0'), 'train_loss_giou': tensor(0.1316, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0561, device='cuda:0'), 'validation_loss_ce': tensor(0.3834, device='cuda:0'), 'validation_loss_bbox': tensor(0.1430, device='cuda:0'), 'validation_loss_giou': tensor(0.4788, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(0.2743, device='cuda:0'), 'train_loss_ce': tensor(0.1117, device='cuda:0'), 'train_loss_bbox': tensor(0.0078, device='cuda:0'), 'train_loss_giou': tensor(0.0617, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0359, device='cuda:0'), 'validation_loss_ce': tensor(0.3809, device='cuda:0'), 'validation_loss_bbox': tensor(0.1399, device='cuda:0'), 'validation_loss_giou': tensor(0.4778, device='cuda:0'), 'validation_cardinality_error': tensor(0.8889, device='cuda:0')}
{'training_loss': tensor(0.3892, device='cuda:0'), 'train_loss_ce': tensor(0.2252, device='cuda:0'), 'train_loss_bbox': tensor(0.0116, device='cuda:0'), 'train_loss_giou': tensor(0.0529, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0261, device='cuda:0'), 'validation_loss_ce': tensor(0.3803, device='cuda:0'), 'validation_loss_bbox': tensor(0.1377, device='cuda:0'), 'validation_loss_giou': tensor(0.4786, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.4570, device='cuda:0'), 'train_loss_ce': tensor(0.2495, device='cuda:0'), 'train_loss_bbox': tensor(0.0106, device='cuda:0'), 'train_loss_giou': tensor(0.0772, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.0546, device='cuda:0'), 'validation_loss_ce': tensor(0.3868, device='cuda:0'), 'validation_loss_bbox': tensor(0.1417, device='cuda:0'), 'validation_loss_giou': tensor(0.4797, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.2909, device='cuda:0'), 'train_loss_ce': tensor(0.1799, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0372, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0519, device='cuda:0'), 'validation_loss_ce': tensor(0.3857, device='cuda:0'), 'validation_loss_bbox': tensor(0.1411, device='cuda:0'), 'validation_loss_giou': tensor(0.4804, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4486, device='cuda:0'), 'train_loss_ce': tensor(0.1643, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.1214, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0522, device='cuda:0'), 'validation_loss_ce': tensor(0.3823, device='cuda:0'), 'validation_loss_bbox': tensor(0.1411, device='cuda:0'), 'validation_loss_giou': tensor(0.4823, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.3510, device='cuda:0'), 'train_loss_ce': tensor(0.1631, device='cuda:0'), 'train_loss_bbox': tensor(0.0131, device='cuda:0'), 'train_loss_giou': tensor(0.0613, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0563, device='cuda:0'), 'validation_loss_ce': tensor(0.3808, device='cuda:0'), 'validation_loss_bbox': tensor(0.1407, device='cuda:0'), 'validation_loss_giou': tensor(0.4859, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.3922, device='cuda:0'), 'train_loss_ce': tensor(0.1869, device='cuda:0'), 'train_loss_bbox': tensor(0.0121, device='cuda:0'), 'train_loss_giou': tensor(0.0724, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0534, device='cuda:0'), 'validation_loss_ce': tensor(0.3858, device='cuda:0'), 'validation_loss_bbox': tensor(0.1423, device='cuda:0'), 'validation_loss_giou': tensor(0.4782, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.4367, device='cuda:0'), 'train_loss_ce': tensor(0.2462, device='cuda:0'), 'train_loss_bbox': tensor(0.0071, device='cuda:0'), 'train_loss_giou': tensor(0.0774, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0557, device='cuda:0'), 'validation_loss_ce': tensor(0.3872, device='cuda:0'), 'validation_loss_bbox': tensor(0.1409, device='cuda:0'), 'validation_loss_giou': tensor(0.4819, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.2341, device='cuda:0'), 'train_loss_ce': tensor(0.1451, device='cuda:0'), 'train_loss_bbox': tensor(0.0088, device='cuda:0'), 'train_loss_giou': tensor(0.0225, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0330, device='cuda:0'), 'validation_loss_ce': tensor(0.3830, device='cuda:0'), 'validation_loss_bbox': tensor(0.1378, device='cuda:0'), 'validation_loss_giou': tensor(0.4804, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(0.3490, device='cuda:0'), 'train_loss_ce': tensor(0.2079, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0481, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0399, device='cuda:0'), 'validation_loss_ce': tensor(0.3880, device='cuda:0'), 'validation_loss_bbox': tensor(0.1400, device='cuda:0'), 'validation_loss_giou': tensor(0.4760, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.5262, device='cuda:0'), 'train_loss_ce': tensor(0.3042, device='cuda:0'), 'train_loss_bbox': tensor(0.0162, device='cuda:0'), 'train_loss_giou': tensor(0.0704, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0524, device='cuda:0'), 'validation_loss_ce': tensor(0.3878, device='cuda:0'), 'validation_loss_bbox': tensor(0.1411, device='cuda:0'), 'validation_loss_giou': tensor(0.4796, device='cuda:0'), 'validation_cardinality_error': tensor(0.9192, device='cuda:0')}
{'training_loss': tensor(0.3641, device='cuda:0'), 'train_loss_ce': tensor(0.2413, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.0430, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0519, device='cuda:0'), 'validation_loss_ce': tensor(0.3813, device='cuda:0'), 'validation_loss_bbox': tensor(0.1403, device='cuda:0'), 'validation_loss_giou': tensor(0.4845, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.5918, device='cuda:0'), 'train_loss_ce': tensor(0.2088, device='cuda:0'), 'train_loss_bbox': tensor(0.0290, device='cuda:0'), 'train_loss_giou': tensor(0.1191, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0514, device='cuda:0'), 'validation_loss_ce': tensor(0.3898, device='cuda:0'), 'validation_loss_bbox': tensor(0.1412, device='cuda:0'), 'validation_loss_giou': tensor(0.4778, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.6907, device='cuda:0'), 'train_loss_ce': tensor(0.2465, device='cuda:0'), 'train_loss_bbox': tensor(0.0301, device='cuda:0'), 'train_loss_giou': tensor(0.1470, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0593, device='cuda:0'), 'validation_loss_ce': tensor(0.3873, device='cuda:0'), 'validation_loss_bbox': tensor(0.1409, device='cuda:0'), 'validation_loss_giou': tensor(0.4837, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.3029, device='cuda:0'), 'train_loss_ce': tensor(0.1647, device='cuda:0'), 'train_loss_bbox': tensor(0.0115, device='cuda:0'), 'train_loss_giou': tensor(0.0403, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0590, device='cuda:0'), 'validation_loss_ce': tensor(0.3900, device='cuda:0'), 'validation_loss_bbox': tensor(0.1416, device='cuda:0'), 'validation_loss_giou': tensor(0.4806, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.3350, device='cuda:0'), 'train_loss_ce': tensor(0.1464, device='cuda:0'), 'train_loss_bbox': tensor(0.0128, device='cuda:0'), 'train_loss_giou': tensor(0.0624, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0658, device='cuda:0'), 'validation_loss_ce': tensor(0.3891, device='cuda:0'), 'validation_loss_bbox': tensor(0.1420, device='cuda:0'), 'validation_loss_giou': tensor(0.4833, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.2332, device='cuda:0'), 'train_loss_ce': tensor(0.1146, device='cuda:0'), 'train_loss_bbox': tensor(0.0052, device='cuda:0'), 'train_loss_giou': tensor(0.0462, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0578, device='cuda:0'), 'validation_loss_ce': tensor(0.3891, device='cuda:0'), 'validation_loss_bbox': tensor(0.1422, device='cuda:0'), 'validation_loss_giou': tensor(0.4787, device='cuda:0'), 'validation_cardinality_error': tensor(1.0101, device='cuda:0')}
{'training_loss': tensor(0.4309, device='cuda:0'), 'train_loss_ce': tensor(0.2349, device='cuda:0'), 'train_loss_bbox': tensor(0.0182, device='cuda:0'), 'train_loss_giou': tensor(0.0526, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0563, device='cuda:0'), 'validation_loss_ce': tensor(0.3934, device='cuda:0'), 'validation_loss_bbox': tensor(0.1409, device='cuda:0'), 'validation_loss_giou': tensor(0.4792, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.2184, device='cuda:0'), 'train_loss_ce': tensor(0.0781, device='cuda:0'), 'train_loss_bbox': tensor(0.0127, device='cuda:0'), 'train_loss_giou': tensor(0.0385, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0720, device='cuda:0'), 'validation_loss_ce': tensor(0.3999, device='cuda:0'), 'validation_loss_bbox': tensor(0.1423, device='cuda:0'), 'validation_loss_giou': tensor(0.4803, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.3756, device='cuda:0'), 'train_loss_ce': tensor(0.2081, device='cuda:0'), 'train_loss_bbox': tensor(0.0102, device='cuda:0'), 'train_loss_giou': tensor(0.0583, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0749, device='cuda:0'), 'validation_loss_ce': tensor(0.3947, device='cuda:0'), 'validation_loss_bbox': tensor(0.1422, device='cuda:0'), 'validation_loss_giou': tensor(0.4845, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.3085, device='cuda:0'), 'train_loss_ce': tensor(0.2364, device='cuda:0'), 'train_loss_bbox': tensor(0.0030, device='cuda:0'), 'train_loss_giou': tensor(0.0284, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0689, device='cuda:0'), 'validation_loss_ce': tensor(0.3977, device='cuda:0'), 'validation_loss_bbox': tensor(0.1431, device='cuda:0'), 'validation_loss_giou': tensor(0.4780, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.3883, device='cuda:0'), 'train_loss_ce': tensor(0.1864, device='cuda:0'), 'train_loss_bbox': tensor(0.0120, device='cuda:0'), 'train_loss_giou': tensor(0.0710, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(2.0691, device='cuda:0'), 'validation_loss_ce': tensor(0.3978, device='cuda:0'), 'validation_loss_bbox': tensor(0.1425, device='cuda:0'), 'validation_loss_giou': tensor(0.4794, device='cuda:0'), 'validation_cardinality_error': tensor(0.9293, device='cuda:0')}
{'training_loss': tensor(0.4195, device='cuda:0'), 'train_loss_ce': tensor(0.2750, device='cuda:0'), 'train_loss_bbox': tensor(0.0096, device='cuda:0'), 'train_loss_giou': tensor(0.0483, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0751, device='cuda:0'), 'validation_loss_ce': tensor(0.3950, device='cuda:0'), 'validation_loss_bbox': tensor(0.1449, device='cuda:0'), 'validation_loss_giou': tensor(0.4779, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.5715, device='cuda:0'), 'train_loss_ce': tensor(0.1703, device='cuda:0'), 'train_loss_bbox': tensor(0.0286, device='cuda:0'), 'train_loss_giou': tensor(0.1292, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0611, device='cuda:0'), 'validation_loss_ce': tensor(0.3943, device='cuda:0'), 'validation_loss_bbox': tensor(0.1416, device='cuda:0'), 'validation_loss_giou': tensor(0.4793, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.2723, device='cuda:0'), 'train_loss_ce': tensor(0.1870, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.0240, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0683, device='cuda:0'), 'validation_loss_ce': tensor(0.3943, device='cuda:0'), 'validation_loss_bbox': tensor(0.1420, device='cuda:0'), 'validation_loss_giou': tensor(0.4821, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.3438, device='cuda:0'), 'train_loss_ce': tensor(0.1506, device='cuda:0'), 'train_loss_bbox': tensor(0.0093, device='cuda:0'), 'train_loss_giou': tensor(0.0733, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0698, device='cuda:0'), 'validation_loss_ce': tensor(0.3968, device='cuda:0'), 'validation_loss_bbox': tensor(0.1427, device='cuda:0'), 'validation_loss_giou': tensor(0.4797, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.3273, device='cuda:0'), 'train_loss_ce': tensor(0.1461, device='cuda:0'), 'train_loss_bbox': tensor(0.0140, device='cuda:0'), 'train_loss_giou': tensor(0.0556, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(2.0720, device='cuda:0'), 'validation_loss_ce': tensor(0.3985, device='cuda:0'), 'validation_loss_bbox': tensor(0.1431, device='cuda:0'), 'validation_loss_giou': tensor(0.4790, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4650, device='cuda:0'), 'train_loss_ce': tensor(0.1461, device='cuda:0'), 'train_loss_bbox': tensor(0.0130, device='cuda:0'), 'train_loss_giou': tensor(0.1268, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.0520, device='cuda:0'), 'validation_loss_ce': tensor(0.3951, device='cuda:0'), 'validation_loss_bbox': tensor(0.1412, device='cuda:0'), 'validation_loss_giou': tensor(0.4756, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.2469, device='cuda:0'), 'train_loss_ce': tensor(0.1600, device='cuda:0'), 'train_loss_bbox': tensor(0.0066, device='cuda:0'), 'train_loss_giou': tensor(0.0270, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.0837, device='cuda:0'), 'validation_loss_ce': tensor(0.3948, device='cuda:0'), 'validation_loss_bbox': tensor(0.1443, device='cuda:0'), 'validation_loss_giou': tensor(0.4837, device='cuda:0'), 'validation_cardinality_error': tensor(1.0101, device='cuda:0')}
{'training_loss': tensor(0.3350, device='cuda:0'), 'train_loss_ce': tensor(0.1615, device='cuda:0'), 'train_loss_bbox': tensor(0.0131, device='cuda:0'), 'train_loss_giou': tensor(0.0540, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0734, device='cuda:0'), 'validation_loss_ce': tensor(0.3977, device='cuda:0'), 'validation_loss_bbox': tensor(0.1428, device='cuda:0'), 'validation_loss_giou': tensor(0.4810, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.4743, device='cuda:0'), 'train_loss_ce': tensor(0.2411, device='cuda:0'), 'train_loss_bbox': tensor(0.0067, device='cuda:0'), 'train_loss_giou': tensor(0.0999, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0703, device='cuda:0'), 'validation_loss_ce': tensor(0.4018, device='cuda:0'), 'validation_loss_bbox': tensor(0.1424, device='cuda:0'), 'validation_loss_giou': tensor(0.4783, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
{'training_loss': tensor(0.2864, device='cuda:0'), 'train_loss_ce': tensor(0.1281, device='cuda:0'), 'train_loss_bbox': tensor(0.0078, device='cuda:0'), 'train_loss_giou': tensor(0.0595, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0526, device='cuda:0'), 'validation_loss_ce': tensor(0.3895, device='cuda:0'), 'validation_loss_bbox': tensor(0.1404, device='cuda:0'), 'validation_loss_giou': tensor(0.4807, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.3863, device='cuda:0'), 'train_loss_ce': tensor(0.2897, device='cuda:0'), 'train_loss_bbox': tensor(0.0051, device='cuda:0'), 'train_loss_giou': tensor(0.0356, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0757, device='cuda:0'), 'validation_loss_ce': tensor(0.4030, device='cuda:0'), 'validation_loss_bbox': tensor(0.1430, device='cuda:0'), 'validation_loss_giou': tensor(0.4788, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
{'training_loss': tensor(0.3194, device='cuda:0'), 'train_loss_ce': tensor(0.1611, device='cuda:0'), 'train_loss_bbox': tensor(0.0109, device='cuda:0'), 'train_loss_giou': tensor(0.0518, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0653, device='cuda:0'), 'validation_loss_ce': tensor(0.4019, device='cuda:0'), 'validation_loss_bbox': tensor(0.1421, device='cuda:0'), 'validation_loss_giou': tensor(0.4763, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.2552, device='cuda:0'), 'train_loss_ce': tensor(0.1294, device='cuda:0'), 'train_loss_bbox': tensor(0.0060, device='cuda:0'), 'train_loss_giou': tensor(0.0479, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0631, device='cuda:0'), 'validation_loss_ce': tensor(0.3896, device='cuda:0'), 'validation_loss_bbox': tensor(0.1403, device='cuda:0'), 'validation_loss_giou': tensor(0.4860, device='cuda:0'), 'validation_cardinality_error': tensor(1.0101, device='cuda:0')}
{'training_loss': tensor(0.2760, device='cuda:0'), 'train_loss_ce': tensor(0.1496, device='cuda:0'), 'train_loss_bbox': tensor(0.0089, device='cuda:0'), 'train_loss_giou': tensor(0.0409, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0606, device='cuda:0'), 'validation_loss_ce': tensor(0.4035, device='cuda:0'), 'validation_loss_bbox': tensor(0.1403, device='cuda:0'), 'validation_loss_giou': tensor(0.4778, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.2489, device='cuda:0'), 'train_loss_ce': tensor(0.1147, device='cuda:0'), 'train_loss_bbox': tensor(0.0052, device='cuda:0'), 'train_loss_giou': tensor(0.0540, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.0833, device='cuda:0'), 'validation_loss_ce': tensor(0.4046, device='cuda:0'), 'validation_loss_bbox': tensor(0.1435, device='cuda:0'), 'validation_loss_giou': tensor(0.4806, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.2317, device='cuda:0'), 'train_loss_ce': tensor(0.1346, device='cuda:0'), 'train_loss_bbox': tensor(0.0050, device='cuda:0'), 'train_loss_giou': tensor(0.0361, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0874, device='cuda:0'), 'validation_loss_ce': tensor(0.4073, device='cuda:0'), 'validation_loss_bbox': tensor(0.1431, device='cuda:0'), 'validation_loss_giou': tensor(0.4824, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.4569, device='cuda:0'), 'train_loss_ce': tensor(0.2618, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.0790, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0776, device='cuda:0'), 'validation_loss_ce': tensor(0.4034, device='cuda:0'), 'validation_loss_bbox': tensor(0.1438, device='cuda:0'), 'validation_loss_giou': tensor(0.4776, device='cuda:0'), 'validation_cardinality_error': tensor(1.0101, device='cuda:0')}
{'training_loss': tensor(0.2888, device='cuda:0'), 'train_loss_ce': tensor(0.1018, device='cuda:0'), 'train_loss_bbox': tensor(0.0141, device='cuda:0'), 'train_loss_giou': tensor(0.0584, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0817, device='cuda:0'), 'validation_loss_ce': tensor(0.4076, device='cuda:0'), 'validation_loss_bbox': tensor(0.1437, device='cuda:0'), 'validation_loss_giou': tensor(0.4779, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5451, device='cuda:0'), 'train_loss_ce': tensor(0.1934, device='cuda:0'), 'train_loss_bbox': tensor(0.0326, device='cuda:0'), 'train_loss_giou': tensor(0.0942, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0808, device='cuda:0'), 'validation_loss_ce': tensor(0.4045, device='cuda:0'), 'validation_loss_bbox': tensor(0.1434, device='cuda:0'), 'validation_loss_giou': tensor(0.4797, device='cuda:0'), 'validation_cardinality_error': tensor(1.0404, device='cuda:0')}
{'training_loss': tensor(0.2206, device='cuda:0'), 'train_loss_ce': tensor(0.1274, device='cuda:0'), 'train_loss_bbox': tensor(0.0065, device='cuda:0'), 'train_loss_giou': tensor(0.0303, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0778, device='cuda:0'), 'validation_loss_ce': tensor(0.4059, device='cuda:0'), 'validation_loss_bbox': tensor(0.1430, device='cuda:0'), 'validation_loss_giou': tensor(0.4784, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.2662, device='cuda:0'), 'train_loss_ce': tensor(0.0753, device='cuda:0'), 'train_loss_bbox': tensor(0.0137, device='cuda:0'), 'train_loss_giou': tensor(0.0613, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0700, device='cuda:0'), 'validation_loss_ce': tensor(0.4093, device='cuda:0'), 'validation_loss_bbox': tensor(0.1409, device='cuda:0'), 'validation_loss_giou': tensor(0.4782, device='cuda:0'), 'validation_cardinality_error': tensor(1.0202, device='cuda:0')}
{'training_loss': tensor(0.4348, device='cuda:0'), 'train_loss_ce': tensor(0.1767, device='cuda:0'), 'train_loss_bbox': tensor(0.0084, device='cuda:0'), 'train_loss_giou': tensor(0.1082, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0871, device='cuda:0'), 'validation_loss_ce': tensor(0.4103, device='cuda:0'), 'validation_loss_bbox': tensor(0.1434, device='cuda:0'), 'validation_loss_giou': tensor(0.4797, device='cuda:0'), 'validation_cardinality_error': tensor(0.9495, device='cuda:0')}
{'training_loss': tensor(0.3013, device='cuda:0'), 'train_loss_ce': tensor(0.1544, device='cuda:0'), 'train_loss_bbox': tensor(0.0154, device='cuda:0'), 'train_loss_giou': tensor(0.0350, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0753, device='cuda:0'), 'validation_loss_ce': tensor(0.4124, device='cuda:0'), 'validation_loss_bbox': tensor(0.1420, device='cuda:0'), 'validation_loss_giou': tensor(0.4765, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.3769, device='cuda:0'), 'train_loss_ce': tensor(0.1928, device='cuda:0'), 'train_loss_bbox': tensor(0.0126, device='cuda:0'), 'train_loss_giou': tensor(0.0604, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0998, device='cuda:0'), 'validation_loss_ce': tensor(0.4145, device='cuda:0'), 'validation_loss_bbox': tensor(0.1445, device='cuda:0'), 'validation_loss_giou': tensor(0.4813, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.3331, device='cuda:0'), 'train_loss_ce': tensor(0.1949, device='cuda:0'), 'train_loss_bbox': tensor(0.0105, device='cuda:0'), 'train_loss_giou': tensor(0.0429, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.0774, device='cuda:0'), 'validation_loss_ce': tensor(0.4056, device='cuda:0'), 'validation_loss_bbox': tensor(0.1416, device='cuda:0'), 'validation_loss_giou': tensor(0.4819, device='cuda:0'), 'validation_cardinality_error': tensor(1.0303, device='cuda:0')}
{'training_loss': tensor(0.3461, device='cuda:0'), 'train_loss_ce': tensor(0.1951, device='cuda:0'), 'train_loss_bbox': tensor(0.0072, device='cuda:0'), 'train_loss_giou': tensor(0.0575, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0989, device='cuda:0'), 'validation_loss_ce': tensor(0.4138, device='cuda:0'), 'validation_loss_bbox': tensor(0.1443, device='cuda:0'), 'validation_loss_giou': tensor(0.4819, device='cuda:0'), 'validation_cardinality_error': tensor(1.0101, device='cuda:0')}
{'training_loss': tensor(0.1781, device='cuda:0'), 'train_loss_ce': tensor(0.1038, device='cuda:0'), 'train_loss_bbox': tensor(0.0071, device='cuda:0'), 'train_loss_giou': tensor(0.0193, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.1001, device='cuda:0'), 'validation_loss_ce': tensor(0.4177, device='cuda:0'), 'validation_loss_bbox': tensor(0.1454, device='cuda:0'), 'validation_loss_giou': tensor(0.4777, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.7459, device='cuda:0'), 'train_loss_ce': tensor(0.1937, device='cuda:0'), 'train_loss_bbox': tensor(0.0492, device='cuda:0'), 'train_loss_giou': tensor(0.1532, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.0908, device='cuda:0'), 'validation_loss_ce': tensor(0.4166, device='cuda:0'), 'validation_loss_bbox': tensor(0.1428, device='cuda:0'), 'validation_loss_giou': tensor(0.4802, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2477, device='cuda:0'), 'train_loss_ce': tensor(0.1485, device='cuda:0'), 'train_loss_bbox': tensor(0.0066, device='cuda:0'), 'train_loss_giou': tensor(0.0332, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.0848, device='cuda:0'), 'validation_loss_ce': tensor(0.4144, device='cuda:0'), 'validation_loss_bbox': tensor(0.1421, device='cuda:0'), 'validation_loss_giou': tensor(0.4799, device='cuda:0'), 'validation_cardinality_error': tensor(1.0202, device='cuda:0')}
{'training_loss': tensor(0.4263, device='cuda:0'), 'train_loss_ce': tensor(0.1969, device='cuda:0'), 'train_loss_bbox': tensor(0.0138, device='cuda:0'), 'train_loss_giou': tensor(0.0802, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0968, device='cuda:0'), 'validation_loss_ce': tensor(0.4109, device='cuda:0'), 'validation_loss_bbox': tensor(0.1437, device='cuda:0'), 'validation_loss_giou': tensor(0.4836, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.2370, device='cuda:0'), 'train_loss_ce': tensor(0.1177, device='cuda:0'), 'train_loss_bbox': tensor(0.0080, device='cuda:0'), 'train_loss_giou': tensor(0.0397, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.1062, device='cuda:0'), 'validation_loss_ce': tensor(0.4188, device='cuda:0'), 'validation_loss_bbox': tensor(0.1441, device='cuda:0'), 'validation_loss_giou': tensor(0.4835, device='cuda:0'), 'validation_cardinality_error': tensor(1.0303, device='cuda:0')}
{'training_loss': tensor(0.3930, device='cuda:0'), 'train_loss_ce': tensor(0.1892, device='cuda:0'), 'train_loss_bbox': tensor(0.0095, device='cuda:0'), 'train_loss_giou': tensor(0.0782, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1025, device='cuda:0'), 'validation_loss_ce': tensor(0.4135, device='cuda:0'), 'validation_loss_bbox': tensor(0.1449, device='cuda:0'), 'validation_loss_giou': tensor(0.4823, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.3394, device='cuda:0'), 'train_loss_ce': tensor(0.1018, device='cuda:0'), 'train_loss_bbox': tensor(0.0129, device='cuda:0'), 'train_loss_giou': tensor(0.0864, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.0901, device='cuda:0'), 'validation_loss_ce': tensor(0.4130, device='cuda:0'), 'validation_loss_bbox': tensor(0.1440, device='cuda:0'), 'validation_loss_giou': tensor(0.4786, device='cuda:0'), 'validation_cardinality_error': tensor(1.0202, device='cuda:0')}
{'training_loss': tensor(0.2547, device='cuda:0'), 'train_loss_ce': tensor(0.1426, device='cuda:0'), 'train_loss_bbox': tensor(0.0080, device='cuda:0'), 'train_loss_giou': tensor(0.0360, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1065, device='cuda:0'), 'validation_loss_ce': tensor(0.4218, device='cuda:0'), 'validation_loss_bbox': tensor(0.1452, device='cuda:0'), 'validation_loss_giou': tensor(0.4793, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
{'training_loss': tensor(0.3016, device='cuda:0'), 'train_loss_ce': tensor(0.1722, device='cuda:0'), 'train_loss_bbox': tensor(0.0089, device='cuda:0'), 'train_loss_giou': tensor(0.0424, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.1148, device='cuda:0'), 'validation_loss_ce': tensor(0.4200, device='cuda:0'), 'validation_loss_bbox': tensor(0.1455, device='cuda:0'), 'validation_loss_giou': tensor(0.4836, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.1986, device='cuda:0'), 'train_loss_ce': tensor(0.0596, device='cuda:0'), 'train_loss_bbox': tensor(0.0109, device='cuda:0'), 'train_loss_giou': tensor(0.0422, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.1143, device='cuda:0'), 'validation_loss_ce': tensor(0.4211, device='cuda:0'), 'validation_loss_bbox': tensor(0.1449, device='cuda:0'), 'validation_loss_giou': tensor(0.4845, device='cuda:0'), 'validation_cardinality_error': tensor(1.0404, device='cuda:0')}
{'training_loss': tensor(0.6671, device='cuda:0'), 'train_loss_ce': tensor(0.2185, device='cuda:0'), 'train_loss_bbox': tensor(0.0250, device='cuda:0'), 'train_loss_giou': tensor(0.1617, device='cuda:0'), 'train_cardinality_error': tensor(1.8000, device='cuda:0'), 'validation_loss': tensor(2.1075, device='cuda:0'), 'validation_loss_ce': tensor(0.4128, device='cuda:0'), 'validation_loss_bbox': tensor(0.1442, device='cuda:0'), 'validation_loss_giou': tensor(0.4867, device='cuda:0'), 'validation_cardinality_error': tensor(0.9091, device='cuda:0')}
{'training_loss': tensor(0.3881, device='cuda:0'), 'train_loss_ce': tensor(0.1792, device='cuda:0'), 'train_loss_bbox': tensor(0.0167, device='cuda:0'), 'train_loss_giou': tensor(0.0626, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.1295, device='cuda:0'), 'validation_loss_ce': tensor(0.4314, device='cuda:0'), 'validation_loss_bbox': tensor(0.1466, device='cuda:0'), 'validation_loss_giou': tensor(0.4827, device='cuda:0'), 'validation_cardinality_error': tensor(1.0202, device='cuda:0')}
{'training_loss': tensor(0.3057, device='cuda:0'), 'train_loss_ce': tensor(0.1485, device='cuda:0'), 'train_loss_bbox': tensor(0.0120, device='cuda:0'), 'train_loss_giou': tensor(0.0485, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1256, device='cuda:0'), 'validation_loss_ce': tensor(0.4292, device='cuda:0'), 'validation_loss_bbox': tensor(0.1464, device='cuda:0'), 'validation_loss_giou': tensor(0.4822, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2470, device='cuda:0'), 'train_loss_ce': tensor(0.1328, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0345, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1188, device='cuda:0'), 'validation_loss_ce': tensor(0.4316, device='cuda:0'), 'validation_loss_bbox': tensor(0.1453, device='cuda:0'), 'validation_loss_giou': tensor(0.4804, device='cuda:0'), 'validation_cardinality_error': tensor(1.0404, device='cuda:0')}
{'training_loss': tensor(0.2317, device='cuda:0'), 'train_loss_ce': tensor(0.1033, device='cuda:0'), 'train_loss_bbox': tensor(0.0076, device='cuda:0'), 'train_loss_giou': tensor(0.0452, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.1028, device='cuda:0'), 'validation_loss_ce': tensor(0.4296, device='cuda:0'), 'validation_loss_bbox': tensor(0.1430, device='cuda:0'), 'validation_loss_giou': tensor(0.4790, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.3394, device='cuda:0'), 'train_loss_ce': tensor(0.1679, device='cuda:0'), 'train_loss_bbox': tensor(0.0102, device='cuda:0'), 'train_loss_giou': tensor(0.0602, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.1148, device='cuda:0'), 'validation_loss_ce': tensor(0.4238, device='cuda:0'), 'validation_loss_bbox': tensor(0.1443, device='cuda:0'), 'validation_loss_giou': tensor(0.4847, device='cuda:0'), 'validation_cardinality_error': tensor(1.0101, device='cuda:0')}
{'training_loss': tensor(0.4014, device='cuda:0'), 'train_loss_ce': tensor(0.1963, device='cuda:0'), 'train_loss_bbox': tensor(0.0115, device='cuda:0'), 'train_loss_giou': tensor(0.0737, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1236, device='cuda:0'), 'validation_loss_ce': tensor(0.4281, device='cuda:0'), 'validation_loss_bbox': tensor(0.1467, device='cuda:0'), 'validation_loss_giou': tensor(0.4811, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.2232, device='cuda:0'), 'train_loss_ce': tensor(0.0904, device='cuda:0'), 'train_loss_bbox': tensor(0.0077, device='cuda:0'), 'train_loss_giou': tensor(0.0471, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1255, device='cuda:0'), 'validation_loss_ce': tensor(0.4306, device='cuda:0'), 'validation_loss_bbox': tensor(0.1450, device='cuda:0'), 'validation_loss_giou': tensor(0.4849, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.3085, device='cuda:0'), 'train_loss_ce': tensor(0.2203, device='cuda:0'), 'train_loss_bbox': tensor(0.0081, device='cuda:0'), 'train_loss_giou': tensor(0.0239, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1060, device='cuda:0'), 'validation_loss_ce': tensor(0.4173, device='cuda:0'), 'validation_loss_bbox': tensor(0.1436, device='cuda:0'), 'validation_loss_giou': tensor(0.4855, device='cuda:0'), 'validation_cardinality_error': tensor(1.0909, device='cuda:0')}
{'training_loss': tensor(0.2940, device='cuda:0'), 'train_loss_ce': tensor(0.1766, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0405, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(2.1261, device='cuda:0'), 'validation_loss_ce': tensor(0.4240, device='cuda:0'), 'validation_loss_bbox': tensor(0.1454, device='cuda:0'), 'validation_loss_giou': tensor(0.4875, device='cuda:0'), 'validation_cardinality_error': tensor(1.0202, device='cuda:0')}
{'training_loss': tensor(0.2520, device='cuda:0'), 'train_loss_ce': tensor(0.1232, device='cuda:0'), 'train_loss_bbox': tensor(0.0085, device='cuda:0'), 'train_loss_giou': tensor(0.0430, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.1166, device='cuda:0'), 'validation_loss_ce': tensor(0.4238, device='cuda:0'), 'validation_loss_bbox': tensor(0.1448, device='cuda:0'), 'validation_loss_giou': tensor(0.4845, device='cuda:0'), 'validation_cardinality_error': tensor(1.0808, device='cuda:0')}
{'training_loss': tensor(0.3748, device='cuda:0'), 'train_loss_ce': tensor(0.1821, device='cuda:0'), 'train_loss_bbox': tensor(0.0141, device='cuda:0'), 'train_loss_giou': tensor(0.0611, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1238, device='cuda:0'), 'validation_loss_ce': tensor(0.4266, device='cuda:0'), 'validation_loss_bbox': tensor(0.1448, device='cuda:0'), 'validation_loss_giou': tensor(0.4867, device='cuda:0'), 'validation_cardinality_error': tensor(1.0101, device='cuda:0')}
{'training_loss': tensor(0.2635, device='cuda:0'), 'train_loss_ce': tensor(0.1630, device='cuda:0'), 'train_loss_bbox': tensor(0.0069, device='cuda:0'), 'train_loss_giou': tensor(0.0330, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.1293, device='cuda:0'), 'validation_loss_ce': tensor(0.4360, device='cuda:0'), 'validation_loss_bbox': tensor(0.1470, device='cuda:0'), 'validation_loss_giou': tensor(0.4790, device='cuda:0'), 'validation_cardinality_error': tensor(1.0202, device='cuda:0')}
{'training_loss': tensor(0.3056, device='cuda:0'), 'train_loss_ce': tensor(0.2000, device='cuda:0'), 'train_loss_bbox': tensor(0.0097, device='cuda:0'), 'train_loss_giou': tensor(0.0287, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1183, device='cuda:0'), 'validation_loss_ce': tensor(0.4345, device='cuda:0'), 'validation_loss_bbox': tensor(0.1434, device='cuda:0'), 'validation_loss_giou': tensor(0.4834, device='cuda:0'), 'validation_cardinality_error': tensor(0.9798, device='cuda:0')}
{'training_loss': tensor(0.2737, device='cuda:0'), 'train_loss_ce': tensor(0.0911, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0731, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.1250, device='cuda:0'), 'validation_loss_ce': tensor(0.4268, device='cuda:0'), 'validation_loss_bbox': tensor(0.1461, device='cuda:0'), 'validation_loss_giou': tensor(0.4837, device='cuda:0'), 'validation_cardinality_error': tensor(1.0808, device='cuda:0')}
{'training_loss': tensor(0.2074, device='cuda:0'), 'train_loss_ce': tensor(0.0969, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.0346, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.1127, device='cuda:0'), 'validation_loss_ce': tensor(0.4276, device='cuda:0'), 'validation_loss_bbox': tensor(0.1431, device='cuda:0'), 'validation_loss_giou': tensor(0.4849, device='cuda:0'), 'validation_cardinality_error': tensor(1.0404, device='cuda:0')}
{'training_loss': tensor(0.2361, device='cuda:0'), 'train_loss_ce': tensor(0.0970, device='cuda:0'), 'train_loss_bbox': tensor(0.0100, device='cuda:0'), 'train_loss_giou': tensor(0.0445, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.1475, device='cuda:0'), 'validation_loss_ce': tensor(0.4447, device='cuda:0'), 'validation_loss_bbox': tensor(0.1469, device='cuda:0'), 'validation_loss_giou': tensor(0.4842, device='cuda:0'), 'validation_cardinality_error': tensor(1.0101, device='cuda:0')}
{'training_loss': tensor(0.2085, device='cuda:0'), 'train_loss_ce': tensor(0.0994, device='cuda:0'), 'train_loss_bbox': tensor(0.0067, device='cuda:0'), 'train_loss_giou': tensor(0.0379, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.1245, device='cuda:0'), 'validation_loss_ce': tensor(0.4303, device='cuda:0'), 'validation_loss_bbox': tensor(0.1440, device='cuda:0'), 'validation_loss_giou': tensor(0.4872, device='cuda:0'), 'validation_cardinality_error': tensor(1.0505, device='cuda:0')}
{'training_loss': tensor(0.2039, device='cuda:0'), 'train_loss_ce': tensor(0.1218, device='cuda:0'), 'train_loss_bbox': tensor(0.0046, device='cuda:0'), 'train_loss_giou': tensor(0.0295, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.1412, device='cuda:0'), 'validation_loss_ce': tensor(0.4357, device='cuda:0'), 'validation_loss_bbox': tensor(0.1476, device='cuda:0'), 'validation_loss_giou': tensor(0.4836, device='cuda:0'), 'validation_cardinality_error': tensor(1.1313, device='cuda:0')}
{'training_loss': tensor(0.2270, device='cuda:0'), 'train_loss_ce': tensor(0.1059, device='cuda:0'), 'train_loss_bbox': tensor(0.0120, device='cuda:0'), 'train_loss_giou': tensor(0.0305, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.1374, device='cuda:0'), 'validation_loss_ce': tensor(0.4397, device='cuda:0'), 'validation_loss_bbox': tensor(0.1467, device='cuda:0'), 'validation_loss_giou': tensor(0.4821, device='cuda:0'), 'validation_cardinality_error': tensor(1.0202, device='cuda:0')}
{'training_loss': tensor(0.4085, device='cuda:0'), 'train_loss_ce': tensor(0.1369, device='cuda:0'), 'train_loss_bbox': tensor(0.0259, device='cuda:0'), 'train_loss_giou': tensor(0.0711, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.1333, device='cuda:0'), 'validation_loss_ce': tensor(0.4437, device='cuda:0'), 'validation_loss_bbox': tensor(0.1451, device='cuda:0'), 'validation_loss_giou': tensor(0.4821, device='cuda:0'), 'validation_cardinality_error': tensor(1.0505, device='cuda:0')}
{'training_loss': tensor(0.2782, device='cuda:0'), 'train_loss_ce': tensor(0.1562, device='cuda:0'), 'train_loss_bbox': tensor(0.0093, device='cuda:0'), 'train_loss_giou': tensor(0.0378, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1221, device='cuda:0'), 'validation_loss_ce': tensor(0.4452, device='cuda:0'), 'validation_loss_bbox': tensor(0.1447, device='cuda:0'), 'validation_loss_giou': tensor(0.4767, device='cuda:0'), 'validation_cardinality_error': tensor(1.1313, device='cuda:0')}
{'training_loss': tensor(0.1947, device='cuda:0'), 'train_loss_ce': tensor(0.1122, device='cuda:0'), 'train_loss_bbox': tensor(0.0068, device='cuda:0'), 'train_loss_giou': tensor(0.0242, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.1388, device='cuda:0'), 'validation_loss_ce': tensor(0.4356, device='cuda:0'), 'validation_loss_bbox': tensor(0.1450, device='cuda:0'), 'validation_loss_giou': tensor(0.4890, device='cuda:0'), 'validation_cardinality_error': tensor(1.0808, device='cuda:0')}
{'training_loss': tensor(0.2820, device='cuda:0'), 'train_loss_ce': tensor(0.1343, device='cuda:0'), 'train_loss_bbox': tensor(0.0121, device='cuda:0'), 'train_loss_giou': tensor(0.0435, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.1270, device='cuda:0'), 'validation_loss_ce': tensor(0.4402, device='cuda:0'), 'validation_loss_bbox': tensor(0.1440, device='cuda:0'), 'validation_loss_giou': tensor(0.4834, device='cuda:0'), 'validation_cardinality_error': tensor(0.9899, device='cuda:0')}
{'training_loss': tensor(0.2856, device='cuda:0'), 'train_loss_ce': tensor(0.1446, device='cuda:0'), 'train_loss_bbox': tensor(0.0098, device='cuda:0'), 'train_loss_giou': tensor(0.0458, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1437, device='cuda:0'), 'validation_loss_ce': tensor(0.4477, device='cuda:0'), 'validation_loss_bbox': tensor(0.1452, device='cuda:0'), 'validation_loss_giou': tensor(0.4849, device='cuda:0'), 'validation_cardinality_error': tensor(1.0606, device='cuda:0')}
{'training_loss': tensor(0.2516, device='cuda:0'), 'train_loss_ce': tensor(0.1257, device='cuda:0'), 'train_loss_bbox': tensor(0.0081, device='cuda:0'), 'train_loss_giou': tensor(0.0428, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1469, device='cuda:0'), 'validation_loss_ce': tensor(0.4517, device='cuda:0'), 'validation_loss_bbox': tensor(0.1469, device='cuda:0'), 'validation_loss_giou': tensor(0.4802, device='cuda:0'), 'validation_cardinality_error': tensor(1.0707, device='cuda:0')}
{'training_loss': tensor(0.2447, device='cuda:0'), 'train_loss_ce': tensor(0.1399, device='cuda:0'), 'train_loss_bbox': tensor(0.0059, device='cuda:0'), 'train_loss_giou': tensor(0.0377, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1470, device='cuda:0'), 'validation_loss_ce': tensor(0.4519, device='cuda:0'), 'validation_loss_bbox': tensor(0.1454, device='cuda:0'), 'validation_loss_giou': tensor(0.4840, device='cuda:0'), 'validation_cardinality_error': tensor(1.0505, device='cuda:0')}
{'training_loss': tensor(0.1745, device='cuda:0'), 'train_loss_ce': tensor(0.1089, device='cuda:0'), 'train_loss_bbox': tensor(0.0052, device='cuda:0'), 'train_loss_giou': tensor(0.0198, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.1514, device='cuda:0'), 'validation_loss_ce': tensor(0.4555, device='cuda:0'), 'validation_loss_bbox': tensor(0.1468, device='cuda:0'), 'validation_loss_giou': tensor(0.4810, device='cuda:0'), 'validation_cardinality_error': tensor(1.0707, device='cuda:0')}
{'training_loss': tensor(0.2742, device='cuda:0'), 'train_loss_ce': tensor(0.1158, device='cuda:0'), 'train_loss_bbox': tensor(0.0097, device='cuda:0'), 'train_loss_giou': tensor(0.0550, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.1366, device='cuda:0'), 'validation_loss_ce': tensor(0.4514, device='cuda:0'), 'validation_loss_bbox': tensor(0.1454, device='cuda:0'), 'validation_loss_giou': tensor(0.4791, device='cuda:0'), 'validation_cardinality_error': tensor(1.0505, device='cuda:0')}
{'training_loss': tensor(0.2574, device='cuda:0'), 'train_loss_ce': tensor(0.1511, device='cuda:0'), 'train_loss_bbox': tensor(0.0079, device='cuda:0'), 'train_loss_giou': tensor(0.0335, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1510, device='cuda:0'), 'validation_loss_ce': tensor(0.4588, device='cuda:0'), 'validation_loss_bbox': tensor(0.1466, device='cuda:0'), 'validation_loss_giou': tensor(0.4797, device='cuda:0'), 'validation_cardinality_error': tensor(1.0808, device='cuda:0')}
{'training_loss': tensor(0.4136, device='cuda:0'), 'train_loss_ce': tensor(0.1479, device='cuda:0'), 'train_loss_bbox': tensor(0.0213, device='cuda:0'), 'train_loss_giou': tensor(0.0795, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1418, device='cuda:0'), 'validation_loss_ce': tensor(0.4511, device='cuda:0'), 'validation_loss_bbox': tensor(0.1442, device='cuda:0'), 'validation_loss_giou': tensor(0.4848, device='cuda:0'), 'validation_cardinality_error': tensor(1.0808, device='cuda:0')}
{'training_loss': tensor(0.2560, device='cuda:0'), 'train_loss_ce': tensor(0.1249, device='cuda:0'), 'train_loss_bbox': tensor(0.0092, device='cuda:0'), 'train_loss_giou': tensor(0.0427, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1511, device='cuda:0'), 'validation_loss_ce': tensor(0.4547, device='cuda:0'), 'validation_loss_bbox': tensor(0.1456, device='cuda:0'), 'validation_loss_giou': tensor(0.4843, device='cuda:0'), 'validation_cardinality_error': tensor(1.0808, device='cuda:0')}
{'training_loss': tensor(0.1983, device='cuda:0'), 'train_loss_ce': tensor(0.0758, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0430, device='cuda:0'), 'train_cardinality_error': tensor(0.2000, device='cuda:0'), 'validation_loss': tensor(2.1532, device='cuda:0'), 'validation_loss_ce': tensor(0.4590, device='cuda:0'), 'validation_loss_bbox': tensor(0.1458, device='cuda:0'), 'validation_loss_giou': tensor(0.4826, device='cuda:0'), 'validation_cardinality_error': tensor(1.1414, device='cuda:0')}
{'training_loss': tensor(0.2658, device='cuda:0'), 'train_loss_ce': tensor(0.1518, device='cuda:0'), 'train_loss_bbox': tensor(0.0075, device='cuda:0'), 'train_loss_giou': tensor(0.0384, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1472, device='cuda:0'), 'validation_loss_ce': tensor(0.4473, device='cuda:0'), 'validation_loss_bbox': tensor(0.1443, device='cuda:0'), 'validation_loss_giou': tensor(0.4893, device='cuda:0'), 'validation_cardinality_error': tensor(1.1212, device='cuda:0')}
{'training_loss': tensor(0.2319, device='cuda:0'), 'train_loss_ce': tensor(0.0951, device='cuda:0'), 'train_loss_bbox': tensor(0.0104, device='cuda:0'), 'train_loss_giou': tensor(0.0425, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1484, device='cuda:0'), 'validation_loss_ce': tensor(0.4603, device='cuda:0'), 'validation_loss_bbox': tensor(0.1453, device='cuda:0'), 'validation_loss_giou': tensor(0.4808, device='cuda:0'), 'validation_cardinality_error': tensor(1.1616, device='cuda:0')}
{'training_loss': tensor(0.2496, device='cuda:0'), 'train_loss_ce': tensor(0.1240, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.0421, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.1493, device='cuda:0'), 'validation_loss_ce': tensor(0.4578, device='cuda:0'), 'validation_loss_bbox': tensor(0.1445, device='cuda:0'), 'validation_loss_giou': tensor(0.4844, device='cuda:0'), 'validation_cardinality_error': tensor(1.1010, device='cuda:0')}
{'training_loss': tensor(0.1906, device='cuda:0'), 'train_loss_ce': tensor(0.1205, device='cuda:0'), 'train_loss_bbox': tensor(0.0070, device='cuda:0'), 'train_loss_giou': tensor(0.0176, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.1512, device='cuda:0'), 'validation_loss_ce': tensor(0.4522, device='cuda:0'), 'validation_loss_bbox': tensor(0.1445, device='cuda:0'), 'validation_loss_giou': tensor(0.4882, device='cuda:0'), 'validation_cardinality_error': tensor(1.0909, device='cuda:0')}
{'training_loss': tensor(0.3509, device='cuda:0'), 'train_loss_ce': tensor(0.1349, device='cuda:0'), 'train_loss_bbox': tensor(0.0092, device='cuda:0'), 'train_loss_giou': tensor(0.0850, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1707, device='cuda:0'), 'validation_loss_ce': tensor(0.4711, device='cuda:0'), 'validation_loss_bbox': tensor(0.1470, device='cuda:0'), 'validation_loss_giou': tensor(0.4822, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.2503, device='cuda:0'), 'train_loss_ce': tensor(0.1000, device='cuda:0'), 'train_loss_bbox': tensor(0.0113, device='cuda:0'), 'train_loss_giou': tensor(0.0469, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.1487, device='cuda:0'), 'validation_loss_ce': tensor(0.4481, device='cuda:0'), 'validation_loss_bbox': tensor(0.1435, device='cuda:0'), 'validation_loss_giou': tensor(0.4915, device='cuda:0'), 'validation_cardinality_error': tensor(1.0808, device='cuda:0')}
{'training_loss': tensor(0.1871, device='cuda:0'), 'train_loss_ce': tensor(0.0626, device='cuda:0'), 'train_loss_bbox': tensor(0.0085, device='cuda:0'), 'train_loss_giou': tensor(0.0410, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.1629, device='cuda:0'), 'validation_loss_ce': tensor(0.4614, device='cuda:0'), 'validation_loss_bbox': tensor(0.1469, device='cuda:0'), 'validation_loss_giou': tensor(0.4835, device='cuda:0'), 'validation_cardinality_error': tensor(1.0707, device='cuda:0')}
{'training_loss': tensor(0.1817, device='cuda:0'), 'train_loss_ce': tensor(0.1094, device='cuda:0'), 'train_loss_bbox': tensor(0.0066, device='cuda:0'), 'train_loss_giou': tensor(0.0196, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.1546, device='cuda:0'), 'validation_loss_ce': tensor(0.4605, device='cuda:0'), 'validation_loss_bbox': tensor(0.1464, device='cuda:0'), 'validation_loss_giou': tensor(0.4810, device='cuda:0'), 'validation_cardinality_error': tensor(1.1818, device='cuda:0')}
{'training_loss': tensor(0.2875, device='cuda:0'), 'train_loss_ce': tensor(0.1424, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0502, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.1643, device='cuda:0'), 'validation_loss_ce': tensor(0.4611, device='cuda:0'), 'validation_loss_bbox': tensor(0.1472, device='cuda:0'), 'validation_loss_giou': tensor(0.4836, device='cuda:0'), 'validation_cardinality_error': tensor(1.1818, device='cuda:0')}
{'training_loss': tensor(0.3635, device='cuda:0'), 'train_loss_ce': tensor(0.1125, device='cuda:0'), 'train_loss_bbox': tensor(0.0132, device='cuda:0'), 'train_loss_giou': tensor(0.0926, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1656, device='cuda:0'), 'validation_loss_ce': tensor(0.4639, device='cuda:0'), 'validation_loss_bbox': tensor(0.1458, device='cuda:0'), 'validation_loss_giou': tensor(0.4864, device='cuda:0'), 'validation_cardinality_error': tensor(1.1515, device='cuda:0')}
{'training_loss': tensor(0.2153, device='cuda:0'), 'train_loss_ce': tensor(0.0786, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0502, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1708, device='cuda:0'), 'validation_loss_ce': tensor(0.4656, device='cuda:0'), 'validation_loss_bbox': tensor(0.1467, device='cuda:0'), 'validation_loss_giou': tensor(0.4858, device='cuda:0'), 'validation_cardinality_error': tensor(1.1414, device='cuda:0')}
{'training_loss': tensor(0.2195, device='cuda:0'), 'train_loss_ce': tensor(0.0893, device='cuda:0'), 'train_loss_bbox': tensor(0.0080, device='cuda:0'), 'train_loss_giou': tensor(0.0451, device='cuda:0'), 'train_cardinality_error': tensor(1.8000, device='cuda:0'), 'validation_loss': tensor(2.1664, device='cuda:0'), 'validation_loss_ce': tensor(0.4701, device='cuda:0'), 'validation_loss_bbox': tensor(0.1454, device='cuda:0'), 'validation_loss_giou': tensor(0.4846, device='cuda:0'), 'validation_cardinality_error': tensor(1.0808, device='cuda:0')}
{'training_loss': tensor(0.1894, device='cuda:0'), 'train_loss_ce': tensor(0.0823, device='cuda:0'), 'train_loss_bbox': tensor(0.0079, device='cuda:0'), 'train_loss_giou': tensor(0.0339, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1654, device='cuda:0'), 'validation_loss_ce': tensor(0.4723, device='cuda:0'), 'validation_loss_bbox': tensor(0.1462, device='cuda:0'), 'validation_loss_giou': tensor(0.4811, device='cuda:0'), 'validation_cardinality_error': tensor(1.0606, device='cuda:0')}
{'training_loss': tensor(0.3286, device='cuda:0'), 'train_loss_ce': tensor(0.1317, device='cuda:0'), 'train_loss_bbox': tensor(0.0107, device='cuda:0'), 'train_loss_giou': tensor(0.0717, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.1812, device='cuda:0'), 'validation_loss_ce': tensor(0.4772, device='cuda:0'), 'validation_loss_bbox': tensor(0.1476, device='cuda:0'), 'validation_loss_giou': tensor(0.4830, device='cuda:0'), 'validation_cardinality_error': tensor(1.0606, device='cuda:0')}
{'training_loss': tensor(0.1817, device='cuda:0'), 'train_loss_ce': tensor(0.0828, device='cuda:0'), 'train_loss_bbox': tensor(0.0080, device='cuda:0'), 'train_loss_giou': tensor(0.0294, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1745, device='cuda:0'), 'validation_loss_ce': tensor(0.4750, device='cuda:0'), 'validation_loss_bbox': tensor(0.1467, device='cuda:0'), 'validation_loss_giou': tensor(0.4831, device='cuda:0'), 'validation_cardinality_error': tensor(1.1010, device='cuda:0')}
{'training_loss': tensor(0.3083, device='cuda:0'), 'train_loss_ce': tensor(0.1908, device='cuda:0'), 'train_loss_bbox': tensor(0.0093, device='cuda:0'), 'train_loss_giou': tensor(0.0356, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1796, device='cuda:0'), 'validation_loss_ce': tensor(0.4741, device='cuda:0'), 'validation_loss_bbox': tensor(0.1463, device='cuda:0'), 'validation_loss_giou': tensor(0.4870, device='cuda:0'), 'validation_cardinality_error': tensor(1.0606, device='cuda:0')}
{'training_loss': tensor(0.2276, device='cuda:0'), 'train_loss_ce': tensor(0.1011, device='cuda:0'), 'train_loss_bbox': tensor(0.0105, device='cuda:0'), 'train_loss_giou': tensor(0.0369, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1805, device='cuda:0'), 'validation_loss_ce': tensor(0.4705, device='cuda:0'), 'validation_loss_bbox': tensor(0.1456, device='cuda:0'), 'validation_loss_giou': tensor(0.4911, device='cuda:0'), 'validation_cardinality_error': tensor(1.1818, device='cuda:0')}
{'training_loss': tensor(0.1932, device='cuda:0'), 'train_loss_ce': tensor(0.1009, device='cuda:0'), 'train_loss_bbox': tensor(0.0068, device='cuda:0'), 'train_loss_giou': tensor(0.0292, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.1712, device='cuda:0'), 'validation_loss_ce': tensor(0.4756, device='cuda:0'), 'validation_loss_bbox': tensor(0.1448, device='cuda:0'), 'validation_loss_giou': tensor(0.4859, device='cuda:0'), 'validation_cardinality_error': tensor(1.1616, device='cuda:0')}
{'training_loss': tensor(0.5669, device='cuda:0'), 'train_loss_ce': tensor(0.1689, device='cuda:0'), 'train_loss_bbox': tensor(0.0165, device='cuda:0'), 'train_loss_giou': tensor(0.1577, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2115, device='cuda:0'), 'validation_loss_ce': tensor(0.4918, device='cuda:0'), 'validation_loss_bbox': tensor(0.1488, device='cuda:0'), 'validation_loss_giou': tensor(0.4879, device='cuda:0'), 'validation_cardinality_error': tensor(1.0303, device='cuda:0')}
{'training_loss': tensor(0.3650, device='cuda:0'), 'train_loss_ce': tensor(0.0755, device='cuda:0'), 'train_loss_bbox': tensor(0.0118, device='cuda:0'), 'train_loss_giou': tensor(0.1153, device='cuda:0'), 'train_cardinality_error': tensor(1.2000, device='cuda:0'), 'validation_loss': tensor(2.1864, device='cuda:0'), 'validation_loss_ce': tensor(0.4784, device='cuda:0'), 'validation_loss_bbox': tensor(0.1473, device='cuda:0'), 'validation_loss_giou': tensor(0.4857, device='cuda:0'), 'validation_cardinality_error': tensor(1.1010, device='cuda:0')}
{'training_loss': tensor(0.1495, device='cuda:0'), 'train_loss_ce': tensor(0.0437, device='cuda:0'), 'train_loss_bbox': tensor(0.0076, device='cuda:0'), 'train_loss_giou': tensor(0.0338, device='cuda:0'), 'train_cardinality_error': tensor(0.4000, device='cuda:0'), 'validation_loss': tensor(2.2058, device='cuda:0'), 'validation_loss_ce': tensor(0.4909, device='cuda:0'), 'validation_loss_bbox': tensor(0.1483, device='cuda:0'), 'validation_loss_giou': tensor(0.4868, device='cuda:0'), 'validation_cardinality_error': tensor(1.1010, device='cuda:0')}
{'training_loss': tensor(0.3046, device='cuda:0'), 'train_loss_ce': tensor(0.1153, device='cuda:0'), 'train_loss_bbox': tensor(0.0126, device='cuda:0'), 'train_loss_giou': tensor(0.0632, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.1851, device='cuda:0'), 'validation_loss_ce': tensor(0.4859, device='cuda:0'), 'validation_loss_bbox': tensor(0.1462, device='cuda:0'), 'validation_loss_giou': tensor(0.4842, device='cuda:0'), 'validation_cardinality_error': tensor(1.1212, device='cuda:0')}
{'training_loss': tensor(0.2372, device='cuda:0'), 'train_loss_ce': tensor(0.1029, device='cuda:0'), 'train_loss_bbox': tensor(0.0122, device='cuda:0'), 'train_loss_giou': tensor(0.0366, device='cuda:0'), 'train_cardinality_error': tensor(0.6000, device='cuda:0'), 'validation_loss': tensor(2.1929, device='cuda:0'), 'validation_loss_ce': tensor(0.4953, device='cuda:0'), 'validation_loss_bbox': tensor(0.1481, device='cuda:0'), 'validation_loss_giou': tensor(0.4785, device='cuda:0'), 'validation_cardinality_error': tensor(1.0505, device='cuda:0')}
{'training_loss': tensor(0.1698, device='cuda:0'), 'train_loss_ce': tensor(0.0754, device='cuda:0'), 'train_loss_bbox': tensor(0.0077, device='cuda:0'), 'train_loss_giou': tensor(0.0280, device='cuda:0'), 'train_cardinality_error': tensor(1.6000, device='cuda:0'), 'validation_loss': tensor(2.1856, device='cuda:0'), 'validation_loss_ce': tensor(0.4731, device='cuda:0'), 'validation_loss_bbox': tensor(0.1450, device='cuda:0'), 'validation_loss_giou': tensor(0.4938, device='cuda:0'), 'validation_cardinality_error': tensor(1.1313, device='cuda:0')}
{'training_loss': tensor(0.3025, device='cuda:0'), 'train_loss_ce': tensor(0.1464, device='cuda:0'), 'train_loss_bbox': tensor(0.0105, device='cuda:0'), 'train_loss_giou': tensor(0.0517, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2047, device='cuda:0'), 'validation_loss_ce': tensor(0.4956, device='cuda:0'), 'validation_loss_bbox': tensor(0.1479, device='cuda:0'), 'validation_loss_giou': tensor(0.4847, device='cuda:0'), 'validation_cardinality_error': tensor(1.1313, device='cuda:0')}
{'training_loss': tensor(0.2424, device='cuda:0'), 'train_loss_ce': tensor(0.1020, device='cuda:0'), 'train_loss_bbox': tensor(0.0097, device='cuda:0'), 'train_loss_giou': tensor(0.0459, device='cuda:0'), 'train_cardinality_error': tensor(0.8000, device='cuda:0'), 'validation_loss': tensor(2.1770, device='cuda:0'), 'validation_loss_ce': tensor(0.4897, device='cuda:0'), 'validation_loss_bbox': tensor(0.1448, device='cuda:0'), 'validation_loss_giou': tensor(0.4816, device='cuda:0'), 'validation_cardinality_error': tensor(1.1919, device='cuda:0')}
{'training_loss': tensor(0.1836, device='cuda:0'), 'train_loss_ce': tensor(0.0903, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0285, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2057, device='cuda:0'), 'validation_loss_ce': tensor(0.4968, device='cuda:0'), 'validation_loss_bbox': tensor(0.1479, device='cuda:0'), 'validation_loss_giou': tensor(0.4847, device='cuda:0'), 'validation_cardinality_error': tensor(1.1010, device='cuda:0')}
```
## Examples
{'size': tensor([512, 512]), 'image_id': tensor([1]), 'class_labels': tensor([4]), 'boxes': tensor([[0.2622, 0.5729, 0.0847, 0.0773]]), 'area': tensor([1717.9431]), 'iscrowd': tensor([0]), 'orig_size': tensor([1024, 1024])}

|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
srv-sh007/table_structure_recognition
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4"
] |
MedicalVision/yolos_tiny_600ep_overfitting
|
## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001
```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.826
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.867
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.864
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.716
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.844
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.841
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.844
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.844
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.750
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.854
```
## Config
- dataset: NIH
- original model: hustvl/yolos-tiny
- lr: 1e-05
- dropout_rate: 0.1
- weight_decay: 0.001
- max_epochs: 600
- train samples: 354
## Logging
### Training process
```
{'validation_loss': tensor(7.1177, device='cuda:0'), 'validation_loss_ce': tensor(2.3438, device='cuda:0'), 'validation_loss_bbox': tensor(0.5517, device='cuda:0'), 'validation_loss_giou': tensor(1.0076, device='cuda:0'), 'validation_cardinality_error': tensor(98.9375, device='cuda:0')}
{'training_loss': tensor(4.8380, device='cuda:0'), 'train_loss_ce': tensor(1.9076, device='cuda:0'), 'train_loss_bbox': tensor(0.2720, device='cuda:0'), 'train_loss_giou': tensor(0.7852, device='cuda:0'), 'train_cardinality_error': tensor(40.5000, device='cuda:0'), 'validation_loss': tensor(4.6572, device='cuda:0'), 'validation_loss_ce': tensor(1.9323, device='cuda:0'), 'validation_loss_bbox': tensor(0.2644, device='cuda:0'), 'validation_loss_giou': tensor(0.7016, device='cuda:0'), 'validation_cardinality_error': tensor(64.3898, device='cuda:0')}
{'training_loss': tensor(4.6511, device='cuda:0'), 'train_loss_ce': tensor(1.7157, device='cuda:0'), 'train_loss_bbox': tensor(0.2469, device='cuda:0'), 'train_loss_giou': tensor(0.8504, device='cuda:0'), 'train_cardinality_error': tensor(18.5000, device='cuda:0'), 'validation_loss': tensor(3.6326, device='cuda:0'), 'validation_loss_ce': tensor(1.5263, device='cuda:0'), 'validation_loss_bbox': tensor(0.1872, device='cuda:0'), 'validation_loss_giou': tensor(0.5851, device='cuda:0'), 'validation_cardinality_error': tensor(5.3277, device='cuda:0')}
{'training_loss': tensor(4.4295, device='cuda:0'), 'train_loss_ce': tensor(1.1966, device='cuda:0'), 'train_loss_bbox': tensor(0.2759, device='cuda:0'), 'train_loss_giou': tensor(0.9268, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.9645, device='cuda:0'), 'validation_loss_ce': tensor(1.0482, device='cuda:0'), 'validation_loss_bbox': tensor(0.1677, device='cuda:0'), 'validation_loss_giou': tensor(0.5388, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(3.3436, device='cuda:0'), 'train_loss_ce': tensor(0.7888, device='cuda:0'), 'train_loss_bbox': tensor(0.2518, device='cuda:0'), 'train_loss_giou': tensor(0.6480, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5727, device='cuda:0'), 'validation_loss_ce': tensor(0.7218, device='cuda:0'), 'validation_loss_bbox': tensor(0.1607, device='cuda:0'), 'validation_loss_giou': tensor(0.5237, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6320, device='cuda:0'), 'train_loss_ce': tensor(0.5612, device='cuda:0'), 'train_loss_bbox': tensor(0.0874, device='cuda:0'), 'train_loss_giou': tensor(0.3170, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3218, device='cuda:0'), 'validation_loss_ce': tensor(0.5700, device='cuda:0'), 'validation_loss_bbox': tensor(0.1488, device='cuda:0'), 'validation_loss_giou': tensor(0.5038, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(3.9124, device='cuda:0'), 'train_loss_ce': tensor(0.5738, device='cuda:0'), 'train_loss_bbox': tensor(0.3125, device='cuda:0'), 'train_loss_giou': tensor(0.8880, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2307, device='cuda:0'), 'validation_loss_ce': tensor(0.5038, device='cuda:0'), 'validation_loss_bbox': tensor(0.1460, device='cuda:0'), 'validation_loss_giou': tensor(0.4984, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0382, device='cuda:0'), 'train_loss_ce': tensor(0.4818, device='cuda:0'), 'train_loss_bbox': tensor(0.0997, device='cuda:0'), 'train_loss_giou': tensor(0.5291, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1758, device='cuda:0'), 'validation_loss_ce': tensor(0.4835, device='cuda:0'), 'validation_loss_bbox': tensor(0.1422, device='cuda:0'), 'validation_loss_giou': tensor(0.4908, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5894, device='cuda:0'), 'train_loss_ce': tensor(0.4697, device='cuda:0'), 'train_loss_bbox': tensor(0.1711, device='cuda:0'), 'train_loss_giou': tensor(0.6320, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0783, device='cuda:0'), 'validation_loss_ce': tensor(0.4700, device='cuda:0'), 'validation_loss_bbox': tensor(0.1328, device='cuda:0'), 'validation_loss_giou': tensor(0.4722, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8957, device='cuda:0'), 'train_loss_ce': tensor(0.5671, device='cuda:0'), 'train_loss_bbox': tensor(0.1133, device='cuda:0'), 'train_loss_giou': tensor(0.3811, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0639, device='cuda:0'), 'validation_loss_ce': tensor(0.4624, device='cuda:0'), 'validation_loss_bbox': tensor(0.1324, device='cuda:0'), 'validation_loss_giou': tensor(0.4697, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8412, device='cuda:0'), 'train_loss_ce': tensor(0.1261, device='cuda:0'), 'train_loss_bbox': tensor(0.1016, device='cuda:0'), 'train_loss_giou': tensor(0.6035, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9558, device='cuda:0'), 'validation_loss_ce': tensor(0.4576, device='cuda:0'), 'validation_loss_bbox': tensor(0.1232, device='cuda:0'), 'validation_loss_giou': tensor(0.4411, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9589, device='cuda:0'), 'train_loss_ce': tensor(0.5098, device='cuda:0'), 'train_loss_bbox': tensor(0.0858, device='cuda:0'), 'train_loss_giou': tensor(0.5102, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.8716, device='cuda:0'), 'validation_loss_ce': tensor(0.4540, device='cuda:0'), 'validation_loss_bbox': tensor(0.1139, device='cuda:0'), 'validation_loss_giou': tensor(0.4240, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2189, device='cuda:0'), 'train_loss_ce': tensor(0.4700, device='cuda:0'), 'train_loss_bbox': tensor(0.1877, device='cuda:0'), 'train_loss_giou': tensor(0.4052, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.8716, device='cuda:0'), 'validation_loss_ce': tensor(0.4522, device='cuda:0'), 'validation_loss_bbox': tensor(0.1140, device='cuda:0'), 'validation_loss_giou': tensor(0.4247, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7014, device='cuda:0'), 'train_loss_ce': tensor(0.4475, device='cuda:0'), 'train_loss_bbox': tensor(0.0969, device='cuda:0'), 'train_loss_giou': tensor(0.3847, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.7870, device='cuda:0'), 'validation_loss_ce': tensor(0.4496, device='cuda:0'), 'validation_loss_bbox': tensor(0.1067, device='cuda:0'), 'validation_loss_giou': tensor(0.4019, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2170, device='cuda:0'), 'train_loss_ce': tensor(0.2963, device='cuda:0'), 'train_loss_bbox': tensor(0.0731, device='cuda:0'), 'train_loss_giou': tensor(0.2775, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.8507, device='cuda:0'), 'validation_loss_ce': tensor(0.4477, device='cuda:0'), 'validation_loss_bbox': tensor(0.1110, device='cuda:0'), 'validation_loss_giou': tensor(0.4241, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7923, device='cuda:0'), 'train_loss_ce': tensor(0.4527, device='cuda:0'), 'train_loss_bbox': tensor(0.1583, device='cuda:0'), 'train_loss_giou': tensor(0.2739, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.7535, device='cuda:0'), 'validation_loss_ce': tensor(0.4446, device='cuda:0'), 'validation_loss_bbox': tensor(0.1024, device='cuda:0'), 'validation_loss_giou': tensor(0.3985, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3273, device='cuda:0'), 'train_loss_ce': tensor(0.5164, device='cuda:0'), 'train_loss_bbox': tensor(0.0442, device='cuda:0'), 'train_loss_giou': tensor(0.2950, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.6767, device='cuda:0'), 'validation_loss_ce': tensor(0.4417, device='cuda:0'), 'validation_loss_bbox': tensor(0.0969, device='cuda:0'), 'validation_loss_giou': tensor(0.3751, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1155, device='cuda:0'), 'train_loss_ce': tensor(0.5312, device='cuda:0'), 'train_loss_bbox': tensor(0.0315, device='cuda:0'), 'train_loss_giou': tensor(0.2134, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.6425, device='cuda:0'), 'validation_loss_ce': tensor(0.4394, device='cuda:0'), 'validation_loss_bbox': tensor(0.0941, device='cuda:0'), 'validation_loss_giou': tensor(0.3663, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9443, device='cuda:0'), 'train_loss_ce': tensor(0.4223, device='cuda:0'), 'train_loss_bbox': tensor(0.0613, device='cuda:0'), 'train_loss_giou': tensor(0.1077, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.6679, device='cuda:0'), 'validation_loss_ce': tensor(0.4375, device='cuda:0'), 'validation_loss_bbox': tensor(0.0952, device='cuda:0'), 'validation_loss_giou': tensor(0.3773, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4228, device='cuda:0'), 'train_loss_ce': tensor(0.2843, device='cuda:0'), 'train_loss_bbox': tensor(0.0596, device='cuda:0'), 'train_loss_giou': tensor(0.4202, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.6337, device='cuda:0'), 'validation_loss_ce': tensor(0.4367, device='cuda:0'), 'validation_loss_bbox': tensor(0.0925, device='cuda:0'), 'validation_loss_giou': tensor(0.3672, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0470, device='cuda:0'), 'train_loss_ce': tensor(0.5222, device='cuda:0'), 'train_loss_bbox': tensor(0.1011, device='cuda:0'), 'train_loss_giou': tensor(0.5096, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.6163, device='cuda:0'), 'validation_loss_ce': tensor(0.4339, device='cuda:0'), 'validation_loss_bbox': tensor(0.0928, device='cuda:0'), 'validation_loss_giou': tensor(0.3592, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2074, device='cuda:0'), 'train_loss_ce': tensor(0.4067, device='cuda:0'), 'train_loss_bbox': tensor(0.1463, device='cuda:0'), 'train_loss_giou': tensor(0.5346, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.5199, device='cuda:0'), 'validation_loss_ce': tensor(0.4325, device='cuda:0'), 'validation_loss_bbox': tensor(0.0821, device='cuda:0'), 'validation_loss_giou': tensor(0.3383, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1313, device='cuda:0'), 'train_loss_ce': tensor(0.4360, device='cuda:0'), 'train_loss_bbox': tensor(0.1024, device='cuda:0'), 'train_loss_giou': tensor(0.5916, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.4654, device='cuda:0'), 'validation_loss_ce': tensor(0.4312, device='cuda:0'), 'validation_loss_bbox': tensor(0.0779, device='cuda:0'), 'validation_loss_giou': tensor(0.3224, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5789, device='cuda:0'), 'train_loss_ce': tensor(0.4652, device='cuda:0'), 'train_loss_bbox': tensor(0.1166, device='cuda:0'), 'train_loss_giou': tensor(0.2654, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.4538, device='cuda:0'), 'validation_loss_ce': tensor(0.4303, device='cuda:0'), 'validation_loss_bbox': tensor(0.0770, device='cuda:0'), 'validation_loss_giou': tensor(0.3191, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1539, device='cuda:0'), 'train_loss_ce': tensor(0.4486, device='cuda:0'), 'train_loss_bbox': tensor(0.0603, device='cuda:0'), 'train_loss_giou': tensor(0.2018, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.4326, device='cuda:0'), 'validation_loss_ce': tensor(0.4283, device='cuda:0'), 'validation_loss_bbox': tensor(0.0742, device='cuda:0'), 'validation_loss_giou': tensor(0.3166, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.7787, device='cuda:0'), 'train_loss_ce': tensor(0.4980, device='cuda:0'), 'train_loss_bbox': tensor(0.0998, device='cuda:0'), 'train_loss_giou': tensor(0.3907, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.3985, device='cuda:0'), 'validation_loss_ce': tensor(0.4264, device='cuda:0'), 'validation_loss_bbox': tensor(0.0727, device='cuda:0'), 'validation_loss_giou': tensor(0.3043, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8169, device='cuda:0'), 'train_loss_ce': tensor(0.4354, device='cuda:0'), 'train_loss_bbox': tensor(0.0300, device='cuda:0'), 'train_loss_giou': tensor(0.1157, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.3615, device='cuda:0'), 'validation_loss_ce': tensor(0.4258, device='cuda:0'), 'validation_loss_bbox': tensor(0.0689, device='cuda:0'), 'validation_loss_giou': tensor(0.2955, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0165, device='cuda:0'), 'train_loss_ce': tensor(0.2943, device='cuda:0'), 'train_loss_bbox': tensor(0.1978, device='cuda:0'), 'train_loss_giou': tensor(0.3665, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.3308, device='cuda:0'), 'validation_loss_ce': tensor(0.4241, device='cuda:0'), 'validation_loss_bbox': tensor(0.0673, device='cuda:0'), 'validation_loss_giou': tensor(0.2852, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.9686, device='cuda:0'), 'train_loss_ce': tensor(0.4958, device='cuda:0'), 'train_loss_bbox': tensor(0.0898, device='cuda:0'), 'train_loss_giou': tensor(0.5119, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.3153, device='cuda:0'), 'validation_loss_ce': tensor(0.4227, device='cuda:0'), 'validation_loss_bbox': tensor(0.0650, device='cuda:0'), 'validation_loss_giou': tensor(0.2839, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5511, device='cuda:0'), 'train_loss_ce': tensor(0.4084, device='cuda:0'), 'train_loss_bbox': tensor(0.0781, device='cuda:0'), 'train_loss_giou': tensor(0.3762, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.3052, device='cuda:0'), 'validation_loss_ce': tensor(0.4216, device='cuda:0'), 'validation_loss_bbox': tensor(0.0654, device='cuda:0'), 'validation_loss_giou': tensor(0.2783, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4240, device='cuda:0'), 'train_loss_ce': tensor(0.4406, device='cuda:0'), 'train_loss_bbox': tensor(0.0981, device='cuda:0'), 'train_loss_giou': tensor(0.2464, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.2615, device='cuda:0'), 'validation_loss_ce': tensor(0.4208, device='cuda:0'), 'validation_loss_bbox': tensor(0.0615, device='cuda:0'), 'validation_loss_giou': tensor(0.2666, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2937, device='cuda:0'), 'train_loss_ce': tensor(0.3084, device='cuda:0'), 'train_loss_bbox': tensor(0.1583, device='cuda:0'), 'train_loss_giou': tensor(0.5968, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.2568, device='cuda:0'), 'validation_loss_ce': tensor(0.4197, device='cuda:0'), 'validation_loss_bbox': tensor(0.0614, device='cuda:0'), 'validation_loss_giou': tensor(0.2650, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3637, device='cuda:0'), 'train_loss_ce': tensor(0.2704, device='cuda:0'), 'train_loss_bbox': tensor(0.0760, device='cuda:0'), 'train_loss_giou': tensor(0.3565, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.2105, device='cuda:0'), 'validation_loss_ce': tensor(0.4185, device='cuda:0'), 'validation_loss_bbox': tensor(0.0575, device='cuda:0'), 'validation_loss_giou': tensor(0.2523, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.5529, device='cuda:0'), 'train_loss_ce': tensor(0.4423, device='cuda:0'), 'train_loss_bbox': tensor(0.0711, device='cuda:0'), 'train_loss_giou': tensor(0.3775, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.2251, device='cuda:0'), 'validation_loss_ce': tensor(0.4174, device='cuda:0'), 'validation_loss_bbox': tensor(0.0595, device='cuda:0'), 'validation_loss_giou': tensor(0.2551, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6632, device='cuda:0'), 'train_loss_ce': tensor(0.4932, device='cuda:0'), 'train_loss_bbox': tensor(0.1007, device='cuda:0'), 'train_loss_giou': tensor(0.3331, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.1975, device='cuda:0'), 'validation_loss_ce': tensor(0.4157, device='cuda:0'), 'validation_loss_bbox': tensor(0.0570, device='cuda:0'), 'validation_loss_giou': tensor(0.2484, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4235, device='cuda:0'), 'train_loss_ce': tensor(0.4120, device='cuda:0'), 'train_loss_bbox': tensor(0.0555, device='cuda:0'), 'train_loss_giou': tensor(0.3670, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.1926, device='cuda:0'), 'validation_loss_ce': tensor(0.4154, device='cuda:0'), 'validation_loss_bbox': tensor(0.0572, device='cuda:0'), 'validation_loss_giou': tensor(0.2456, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4275, device='cuda:0'), 'train_loss_ce': tensor(0.3933, device='cuda:0'), 'train_loss_bbox': tensor(0.0586, device='cuda:0'), 'train_loss_giou': tensor(0.3706, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.2795, device='cuda:0'), 'validation_loss_ce': tensor(0.4139, device='cuda:0'), 'validation_loss_bbox': tensor(0.0626, device='cuda:0'), 'validation_loss_giou': tensor(0.2762, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.6031, device='cuda:0'), 'train_loss_ce': tensor(0.4049, device='cuda:0'), 'train_loss_bbox': tensor(0.1107, device='cuda:0'), 'train_loss_giou': tensor(0.3224, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.1537, device='cuda:0'), 'validation_loss_ce': tensor(0.4129, device='cuda:0'), 'validation_loss_bbox': tensor(0.0542, device='cuda:0'), 'validation_loss_giou': tensor(0.2348, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3053, device='cuda:0'), 'train_loss_ce': tensor(0.4250, device='cuda:0'), 'train_loss_bbox': tensor(0.0485, device='cuda:0'), 'train_loss_giou': tensor(0.3188, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.1153, device='cuda:0'), 'validation_loss_ce': tensor(0.4118, device='cuda:0'), 'validation_loss_bbox': tensor(0.0511, device='cuda:0'), 'validation_loss_giou': tensor(0.2240, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5990, device='cuda:0'), 'train_loss_ce': tensor(0.3899, device='cuda:0'), 'train_loss_bbox': tensor(0.0225, device='cuda:0'), 'train_loss_giou': tensor(0.0484, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.1544, device='cuda:0'), 'validation_loss_ce': tensor(0.4108, device='cuda:0'), 'validation_loss_bbox': tensor(0.0525, device='cuda:0'), 'validation_loss_giou': tensor(0.2405, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1758, device='cuda:0'), 'train_loss_ce': tensor(0.4274, device='cuda:0'), 'train_loss_bbox': tensor(0.0603, device='cuda:0'), 'train_loss_giou': tensor(0.2233, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.1187, device='cuda:0'), 'validation_loss_ce': tensor(0.4099, device='cuda:0'), 'validation_loss_bbox': tensor(0.0508, device='cuda:0'), 'validation_loss_giou': tensor(0.2274, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1161, device='cuda:0'), 'train_loss_ce': tensor(0.4313, device='cuda:0'), 'train_loss_bbox': tensor(0.0374, device='cuda:0'), 'train_loss_giou': tensor(0.2489, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.1298, device='cuda:0'), 'validation_loss_ce': tensor(0.4092, device='cuda:0'), 'validation_loss_bbox': tensor(0.0530, device='cuda:0'), 'validation_loss_giou': tensor(0.2278, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3180, device='cuda:0'), 'train_loss_ce': tensor(0.3997, device='cuda:0'), 'train_loss_bbox': tensor(0.0496, device='cuda:0'), 'train_loss_giou': tensor(0.3353, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.0828, device='cuda:0'), 'validation_loss_ce': tensor(0.4082, device='cuda:0'), 'validation_loss_bbox': tensor(0.0487, device='cuda:0'), 'validation_loss_giou': tensor(0.2156, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8168, device='cuda:0'), 'train_loss_ce': tensor(0.4260, device='cuda:0'), 'train_loss_bbox': tensor(0.0382, device='cuda:0'), 'train_loss_giou': tensor(0.0999, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.0530, device='cuda:0'), 'validation_loss_ce': tensor(0.4065, device='cuda:0'), 'validation_loss_bbox': tensor(0.0461, device='cuda:0'), 'validation_loss_giou': tensor(0.2079, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1747, device='cuda:0'), 'train_loss_ce': tensor(0.3794, device='cuda:0'), 'train_loss_bbox': tensor(0.0345, device='cuda:0'), 'train_loss_giou': tensor(0.3114, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.0626, device='cuda:0'), 'validation_loss_ce': tensor(0.4065, device='cuda:0'), 'validation_loss_bbox': tensor(0.0468, device='cuda:0'), 'validation_loss_giou': tensor(0.2111, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8392, device='cuda:0'), 'train_loss_ce': tensor(0.4028, device='cuda:0'), 'train_loss_bbox': tensor(0.0368, device='cuda:0'), 'train_loss_giou': tensor(0.1262, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.0131, device='cuda:0'), 'validation_loss_ce': tensor(0.4047, device='cuda:0'), 'validation_loss_bbox': tensor(0.0438, device='cuda:0'), 'validation_loss_giou': tensor(0.1946, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9078, device='cuda:0'), 'train_loss_ce': tensor(0.3784, device='cuda:0'), 'train_loss_bbox': tensor(0.0434, device='cuda:0'), 'train_loss_giou': tensor(0.1562, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.0081, device='cuda:0'), 'validation_loss_ce': tensor(0.4039, device='cuda:0'), 'validation_loss_bbox': tensor(0.0429, device='cuda:0'), 'validation_loss_giou': tensor(0.1948, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9868, device='cuda:0'), 'train_loss_ce': tensor(0.4854, device='cuda:0'), 'train_loss_bbox': tensor(0.0424, device='cuda:0'), 'train_loss_giou': tensor(0.1448, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.0204, device='cuda:0'), 'validation_loss_ce': tensor(0.4039, device='cuda:0'), 'validation_loss_bbox': tensor(0.0443, device='cuda:0'), 'validation_loss_giou': tensor(0.1974, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8351, device='cuda:0'), 'train_loss_ce': tensor(0.4104, device='cuda:0'), 'train_loss_bbox': tensor(0.0403, device='cuda:0'), 'train_loss_giou': tensor(0.1117, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.0256, device='cuda:0'), 'validation_loss_ce': tensor(0.4012, device='cuda:0'), 'validation_loss_bbox': tensor(0.0438, device='cuda:0'), 'validation_loss_giou': tensor(0.2027, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5392, device='cuda:0'), 'train_loss_ce': tensor(0.2786, device='cuda:0'), 'train_loss_bbox': tensor(0.0190, device='cuda:0'), 'train_loss_giou': tensor(0.0829, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9830, device='cuda:0'), 'validation_loss_ce': tensor(0.4008, device='cuda:0'), 'validation_loss_bbox': tensor(0.0411, device='cuda:0'), 'validation_loss_giou': tensor(0.1883, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8734, device='cuda:0'), 'train_loss_ce': tensor(0.4804, device='cuda:0'), 'train_loss_bbox': tensor(0.0262, device='cuda:0'), 'train_loss_giou': tensor(0.1310, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9761, device='cuda:0'), 'validation_loss_ce': tensor(0.3999, device='cuda:0'), 'validation_loss_bbox': tensor(0.0412, device='cuda:0'), 'validation_loss_giou': tensor(0.1850, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5642, device='cuda:0'), 'train_loss_ce': tensor(0.2799, device='cuda:0'), 'train_loss_bbox': tensor(0.0276, device='cuda:0'), 'train_loss_giou': tensor(0.0730, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9767, device='cuda:0'), 'validation_loss_ce': tensor(0.3986, device='cuda:0'), 'validation_loss_bbox': tensor(0.0409, device='cuda:0'), 'validation_loss_giou': tensor(0.1867, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4119, device='cuda:0'), 'train_loss_ce': tensor(0.4246, device='cuda:0'), 'train_loss_bbox': tensor(0.0493, device='cuda:0'), 'train_loss_giou': tensor(0.3705, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9879, device='cuda:0'), 'validation_loss_ce': tensor(0.3971, device='cuda:0'), 'validation_loss_bbox': tensor(0.0425, device='cuda:0'), 'validation_loss_giou': tensor(0.1892, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8679, device='cuda:0'), 'train_loss_ce': tensor(0.4929, device='cuda:0'), 'train_loss_bbox': tensor(0.0380, device='cuda:0'), 'train_loss_giou': tensor(0.0925, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9494, device='cuda:0'), 'validation_loss_ce': tensor(0.3963, device='cuda:0'), 'validation_loss_bbox': tensor(0.0395, device='cuda:0'), 'validation_loss_giou': tensor(0.1777, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8156, device='cuda:0'), 'train_loss_ce': tensor(0.3922, device='cuda:0'), 'train_loss_bbox': tensor(0.0453, device='cuda:0'), 'train_loss_giou': tensor(0.0984, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9508, device='cuda:0'), 'validation_loss_ce': tensor(0.3953, device='cuda:0'), 'validation_loss_bbox': tensor(0.0400, device='cuda:0'), 'validation_loss_giou': tensor(0.1777, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6774, device='cuda:0'), 'train_loss_ce': tensor(0.4549, device='cuda:0'), 'train_loss_bbox': tensor(0.0184, device='cuda:0'), 'train_loss_giou': tensor(0.0652, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9155, device='cuda:0'), 'validation_loss_ce': tensor(0.3940, device='cuda:0'), 'validation_loss_bbox': tensor(0.0372, device='cuda:0'), 'validation_loss_giou': tensor(0.1677, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6681, device='cuda:0'), 'train_loss_ce': tensor(0.3676, device='cuda:0'), 'train_loss_bbox': tensor(0.0307, device='cuda:0'), 'train_loss_giou': tensor(0.0736, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9089, device='cuda:0'), 'validation_loss_ce': tensor(0.3932, device='cuda:0'), 'validation_loss_bbox': tensor(0.0365, device='cuda:0'), 'validation_loss_giou': tensor(0.1667, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8979, device='cuda:0'), 'train_loss_ce': tensor(0.3582, device='cuda:0'), 'train_loss_bbox': tensor(0.0406, device='cuda:0'), 'train_loss_giou': tensor(0.1684, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9094, device='cuda:0'), 'validation_loss_ce': tensor(0.3923, device='cuda:0'), 'validation_loss_bbox': tensor(0.0367, device='cuda:0'), 'validation_loss_giou': tensor(0.1668, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.8594, device='cuda:0'), 'train_loss_ce': tensor(0.5200, device='cuda:0'), 'train_loss_bbox': tensor(0.1255, device='cuda:0'), 'train_loss_giou': tensor(0.3559, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9036, device='cuda:0'), 'validation_loss_ce': tensor(0.3908, device='cuda:0'), 'validation_loss_bbox': tensor(0.0361, device='cuda:0'), 'validation_loss_giou': tensor(0.1663, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2701, device='cuda:0'), 'train_loss_ce': tensor(0.3652, device='cuda:0'), 'train_loss_bbox': tensor(0.0354, device='cuda:0'), 'train_loss_giou': tensor(0.3640, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9044, device='cuda:0'), 'validation_loss_ce': tensor(0.3905, device='cuda:0'), 'validation_loss_bbox': tensor(0.0355, device='cuda:0'), 'validation_loss_giou': tensor(0.1681, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5073, device='cuda:0'), 'train_loss_ce': tensor(0.3775, device='cuda:0'), 'train_loss_bbox': tensor(0.0135, device='cuda:0'), 'train_loss_giou': tensor(0.0313, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9048, device='cuda:0'), 'validation_loss_ce': tensor(0.3897, device='cuda:0'), 'validation_loss_bbox': tensor(0.0364, device='cuda:0'), 'validation_loss_giou': tensor(0.1665, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8872, device='cuda:0'), 'train_loss_ce': tensor(0.4714, device='cuda:0'), 'train_loss_bbox': tensor(0.0285, device='cuda:0'), 'train_loss_giou': tensor(0.1367, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8931, device='cuda:0'), 'validation_loss_ce': tensor(0.3887, device='cuda:0'), 'validation_loss_bbox': tensor(0.0360, device='cuda:0'), 'validation_loss_giou': tensor(0.1623, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8454, device='cuda:0'), 'train_loss_ce': tensor(0.4343, device='cuda:0'), 'train_loss_bbox': tensor(0.0291, device='cuda:0'), 'train_loss_giou': tensor(0.1329, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8726, device='cuda:0'), 'validation_loss_ce': tensor(0.3872, device='cuda:0'), 'validation_loss_bbox': tensor(0.0327, device='cuda:0'), 'validation_loss_giou': tensor(0.1611, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9414, device='cuda:0'), 'train_loss_ce': tensor(0.3254, device='cuda:0'), 'train_loss_bbox': tensor(0.0328, device='cuda:0'), 'train_loss_giou': tensor(0.2260, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8608, device='cuda:0'), 'validation_loss_ce': tensor(0.3860, device='cuda:0'), 'validation_loss_bbox': tensor(0.0329, device='cuda:0'), 'validation_loss_giou': tensor(0.1553, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6676, device='cuda:0'), 'train_loss_ce': tensor(0.4081, device='cuda:0'), 'train_loss_bbox': tensor(0.0133, device='cuda:0'), 'train_loss_giou': tensor(0.0965, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8510, device='cuda:0'), 'validation_loss_ce': tensor(0.3857, device='cuda:0'), 'validation_loss_bbox': tensor(0.0316, device='cuda:0'), 'validation_loss_giou': tensor(0.1536, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9797, device='cuda:0'), 'train_loss_ce': tensor(0.4480, device='cuda:0'), 'train_loss_bbox': tensor(0.0413, device='cuda:0'), 'train_loss_giou': tensor(0.1627, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8753, device='cuda:0'), 'validation_loss_ce': tensor(0.3846, device='cuda:0'), 'validation_loss_bbox': tensor(0.0347, device='cuda:0'), 'validation_loss_giou': tensor(0.1585, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6557, device='cuda:0'), 'train_loss_ce': tensor(0.3690, device='cuda:0'), 'train_loss_bbox': tensor(0.0315, device='cuda:0'), 'train_loss_giou': tensor(0.0645, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8875, device='cuda:0'), 'validation_loss_ce': tensor(0.3831, device='cuda:0'), 'validation_loss_bbox': tensor(0.0360, device='cuda:0'), 'validation_loss_giou': tensor(0.1622, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8517, device='cuda:0'), 'train_loss_ce': tensor(0.4004, device='cuda:0'), 'train_loss_bbox': tensor(0.0356, device='cuda:0'), 'train_loss_giou': tensor(0.1367, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8555, device='cuda:0'), 'validation_loss_ce': tensor(0.3823, device='cuda:0'), 'validation_loss_bbox': tensor(0.0330, device='cuda:0'), 'validation_loss_giou': tensor(0.1541, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8927, device='cuda:0'), 'train_loss_ce': tensor(0.3915, device='cuda:0'), 'train_loss_bbox': tensor(0.0411, device='cuda:0'), 'train_loss_giou': tensor(0.1479, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8390, device='cuda:0'), 'validation_loss_ce': tensor(0.3810, device='cuda:0'), 'validation_loss_bbox': tensor(0.0311, device='cuda:0'), 'validation_loss_giou': tensor(0.1512, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6672, device='cuda:0'), 'train_loss_ce': tensor(0.3623, device='cuda:0'), 'train_loss_bbox': tensor(0.0238, device='cuda:0'), 'train_loss_giou': tensor(0.0930, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8188, device='cuda:0'), 'validation_loss_ce': tensor(0.3798, device='cuda:0'), 'validation_loss_bbox': tensor(0.0312, device='cuda:0'), 'validation_loss_giou': tensor(0.1415, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2534, device='cuda:0'), 'train_loss_ce': tensor(0.4163, device='cuda:0'), 'train_loss_bbox': tensor(0.0941, device='cuda:0'), 'train_loss_giou': tensor(0.1834, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7993, device='cuda:0'), 'validation_loss_ce': tensor(0.3789, device='cuda:0'), 'validation_loss_bbox': tensor(0.0295, device='cuda:0'), 'validation_loss_giou': tensor(0.1365, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.4108, device='cuda:0'), 'train_loss_ce': tensor(0.4095, device='cuda:0'), 'train_loss_bbox': tensor(0.0883, device='cuda:0'), 'train_loss_giou': tensor(0.2798, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8273, device='cuda:0'), 'validation_loss_ce': tensor(0.3779, device='cuda:0'), 'validation_loss_bbox': tensor(0.0320, device='cuda:0'), 'validation_loss_giou': tensor(0.1448, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8826, device='cuda:0'), 'train_loss_ce': tensor(0.4250, device='cuda:0'), 'train_loss_bbox': tensor(0.0390, device='cuda:0'), 'train_loss_giou': tensor(0.1312, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8075, device='cuda:0'), 'validation_loss_ce': tensor(0.3767, device='cuda:0'), 'validation_loss_bbox': tensor(0.0298, device='cuda:0'), 'validation_loss_giou': tensor(0.1409, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8522, device='cuda:0'), 'train_loss_ce': tensor(0.4247, device='cuda:0'), 'train_loss_bbox': tensor(0.0324, device='cuda:0'), 'train_loss_giou': tensor(0.1328, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8091, device='cuda:0'), 'validation_loss_ce': tensor(0.3758, device='cuda:0'), 'validation_loss_bbox': tensor(0.0313, device='cuda:0'), 'validation_loss_giou': tensor(0.1384, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.1373, device='cuda:0'), 'train_loss_ce': tensor(0.3819, device='cuda:0'), 'train_loss_bbox': tensor(0.0514, device='cuda:0'), 'train_loss_giou': tensor(0.2491, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7863, device='cuda:0'), 'validation_loss_ce': tensor(0.3749, device='cuda:0'), 'validation_loss_bbox': tensor(0.0287, device='cuda:0'), 'validation_loss_giou': tensor(0.1339, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8848, device='cuda:0'), 'train_loss_ce': tensor(0.4688, device='cuda:0'), 'train_loss_bbox': tensor(0.0274, device='cuda:0'), 'train_loss_giou': tensor(0.1395, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7731, device='cuda:0'), 'validation_loss_ce': tensor(0.3730, device='cuda:0'), 'validation_loss_bbox': tensor(0.0279, device='cuda:0'), 'validation_loss_giou': tensor(0.1304, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7018, device='cuda:0'), 'train_loss_ce': tensor(0.4331, device='cuda:0'), 'train_loss_bbox': tensor(0.0231, device='cuda:0'), 'train_loss_giou': tensor(0.0766, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7824, device='cuda:0'), 'validation_loss_ce': tensor(0.3727, device='cuda:0'), 'validation_loss_bbox': tensor(0.0285, device='cuda:0'), 'validation_loss_giou': tensor(0.1336, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7875, device='cuda:0'), 'train_loss_ce': tensor(0.4534, device='cuda:0'), 'train_loss_bbox': tensor(0.0262, device='cuda:0'), 'train_loss_giou': tensor(0.1016, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7745, device='cuda:0'), 'validation_loss_ce': tensor(0.3713, device='cuda:0'), 'validation_loss_bbox': tensor(0.0277, device='cuda:0'), 'validation_loss_giou': tensor(0.1324, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.0198, device='cuda:0'), 'train_loss_ce': tensor(0.3440, device='cuda:0'), 'train_loss_bbox': tensor(0.0183, device='cuda:0'), 'train_loss_giou': tensor(0.2922, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7928, device='cuda:0'), 'validation_loss_ce': tensor(0.3707, device='cuda:0'), 'validation_loss_bbox': tensor(0.0291, device='cuda:0'), 'validation_loss_giou': tensor(0.1382, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5502, device='cuda:0'), 'train_loss_ce': tensor(0.3745, device='cuda:0'), 'train_loss_bbox': tensor(0.0184, device='cuda:0'), 'train_loss_giou': tensor(0.0418, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8311, device='cuda:0'), 'validation_loss_ce': tensor(0.3706, device='cuda:0'), 'validation_loss_bbox': tensor(0.0323, device='cuda:0'), 'validation_loss_giou': tensor(0.1495, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6281, device='cuda:0'), 'train_loss_ce': tensor(0.4754, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0539, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7843, device='cuda:0'), 'validation_loss_ce': tensor(0.3689, device='cuda:0'), 'validation_loss_bbox': tensor(0.0285, device='cuda:0'), 'validation_loss_giou': tensor(0.1365, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6457, device='cuda:0'), 'train_loss_ce': tensor(0.4437, device='cuda:0'), 'train_loss_bbox': tensor(0.0192, device='cuda:0'), 'train_loss_giou': tensor(0.0529, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7684, device='cuda:0'), 'validation_loss_ce': tensor(0.3689, device='cuda:0'), 'validation_loss_bbox': tensor(0.0280, device='cuda:0'), 'validation_loss_giou': tensor(0.1297, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4091, device='cuda:0'), 'train_loss_ce': tensor(0.2653, device='cuda:0'), 'train_loss_bbox': tensor(0.0137, device='cuda:0'), 'train_loss_giou': tensor(0.0375, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7999, device='cuda:0'), 'validation_loss_ce': tensor(0.3679, device='cuda:0'), 'validation_loss_bbox': tensor(0.0293, device='cuda:0'), 'validation_loss_giou': tensor(0.1427, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7572, device='cuda:0'), 'train_loss_ce': tensor(0.4210, device='cuda:0'), 'train_loss_bbox': tensor(0.0130, device='cuda:0'), 'train_loss_giou': tensor(0.1355, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7853, device='cuda:0'), 'validation_loss_ce': tensor(0.3667, device='cuda:0'), 'validation_loss_bbox': tensor(0.0292, device='cuda:0'), 'validation_loss_giou': tensor(0.1363, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9543, device='cuda:0'), 'train_loss_ce': tensor(0.4141, device='cuda:0'), 'train_loss_bbox': tensor(0.0371, device='cuda:0'), 'train_loss_giou': tensor(0.1773, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7649, device='cuda:0'), 'validation_loss_ce': tensor(0.3654, device='cuda:0'), 'validation_loss_bbox': tensor(0.0272, device='cuda:0'), 'validation_loss_giou': tensor(0.1318, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.2166, device='cuda:0'), 'train_loss_ce': tensor(0.3937, device='cuda:0'), 'train_loss_bbox': tensor(0.0365, device='cuda:0'), 'train_loss_giou': tensor(0.3203, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7704, device='cuda:0'), 'validation_loss_ce': tensor(0.3636, device='cuda:0'), 'validation_loss_bbox': tensor(0.0286, device='cuda:0'), 'validation_loss_giou': tensor(0.1319, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8505, device='cuda:0'), 'train_loss_ce': tensor(0.4728, device='cuda:0'), 'train_loss_bbox': tensor(0.0261, device='cuda:0'), 'train_loss_giou': tensor(0.1236, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7304, device='cuda:0'), 'validation_loss_ce': tensor(0.3627, device='cuda:0'), 'validation_loss_bbox': tensor(0.0251, device='cuda:0'), 'validation_loss_giou': tensor(0.1212, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6835, device='cuda:0'), 'train_loss_ce': tensor(0.4597, device='cuda:0'), 'train_loss_bbox': tensor(0.0122, device='cuda:0'), 'train_loss_giou': tensor(0.0814, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7166, device='cuda:0'), 'validation_loss_ce': tensor(0.3618, device='cuda:0'), 'validation_loss_bbox': tensor(0.0239, device='cuda:0'), 'validation_loss_giou': tensor(0.1177, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(1.3586, device='cuda:0'), 'train_loss_ce': tensor(0.2354, device='cuda:0'), 'train_loss_bbox': tensor(0.0760, device='cuda:0'), 'train_loss_giou': tensor(0.3715, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7405, device='cuda:0'), 'validation_loss_ce': tensor(0.3599, device='cuda:0'), 'validation_loss_bbox': tensor(0.0257, device='cuda:0'), 'validation_loss_giou': tensor(0.1261, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.9302, device='cuda:0'), 'train_loss_ce': tensor(0.2721, device='cuda:0'), 'train_loss_bbox': tensor(0.0318, device='cuda:0'), 'train_loss_giou': tensor(0.2495, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7325, device='cuda:0'), 'validation_loss_ce': tensor(0.3597, device='cuda:0'), 'validation_loss_bbox': tensor(0.0254, device='cuda:0'), 'validation_loss_giou': tensor(0.1230, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5869, device='cuda:0'), 'train_loss_ce': tensor(0.3340, device='cuda:0'), 'train_loss_bbox': tensor(0.0201, device='cuda:0'), 'train_loss_giou': tensor(0.0763, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7218, device='cuda:0'), 'validation_loss_ce': tensor(0.3575, device='cuda:0'), 'validation_loss_bbox': tensor(0.0246, device='cuda:0'), 'validation_loss_giou': tensor(0.1207, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5345, device='cuda:0'), 'train_loss_ce': tensor(0.3401, device='cuda:0'), 'train_loss_bbox': tensor(0.0180, device='cuda:0'), 'train_loss_giou': tensor(0.0522, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7346, device='cuda:0'), 'validation_loss_ce': tensor(0.3577, device='cuda:0'), 'validation_loss_bbox': tensor(0.0259, device='cuda:0'), 'validation_loss_giou': tensor(0.1236, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5567, device='cuda:0'), 'train_loss_ce': tensor(0.2925, device='cuda:0'), 'train_loss_bbox': tensor(0.0106, device='cuda:0'), 'train_loss_giou': tensor(0.1057, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7474, device='cuda:0'), 'validation_loss_ce': tensor(0.3550, device='cuda:0'), 'validation_loss_bbox': tensor(0.0263, device='cuda:0'), 'validation_loss_giou': tensor(0.1305, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4996, device='cuda:0'), 'train_loss_ce': tensor(0.3393, device='cuda:0'), 'train_loss_bbox': tensor(0.0175, device='cuda:0'), 'train_loss_giou': tensor(0.0365, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7680, device='cuda:0'), 'validation_loss_ce': tensor(0.3554, device='cuda:0'), 'validation_loss_bbox': tensor(0.0291, device='cuda:0'), 'validation_loss_giou': tensor(0.1335, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6181, device='cuda:0'), 'train_loss_ce': tensor(0.3445, device='cuda:0'), 'train_loss_bbox': tensor(0.0205, device='cuda:0'), 'train_loss_giou': tensor(0.0854, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7114, device='cuda:0'), 'validation_loss_ce': tensor(0.3535, device='cuda:0'), 'validation_loss_bbox': tensor(0.0245, device='cuda:0'), 'validation_loss_giou': tensor(0.1177, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5699, device='cuda:0'), 'train_loss_ce': tensor(0.3694, device='cuda:0'), 'train_loss_bbox': tensor(0.0149, device='cuda:0'), 'train_loss_giou': tensor(0.0630, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.7127, device='cuda:0'), 'validation_loss_ce': tensor(0.3521, device='cuda:0'), 'validation_loss_bbox': tensor(0.0240, device='cuda:0'), 'validation_loss_giou': tensor(0.1204, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5953, device='cuda:0'), 'train_loss_ce': tensor(0.4604, device='cuda:0'), 'train_loss_bbox': tensor(0.0117, device='cuda:0'), 'train_loss_giou': tensor(0.0382, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6937, device='cuda:0'), 'validation_loss_ce': tensor(0.3510, device='cuda:0'), 'validation_loss_bbox': tensor(0.0223, device='cuda:0'), 'validation_loss_giou': tensor(0.1157, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4262, device='cuda:0'), 'train_loss_ce': tensor(0.2667, device='cuda:0'), 'train_loss_bbox': tensor(0.0123, device='cuda:0'), 'train_loss_giou': tensor(0.0491, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6760, device='cuda:0'), 'validation_loss_ce': tensor(0.3494, device='cuda:0'), 'validation_loss_bbox': tensor(0.0221, device='cuda:0'), 'validation_loss_giou': tensor(0.1080, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6824, device='cuda:0'), 'train_loss_ce': tensor(0.4572, device='cuda:0'), 'train_loss_bbox': tensor(0.0161, device='cuda:0'), 'train_loss_giou': tensor(0.0722, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6845, device='cuda:0'), 'validation_loss_ce': tensor(0.3480, device='cuda:0'), 'validation_loss_bbox': tensor(0.0229, device='cuda:0'), 'validation_loss_giou': tensor(0.1110, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8522, device='cuda:0'), 'train_loss_ce': tensor(0.1707, device='cuda:0'), 'train_loss_bbox': tensor(0.0559, device='cuda:0'), 'train_loss_giou': tensor(0.2011, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6876, device='cuda:0'), 'validation_loss_ce': tensor(0.3474, device='cuda:0'), 'validation_loss_bbox': tensor(0.0226, device='cuda:0'), 'validation_loss_giou': tensor(0.1137, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5541, device='cuda:0'), 'train_loss_ce': tensor(0.2953, device='cuda:0'), 'train_loss_bbox': tensor(0.0158, device='cuda:0'), 'train_loss_giou': tensor(0.0900, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6539, device='cuda:0'), 'validation_loss_ce': tensor(0.3462, device='cuda:0'), 'validation_loss_bbox': tensor(0.0210, device='cuda:0'), 'validation_loss_giou': tensor(0.1013, device='cuda:0'), 'validation_cardinality_error': tensor(0.9972, device='cuda:0')}
{'training_loss': tensor(0.7854, device='cuda:0'), 'train_loss_ce': tensor(0.2733, device='cuda:0'), 'train_loss_bbox': tensor(0.0532, device='cuda:0'), 'train_loss_giou': tensor(0.1230, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6712, device='cuda:0'), 'validation_loss_ce': tensor(0.3454, device='cuda:0'), 'validation_loss_bbox': tensor(0.0216, device='cuda:0'), 'validation_loss_giou': tensor(0.1090, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.7117, device='cuda:0'), 'train_loss_ce': tensor(0.5154, device='cuda:0'), 'train_loss_bbox': tensor(0.0154, device='cuda:0'), 'train_loss_giou': tensor(0.0597, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6619, device='cuda:0'), 'validation_loss_ce': tensor(0.3436, device='cuda:0'), 'validation_loss_bbox': tensor(0.0220, device='cuda:0'), 'validation_loss_giou': tensor(0.1042, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.8537, device='cuda:0'), 'train_loss_ce': tensor(0.4103, device='cuda:0'), 'train_loss_bbox': tensor(0.0277, device='cuda:0'), 'train_loss_giou': tensor(0.1524, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6511, device='cuda:0'), 'validation_loss_ce': tensor(0.3432, device='cuda:0'), 'validation_loss_bbox': tensor(0.0219, device='cuda:0'), 'validation_loss_giou': tensor(0.0993, device='cuda:0'), 'validation_cardinality_error': tensor(0.9972, device='cuda:0')}
{'training_loss': tensor(0.6426, device='cuda:0'), 'train_loss_ce': tensor(0.3817, device='cuda:0'), 'train_loss_bbox': tensor(0.0188, device='cuda:0'), 'train_loss_giou': tensor(0.0835, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6762, device='cuda:0'), 'validation_loss_ce': tensor(0.3415, device='cuda:0'), 'validation_loss_bbox': tensor(0.0225, device='cuda:0'), 'validation_loss_giou': tensor(0.1110, device='cuda:0'), 'validation_cardinality_error': tensor(0.9972, device='cuda:0')}
{'training_loss': tensor(0.6013, device='cuda:0'), 'train_loss_ce': tensor(0.2181, device='cuda:0'), 'train_loss_bbox': tensor(0.0176, device='cuda:0'), 'train_loss_giou': tensor(0.1475, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6523, device='cuda:0'), 'validation_loss_ce': tensor(0.3404, device='cuda:0'), 'validation_loss_bbox': tensor(0.0214, device='cuda:0'), 'validation_loss_giou': tensor(0.1025, device='cuda:0'), 'validation_cardinality_error': tensor(0.9972, device='cuda:0')}
{'training_loss': tensor(0.4785, device='cuda:0'), 'train_loss_ce': tensor(0.1823, device='cuda:0'), 'train_loss_bbox': tensor(0.0241, device='cuda:0'), 'train_loss_giou': tensor(0.0878, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6651, device='cuda:0'), 'validation_loss_ce': tensor(0.3408, device='cuda:0'), 'validation_loss_bbox': tensor(0.0221, device='cuda:0'), 'validation_loss_giou': tensor(0.1070, device='cuda:0'), 'validation_cardinality_error': tensor(0.9972, device='cuda:0')}
{'training_loss': tensor(1.2213, device='cuda:0'), 'train_loss_ce': tensor(0.4197, device='cuda:0'), 'train_loss_bbox': tensor(0.0403, device='cuda:0'), 'train_loss_giou': tensor(0.3001, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6623, device='cuda:0'), 'validation_loss_ce': tensor(0.3387, device='cuda:0'), 'validation_loss_bbox': tensor(0.0215, device='cuda:0'), 'validation_loss_giou': tensor(0.1081, device='cuda:0'), 'validation_cardinality_error': tensor(0.9944, device='cuda:0')}
{'training_loss': tensor(0.5986, device='cuda:0'), 'train_loss_ce': tensor(0.3506, device='cuda:0'), 'train_loss_bbox': tensor(0.0202, device='cuda:0'), 'train_loss_giou': tensor(0.0735, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6305, device='cuda:0'), 'validation_loss_ce': tensor(0.3383, device='cuda:0'), 'validation_loss_bbox': tensor(0.0197, device='cuda:0'), 'validation_loss_giou': tensor(0.0969, device='cuda:0'), 'validation_cardinality_error': tensor(0.9887, device='cuda:0')}
{'training_loss': tensor(0.5458, device='cuda:0'), 'train_loss_ce': tensor(0.4342, device='cuda:0'), 'train_loss_bbox': tensor(0.0106, device='cuda:0'), 'train_loss_giou': tensor(0.0294, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6579, device='cuda:0'), 'validation_loss_ce': tensor(0.3358, device='cuda:0'), 'validation_loss_bbox': tensor(0.0221, device='cuda:0'), 'validation_loss_giou': tensor(0.1059, device='cuda:0'), 'validation_cardinality_error': tensor(0.9915, device='cuda:0')}
{'training_loss': tensor(0.6029, device='cuda:0'), 'train_loss_ce': tensor(0.3617, device='cuda:0'), 'train_loss_bbox': tensor(0.0148, device='cuda:0'), 'train_loss_giou': tensor(0.0835, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6407, device='cuda:0'), 'validation_loss_ce': tensor(0.3355, device='cuda:0'), 'validation_loss_bbox': tensor(0.0208, device='cuda:0'), 'validation_loss_giou': tensor(0.1006, device='cuda:0'), 'validation_cardinality_error': tensor(0.9915, device='cuda:0')}
{'training_loss': tensor(0.5116, device='cuda:0'), 'train_loss_ce': tensor(0.3684, device='cuda:0'), 'train_loss_bbox': tensor(0.0127, device='cuda:0'), 'train_loss_giou': tensor(0.0398, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6301, device='cuda:0'), 'validation_loss_ce': tensor(0.3342, device='cuda:0'), 'validation_loss_bbox': tensor(0.0205, device='cuda:0'), 'validation_loss_giou': tensor(0.0966, device='cuda:0'), 'validation_cardinality_error': tensor(0.9972, device='cuda:0')}
{'training_loss': tensor(0.6011, device='cuda:0'), 'train_loss_ce': tensor(0.3313, device='cuda:0'), 'train_loss_bbox': tensor(0.0166, device='cuda:0'), 'train_loss_giou': tensor(0.0933, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6442, device='cuda:0'), 'validation_loss_ce': tensor(0.3334, device='cuda:0'), 'validation_loss_bbox': tensor(0.0210, device='cuda:0'), 'validation_loss_giou': tensor(0.1028, device='cuda:0'), 'validation_cardinality_error': tensor(0.9944, device='cuda:0')}
{'training_loss': tensor(0.7744, device='cuda:0'), 'train_loss_ce': tensor(0.2674, device='cuda:0'), 'train_loss_bbox': tensor(0.0329, device='cuda:0'), 'train_loss_giou': tensor(0.1712, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6625, device='cuda:0'), 'validation_loss_ce': tensor(0.3308, device='cuda:0'), 'validation_loss_bbox': tensor(0.0227, device='cuda:0'), 'validation_loss_giou': tensor(0.1091, device='cuda:0'), 'validation_cardinality_error': tensor(0.9944, device='cuda:0')}
{'training_loss': tensor(0.4942, device='cuda:0'), 'train_loss_ce': tensor(0.2162, device='cuda:0'), 'train_loss_bbox': tensor(0.0145, device='cuda:0'), 'train_loss_giou': tensor(0.1029, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6499, device='cuda:0'), 'validation_loss_ce': tensor(0.3320, device='cuda:0'), 'validation_loss_bbox': tensor(0.0215, device='cuda:0'), 'validation_loss_giou': tensor(0.1053, device='cuda:0'), 'validation_cardinality_error': tensor(0.9972, device='cuda:0')}
{'training_loss': tensor(0.5409, device='cuda:0'), 'train_loss_ce': tensor(0.3677, device='cuda:0'), 'train_loss_bbox': tensor(0.0076, device='cuda:0'), 'train_loss_giou': tensor(0.0676, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6482, device='cuda:0'), 'validation_loss_ce': tensor(0.3290, device='cuda:0'), 'validation_loss_bbox': tensor(0.0214, device='cuda:0'), 'validation_loss_giou': tensor(0.1062, device='cuda:0'), 'validation_cardinality_error': tensor(0.9944, device='cuda:0')}
{'training_loss': tensor(0.5462, device='cuda:0'), 'train_loss_ce': tensor(0.2654, device='cuda:0'), 'train_loss_bbox': tensor(0.0085, device='cuda:0'), 'train_loss_giou': tensor(0.1191, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6477, device='cuda:0'), 'validation_loss_ce': tensor(0.3288, device='cuda:0'), 'validation_loss_bbox': tensor(0.0213, device='cuda:0'), 'validation_loss_giou': tensor(0.1061, device='cuda:0'), 'validation_cardinality_error': tensor(0.9972, device='cuda:0')}
{'training_loss': tensor(0.7077, device='cuda:0'), 'train_loss_ce': tensor(0.4605, device='cuda:0'), 'train_loss_bbox': tensor(0.0220, device='cuda:0'), 'train_loss_giou': tensor(0.0686, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6790, device='cuda:0'), 'validation_loss_ce': tensor(0.3288, device='cuda:0'), 'validation_loss_bbox': tensor(0.0236, device='cuda:0'), 'validation_loss_giou': tensor(0.1162, device='cuda:0'), 'validation_cardinality_error': tensor(0.9915, device='cuda:0')}
{'training_loss': tensor(0.3860, device='cuda:0'), 'train_loss_ce': tensor(0.2865, device='cuda:0'), 'train_loss_bbox': tensor(0.0101, device='cuda:0'), 'train_loss_giou': tensor(0.0245, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6300, device='cuda:0'), 'validation_loss_ce': tensor(0.3262, device='cuda:0'), 'validation_loss_bbox': tensor(0.0204, device='cuda:0'), 'validation_loss_giou': tensor(0.1008, device='cuda:0'), 'validation_cardinality_error': tensor(0.9944, device='cuda:0')}
{'training_loss': tensor(0.8781, device='cuda:0'), 'train_loss_ce': tensor(0.3940, device='cuda:0'), 'train_loss_bbox': tensor(0.0123, device='cuda:0'), 'train_loss_giou': tensor(0.2114, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6019, device='cuda:0'), 'validation_loss_ce': tensor(0.3252, device='cuda:0'), 'validation_loss_bbox': tensor(0.0190, device='cuda:0'), 'validation_loss_giou': tensor(0.0909, device='cuda:0'), 'validation_cardinality_error': tensor(0.9944, device='cuda:0')}
{'training_loss': tensor(0.3580, device='cuda:0'), 'train_loss_ce': tensor(0.1557, device='cuda:0'), 'train_loss_bbox': tensor(0.0131, device='cuda:0'), 'train_loss_giou': tensor(0.0683, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6251, device='cuda:0'), 'validation_loss_ce': tensor(0.3241, device='cuda:0'), 'validation_loss_bbox': tensor(0.0200, device='cuda:0'), 'validation_loss_giou': tensor(0.1005, device='cuda:0'), 'validation_cardinality_error': tensor(0.9859, device='cuda:0')}
{'training_loss': tensor(0.4291, device='cuda:0'), 'train_loss_ce': tensor(0.3289, device='cuda:0'), 'train_loss_bbox': tensor(0.0104, device='cuda:0'), 'train_loss_giou': tensor(0.0241, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6479, device='cuda:0'), 'validation_loss_ce': tensor(0.3232, device='cuda:0'), 'validation_loss_bbox': tensor(0.0215, device='cuda:0'), 'validation_loss_giou': tensor(0.1087, device='cuda:0'), 'validation_cardinality_error': tensor(0.9915, device='cuda:0')}
{'training_loss': tensor(0.6943, device='cuda:0'), 'train_loss_ce': tensor(0.3568, device='cuda:0'), 'train_loss_bbox': tensor(0.0304, device='cuda:0'), 'train_loss_giou': tensor(0.0928, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6127, device='cuda:0'), 'validation_loss_ce': tensor(0.3221, device='cuda:0'), 'validation_loss_bbox': tensor(0.0196, device='cuda:0'), 'validation_loss_giou': tensor(0.0964, device='cuda:0'), 'validation_cardinality_error': tensor(0.9859, device='cuda:0')}
{'training_loss': tensor(0.5546, device='cuda:0'), 'train_loss_ce': tensor(0.4024, device='cuda:0'), 'train_loss_bbox': tensor(0.0085, device='cuda:0'), 'train_loss_giou': tensor(0.0548, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6181, device='cuda:0'), 'validation_loss_ce': tensor(0.3201, device='cuda:0'), 'validation_loss_bbox': tensor(0.0199, device='cuda:0'), 'validation_loss_giou': tensor(0.0993, device='cuda:0'), 'validation_cardinality_error': tensor(0.9802, device='cuda:0')}
{'training_loss': tensor(0.8638, device='cuda:0'), 'train_loss_ce': tensor(0.3202, device='cuda:0'), 'train_loss_bbox': tensor(0.0169, device='cuda:0'), 'train_loss_giou': tensor(0.2295, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5819, device='cuda:0'), 'validation_loss_ce': tensor(0.3198, device='cuda:0'), 'validation_loss_bbox': tensor(0.0180, device='cuda:0'), 'validation_loss_giou': tensor(0.0862, device='cuda:0'), 'validation_cardinality_error': tensor(0.9859, device='cuda:0')}
{'training_loss': tensor(0.7166, device='cuda:0'), 'train_loss_ce': tensor(0.3293, device='cuda:0'), 'train_loss_bbox': tensor(0.0259, device='cuda:0'), 'train_loss_giou': tensor(0.1290, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6054, device='cuda:0'), 'validation_loss_ce': tensor(0.3178, device='cuda:0'), 'validation_loss_bbox': tensor(0.0185, device='cuda:0'), 'validation_loss_giou': tensor(0.0976, device='cuda:0'), 'validation_cardinality_error': tensor(0.9887, device='cuda:0')}
{'training_loss': tensor(0.4544, device='cuda:0'), 'train_loss_ce': tensor(0.3558, device='cuda:0'), 'train_loss_bbox': tensor(0.0067, device='cuda:0'), 'train_loss_giou': tensor(0.0326, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6189, device='cuda:0'), 'validation_loss_ce': tensor(0.3178, device='cuda:0'), 'validation_loss_bbox': tensor(0.0201, device='cuda:0'), 'validation_loss_giou': tensor(0.1003, device='cuda:0'), 'validation_cardinality_error': tensor(0.9802, device='cuda:0')}
{'training_loss': tensor(0.5003, device='cuda:0'), 'train_loss_ce': tensor(0.3620, device='cuda:0'), 'train_loss_bbox': tensor(0.0108, device='cuda:0'), 'train_loss_giou': tensor(0.0423, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6020, device='cuda:0'), 'validation_loss_ce': tensor(0.3155, device='cuda:0'), 'validation_loss_bbox': tensor(0.0191, device='cuda:0'), 'validation_loss_giou': tensor(0.0956, device='cuda:0'), 'validation_cardinality_error': tensor(0.9972, device='cuda:0')}
{'training_loss': tensor(0.6236, device='cuda:0'), 'train_loss_ce': tensor(0.3926, device='cuda:0'), 'train_loss_bbox': tensor(0.0182, device='cuda:0'), 'train_loss_giou': tensor(0.0700, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.6065, device='cuda:0'), 'validation_loss_ce': tensor(0.3152, device='cuda:0'), 'validation_loss_bbox': tensor(0.0195, device='cuda:0'), 'validation_loss_giou': tensor(0.0968, device='cuda:0'), 'validation_cardinality_error': tensor(0.9859, device='cuda:0')}
{'training_loss': tensor(0.6233, device='cuda:0'), 'train_loss_ce': tensor(0.3653, device='cuda:0'), 'train_loss_bbox': tensor(0.0103, device='cuda:0'), 'train_loss_giou': tensor(0.1033, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5857, device='cuda:0'), 'validation_loss_ce': tensor(0.3131, device='cuda:0'), 'validation_loss_bbox': tensor(0.0184, device='cuda:0'), 'validation_loss_giou': tensor(0.0903, device='cuda:0'), 'validation_cardinality_error': tensor(0.9915, device='cuda:0')}
{'training_loss': tensor(0.5564, device='cuda:0'), 'train_loss_ce': tensor(0.3675, device='cuda:0'), 'train_loss_bbox': tensor(0.0168, device='cuda:0'), 'train_loss_giou': tensor(0.0525, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5821, device='cuda:0'), 'validation_loss_ce': tensor(0.3120, device='cuda:0'), 'validation_loss_bbox': tensor(0.0182, device='cuda:0'), 'validation_loss_giou': tensor(0.0895, device='cuda:0'), 'validation_cardinality_error': tensor(0.9887, device='cuda:0')}
{'training_loss': tensor(1.2440, device='cuda:0'), 'train_loss_ce': tensor(0.4301, device='cuda:0'), 'train_loss_bbox': tensor(0.0699, device='cuda:0'), 'train_loss_giou': tensor(0.2321, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5810, device='cuda:0'), 'validation_loss_ce': tensor(0.3115, device='cuda:0'), 'validation_loss_bbox': tensor(0.0178, device='cuda:0'), 'validation_loss_giou': tensor(0.0903, device='cuda:0'), 'validation_cardinality_error': tensor(0.9831, device='cuda:0')}
{'training_loss': tensor(0.5530, device='cuda:0'), 'train_loss_ce': tensor(0.3390, device='cuda:0'), 'train_loss_bbox': tensor(0.0149, device='cuda:0'), 'train_loss_giou': tensor(0.0698, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5601, device='cuda:0'), 'validation_loss_ce': tensor(0.3095, device='cuda:0'), 'validation_loss_bbox': tensor(0.0167, device='cuda:0'), 'validation_loss_giou': tensor(0.0835, device='cuda:0'), 'validation_cardinality_error': tensor(0.9831, device='cuda:0')}
{'training_loss': tensor(0.6402, device='cuda:0'), 'train_loss_ce': tensor(0.3182, device='cuda:0'), 'train_loss_bbox': tensor(0.0241, device='cuda:0'), 'train_loss_giou': tensor(0.1006, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5789, device='cuda:0'), 'validation_loss_ce': tensor(0.3091, device='cuda:0'), 'validation_loss_bbox': tensor(0.0186, device='cuda:0'), 'validation_loss_giou': tensor(0.0885, device='cuda:0'), 'validation_cardinality_error': tensor(0.9944, device='cuda:0')}
{'training_loss': tensor(0.4211, device='cuda:0'), 'train_loss_ce': tensor(0.2934, device='cuda:0'), 'train_loss_bbox': tensor(0.0150, device='cuda:0'), 'train_loss_giou': tensor(0.0264, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5929, device='cuda:0'), 'validation_loss_ce': tensor(0.3083, device='cuda:0'), 'validation_loss_bbox': tensor(0.0192, device='cuda:0'), 'validation_loss_giou': tensor(0.0942, device='cuda:0'), 'validation_cardinality_error': tensor(1.0056, device='cuda:0')}
{'training_loss': tensor(0.6671, device='cuda:0'), 'train_loss_ce': tensor(0.3263, device='cuda:0'), 'train_loss_bbox': tensor(0.0146, device='cuda:0'), 'train_loss_giou': tensor(0.1339, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5718, device='cuda:0'), 'validation_loss_ce': tensor(0.3078, device='cuda:0'), 'validation_loss_bbox': tensor(0.0179, device='cuda:0'), 'validation_loss_giou': tensor(0.0872, device='cuda:0'), 'validation_cardinality_error': tensor(0.9972, device='cuda:0')}
{'training_loss': tensor(0.5481, device='cuda:0'), 'train_loss_ce': tensor(0.2773, device='cuda:0'), 'train_loss_bbox': tensor(0.0119, device='cuda:0'), 'train_loss_giou': tensor(0.1055, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5596, device='cuda:0'), 'validation_loss_ce': tensor(0.3068, device='cuda:0'), 'validation_loss_bbox': tensor(0.0163, device='cuda:0'), 'validation_loss_giou': tensor(0.0857, device='cuda:0'), 'validation_cardinality_error': tensor(1.0056, device='cuda:0')}
{'training_loss': tensor(0.3410, device='cuda:0'), 'train_loss_ce': tensor(0.1674, device='cuda:0'), 'train_loss_bbox': tensor(0.0114, device='cuda:0'), 'train_loss_giou': tensor(0.0584, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5984, device='cuda:0'), 'validation_loss_ce': tensor(0.3062, device='cuda:0'), 'validation_loss_bbox': tensor(0.0198, device='cuda:0'), 'validation_loss_giou': tensor(0.0965, device='cuda:0'), 'validation_cardinality_error': tensor(0.9915, device='cuda:0')}
{'training_loss': tensor(0.5171, device='cuda:0'), 'train_loss_ce': tensor(0.1539, device='cuda:0'), 'train_loss_bbox': tensor(0.0163, device='cuda:0'), 'train_loss_giou': tensor(0.1409, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5894, device='cuda:0'), 'validation_loss_ce': tensor(0.3044, device='cuda:0'), 'validation_loss_bbox': tensor(0.0192, device='cuda:0'), 'validation_loss_giou': tensor(0.0945, device='cuda:0'), 'validation_cardinality_error': tensor(0.9915, device='cuda:0')}
{'training_loss': tensor(0.6485, device='cuda:0'), 'train_loss_ce': tensor(0.3443, device='cuda:0'), 'train_loss_bbox': tensor(0.0243, device='cuda:0'), 'train_loss_giou': tensor(0.0913, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5598, device='cuda:0'), 'validation_loss_ce': tensor(0.3038, device='cuda:0'), 'validation_loss_bbox': tensor(0.0167, device='cuda:0'), 'validation_loss_giou': tensor(0.0864, device='cuda:0'), 'validation_cardinality_error': tensor(0.9915, device='cuda:0')}
{'training_loss': tensor(0.5791, device='cuda:0'), 'train_loss_ce': tensor(0.3736, device='cuda:0'), 'train_loss_bbox': tensor(0.0113, device='cuda:0'), 'train_loss_giou': tensor(0.0746, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.5822, device='cuda:0'), 'validation_loss_ce': tensor(0.3030, device='cuda:0'), 'validation_loss_bbox': tensor(0.0188, device='cuda:0'), 'validation_loss_giou': tensor(0.0926, device='cuda:0'), 'validation_cardinality_error': tensor(0.9915, device='cuda:0')}
{'training_loss': tensor(0.3037, device='cuda:0'), 'train_loss_ce': tensor(0.1968, device='cuda:0'), 'train_loss_bbox': tensor(0.0098, device='cuda:0'), 'train_loss_giou': tensor(0.0288, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.5651, device='cuda:0'), 'validation_loss_ce': tensor(0.3011, device='cuda:0'), 'validation_loss_bbox': tensor(0.0171, device='cuda:0'), 'validation_loss_giou': tensor(0.0892, device='cuda:0'), 'validation_cardinality_error': tensor(0.9887, device='cuda:0')}
{'training_loss': tensor(0.2895, device='cuda:0'), 'train_loss_ce': tensor(0.1086, device='cuda:0'), 'train_loss_bbox': tensor(0.0155, device='cuda:0'), 'train_loss_giou': tensor(0.0517, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.5853, device='cuda:0'), 'validation_loss_ce': tensor(0.2996, device='cuda:0'), 'validation_loss_bbox': tensor(0.0188, device='cuda:0'), 'validation_loss_giou': tensor(0.0959, device='cuda:0'), 'validation_cardinality_error': tensor(0.9831, device='cuda:0')}
{'training_loss': tensor(0.5623, device='cuda:0'), 'train_loss_ce': tensor(0.3259, device='cuda:0'), 'train_loss_bbox': tensor(0.0182, device='cuda:0'), 'train_loss_giou': tensor(0.0728, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5334, device='cuda:0'), 'validation_loss_ce': tensor(0.2978, device='cuda:0'), 'validation_loss_bbox': tensor(0.0158, device='cuda:0'), 'validation_loss_giou': tensor(0.0782, device='cuda:0'), 'validation_cardinality_error': tensor(0.9831, device='cuda:0')}
{'training_loss': tensor(0.5997, device='cuda:0'), 'train_loss_ce': tensor(0.2707, device='cuda:0'), 'train_loss_bbox': tensor(0.0248, device='cuda:0'), 'train_loss_giou': tensor(0.1025, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5438, device='cuda:0'), 'validation_loss_ce': tensor(0.2976, device='cuda:0'), 'validation_loss_bbox': tensor(0.0164, device='cuda:0'), 'validation_loss_giou': tensor(0.0822, device='cuda:0'), 'validation_cardinality_error': tensor(0.9802, device='cuda:0')}
{'training_loss': tensor(0.4349, device='cuda:0'), 'train_loss_ce': tensor(0.2697, device='cuda:0'), 'train_loss_bbox': tensor(0.0171, device='cuda:0'), 'train_loss_giou': tensor(0.0397, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.5488, device='cuda:0'), 'validation_loss_ce': tensor(0.2963, device='cuda:0'), 'validation_loss_bbox': tensor(0.0170, device='cuda:0'), 'validation_loss_giou': tensor(0.0838, device='cuda:0'), 'validation_cardinality_error': tensor(0.9915, device='cuda:0')}
{'training_loss': tensor(0.3214, device='cuda:0'), 'train_loss_ce': tensor(0.2159, device='cuda:0'), 'train_loss_bbox': tensor(0.0060, device='cuda:0'), 'train_loss_giou': tensor(0.0377, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5370, device='cuda:0'), 'validation_loss_ce': tensor(0.2949, device='cuda:0'), 'validation_loss_bbox': tensor(0.0166, device='cuda:0'), 'validation_loss_giou': tensor(0.0795, device='cuda:0'), 'validation_cardinality_error': tensor(0.9831, device='cuda:0')}
{'training_loss': tensor(0.8083, device='cuda:0'), 'train_loss_ce': tensor(0.4397, device='cuda:0'), 'train_loss_bbox': tensor(0.0220, device='cuda:0'), 'train_loss_giou': tensor(0.1293, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5576, device='cuda:0'), 'validation_loss_ce': tensor(0.2948, device='cuda:0'), 'validation_loss_bbox': tensor(0.0175, device='cuda:0'), 'validation_loss_giou': tensor(0.0876, device='cuda:0'), 'validation_cardinality_error': tensor(1.0113, device='cuda:0')}
{'training_loss': tensor(0.3970, device='cuda:0'), 'train_loss_ce': tensor(0.1569, device='cuda:0'), 'train_loss_bbox': tensor(0.0103, device='cuda:0'), 'train_loss_giou': tensor(0.0943, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5823, device='cuda:0'), 'validation_loss_ce': tensor(0.2932, device='cuda:0'), 'validation_loss_bbox': tensor(0.0190, device='cuda:0'), 'validation_loss_giou': tensor(0.0970, device='cuda:0'), 'validation_cardinality_error': tensor(0.9831, device='cuda:0')}
{'training_loss': tensor(0.3330, device='cuda:0'), 'train_loss_ce': tensor(0.2340, device='cuda:0'), 'train_loss_bbox': tensor(0.0117, device='cuda:0'), 'train_loss_giou': tensor(0.0204, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5618, device='cuda:0'), 'validation_loss_ce': tensor(0.2920, device='cuda:0'), 'validation_loss_bbox': tensor(0.0175, device='cuda:0'), 'validation_loss_giou': tensor(0.0910, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.5307, device='cuda:0'), 'train_loss_ce': tensor(0.3345, device='cuda:0'), 'train_loss_bbox': tensor(0.0121, device='cuda:0'), 'train_loss_giou': tensor(0.0678, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5525, device='cuda:0'), 'validation_loss_ce': tensor(0.2911, device='cuda:0'), 'validation_loss_bbox': tensor(0.0172, device='cuda:0'), 'validation_loss_giou': tensor(0.0878, device='cuda:0'), 'validation_cardinality_error': tensor(0.9887, device='cuda:0')}
{'training_loss': tensor(0.5408, device='cuda:0'), 'train_loss_ce': tensor(0.2653, device='cuda:0'), 'train_loss_bbox': tensor(0.0262, device='cuda:0'), 'train_loss_giou': tensor(0.0722, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5337, device='cuda:0'), 'validation_loss_ce': tensor(0.2904, device='cuda:0'), 'validation_loss_bbox': tensor(0.0157, device='cuda:0'), 'validation_loss_giou': tensor(0.0823, device='cuda:0'), 'validation_cardinality_error': tensor(0.9859, device='cuda:0')}
{'training_loss': tensor(0.4474, device='cuda:0'), 'train_loss_ce': tensor(0.3158, device='cuda:0'), 'train_loss_bbox': tensor(0.0069, device='cuda:0'), 'train_loss_giou': tensor(0.0485, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.5436, device='cuda:0'), 'validation_loss_ce': tensor(0.2887, device='cuda:0'), 'validation_loss_bbox': tensor(0.0169, device='cuda:0'), 'validation_loss_giou': tensor(0.0853, device='cuda:0'), 'validation_cardinality_error': tensor(0.9802, device='cuda:0')}
{'training_loss': tensor(0.3930, device='cuda:0'), 'train_loss_ce': tensor(0.2461, device='cuda:0'), 'train_loss_bbox': tensor(0.0104, device='cuda:0'), 'train_loss_giou': tensor(0.0474, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5443, device='cuda:0'), 'validation_loss_ce': tensor(0.2886, device='cuda:0'), 'validation_loss_bbox': tensor(0.0165, device='cuda:0'), 'validation_loss_giou': tensor(0.0866, device='cuda:0'), 'validation_cardinality_error': tensor(0.9944, device='cuda:0')}
{'training_loss': tensor(0.5092, device='cuda:0'), 'train_loss_ce': tensor(0.2740, device='cuda:0'), 'train_loss_bbox': tensor(0.0108, device='cuda:0'), 'train_loss_giou': tensor(0.0905, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5268, device='cuda:0'), 'validation_loss_ce': tensor(0.2860, device='cuda:0'), 'validation_loss_bbox': tensor(0.0156, device='cuda:0'), 'validation_loss_giou': tensor(0.0813, device='cuda:0'), 'validation_cardinality_error': tensor(0.9859, device='cuda:0')}
{'training_loss': tensor(0.4967, device='cuda:0'), 'train_loss_ce': tensor(0.2260, device='cuda:0'), 'train_loss_bbox': tensor(0.0133, device='cuda:0'), 'train_loss_giou': tensor(0.1020, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5339, device='cuda:0'), 'validation_loss_ce': tensor(0.2868, device='cuda:0'), 'validation_loss_bbox': tensor(0.0164, device='cuda:0'), 'validation_loss_giou': tensor(0.0825, device='cuda:0'), 'validation_cardinality_error': tensor(1.0056, device='cuda:0')}
{'training_loss': tensor(0.3594, device='cuda:0'), 'train_loss_ce': tensor(0.2028, device='cuda:0'), 'train_loss_bbox': tensor(0.0111, device='cuda:0'), 'train_loss_giou': tensor(0.0505, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5483, device='cuda:0'), 'validation_loss_ce': tensor(0.2841, device='cuda:0'), 'validation_loss_bbox': tensor(0.0178, device='cuda:0'), 'validation_loss_giou': tensor(0.0876, device='cuda:0'), 'validation_cardinality_error': tensor(1.0141, device='cuda:0')}
{'training_loss': tensor(0.5633, device='cuda:0'), 'train_loss_ce': tensor(0.4270, device='cuda:0'), 'train_loss_bbox': tensor(0.0096, device='cuda:0'), 'train_loss_giou': tensor(0.0442, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5344, device='cuda:0'), 'validation_loss_ce': tensor(0.2835, device='cuda:0'), 'validation_loss_bbox': tensor(0.0168, device='cuda:0'), 'validation_loss_giou': tensor(0.0835, device='cuda:0'), 'validation_cardinality_error': tensor(1.0056, device='cuda:0')}
{'training_loss': tensor(0.5099, device='cuda:0'), 'train_loss_ce': tensor(0.3017, device='cuda:0'), 'train_loss_bbox': tensor(0.0096, device='cuda:0'), 'train_loss_giou': tensor(0.0800, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5163, device='cuda:0'), 'validation_loss_ce': tensor(0.2825, device='cuda:0'), 'validation_loss_bbox': tensor(0.0157, device='cuda:0'), 'validation_loss_giou': tensor(0.0777, device='cuda:0'), 'validation_cardinality_error': tensor(0.9972, device='cuda:0')}
{'training_loss': tensor(0.3367, device='cuda:0'), 'train_loss_ce': tensor(0.2594, device='cuda:0'), 'train_loss_bbox': tensor(0.0085, device='cuda:0'), 'train_loss_giou': tensor(0.0174, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.5142, device='cuda:0'), 'validation_loss_ce': tensor(0.2824, device='cuda:0'), 'validation_loss_bbox': tensor(0.0161, device='cuda:0'), 'validation_loss_giou': tensor(0.0758, device='cuda:0'), 'validation_cardinality_error': tensor(0.9972, device='cuda:0')}
{'training_loss': tensor(0.5607, device='cuda:0'), 'train_loss_ce': tensor(0.1930, device='cuda:0'), 'train_loss_bbox': tensor(0.0157, device='cuda:0'), 'train_loss_giou': tensor(0.1445, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5099, device='cuda:0'), 'validation_loss_ce': tensor(0.2801, device='cuda:0'), 'validation_loss_bbox': tensor(0.0154, device='cuda:0'), 'validation_loss_giou': tensor(0.0763, device='cuda:0'), 'validation_cardinality_error': tensor(0.9944, device='cuda:0')}
{'training_loss': tensor(0.4420, device='cuda:0'), 'train_loss_ce': tensor(0.2418, device='cuda:0'), 'train_loss_bbox': tensor(0.0176, device='cuda:0'), 'train_loss_giou': tensor(0.0561, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5195, device='cuda:0'), 'validation_loss_ce': tensor(0.2793, device='cuda:0'), 'validation_loss_bbox': tensor(0.0157, device='cuda:0'), 'validation_loss_giou': tensor(0.0810, device='cuda:0'), 'validation_cardinality_error': tensor(1.0056, device='cuda:0')}
{'training_loss': tensor(0.3266, device='cuda:0'), 'train_loss_ce': tensor(0.1958, device='cuda:0'), 'train_loss_bbox': tensor(0.0069, device='cuda:0'), 'train_loss_giou': tensor(0.0482, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.5054, device='cuda:0'), 'validation_loss_ce': tensor(0.2779, device='cuda:0'), 'validation_loss_bbox': tensor(0.0146, device='cuda:0'), 'validation_loss_giou': tensor(0.0772, device='cuda:0'), 'validation_cardinality_error': tensor(0.9915, device='cuda:0')}
{'training_loss': tensor(0.4665, device='cuda:0'), 'train_loss_ce': tensor(0.2910, device='cuda:0'), 'train_loss_bbox': tensor(0.0096, device='cuda:0'), 'train_loss_giou': tensor(0.0638, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4897, device='cuda:0'), 'validation_loss_ce': tensor(0.2771, device='cuda:0'), 'validation_loss_bbox': tensor(0.0137, device='cuda:0'), 'validation_loss_giou': tensor(0.0722, device='cuda:0'), 'validation_cardinality_error': tensor(1.0056, device='cuda:0')}
{'training_loss': tensor(0.4010, device='cuda:0'), 'train_loss_ce': tensor(0.2074, device='cuda:0'), 'train_loss_bbox': tensor(0.0130, device='cuda:0'), 'train_loss_giou': tensor(0.0642, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4980, device='cuda:0'), 'validation_loss_ce': tensor(0.2761, device='cuda:0'), 'validation_loss_bbox': tensor(0.0142, device='cuda:0'), 'validation_loss_giou': tensor(0.0754, device='cuda:0'), 'validation_cardinality_error': tensor(0.9944, device='cuda:0')}
{'training_loss': tensor(0.4023, device='cuda:0'), 'train_loss_ce': tensor(0.2134, device='cuda:0'), 'train_loss_bbox': tensor(0.0163, device='cuda:0'), 'train_loss_giou': tensor(0.0538, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4886, device='cuda:0'), 'validation_loss_ce': tensor(0.2750, device='cuda:0'), 'validation_loss_bbox': tensor(0.0142, device='cuda:0'), 'validation_loss_giou': tensor(0.0712, device='cuda:0'), 'validation_cardinality_error': tensor(0.9802, device='cuda:0')}
{'training_loss': tensor(0.7348, device='cuda:0'), 'train_loss_ce': tensor(0.1876, device='cuda:0'), 'train_loss_bbox': tensor(0.0444, device='cuda:0'), 'train_loss_giou': tensor(0.1626, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4952, device='cuda:0'), 'validation_loss_ce': tensor(0.2736, device='cuda:0'), 'validation_loss_bbox': tensor(0.0139, device='cuda:0'), 'validation_loss_giou': tensor(0.0761, device='cuda:0'), 'validation_cardinality_error': tensor(1.0339, device='cuda:0')}
{'training_loss': tensor(0.4690, device='cuda:0'), 'train_loss_ce': tensor(0.3036, device='cuda:0'), 'train_loss_bbox': tensor(0.0067, device='cuda:0'), 'train_loss_giou': tensor(0.0659, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5091, device='cuda:0'), 'validation_loss_ce': tensor(0.2728, device='cuda:0'), 'validation_loss_bbox': tensor(0.0154, device='cuda:0'), 'validation_loss_giou': tensor(0.0797, device='cuda:0'), 'validation_cardinality_error': tensor(1.0254, device='cuda:0')}
{'training_loss': tensor(0.4075, device='cuda:0'), 'train_loss_ce': tensor(0.2150, device='cuda:0'), 'train_loss_bbox': tensor(0.0157, device='cuda:0'), 'train_loss_giou': tensor(0.0571, device='cuda:0'), 'train_cardinality_error': tensor(3., device='cuda:0'), 'validation_loss': tensor(0.5060, device='cuda:0'), 'validation_loss_ce': tensor(0.2727, device='cuda:0'), 'validation_loss_bbox': tensor(0.0148, device='cuda:0'), 'validation_loss_giou': tensor(0.0795, device='cuda:0'), 'validation_cardinality_error': tensor(1.0198, device='cuda:0')}
{'training_loss': tensor(0.4680, device='cuda:0'), 'train_loss_ce': tensor(0.3164, device='cuda:0'), 'train_loss_bbox': tensor(0.0163, device='cuda:0'), 'train_loss_giou': tensor(0.0350, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4880, device='cuda:0'), 'validation_loss_ce': tensor(0.2712, device='cuda:0'), 'validation_loss_bbox': tensor(0.0143, device='cuda:0'), 'validation_loss_giou': tensor(0.0728, device='cuda:0'), 'validation_cardinality_error': tensor(1.0113, device='cuda:0')}
{'training_loss': tensor(0.6581, device='cuda:0'), 'train_loss_ce': tensor(0.1967, device='cuda:0'), 'train_loss_bbox': tensor(0.0233, device='cuda:0'), 'train_loss_giou': tensor(0.1724, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5176, device='cuda:0'), 'validation_loss_ce': tensor(0.2699, device='cuda:0'), 'validation_loss_bbox': tensor(0.0165, device='cuda:0'), 'validation_loss_giou': tensor(0.0827, device='cuda:0'), 'validation_cardinality_error': tensor(1.0141, device='cuda:0')}
{'training_loss': tensor(0.7527, device='cuda:0'), 'train_loss_ce': tensor(0.2976, device='cuda:0'), 'train_loss_bbox': tensor(0.0146, device='cuda:0'), 'train_loss_giou': tensor(0.1911, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5254, device='cuda:0'), 'validation_loss_ce': tensor(0.2685, device='cuda:0'), 'validation_loss_bbox': tensor(0.0175, device='cuda:0'), 'validation_loss_giou': tensor(0.0846, device='cuda:0'), 'validation_cardinality_error': tensor(1.0226, device='cuda:0')}
{'training_loss': tensor(0.4938, device='cuda:0'), 'train_loss_ce': tensor(0.2954, device='cuda:0'), 'train_loss_bbox': tensor(0.0178, device='cuda:0'), 'train_loss_giou': tensor(0.0547, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5341, device='cuda:0'), 'validation_loss_ce': tensor(0.2695, device='cuda:0'), 'validation_loss_bbox': tensor(0.0175, device='cuda:0'), 'validation_loss_giou': tensor(0.0886, device='cuda:0'), 'validation_cardinality_error': tensor(1.0085, device='cuda:0')}
{'training_loss': tensor(0.7917, device='cuda:0'), 'train_loss_ce': tensor(0.3599, device='cuda:0'), 'train_loss_bbox': tensor(0.0342, device='cuda:0'), 'train_loss_giou': tensor(0.1305, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5032, device='cuda:0'), 'validation_loss_ce': tensor(0.2653, device='cuda:0'), 'validation_loss_bbox': tensor(0.0158, device='cuda:0'), 'validation_loss_giou': tensor(0.0796, device='cuda:0'), 'validation_cardinality_error': tensor(1.0113, device='cuda:0')}
{'training_loss': tensor(0.4280, device='cuda:0'), 'train_loss_ce': tensor(0.3173, device='cuda:0'), 'train_loss_bbox': tensor(0.0070, device='cuda:0'), 'train_loss_giou': tensor(0.0378, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4944, device='cuda:0'), 'validation_loss_ce': tensor(0.2651, device='cuda:0'), 'validation_loss_bbox': tensor(0.0154, device='cuda:0'), 'validation_loss_giou': tensor(0.0761, device='cuda:0'), 'validation_cardinality_error': tensor(1.0141, device='cuda:0')}
{'training_loss': tensor(0.7803, device='cuda:0'), 'train_loss_ce': tensor(0.2124, device='cuda:0'), 'train_loss_bbox': tensor(0.0406, device='cuda:0'), 'train_loss_giou': tensor(0.1824, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5084, device='cuda:0'), 'validation_loss_ce': tensor(0.2636, device='cuda:0'), 'validation_loss_bbox': tensor(0.0160, device='cuda:0'), 'validation_loss_giou': tensor(0.0825, device='cuda:0'), 'validation_cardinality_error': tensor(1.0028, device='cuda:0')}
{'training_loss': tensor(0.4029, device='cuda:0'), 'train_loss_ce': tensor(0.3269, device='cuda:0'), 'train_loss_bbox': tensor(0.0043, device='cuda:0'), 'train_loss_giou': tensor(0.0272, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4940, device='cuda:0'), 'validation_loss_ce': tensor(0.2635, device='cuda:0'), 'validation_loss_bbox': tensor(0.0152, device='cuda:0'), 'validation_loss_giou': tensor(0.0774, device='cuda:0'), 'validation_cardinality_error': tensor(0.9972, device='cuda:0')}
{'training_loss': tensor(0.3239, device='cuda:0'), 'train_loss_ce': tensor(0.2129, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0331, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.5060, device='cuda:0'), 'validation_loss_ce': tensor(0.2632, device='cuda:0'), 'validation_loss_bbox': tensor(0.0164, device='cuda:0'), 'validation_loss_giou': tensor(0.0803, device='cuda:0'), 'validation_cardinality_error': tensor(1.0056, device='cuda:0')}
{'training_loss': tensor(0.5378, device='cuda:0'), 'train_loss_ce': tensor(0.3899, device='cuda:0'), 'train_loss_bbox': tensor(0.0137, device='cuda:0'), 'train_loss_giou': tensor(0.0398, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5004, device='cuda:0'), 'validation_loss_ce': tensor(0.2611, device='cuda:0'), 'validation_loss_bbox': tensor(0.0154, device='cuda:0'), 'validation_loss_giou': tensor(0.0811, device='cuda:0'), 'validation_cardinality_error': tensor(1.0028, device='cuda:0')}
{'training_loss': tensor(0.4328, device='cuda:0'), 'train_loss_ce': tensor(0.2749, device='cuda:0'), 'train_loss_bbox': tensor(0.0089, device='cuda:0'), 'train_loss_giou': tensor(0.0567, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4929, device='cuda:0'), 'validation_loss_ce': tensor(0.2605, device='cuda:0'), 'validation_loss_bbox': tensor(0.0157, device='cuda:0'), 'validation_loss_giou': tensor(0.0769, device='cuda:0'), 'validation_cardinality_error': tensor(1.0056, device='cuda:0')}
{'training_loss': tensor(0.3611, device='cuda:0'), 'train_loss_ce': tensor(0.2473, device='cuda:0'), 'train_loss_bbox': tensor(0.0079, device='cuda:0'), 'train_loss_giou': tensor(0.0372, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.4968, device='cuda:0'), 'validation_loss_ce': tensor(0.2592, device='cuda:0'), 'validation_loss_bbox': tensor(0.0151, device='cuda:0'), 'validation_loss_giou': tensor(0.0811, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.4125, device='cuda:0'), 'train_loss_ce': tensor(0.2119, device='cuda:0'), 'train_loss_bbox': tensor(0.0087, device='cuda:0'), 'train_loss_giou': tensor(0.0787, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4876, device='cuda:0'), 'validation_loss_ce': tensor(0.2570, device='cuda:0'), 'validation_loss_bbox': tensor(0.0148, device='cuda:0'), 'validation_loss_giou': tensor(0.0783, device='cuda:0'), 'validation_cardinality_error': tensor(1.0028, device='cuda:0')}
{'training_loss': tensor(0.6781, device='cuda:0'), 'train_loss_ce': tensor(0.4104, device='cuda:0'), 'train_loss_bbox': tensor(0.0137, device='cuda:0'), 'train_loss_giou': tensor(0.0995, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.5017, device='cuda:0'), 'validation_loss_ce': tensor(0.2576, device='cuda:0'), 'validation_loss_bbox': tensor(0.0154, device='cuda:0'), 'validation_loss_giou': tensor(0.0834, device='cuda:0'), 'validation_cardinality_error': tensor(0.9972, device='cuda:0')}
{'training_loss': tensor(0.5810, device='cuda:0'), 'train_loss_ce': tensor(0.3531, device='cuda:0'), 'train_loss_bbox': tensor(0.0095, device='cuda:0'), 'train_loss_giou': tensor(0.0902, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4857, device='cuda:0'), 'validation_loss_ce': tensor(0.2557, device='cuda:0'), 'validation_loss_bbox': tensor(0.0150, device='cuda:0'), 'validation_loss_giou': tensor(0.0774, device='cuda:0'), 'validation_cardinality_error': tensor(0.9944, device='cuda:0')}
{'training_loss': tensor(0.3129, device='cuda:0'), 'train_loss_ce': tensor(0.2460, device='cuda:0'), 'train_loss_bbox': tensor(0.0072, device='cuda:0'), 'train_loss_giou': tensor(0.0155, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4865, device='cuda:0'), 'validation_loss_ce': tensor(0.2554, device='cuda:0'), 'validation_loss_bbox': tensor(0.0151, device='cuda:0'), 'validation_loss_giou': tensor(0.0777, device='cuda:0'), 'validation_cardinality_error': tensor(0.9887, device='cuda:0')}
{'training_loss': tensor(0.4965, device='cuda:0'), 'train_loss_ce': tensor(0.2018, device='cuda:0'), 'train_loss_bbox': tensor(0.0118, device='cuda:0'), 'train_loss_giou': tensor(0.1178, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4771, device='cuda:0'), 'validation_loss_ce': tensor(0.2535, device='cuda:0'), 'validation_loss_bbox': tensor(0.0144, device='cuda:0'), 'validation_loss_giou': tensor(0.0758, device='cuda:0'), 'validation_cardinality_error': tensor(0.9915, device='cuda:0')}
{'training_loss': tensor(0.5452, device='cuda:0'), 'train_loss_ce': tensor(0.1826, device='cuda:0'), 'train_loss_bbox': tensor(0.0199, device='cuda:0'), 'train_loss_giou': tensor(0.1316, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.4882, device='cuda:0'), 'validation_loss_ce': tensor(0.2514, device='cuda:0'), 'validation_loss_bbox': tensor(0.0153, device='cuda:0'), 'validation_loss_giou': tensor(0.0801, device='cuda:0'), 'validation_cardinality_error': tensor(0.9944, device='cuda:0')}
{'training_loss': tensor(0.4677, device='cuda:0'), 'train_loss_ce': tensor(0.2680, device='cuda:0'), 'train_loss_bbox': tensor(0.0092, device='cuda:0'), 'train_loss_giou': tensor(0.0769, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4977, device='cuda:0'), 'validation_loss_ce': tensor(0.2513, device='cuda:0'), 'validation_loss_bbox': tensor(0.0154, device='cuda:0'), 'validation_loss_giou': tensor(0.0848, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(0.6057, device='cuda:0'), 'train_loss_ce': tensor(0.1413, device='cuda:0'), 'train_loss_bbox': tensor(0.0076, device='cuda:0'), 'train_loss_giou': tensor(0.2133, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4784, device='cuda:0'), 'validation_loss_ce': tensor(0.2503, device='cuda:0'), 'validation_loss_bbox': tensor(0.0148, device='cuda:0'), 'validation_loss_giou': tensor(0.0770, device='cuda:0'), 'validation_cardinality_error': tensor(0.9774, device='cuda:0')}
{'training_loss': tensor(0.3170, device='cuda:0'), 'train_loss_ce': tensor(0.1884, device='cuda:0'), 'train_loss_bbox': tensor(0.0105, device='cuda:0'), 'train_loss_giou': tensor(0.0381, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4831, device='cuda:0'), 'validation_loss_ce': tensor(0.2498, device='cuda:0'), 'validation_loss_bbox': tensor(0.0151, device='cuda:0'), 'validation_loss_giou': tensor(0.0790, device='cuda:0'), 'validation_cardinality_error': tensor(1.0028, device='cuda:0')}
{'training_loss': tensor(0.5370, device='cuda:0'), 'train_loss_ce': tensor(0.2267, device='cuda:0'), 'train_loss_bbox': tensor(0.0107, device='cuda:0'), 'train_loss_giou': tensor(0.1284, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4754, device='cuda:0'), 'validation_loss_ce': tensor(0.2476, device='cuda:0'), 'validation_loss_bbox': tensor(0.0151, device='cuda:0'), 'validation_loss_giou': tensor(0.0762, device='cuda:0'), 'validation_cardinality_error': tensor(0.9887, device='cuda:0')}
{'training_loss': tensor(0.4154, device='cuda:0'), 'train_loss_ce': tensor(0.2664, device='cuda:0'), 'train_loss_bbox': tensor(0.0129, device='cuda:0'), 'train_loss_giou': tensor(0.0423, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.4778, device='cuda:0'), 'validation_loss_ce': tensor(0.2478, device='cuda:0'), 'validation_loss_bbox': tensor(0.0151, device='cuda:0'), 'validation_loss_giou': tensor(0.0772, device='cuda:0'), 'validation_cardinality_error': tensor(1.0113, device='cuda:0')}
{'training_loss': tensor(0.5342, device='cuda:0'), 'train_loss_ce': tensor(0.2316, device='cuda:0'), 'train_loss_bbox': tensor(0.0227, device='cuda:0'), 'train_loss_giou': tensor(0.0946, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4676, device='cuda:0'), 'validation_loss_ce': tensor(0.2456, device='cuda:0'), 'validation_loss_bbox': tensor(0.0144, device='cuda:0'), 'validation_loss_giou': tensor(0.0751, device='cuda:0'), 'validation_cardinality_error': tensor(0.9887, device='cuda:0')}
{'training_loss': tensor(0.3724, device='cuda:0'), 'train_loss_ce': tensor(0.1909, device='cuda:0'), 'train_loss_bbox': tensor(0.0157, device='cuda:0'), 'train_loss_giou': tensor(0.0515, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4703, device='cuda:0'), 'validation_loss_ce': tensor(0.2457, device='cuda:0'), 'validation_loss_bbox': tensor(0.0141, device='cuda:0'), 'validation_loss_giou': tensor(0.0771, device='cuda:0'), 'validation_cardinality_error': tensor(0.9887, device='cuda:0')}
{'training_loss': tensor(0.4930, device='cuda:0'), 'train_loss_ce': tensor(0.3539, device='cuda:0'), 'train_loss_bbox': tensor(0.0114, device='cuda:0'), 'train_loss_giou': tensor(0.0411, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4574, device='cuda:0'), 'validation_loss_ce': tensor(0.2428, device='cuda:0'), 'validation_loss_bbox': tensor(0.0136, device='cuda:0'), 'validation_loss_giou': tensor(0.0734, device='cuda:0'), 'validation_cardinality_error': tensor(0.9689, device='cuda:0')}
{'training_loss': tensor(0.3136, device='cuda:0'), 'train_loss_ce': tensor(0.1788, device='cuda:0'), 'train_loss_bbox': tensor(0.0066, device='cuda:0'), 'train_loss_giou': tensor(0.0510, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4530, device='cuda:0'), 'validation_loss_ce': tensor(0.2428, device='cuda:0'), 'validation_loss_bbox': tensor(0.0135, device='cuda:0'), 'validation_loss_giou': tensor(0.0714, device='cuda:0'), 'validation_cardinality_error': tensor(0.9746, device='cuda:0')}
{'training_loss': tensor(0.3288, device='cuda:0'), 'train_loss_ce': tensor(0.2170, device='cuda:0'), 'train_loss_bbox': tensor(0.0106, device='cuda:0'), 'train_loss_giou': tensor(0.0294, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4650, device='cuda:0'), 'validation_loss_ce': tensor(0.2423, device='cuda:0'), 'validation_loss_bbox': tensor(0.0141, device='cuda:0'), 'validation_loss_giou': tensor(0.0760, device='cuda:0'), 'validation_cardinality_error': tensor(1.0141, device='cuda:0')}
{'training_loss': tensor(0.3506, device='cuda:0'), 'train_loss_ce': tensor(0.2362, device='cuda:0'), 'train_loss_bbox': tensor(0.0120, device='cuda:0'), 'train_loss_giou': tensor(0.0272, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4274, device='cuda:0'), 'validation_loss_ce': tensor(0.2394, device='cuda:0'), 'validation_loss_bbox': tensor(0.0121, device='cuda:0'), 'validation_loss_giou': tensor(0.0638, device='cuda:0'), 'validation_cardinality_error': tensor(0.9915, device='cuda:0')}
{'training_loss': tensor(0.4434, device='cuda:0'), 'train_loss_ce': tensor(0.2611, device='cuda:0'), 'train_loss_bbox': tensor(0.0189, device='cuda:0'), 'train_loss_giou': tensor(0.0439, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4556, device='cuda:0'), 'validation_loss_ce': tensor(0.2395, device='cuda:0'), 'validation_loss_bbox': tensor(0.0136, device='cuda:0'), 'validation_loss_giou': tensor(0.0740, device='cuda:0'), 'validation_cardinality_error': tensor(0.9944, device='cuda:0')}
{'training_loss': tensor(0.4735, device='cuda:0'), 'train_loss_ce': tensor(0.2285, device='cuda:0'), 'train_loss_bbox': tensor(0.0124, device='cuda:0'), 'train_loss_giou': tensor(0.0915, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.4386, device='cuda:0'), 'validation_loss_ce': tensor(0.2372, device='cuda:0'), 'validation_loss_bbox': tensor(0.0130, device='cuda:0'), 'validation_loss_giou': tensor(0.0682, device='cuda:0'), 'validation_cardinality_error': tensor(0.9774, device='cuda:0')}
{'training_loss': tensor(0.5744, device='cuda:0'), 'train_loss_ce': tensor(0.2357, device='cuda:0'), 'train_loss_bbox': tensor(0.0140, device='cuda:0'), 'train_loss_giou': tensor(0.1344, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4286, device='cuda:0'), 'validation_loss_ce': tensor(0.2369, device='cuda:0'), 'validation_loss_bbox': tensor(0.0127, device='cuda:0'), 'validation_loss_giou': tensor(0.0640, device='cuda:0'), 'validation_cardinality_error': tensor(0.9831, device='cuda:0')}
{'training_loss': tensor(0.3283, device='cuda:0'), 'train_loss_ce': tensor(0.2319, device='cuda:0'), 'train_loss_bbox': tensor(0.0071, device='cuda:0'), 'train_loss_giou': tensor(0.0304, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4198, device='cuda:0'), 'validation_loss_ce': tensor(0.2357, device='cuda:0'), 'validation_loss_bbox': tensor(0.0119, device='cuda:0'), 'validation_loss_giou': tensor(0.0622, device='cuda:0'), 'validation_cardinality_error': tensor(0.9661, device='cuda:0')}
{'training_loss': tensor(0.5077, device='cuda:0'), 'train_loss_ce': tensor(0.3446, device='cuda:0'), 'train_loss_bbox': tensor(0.0112, device='cuda:0'), 'train_loss_giou': tensor(0.0534, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4280, device='cuda:0'), 'validation_loss_ce': tensor(0.2347, device='cuda:0'), 'validation_loss_bbox': tensor(0.0125, device='cuda:0'), 'validation_loss_giou': tensor(0.0653, device='cuda:0'), 'validation_cardinality_error': tensor(0.9548, device='cuda:0')}
{'training_loss': tensor(0.2455, device='cuda:0'), 'train_loss_ce': tensor(0.1605, device='cuda:0'), 'train_loss_bbox': tensor(0.0049, device='cuda:0'), 'train_loss_giou': tensor(0.0302, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4229, device='cuda:0'), 'validation_loss_ce': tensor(0.2329, device='cuda:0'), 'validation_loss_bbox': tensor(0.0120, device='cuda:0'), 'validation_loss_giou': tensor(0.0651, device='cuda:0'), 'validation_cardinality_error': tensor(0.9633, device='cuda:0')}
{'training_loss': tensor(0.4251, device='cuda:0'), 'train_loss_ce': tensor(0.2773, device='cuda:0'), 'train_loss_bbox': tensor(0.0059, device='cuda:0'), 'train_loss_giou': tensor(0.0591, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4557, device='cuda:0'), 'validation_loss_ce': tensor(0.2316, device='cuda:0'), 'validation_loss_bbox': tensor(0.0143, device='cuda:0'), 'validation_loss_giou': tensor(0.0763, device='cuda:0'), 'validation_cardinality_error': tensor(0.9407, device='cuda:0')}
{'training_loss': tensor(0.3917, device='cuda:0'), 'train_loss_ce': tensor(0.2601, device='cuda:0'), 'train_loss_bbox': tensor(0.0132, device='cuda:0'), 'train_loss_giou': tensor(0.0328, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4637, device='cuda:0'), 'validation_loss_ce': tensor(0.2298, device='cuda:0'), 'validation_loss_bbox': tensor(0.0143, device='cuda:0'), 'validation_loss_giou': tensor(0.0812, device='cuda:0'), 'validation_cardinality_error': tensor(0.9605, device='cuda:0')}
{'training_loss': tensor(0.6254, device='cuda:0'), 'train_loss_ce': tensor(0.1800, device='cuda:0'), 'train_loss_bbox': tensor(0.0118, device='cuda:0'), 'train_loss_giou': tensor(0.1933, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4453, device='cuda:0'), 'validation_loss_ce': tensor(0.2286, device='cuda:0'), 'validation_loss_bbox': tensor(0.0144, device='cuda:0'), 'validation_loss_giou': tensor(0.0724, device='cuda:0'), 'validation_cardinality_error': tensor(0.9520, device='cuda:0')}
{'training_loss': tensor(0.4439, device='cuda:0'), 'train_loss_ce': tensor(0.1809, device='cuda:0'), 'train_loss_bbox': tensor(0.0170, device='cuda:0'), 'train_loss_giou': tensor(0.0890, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4466, device='cuda:0'), 'validation_loss_ce': tensor(0.2278, device='cuda:0'), 'validation_loss_bbox': tensor(0.0138, device='cuda:0'), 'validation_loss_giou': tensor(0.0750, device='cuda:0'), 'validation_cardinality_error': tensor(1.0028, device='cuda:0')}
{'training_loss': tensor(0.2767, device='cuda:0'), 'train_loss_ce': tensor(0.0954, device='cuda:0'), 'train_loss_bbox': tensor(0.0168, device='cuda:0'), 'train_loss_giou': tensor(0.0488, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4247, device='cuda:0'), 'validation_loss_ce': tensor(0.2263, device='cuda:0'), 'validation_loss_bbox': tensor(0.0131, device='cuda:0'), 'validation_loss_giou': tensor(0.0666, device='cuda:0'), 'validation_cardinality_error': tensor(0.9294, device='cuda:0')}
{'training_loss': tensor(0.5348, device='cuda:0'), 'train_loss_ce': tensor(0.3401, device='cuda:0'), 'train_loss_bbox': tensor(0.0184, device='cuda:0'), 'train_loss_giou': tensor(0.0513, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4481, device='cuda:0'), 'validation_loss_ce': tensor(0.2263, device='cuda:0'), 'validation_loss_bbox': tensor(0.0148, device='cuda:0'), 'validation_loss_giou': tensor(0.0738, device='cuda:0'), 'validation_cardinality_error': tensor(0.9859, device='cuda:0')}
{'training_loss': tensor(0.4516, device='cuda:0'), 'train_loss_ce': tensor(0.2696, device='cuda:0'), 'train_loss_bbox': tensor(0.0156, device='cuda:0'), 'train_loss_giou': tensor(0.0520, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.4342, device='cuda:0'), 'validation_loss_ce': tensor(0.2244, device='cuda:0'), 'validation_loss_bbox': tensor(0.0139, device='cuda:0'), 'validation_loss_giou': tensor(0.0702, device='cuda:0'), 'validation_cardinality_error': tensor(0.9605, device='cuda:0')}
{'training_loss': tensor(0.2531, device='cuda:0'), 'train_loss_ce': tensor(0.1036, device='cuda:0'), 'train_loss_bbox': tensor(0.0158, device='cuda:0'), 'train_loss_giou': tensor(0.0352, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.4295, device='cuda:0'), 'validation_loss_ce': tensor(0.2235, device='cuda:0'), 'validation_loss_bbox': tensor(0.0131, device='cuda:0'), 'validation_loss_giou': tensor(0.0702, device='cuda:0'), 'validation_cardinality_error': tensor(0.9435, device='cuda:0')}
{'training_loss': tensor(0.2882, device='cuda:0'), 'train_loss_ce': tensor(0.1498, device='cuda:0'), 'train_loss_bbox': tensor(0.0126, device='cuda:0'), 'train_loss_giou': tensor(0.0378, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4294, device='cuda:0'), 'validation_loss_ce': tensor(0.2221, device='cuda:0'), 'validation_loss_bbox': tensor(0.0129, device='cuda:0'), 'validation_loss_giou': tensor(0.0715, device='cuda:0'), 'validation_cardinality_error': tensor(0.9859, device='cuda:0')}
{'training_loss': tensor(0.7481, device='cuda:0'), 'train_loss_ce': tensor(0.3661, device='cuda:0'), 'train_loss_bbox': tensor(0.0234, device='cuda:0'), 'train_loss_giou': tensor(0.1325, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4559, device='cuda:0'), 'validation_loss_ce': tensor(0.2218, device='cuda:0'), 'validation_loss_bbox': tensor(0.0151, device='cuda:0'), 'validation_loss_giou': tensor(0.0793, device='cuda:0'), 'validation_cardinality_error': tensor(0.9379, device='cuda:0')}
{'training_loss': tensor(0.4639, device='cuda:0'), 'train_loss_ce': tensor(0.1268, device='cuda:0'), 'train_loss_bbox': tensor(0.0110, device='cuda:0'), 'train_loss_giou': tensor(0.1411, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4199, device='cuda:0'), 'validation_loss_ce': tensor(0.2208, device='cuda:0'), 'validation_loss_bbox': tensor(0.0129, device='cuda:0'), 'validation_loss_giou': tensor(0.0673, device='cuda:0'), 'validation_cardinality_error': tensor(0.9944, device='cuda:0')}
{'training_loss': tensor(0.8033, device='cuda:0'), 'train_loss_ce': tensor(0.1084, device='cuda:0'), 'train_loss_bbox': tensor(0.0227, device='cuda:0'), 'train_loss_giou': tensor(0.2907, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4165, device='cuda:0'), 'validation_loss_ce': tensor(0.2191, device='cuda:0'), 'validation_loss_bbox': tensor(0.0133, device='cuda:0'), 'validation_loss_giou': tensor(0.0653, device='cuda:0'), 'validation_cardinality_error': tensor(0.9548, device='cuda:0')}
{'training_loss': tensor(0.4374, device='cuda:0'), 'train_loss_ce': tensor(0.3232, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.0363, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4195, device='cuda:0'), 'validation_loss_ce': tensor(0.2180, device='cuda:0'), 'validation_loss_bbox': tensor(0.0129, device='cuda:0'), 'validation_loss_giou': tensor(0.0686, device='cuda:0'), 'validation_cardinality_error': tensor(0.9435, device='cuda:0')}
{'training_loss': tensor(0.3737, device='cuda:0'), 'train_loss_ce': tensor(0.2628, device='cuda:0'), 'train_loss_bbox': tensor(0.0132, device='cuda:0'), 'train_loss_giou': tensor(0.0225, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3971, device='cuda:0'), 'validation_loss_ce': tensor(0.2168, device='cuda:0'), 'validation_loss_bbox': tensor(0.0118, device='cuda:0'), 'validation_loss_giou': tensor(0.0606, device='cuda:0'), 'validation_cardinality_error': tensor(0.9576, device='cuda:0')}
{'training_loss': tensor(0.4215, device='cuda:0'), 'train_loss_ce': tensor(0.2928, device='cuda:0'), 'train_loss_bbox': tensor(0.0151, device='cuda:0'), 'train_loss_giou': tensor(0.0267, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3999, device='cuda:0'), 'validation_loss_ce': tensor(0.2152, device='cuda:0'), 'validation_loss_bbox': tensor(0.0119, device='cuda:0'), 'validation_loss_giou': tensor(0.0625, device='cuda:0'), 'validation_cardinality_error': tensor(0.9407, device='cuda:0')}
{'training_loss': tensor(0.2836, device='cuda:0'), 'train_loss_ce': tensor(0.0991, device='cuda:0'), 'train_loss_bbox': tensor(0.0160, device='cuda:0'), 'train_loss_giou': tensor(0.0521, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4063, device='cuda:0'), 'validation_loss_ce': tensor(0.2144, device='cuda:0'), 'validation_loss_bbox': tensor(0.0129, device='cuda:0'), 'validation_loss_giou': tensor(0.0636, device='cuda:0'), 'validation_cardinality_error': tensor(0.9633, device='cuda:0')}
{'training_loss': tensor(0.2859, device='cuda:0'), 'train_loss_ce': tensor(0.1871, device='cuda:0'), 'train_loss_bbox': tensor(0.0064, device='cuda:0'), 'train_loss_giou': tensor(0.0335, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4251, device='cuda:0'), 'validation_loss_ce': tensor(0.2130, device='cuda:0'), 'validation_loss_bbox': tensor(0.0138, device='cuda:0'), 'validation_loss_giou': tensor(0.0714, device='cuda:0'), 'validation_cardinality_error': tensor(0.9463, device='cuda:0')}
{'training_loss': tensor(0.5364, device='cuda:0'), 'train_loss_ce': tensor(0.2200, device='cuda:0'), 'train_loss_bbox': tensor(0.0181, device='cuda:0'), 'train_loss_giou': tensor(0.1130, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4676, device='cuda:0'), 'validation_loss_ce': tensor(0.2112, device='cuda:0'), 'validation_loss_bbox': tensor(0.0164, device='cuda:0'), 'validation_loss_giou': tensor(0.0871, device='cuda:0'), 'validation_cardinality_error': tensor(0.9689, device='cuda:0')}
{'training_loss': tensor(0.2483, device='cuda:0'), 'train_loss_ce': tensor(0.0879, device='cuda:0'), 'train_loss_bbox': tensor(0.0140, device='cuda:0'), 'train_loss_giou': tensor(0.0452, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.4804, device='cuda:0'), 'validation_loss_ce': tensor(0.2117, device='cuda:0'), 'validation_loss_bbox': tensor(0.0175, device='cuda:0'), 'validation_loss_giou': tensor(0.0906, device='cuda:0'), 'validation_cardinality_error': tensor(0.9520, device='cuda:0')}
{'training_loss': tensor(0.2619, device='cuda:0'), 'train_loss_ce': tensor(0.1736, device='cuda:0'), 'train_loss_bbox': tensor(0.0050, device='cuda:0'), 'train_loss_giou': tensor(0.0317, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4289, device='cuda:0'), 'validation_loss_ce': tensor(0.2088, device='cuda:0'), 'validation_loss_bbox': tensor(0.0143, device='cuda:0'), 'validation_loss_giou': tensor(0.0742, device='cuda:0'), 'validation_cardinality_error': tensor(0.9689, device='cuda:0')}
{'training_loss': tensor(0.5204, device='cuda:0'), 'train_loss_ce': tensor(0.2162, device='cuda:0'), 'train_loss_bbox': tensor(0.0168, device='cuda:0'), 'train_loss_giou': tensor(0.1100, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4157, device='cuda:0'), 'validation_loss_ce': tensor(0.2079, device='cuda:0'), 'validation_loss_bbox': tensor(0.0137, device='cuda:0'), 'validation_loss_giou': tensor(0.0696, device='cuda:0'), 'validation_cardinality_error': tensor(0.9774, device='cuda:0')}
{'training_loss': tensor(0.4518, device='cuda:0'), 'train_loss_ce': tensor(0.3340, device='cuda:0'), 'train_loss_bbox': tensor(0.0088, device='cuda:0'), 'train_loss_giou': tensor(0.0370, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4287, device='cuda:0'), 'validation_loss_ce': tensor(0.2057, device='cuda:0'), 'validation_loss_bbox': tensor(0.0137, device='cuda:0'), 'validation_loss_giou': tensor(0.0773, device='cuda:0'), 'validation_cardinality_error': tensor(0.9294, device='cuda:0')}
{'training_loss': tensor(0.2868, device='cuda:0'), 'train_loss_ce': tensor(0.0793, device='cuda:0'), 'train_loss_bbox': tensor(0.0087, device='cuda:0'), 'train_loss_giou': tensor(0.0820, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3870, device='cuda:0'), 'validation_loss_ce': tensor(0.2041, device='cuda:0'), 'validation_loss_bbox': tensor(0.0119, device='cuda:0'), 'validation_loss_giou': tensor(0.0616, device='cuda:0'), 'validation_cardinality_error': tensor(0.9435, device='cuda:0')}
{'training_loss': tensor(0.3277, device='cuda:0'), 'train_loss_ce': tensor(0.1226, device='cuda:0'), 'train_loss_bbox': tensor(0.0234, device='cuda:0'), 'train_loss_giou': tensor(0.0441, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3982, device='cuda:0'), 'validation_loss_ce': tensor(0.2029, device='cuda:0'), 'validation_loss_bbox': tensor(0.0130, device='cuda:0'), 'validation_loss_giou': tensor(0.0651, device='cuda:0'), 'validation_cardinality_error': tensor(0.9209, device='cuda:0')}
{'training_loss': tensor(0.4746, device='cuda:0'), 'train_loss_ce': tensor(0.2571, device='cuda:0'), 'train_loss_bbox': tensor(0.0092, device='cuda:0'), 'train_loss_giou': tensor(0.0858, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3961, device='cuda:0'), 'validation_loss_ce': tensor(0.2027, device='cuda:0'), 'validation_loss_bbox': tensor(0.0131, device='cuda:0'), 'validation_loss_giou': tensor(0.0638, device='cuda:0'), 'validation_cardinality_error': tensor(0.9492, device='cuda:0')}
{'training_loss': tensor(0.4008, device='cuda:0'), 'train_loss_ce': tensor(0.2252, device='cuda:0'), 'train_loss_bbox': tensor(0.0048, device='cuda:0'), 'train_loss_giou': tensor(0.0757, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4099, device='cuda:0'), 'validation_loss_ce': tensor(0.2037, device='cuda:0'), 'validation_loss_bbox': tensor(0.0138, device='cuda:0'), 'validation_loss_giou': tensor(0.0685, device='cuda:0'), 'validation_cardinality_error': tensor(0.9915, device='cuda:0')}
{'training_loss': tensor(0.2848, device='cuda:0'), 'train_loss_ce': tensor(0.1813, device='cuda:0'), 'train_loss_bbox': tensor(0.0091, device='cuda:0'), 'train_loss_giou': tensor(0.0290, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4079, device='cuda:0'), 'validation_loss_ce': tensor(0.1990, device='cuda:0'), 'validation_loss_bbox': tensor(0.0138, device='cuda:0'), 'validation_loss_giou': tensor(0.0700, device='cuda:0'), 'validation_cardinality_error': tensor(0.9011, device='cuda:0')}
{'training_loss': tensor(0.4909, device='cuda:0'), 'train_loss_ce': tensor(0.3048, device='cuda:0'), 'train_loss_bbox': tensor(0.0159, device='cuda:0'), 'train_loss_giou': tensor(0.0532, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3760, device='cuda:0'), 'validation_loss_ce': tensor(0.1988, device='cuda:0'), 'validation_loss_bbox': tensor(0.0113, device='cuda:0'), 'validation_loss_giou': tensor(0.0602, device='cuda:0'), 'validation_cardinality_error': tensor(0.9576, device='cuda:0')}
{'training_loss': tensor(0.3466, device='cuda:0'), 'train_loss_ce': tensor(0.2553, device='cuda:0'), 'train_loss_bbox': tensor(0.0063, device='cuda:0'), 'train_loss_giou': tensor(0.0298, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3902, device='cuda:0'), 'validation_loss_ce': tensor(0.1972, device='cuda:0'), 'validation_loss_bbox': tensor(0.0123, device='cuda:0'), 'validation_loss_giou': tensor(0.0657, device='cuda:0'), 'validation_cardinality_error': tensor(0.9124, device='cuda:0')}
{'training_loss': tensor(0.2442, device='cuda:0'), 'train_loss_ce': tensor(0.1353, device='cuda:0'), 'train_loss_bbox': tensor(0.0048, device='cuda:0'), 'train_loss_giou': tensor(0.0425, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3944, device='cuda:0'), 'validation_loss_ce': tensor(0.1963, device='cuda:0'), 'validation_loss_bbox': tensor(0.0128, device='cuda:0'), 'validation_loss_giou': tensor(0.0670, device='cuda:0'), 'validation_cardinality_error': tensor(0.9350, device='cuda:0')}
{'training_loss': tensor(0.3744, device='cuda:0'), 'train_loss_ce': tensor(0.2357, device='cuda:0'), 'train_loss_bbox': tensor(0.0062, device='cuda:0'), 'train_loss_giou': tensor(0.0538, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3874, device='cuda:0'), 'validation_loss_ce': tensor(0.1959, device='cuda:0'), 'validation_loss_bbox': tensor(0.0122, device='cuda:0'), 'validation_loss_giou': tensor(0.0652, device='cuda:0'), 'validation_cardinality_error': tensor(0.9492, device='cuda:0')}
{'training_loss': tensor(0.2847, device='cuda:0'), 'train_loss_ce': tensor(0.0229, device='cuda:0'), 'train_loss_bbox': tensor(0.0098, device='cuda:0'), 'train_loss_giou': tensor(0.1063, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3899, device='cuda:0'), 'validation_loss_ce': tensor(0.1939, device='cuda:0'), 'validation_loss_bbox': tensor(0.0120, device='cuda:0'), 'validation_loss_giou': tensor(0.0679, device='cuda:0'), 'validation_cardinality_error': tensor(0.9124, device='cuda:0')}
{'training_loss': tensor(0.3836, device='cuda:0'), 'train_loss_ce': tensor(0.2128, device='cuda:0'), 'train_loss_bbox': tensor(0.0091, device='cuda:0'), 'train_loss_giou': tensor(0.0625, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4002, device='cuda:0'), 'validation_loss_ce': tensor(0.1932, device='cuda:0'), 'validation_loss_bbox': tensor(0.0130, device='cuda:0'), 'validation_loss_giou': tensor(0.0709, device='cuda:0'), 'validation_cardinality_error': tensor(0.9350, device='cuda:0')}
{'training_loss': tensor(0.7742, device='cuda:0'), 'train_loss_ce': tensor(0.0840, device='cuda:0'), 'train_loss_bbox': tensor(0.0389, device='cuda:0'), 'train_loss_giou': tensor(0.2478, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3749, device='cuda:0'), 'validation_loss_ce': tensor(0.1909, device='cuda:0'), 'validation_loss_bbox': tensor(0.0118, device='cuda:0'), 'validation_loss_giou': tensor(0.0625, device='cuda:0'), 'validation_cardinality_error': tensor(0.9237, device='cuda:0')}
{'training_loss': tensor(0.3648, device='cuda:0'), 'train_loss_ce': tensor(0.2208, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0538, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3805, device='cuda:0'), 'validation_loss_ce': tensor(0.1913, device='cuda:0'), 'validation_loss_bbox': tensor(0.0122, device='cuda:0'), 'validation_loss_giou': tensor(0.0640, device='cuda:0'), 'validation_cardinality_error': tensor(0.9181, device='cuda:0')}
{'training_loss': tensor(0.2204, device='cuda:0'), 'train_loss_ce': tensor(0.1154, device='cuda:0'), 'train_loss_bbox': tensor(0.0086, device='cuda:0'), 'train_loss_giou': tensor(0.0309, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3803, device='cuda:0'), 'validation_loss_ce': tensor(0.1898, device='cuda:0'), 'validation_loss_bbox': tensor(0.0121, device='cuda:0'), 'validation_loss_giou': tensor(0.0650, device='cuda:0'), 'validation_cardinality_error': tensor(0.9435, device='cuda:0')}
{'training_loss': tensor(0.3935, device='cuda:0'), 'train_loss_ce': tensor(0.1335, device='cuda:0'), 'train_loss_bbox': tensor(0.0221, device='cuda:0'), 'train_loss_giou': tensor(0.0747, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.4068, device='cuda:0'), 'validation_loss_ce': tensor(0.1886, device='cuda:0'), 'validation_loss_bbox': tensor(0.0138, device='cuda:0'), 'validation_loss_giou': tensor(0.0745, device='cuda:0'), 'validation_cardinality_error': tensor(0.9096, device='cuda:0')}
{'training_loss': tensor(0.8997, device='cuda:0'), 'train_loss_ce': tensor(0.2437, device='cuda:0'), 'train_loss_bbox': tensor(0.0477, device='cuda:0'), 'train_loss_giou': tensor(0.2088, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.4084, device='cuda:0'), 'validation_loss_ce': tensor(0.1875, device='cuda:0'), 'validation_loss_bbox': tensor(0.0137, device='cuda:0'), 'validation_loss_giou': tensor(0.0762, device='cuda:0'), 'validation_cardinality_error': tensor(0.9350, device='cuda:0')}
{'training_loss': tensor(0.5356, device='cuda:0'), 'train_loss_ce': tensor(0.2803, device='cuda:0'), 'train_loss_bbox': tensor(0.0181, device='cuda:0'), 'train_loss_giou': tensor(0.0825, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3665, device='cuda:0'), 'validation_loss_ce': tensor(0.1853, device='cuda:0'), 'validation_loss_bbox': tensor(0.0113, device='cuda:0'), 'validation_loss_giou': tensor(0.0623, device='cuda:0'), 'validation_cardinality_error': tensor(0.9153, device='cuda:0')}
{'training_loss': tensor(0.3888, device='cuda:0'), 'train_loss_ce': tensor(0.2692, device='cuda:0'), 'train_loss_bbox': tensor(0.0076, device='cuda:0'), 'train_loss_giou': tensor(0.0408, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3669, device='cuda:0'), 'validation_loss_ce': tensor(0.1836, device='cuda:0'), 'validation_loss_bbox': tensor(0.0118, device='cuda:0'), 'validation_loss_giou': tensor(0.0621, device='cuda:0'), 'validation_cardinality_error': tensor(0.9435, device='cuda:0')}
{'training_loss': tensor(0.2795, device='cuda:0'), 'train_loss_ce': tensor(0.1240, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.0592, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3676, device='cuda:0'), 'validation_loss_ce': tensor(0.1826, device='cuda:0'), 'validation_loss_bbox': tensor(0.0122, device='cuda:0'), 'validation_loss_giou': tensor(0.0621, device='cuda:0'), 'validation_cardinality_error': tensor(0.9153, device='cuda:0')}
{'training_loss': tensor(0.4931, device='cuda:0'), 'train_loss_ce': tensor(0.1436, device='cuda:0'), 'train_loss_bbox': tensor(0.0092, device='cuda:0'), 'train_loss_giou': tensor(0.1519, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3697, device='cuda:0'), 'validation_loss_ce': tensor(0.1820, device='cuda:0'), 'validation_loss_bbox': tensor(0.0124, device='cuda:0'), 'validation_loss_giou': tensor(0.0629, device='cuda:0'), 'validation_cardinality_error': tensor(0.9153, device='cuda:0')}
{'training_loss': tensor(0.2122, device='cuda:0'), 'train_loss_ce': tensor(0.1469, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0143, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3684, device='cuda:0'), 'validation_loss_ce': tensor(0.1798, device='cuda:0'), 'validation_loss_bbox': tensor(0.0119, device='cuda:0'), 'validation_loss_giou': tensor(0.0646, device='cuda:0'), 'validation_cardinality_error': tensor(0.9209, device='cuda:0')}
{'training_loss': tensor(0.2589, device='cuda:0'), 'train_loss_ce': tensor(0.0975, device='cuda:0'), 'train_loss_bbox': tensor(0.0126, device='cuda:0'), 'train_loss_giou': tensor(0.0493, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3610, device='cuda:0'), 'validation_loss_ce': tensor(0.1817, device='cuda:0'), 'validation_loss_bbox': tensor(0.0114, device='cuda:0'), 'validation_loss_giou': tensor(0.0612, device='cuda:0'), 'validation_cardinality_error': tensor(0.9237, device='cuda:0')}
{'training_loss': tensor(0.3892, device='cuda:0'), 'train_loss_ce': tensor(0.1946, device='cuda:0'), 'train_loss_bbox': tensor(0.0159, device='cuda:0'), 'train_loss_giou': tensor(0.0575, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3588, device='cuda:0'), 'validation_loss_ce': tensor(0.1793, device='cuda:0'), 'validation_loss_bbox': tensor(0.0115, device='cuda:0'), 'validation_loss_giou': tensor(0.0609, device='cuda:0'), 'validation_cardinality_error': tensor(0.8898, device='cuda:0')}
{'training_loss': tensor(0.3674, device='cuda:0'), 'train_loss_ce': tensor(0.1277, device='cuda:0'), 'train_loss_bbox': tensor(0.0225, device='cuda:0'), 'train_loss_giou': tensor(0.0635, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3550, device='cuda:0'), 'validation_loss_ce': tensor(0.1779, device='cuda:0'), 'validation_loss_bbox': tensor(0.0112, device='cuda:0'), 'validation_loss_giou': tensor(0.0607, device='cuda:0'), 'validation_cardinality_error': tensor(0.8870, device='cuda:0')}
{'training_loss': tensor(0.4134, device='cuda:0'), 'train_loss_ce': tensor(0.1937, device='cuda:0'), 'train_loss_bbox': tensor(0.0115, device='cuda:0'), 'train_loss_giou': tensor(0.0811, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3443, device='cuda:0'), 'validation_loss_ce': tensor(0.1743, device='cuda:0'), 'validation_loss_bbox': tensor(0.0110, device='cuda:0'), 'validation_loss_giou': tensor(0.0576, device='cuda:0'), 'validation_cardinality_error': tensor(0.9011, device='cuda:0')}
{'training_loss': tensor(0.3212, device='cuda:0'), 'train_loss_ce': tensor(0.2102, device='cuda:0'), 'train_loss_bbox': tensor(0.0097, device='cuda:0'), 'train_loss_giou': tensor(0.0313, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3518, device='cuda:0'), 'validation_loss_ce': tensor(0.1739, device='cuda:0'), 'validation_loss_bbox': tensor(0.0117, device='cuda:0'), 'validation_loss_giou': tensor(0.0596, device='cuda:0'), 'validation_cardinality_error': tensor(0.9068, device='cuda:0')}
{'training_loss': tensor(0.2561, device='cuda:0'), 'train_loss_ce': tensor(0.0879, device='cuda:0'), 'train_loss_bbox': tensor(0.0055, device='cuda:0'), 'train_loss_giou': tensor(0.0703, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3478, device='cuda:0'), 'validation_loss_ce': tensor(0.1725, device='cuda:0'), 'validation_loss_bbox': tensor(0.0112, device='cuda:0'), 'validation_loss_giou': tensor(0.0596, device='cuda:0'), 'validation_cardinality_error': tensor(0.8559, device='cuda:0')}
{'training_loss': tensor(0.3335, device='cuda:0'), 'train_loss_ce': tensor(0.2003, device='cuda:0'), 'train_loss_bbox': tensor(0.0068, device='cuda:0'), 'train_loss_giou': tensor(0.0496, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3851, device='cuda:0'), 'validation_loss_ce': tensor(0.1714, device='cuda:0'), 'validation_loss_bbox': tensor(0.0127, device='cuda:0'), 'validation_loss_giou': tensor(0.0752, device='cuda:0'), 'validation_cardinality_error': tensor(0.8362, device='cuda:0')}
{'training_loss': tensor(0.7439, device='cuda:0'), 'train_loss_ce': tensor(0.2244, device='cuda:0'), 'train_loss_bbox': tensor(0.0188, device='cuda:0'), 'train_loss_giou': tensor(0.2127, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.3514, device='cuda:0'), 'validation_loss_ce': tensor(0.1696, device='cuda:0'), 'validation_loss_bbox': tensor(0.0113, device='cuda:0'), 'validation_loss_giou': tensor(0.0627, device='cuda:0'), 'validation_cardinality_error': tensor(0.9011, device='cuda:0')}
{'training_loss': tensor(0.9789, device='cuda:0'), 'train_loss_ce': tensor(0.1206, device='cuda:0'), 'train_loss_bbox': tensor(0.0545, device='cuda:0'), 'train_loss_giou': tensor(0.2929, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3600, device='cuda:0'), 'validation_loss_ce': tensor(0.1688, device='cuda:0'), 'validation_loss_bbox': tensor(0.0120, device='cuda:0'), 'validation_loss_giou': tensor(0.0655, device='cuda:0'), 'validation_cardinality_error': tensor(0.9011, device='cuda:0')}
{'training_loss': tensor(0.2017, device='cuda:0'), 'train_loss_ce': tensor(0.0400, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0582, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3699, device='cuda:0'), 'validation_loss_ce': tensor(0.1688, device='cuda:0'), 'validation_loss_bbox': tensor(0.0137, device='cuda:0'), 'validation_loss_giou': tensor(0.0664, device='cuda:0'), 'validation_cardinality_error': tensor(0.9124, device='cuda:0')}
{'training_loss': tensor(0.2995, device='cuda:0'), 'train_loss_ce': tensor(0.1289, device='cuda:0'), 'train_loss_bbox': tensor(0.0082, device='cuda:0'), 'train_loss_giou': tensor(0.0647, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3616, device='cuda:0'), 'validation_loss_ce': tensor(0.1666, device='cuda:0'), 'validation_loss_bbox': tensor(0.0123, device='cuda:0'), 'validation_loss_giou': tensor(0.0669, device='cuda:0'), 'validation_cardinality_error': tensor(0.8503, device='cuda:0')}
{'training_loss': tensor(0.2391, device='cuda:0'), 'train_loss_ce': tensor(0.0902, device='cuda:0'), 'train_loss_bbox': tensor(0.0161, device='cuda:0'), 'train_loss_giou': tensor(0.0343, device='cuda:0'), 'train_cardinality_error': tensor(2.5000, device='cuda:0'), 'validation_loss': tensor(0.3618, device='cuda:0'), 'validation_loss_ce': tensor(0.1658, device='cuda:0'), 'validation_loss_bbox': tensor(0.0125, device='cuda:0'), 'validation_loss_giou': tensor(0.0667, device='cuda:0'), 'validation_cardinality_error': tensor(0.9124, device='cuda:0')}
{'training_loss': tensor(0.2725, device='cuda:0'), 'train_loss_ce': tensor(0.1107, device='cuda:0'), 'train_loss_bbox': tensor(0.0120, device='cuda:0'), 'train_loss_giou': tensor(0.0510, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3438, device='cuda:0'), 'validation_loss_ce': tensor(0.1641, device='cuda:0'), 'validation_loss_bbox': tensor(0.0115, device='cuda:0'), 'validation_loss_giou': tensor(0.0611, device='cuda:0'), 'validation_cardinality_error': tensor(0.8927, device='cuda:0')}
{'training_loss': tensor(0.4699, device='cuda:0'), 'train_loss_ce': tensor(0.3270, device='cuda:0'), 'train_loss_bbox': tensor(0.0086, device='cuda:0'), 'train_loss_giou': tensor(0.0499, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3544, device='cuda:0'), 'validation_loss_ce': tensor(0.1625, device='cuda:0'), 'validation_loss_bbox': tensor(0.0123, device='cuda:0'), 'validation_loss_giou': tensor(0.0652, device='cuda:0'), 'validation_cardinality_error': tensor(0.8729, device='cuda:0')}
{'training_loss': tensor(0.3200, device='cuda:0'), 'train_loss_ce': tensor(0.1049, device='cuda:0'), 'train_loss_bbox': tensor(0.0184, device='cuda:0'), 'train_loss_giou': tensor(0.0615, device='cuda:0'), 'train_cardinality_error': tensor(3., device='cuda:0'), 'validation_loss': tensor(0.3278, device='cuda:0'), 'validation_loss_ce': tensor(0.1608, device='cuda:0'), 'validation_loss_bbox': tensor(0.0108, device='cuda:0'), 'validation_loss_giou': tensor(0.0566, device='cuda:0'), 'validation_cardinality_error': tensor(0.8559, device='cuda:0')}
{'training_loss': tensor(0.4143, device='cuda:0'), 'train_loss_ce': tensor(0.1523, device='cuda:0'), 'train_loss_bbox': tensor(0.0095, device='cuda:0'), 'train_loss_giou': tensor(0.1072, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3276, device='cuda:0'), 'validation_loss_ce': tensor(0.1594, device='cuda:0'), 'validation_loss_bbox': tensor(0.0109, device='cuda:0'), 'validation_loss_giou': tensor(0.0569, device='cuda:0'), 'validation_cardinality_error': tensor(0.8503, device='cuda:0')}
{'training_loss': tensor(0.2943, device='cuda:0'), 'train_loss_ce': tensor(0.0770, device='cuda:0'), 'train_loss_bbox': tensor(0.0165, device='cuda:0'), 'train_loss_giou': tensor(0.0675, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3603, device='cuda:0'), 'validation_loss_ce': tensor(0.1583, device='cuda:0'), 'validation_loss_bbox': tensor(0.0122, device='cuda:0'), 'validation_loss_giou': tensor(0.0706, device='cuda:0'), 'validation_cardinality_error': tensor(0.8616, device='cuda:0')}
{'training_loss': tensor(0.1813, device='cuda:0'), 'train_loss_ce': tensor(0.1574, device='cuda:0'), 'train_loss_bbox': tensor(0.0015, device='cuda:0'), 'train_loss_giou': tensor(0.0083, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.3399, device='cuda:0'), 'validation_loss_ce': tensor(0.1574, device='cuda:0'), 'validation_loss_bbox': tensor(0.0112, device='cuda:0'), 'validation_loss_giou': tensor(0.0633, device='cuda:0'), 'validation_cardinality_error': tensor(0.8446, device='cuda:0')}
{'training_loss': tensor(0.5253, device='cuda:0'), 'train_loss_ce': tensor(0.3741, device='cuda:0'), 'train_loss_bbox': tensor(0.0129, device='cuda:0'), 'train_loss_giou': tensor(0.0433, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3385, device='cuda:0'), 'validation_loss_ce': tensor(0.1565, device='cuda:0'), 'validation_loss_bbox': tensor(0.0115, device='cuda:0'), 'validation_loss_giou': tensor(0.0623, device='cuda:0'), 'validation_cardinality_error': tensor(0.9124, device='cuda:0')}
{'training_loss': tensor(0.3097, device='cuda:0'), 'train_loss_ce': tensor(0.1766, device='cuda:0'), 'train_loss_bbox': tensor(0.0137, device='cuda:0'), 'train_loss_giou': tensor(0.0322, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3447, device='cuda:0'), 'validation_loss_ce': tensor(0.1552, device='cuda:0'), 'validation_loss_bbox': tensor(0.0123, device='cuda:0'), 'validation_loss_giou': tensor(0.0641, device='cuda:0'), 'validation_cardinality_error': tensor(0.8164, device='cuda:0')}
{'training_loss': tensor(0.3014, device='cuda:0'), 'train_loss_ce': tensor(0.1026, device='cuda:0'), 'train_loss_bbox': tensor(0.0127, device='cuda:0'), 'train_loss_giou': tensor(0.0676, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3404, device='cuda:0'), 'validation_loss_ce': tensor(0.1536, device='cuda:0'), 'validation_loss_bbox': tensor(0.0124, device='cuda:0'), 'validation_loss_giou': tensor(0.0624, device='cuda:0'), 'validation_cardinality_error': tensor(0.8616, device='cuda:0')}
{'training_loss': tensor(0.5359, device='cuda:0'), 'train_loss_ce': tensor(0.2011, device='cuda:0'), 'train_loss_bbox': tensor(0.0197, device='cuda:0'), 'train_loss_giou': tensor(0.1182, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3377, device='cuda:0'), 'validation_loss_ce': tensor(0.1529, device='cuda:0'), 'validation_loss_bbox': tensor(0.0116, device='cuda:0'), 'validation_loss_giou': tensor(0.0634, device='cuda:0'), 'validation_cardinality_error': tensor(0.8616, device='cuda:0')}
{'training_loss': tensor(0.1796, device='cuda:0'), 'train_loss_ce': tensor(0.1039, device='cuda:0'), 'train_loss_bbox': tensor(0.0066, device='cuda:0'), 'train_loss_giou': tensor(0.0213, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.3728, device='cuda:0'), 'validation_loss_ce': tensor(0.1538, device='cuda:0'), 'validation_loss_bbox': tensor(0.0148, device='cuda:0'), 'validation_loss_giou': tensor(0.0724, device='cuda:0'), 'validation_cardinality_error': tensor(0.8220, device='cuda:0')}
{'training_loss': tensor(0.5640, device='cuda:0'), 'train_loss_ce': tensor(0.0763, device='cuda:0'), 'train_loss_bbox': tensor(0.0079, device='cuda:0'), 'train_loss_giou': tensor(0.2242, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3485, device='cuda:0'), 'validation_loss_ce': tensor(0.1523, device='cuda:0'), 'validation_loss_bbox': tensor(0.0134, device='cuda:0'), 'validation_loss_giou': tensor(0.0646, device='cuda:0'), 'validation_cardinality_error': tensor(0.8446, device='cuda:0')}
{'training_loss': tensor(0.5188, device='cuda:0'), 'train_loss_ce': tensor(0.1322, device='cuda:0'), 'train_loss_bbox': tensor(0.0247, device='cuda:0'), 'train_loss_giou': tensor(0.1315, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3473, device='cuda:0'), 'validation_loss_ce': tensor(0.1500, device='cuda:0'), 'validation_loss_bbox': tensor(0.0132, device='cuda:0'), 'validation_loss_giou': tensor(0.0657, device='cuda:0'), 'validation_cardinality_error': tensor(0.8220, device='cuda:0')}
{'training_loss': tensor(0.5740, device='cuda:0'), 'train_loss_ce': tensor(0.1216, device='cuda:0'), 'train_loss_bbox': tensor(0.0204, device='cuda:0'), 'train_loss_giou': tensor(0.1753, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3278, device='cuda:0'), 'validation_loss_ce': tensor(0.1500, device='cuda:0'), 'validation_loss_bbox': tensor(0.0110, device='cuda:0'), 'validation_loss_giou': tensor(0.0614, device='cuda:0'), 'validation_cardinality_error': tensor(0.8333, device='cuda:0')}
{'training_loss': tensor(0.3669, device='cuda:0'), 'train_loss_ce': tensor(0.1051, device='cuda:0'), 'train_loss_bbox': tensor(0.0111, device='cuda:0'), 'train_loss_giou': tensor(0.1030, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3879, device='cuda:0'), 'validation_loss_ce': tensor(0.1545, device='cuda:0'), 'validation_loss_bbox': tensor(0.0154, device='cuda:0'), 'validation_loss_giou': tensor(0.0783, device='cuda:0'), 'validation_cardinality_error': tensor(0.9124, device='cuda:0')}
{'training_loss': tensor(0.3589, device='cuda:0'), 'train_loss_ce': tensor(0.2045, device='cuda:0'), 'train_loss_bbox': tensor(0.0075, device='cuda:0'), 'train_loss_giou': tensor(0.0586, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3690, device='cuda:0'), 'validation_loss_ce': tensor(0.1497, device='cuda:0'), 'validation_loss_bbox': tensor(0.0144, device='cuda:0'), 'validation_loss_giou': tensor(0.0738, device='cuda:0'), 'validation_cardinality_error': tensor(0.8644, device='cuda:0')}
{'training_loss': tensor(0.4407, device='cuda:0'), 'train_loss_ce': tensor(0.2267, device='cuda:0'), 'train_loss_bbox': tensor(0.0159, device='cuda:0'), 'train_loss_giou': tensor(0.0673, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3604, device='cuda:0'), 'validation_loss_ce': tensor(0.1471, device='cuda:0'), 'validation_loss_bbox': tensor(0.0137, device='cuda:0'), 'validation_loss_giou': tensor(0.0725, device='cuda:0'), 'validation_cardinality_error': tensor(0.8446, device='cuda:0')}
{'training_loss': tensor(0.2298, device='cuda:0'), 'train_loss_ce': tensor(0.0814, device='cuda:0'), 'train_loss_bbox': tensor(0.0077, device='cuda:0'), 'train_loss_giou': tensor(0.0549, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3298, device='cuda:0'), 'validation_loss_ce': tensor(0.1456, device='cuda:0'), 'validation_loss_bbox': tensor(0.0120, device='cuda:0'), 'validation_loss_giou': tensor(0.0620, device='cuda:0'), 'validation_cardinality_error': tensor(0.7797, device='cuda:0')}
{'training_loss': tensor(0.2481, device='cuda:0'), 'train_loss_ce': tensor(0.1644, device='cuda:0'), 'train_loss_bbox': tensor(0.0051, device='cuda:0'), 'train_loss_giou': tensor(0.0292, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3166, device='cuda:0'), 'validation_loss_ce': tensor(0.1448, device='cuda:0'), 'validation_loss_bbox': tensor(0.0113, device='cuda:0'), 'validation_loss_giou': tensor(0.0577, device='cuda:0'), 'validation_cardinality_error': tensor(0.8136, device='cuda:0')}
{'training_loss': tensor(0.2871, device='cuda:0'), 'train_loss_ce': tensor(0.1414, device='cuda:0'), 'train_loss_bbox': tensor(0.0114, device='cuda:0'), 'train_loss_giou': tensor(0.0444, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.3121, device='cuda:0'), 'validation_loss_ce': tensor(0.1426, device='cuda:0'), 'validation_loss_bbox': tensor(0.0111, device='cuda:0'), 'validation_loss_giou': tensor(0.0571, device='cuda:0'), 'validation_cardinality_error': tensor(0.8446, device='cuda:0')}
{'training_loss': tensor(0.3395, device='cuda:0'), 'train_loss_ce': tensor(0.1796, device='cuda:0'), 'train_loss_bbox': tensor(0.0075, device='cuda:0'), 'train_loss_giou': tensor(0.0613, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3185, device='cuda:0'), 'validation_loss_ce': tensor(0.1416, device='cuda:0'), 'validation_loss_bbox': tensor(0.0112, device='cuda:0'), 'validation_loss_giou': tensor(0.0605, device='cuda:0'), 'validation_cardinality_error': tensor(0.8051, device='cuda:0')}
{'training_loss': tensor(0.2608, device='cuda:0'), 'train_loss_ce': tensor(0.1356, device='cuda:0'), 'train_loss_bbox': tensor(0.0079, device='cuda:0'), 'train_loss_giou': tensor(0.0428, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3286, device='cuda:0'), 'validation_loss_ce': tensor(0.1400, device='cuda:0'), 'validation_loss_bbox': tensor(0.0113, device='cuda:0'), 'validation_loss_giou': tensor(0.0660, device='cuda:0'), 'validation_cardinality_error': tensor(0.8220, device='cuda:0')}
{'training_loss': tensor(0.3017, device='cuda:0'), 'train_loss_ce': tensor(0.0968, device='cuda:0'), 'train_loss_bbox': tensor(0.0190, device='cuda:0'), 'train_loss_giou': tensor(0.0549, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3191, device='cuda:0'), 'validation_loss_ce': tensor(0.1380, device='cuda:0'), 'validation_loss_bbox': tensor(0.0117, device='cuda:0'), 'validation_loss_giou': tensor(0.0612, device='cuda:0'), 'validation_cardinality_error': tensor(0.8107, device='cuda:0')}
{'training_loss': tensor(0.3585, device='cuda:0'), 'train_loss_ce': tensor(0.1791, device='cuda:0'), 'train_loss_bbox': tensor(0.0150, device='cuda:0'), 'train_loss_giou': tensor(0.0521, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3201, device='cuda:0'), 'validation_loss_ce': tensor(0.1377, device='cuda:0'), 'validation_loss_bbox': tensor(0.0114, device='cuda:0'), 'validation_loss_giou': tensor(0.0627, device='cuda:0'), 'validation_cardinality_error': tensor(0.8136, device='cuda:0')}
{'training_loss': tensor(0.3272, device='cuda:0'), 'train_loss_ce': tensor(0.1609, device='cuda:0'), 'train_loss_bbox': tensor(0.0161, device='cuda:0'), 'train_loss_giou': tensor(0.0428, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3230, device='cuda:0'), 'validation_loss_ce': tensor(0.1375, device='cuda:0'), 'validation_loss_bbox': tensor(0.0119, device='cuda:0'), 'validation_loss_giou': tensor(0.0630, device='cuda:0'), 'validation_cardinality_error': tensor(0.8305, device='cuda:0')}
{'training_loss': tensor(0.3662, device='cuda:0'), 'train_loss_ce': tensor(0.2210, device='cuda:0'), 'train_loss_bbox': tensor(0.0144, device='cuda:0'), 'train_loss_giou': tensor(0.0367, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3283, device='cuda:0'), 'validation_loss_ce': tensor(0.1347, device='cuda:0'), 'validation_loss_bbox': tensor(0.0127, device='cuda:0'), 'validation_loss_giou': tensor(0.0650, device='cuda:0'), 'validation_cardinality_error': tensor(0.8192, device='cuda:0')}
{'training_loss': tensor(0.4176, device='cuda:0'), 'train_loss_ce': tensor(0.1781, device='cuda:0'), 'train_loss_bbox': tensor(0.0135, device='cuda:0'), 'train_loss_giou': tensor(0.0860, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2997, device='cuda:0'), 'validation_loss_ce': tensor(0.1330, device='cuda:0'), 'validation_loss_bbox': tensor(0.0114, device='cuda:0'), 'validation_loss_giou': tensor(0.0549, device='cuda:0'), 'validation_cardinality_error': tensor(0.8192, device='cuda:0')}
{'training_loss': tensor(0.3775, device='cuda:0'), 'train_loss_ce': tensor(0.2265, device='cuda:0'), 'train_loss_bbox': tensor(0.0069, device='cuda:0'), 'train_loss_giou': tensor(0.0582, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2996, device='cuda:0'), 'validation_loss_ce': tensor(0.1317, device='cuda:0'), 'validation_loss_bbox': tensor(0.0105, device='cuda:0'), 'validation_loss_giou': tensor(0.0577, device='cuda:0'), 'validation_cardinality_error': tensor(0.8164, device='cuda:0')}
{'training_loss': tensor(0.2878, device='cuda:0'), 'train_loss_ce': tensor(0.1848, device='cuda:0'), 'train_loss_bbox': tensor(0.0078, device='cuda:0'), 'train_loss_giou': tensor(0.0319, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3144, device='cuda:0'), 'validation_loss_ce': tensor(0.1293, device='cuda:0'), 'validation_loss_bbox': tensor(0.0110, device='cuda:0'), 'validation_loss_giou': tensor(0.0651, device='cuda:0'), 'validation_cardinality_error': tensor(0.8503, device='cuda:0')}
{'training_loss': tensor(0.2160, device='cuda:0'), 'train_loss_ce': tensor(0.1271, device='cuda:0'), 'train_loss_bbox': tensor(0.0093, device='cuda:0'), 'train_loss_giou': tensor(0.0210, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(0.2965, device='cuda:0'), 'validation_loss_ce': tensor(0.1283, device='cuda:0'), 'validation_loss_bbox': tensor(0.0102, device='cuda:0'), 'validation_loss_giou': tensor(0.0586, device='cuda:0'), 'validation_cardinality_error': tensor(0.7571, device='cuda:0')}
{'training_loss': tensor(0.2115, device='cuda:0'), 'train_loss_ce': tensor(0.0690, device='cuda:0'), 'train_loss_bbox': tensor(0.0139, device='cuda:0'), 'train_loss_giou': tensor(0.0365, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2854, device='cuda:0'), 'validation_loss_ce': tensor(0.1277, device='cuda:0'), 'validation_loss_bbox': tensor(0.0100, device='cuda:0'), 'validation_loss_giou': tensor(0.0539, device='cuda:0'), 'validation_cardinality_error': tensor(0.8192, device='cuda:0')}
{'training_loss': tensor(0.2442, device='cuda:0'), 'train_loss_ce': tensor(0.1463, device='cuda:0'), 'train_loss_bbox': tensor(0.0052, device='cuda:0'), 'train_loss_giou': tensor(0.0359, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3085, device='cuda:0'), 'validation_loss_ce': tensor(0.1265, device='cuda:0'), 'validation_loss_bbox': tensor(0.0113, device='cuda:0'), 'validation_loss_giou': tensor(0.0626, device='cuda:0'), 'validation_cardinality_error': tensor(0.7910, device='cuda:0')}
{'training_loss': tensor(0.2772, device='cuda:0'), 'train_loss_ce': tensor(0.1700, device='cuda:0'), 'train_loss_bbox': tensor(0.0051, device='cuda:0'), 'train_loss_giou': tensor(0.0409, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3300, device='cuda:0'), 'validation_loss_ce': tensor(0.1254, device='cuda:0'), 'validation_loss_bbox': tensor(0.0135, device='cuda:0'), 'validation_loss_giou': tensor(0.0686, device='cuda:0'), 'validation_cardinality_error': tensor(0.8192, device='cuda:0')}
{'training_loss': tensor(0.2810, device='cuda:0'), 'train_loss_ce': tensor(0.1247, device='cuda:0'), 'train_loss_bbox': tensor(0.0142, device='cuda:0'), 'train_loss_giou': tensor(0.0427, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.3010, device='cuda:0'), 'validation_loss_ce': tensor(0.1233, device='cuda:0'), 'validation_loss_bbox': tensor(0.0111, device='cuda:0'), 'validation_loss_giou': tensor(0.0612, device='cuda:0'), 'validation_cardinality_error': tensor(0.8051, device='cuda:0')}
{'training_loss': tensor(0.2498, device='cuda:0'), 'train_loss_ce': tensor(0.1271, device='cuda:0'), 'train_loss_bbox': tensor(0.0116, device='cuda:0'), 'train_loss_giou': tensor(0.0324, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3024, device='cuda:0'), 'validation_loss_ce': tensor(0.1221, device='cuda:0'), 'validation_loss_bbox': tensor(0.0113, device='cuda:0'), 'validation_loss_giou': tensor(0.0620, device='cuda:0'), 'validation_cardinality_error': tensor(0.8249, device='cuda:0')}
{'training_loss': tensor(0.3580, device='cuda:0'), 'train_loss_ce': tensor(0.1707, device='cuda:0'), 'train_loss_bbox': tensor(0.0154, device='cuda:0'), 'train_loss_giou': tensor(0.0553, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2772, device='cuda:0'), 'validation_loss_ce': tensor(0.1215, device='cuda:0'), 'validation_loss_bbox': tensor(0.0102, device='cuda:0'), 'validation_loss_giou': tensor(0.0524, device='cuda:0'), 'validation_cardinality_error': tensor(0.8362, device='cuda:0')}
{'training_loss': tensor(0.2111, device='cuda:0'), 'train_loss_ce': tensor(0.1011, device='cuda:0'), 'train_loss_bbox': tensor(0.0042, device='cuda:0'), 'train_loss_giou': tensor(0.0445, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2910, device='cuda:0'), 'validation_loss_ce': tensor(0.1207, device='cuda:0'), 'validation_loss_bbox': tensor(0.0112, device='cuda:0'), 'validation_loss_giou': tensor(0.0571, device='cuda:0'), 'validation_cardinality_error': tensor(0.7655, device='cuda:0')}
{'training_loss': tensor(0.3708, device='cuda:0'), 'train_loss_ce': tensor(0.1443, device='cuda:0'), 'train_loss_bbox': tensor(0.0155, device='cuda:0'), 'train_loss_giou': tensor(0.0745, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2830, device='cuda:0'), 'validation_loss_ce': tensor(0.1188, device='cuda:0'), 'validation_loss_bbox': tensor(0.0104, device='cuda:0'), 'validation_loss_giou': tensor(0.0560, device='cuda:0'), 'validation_cardinality_error': tensor(0.8164, device='cuda:0')}
{'training_loss': tensor(0.1932, device='cuda:0'), 'train_loss_ce': tensor(0.0764, device='cuda:0'), 'train_loss_bbox': tensor(0.0110, device='cuda:0'), 'train_loss_giou': tensor(0.0308, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2976, device='cuda:0'), 'validation_loss_ce': tensor(0.1174, device='cuda:0'), 'validation_loss_bbox': tensor(0.0119, device='cuda:0'), 'validation_loss_giou': tensor(0.0603, device='cuda:0'), 'validation_cardinality_error': tensor(0.7938, device='cuda:0')}
{'training_loss': tensor(0.8145, device='cuda:0'), 'train_loss_ce': tensor(0.0617, device='cuda:0'), 'train_loss_bbox': tensor(0.0240, device='cuda:0'), 'train_loss_giou': tensor(0.3163, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3053, device='cuda:0'), 'validation_loss_ce': tensor(0.1152, device='cuda:0'), 'validation_loss_bbox': tensor(0.0126, device='cuda:0'), 'validation_loss_giou': tensor(0.0636, device='cuda:0'), 'validation_cardinality_error': tensor(0.7768, device='cuda:0')}
{'training_loss': tensor(0.2787, device='cuda:0'), 'train_loss_ce': tensor(0.1501, device='cuda:0'), 'train_loss_bbox': tensor(0.0056, device='cuda:0'), 'train_loss_giou': tensor(0.0502, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.3019, device='cuda:0'), 'validation_loss_ce': tensor(0.1165, device='cuda:0'), 'validation_loss_bbox': tensor(0.0116, device='cuda:0'), 'validation_loss_giou': tensor(0.0638, device='cuda:0'), 'validation_cardinality_error': tensor(0.7910, device='cuda:0')}
{'training_loss': tensor(0.4471, device='cuda:0'), 'train_loss_ce': tensor(0.2026, device='cuda:0'), 'train_loss_bbox': tensor(0.0233, device='cuda:0'), 'train_loss_giou': tensor(0.0639, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2878, device='cuda:0'), 'validation_loss_ce': tensor(0.1147, device='cuda:0'), 'validation_loss_bbox': tensor(0.0114, device='cuda:0'), 'validation_loss_giou': tensor(0.0581, device='cuda:0'), 'validation_cardinality_error': tensor(0.7599, device='cuda:0')}
{'training_loss': tensor(0.3272, device='cuda:0'), 'train_loss_ce': tensor(0.1888, device='cuda:0'), 'train_loss_bbox': tensor(0.0081, device='cuda:0'), 'train_loss_giou': tensor(0.0491, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3018, device='cuda:0'), 'validation_loss_ce': tensor(0.1152, device='cuda:0'), 'validation_loss_bbox': tensor(0.0119, device='cuda:0'), 'validation_loss_giou': tensor(0.0636, device='cuda:0'), 'validation_cardinality_error': tensor(0.7910, device='cuda:0')}
{'training_loss': tensor(0.5342, device='cuda:0'), 'train_loss_ce': tensor(0.1397, device='cuda:0'), 'train_loss_bbox': tensor(0.0231, device='cuda:0'), 'train_loss_giou': tensor(0.1395, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2908, device='cuda:0'), 'validation_loss_ce': tensor(0.1143, device='cuda:0'), 'validation_loss_bbox': tensor(0.0119, device='cuda:0'), 'validation_loss_giou': tensor(0.0585, device='cuda:0'), 'validation_cardinality_error': tensor(0.7825, device='cuda:0')}
{'training_loss': tensor(0.2524, device='cuda:0'), 'train_loss_ce': tensor(0.1549, device='cuda:0'), 'train_loss_bbox': tensor(0.0091, device='cuda:0'), 'train_loss_giou': tensor(0.0259, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2855, device='cuda:0'), 'validation_loss_ce': tensor(0.1119, device='cuda:0'), 'validation_loss_bbox': tensor(0.0116, device='cuda:0'), 'validation_loss_giou': tensor(0.0577, device='cuda:0'), 'validation_cardinality_error': tensor(0.7740, device='cuda:0')}
{'training_loss': tensor(0.4293, device='cuda:0'), 'train_loss_ce': tensor(0.1388, device='cuda:0'), 'train_loss_bbox': tensor(0.0128, device='cuda:0'), 'train_loss_giou': tensor(0.1131, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(0.2773, device='cuda:0'), 'validation_loss_ce': tensor(0.1109, device='cuda:0'), 'validation_loss_bbox': tensor(0.0107, device='cuda:0'), 'validation_loss_giou': tensor(0.0565, device='cuda:0'), 'validation_cardinality_error': tensor(0.7232, device='cuda:0')}
{'training_loss': tensor(0.2861, device='cuda:0'), 'train_loss_ce': tensor(0.1206, device='cuda:0'), 'train_loss_bbox': tensor(0.0089, device='cuda:0'), 'train_loss_giou': tensor(0.0605, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3258, device='cuda:0'), 'validation_loss_ce': tensor(0.1108, device='cuda:0'), 'validation_loss_bbox': tensor(0.0134, device='cuda:0'), 'validation_loss_giou': tensor(0.0741, device='cuda:0'), 'validation_cardinality_error': tensor(0.7740, device='cuda:0')}
{'training_loss': tensor(0.3450, device='cuda:0'), 'train_loss_ce': tensor(0.1330, device='cuda:0'), 'train_loss_bbox': tensor(0.0121, device='cuda:0'), 'train_loss_giou': tensor(0.0758, device='cuda:0'), 'train_cardinality_error': tensor(2.5000, device='cuda:0'), 'validation_loss': tensor(0.2875, device='cuda:0'), 'validation_loss_ce': tensor(0.1088, device='cuda:0'), 'validation_loss_bbox': tensor(0.0117, device='cuda:0'), 'validation_loss_giou': tensor(0.0601, device='cuda:0'), 'validation_cardinality_error': tensor(0.7316, device='cuda:0')}
{'training_loss': tensor(0.2160, device='cuda:0'), 'train_loss_ce': tensor(0.1066, device='cuda:0'), 'train_loss_bbox': tensor(0.0102, device='cuda:0'), 'train_loss_giou': tensor(0.0292, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.3040, device='cuda:0'), 'validation_loss_ce': tensor(0.1081, device='cuda:0'), 'validation_loss_bbox': tensor(0.0131, device='cuda:0'), 'validation_loss_giou': tensor(0.0653, device='cuda:0'), 'validation_cardinality_error': tensor(0.7345, device='cuda:0')}
{'training_loss': tensor(0.4159, device='cuda:0'), 'train_loss_ce': tensor(0.1986, device='cuda:0'), 'train_loss_bbox': tensor(0.0170, device='cuda:0'), 'train_loss_giou': tensor(0.0661, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2946, device='cuda:0'), 'validation_loss_ce': tensor(0.1069, device='cuda:0'), 'validation_loss_bbox': tensor(0.0119, device='cuda:0'), 'validation_loss_giou': tensor(0.0640, device='cuda:0'), 'validation_cardinality_error': tensor(0.7627, device='cuda:0')}
{'training_loss': tensor(0.2096, device='cuda:0'), 'train_loss_ce': tensor(0.1060, device='cuda:0'), 'train_loss_bbox': tensor(0.0097, device='cuda:0'), 'train_loss_giou': tensor(0.0276, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2884, device='cuda:0'), 'validation_loss_ce': tensor(0.1055, device='cuda:0'), 'validation_loss_bbox': tensor(0.0116, device='cuda:0'), 'validation_loss_giou': tensor(0.0624, device='cuda:0'), 'validation_cardinality_error': tensor(0.8249, device='cuda:0')}
{'training_loss': tensor(0.1720, device='cuda:0'), 'train_loss_ce': tensor(0.0920, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.0193, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2790, device='cuda:0'), 'validation_loss_ce': tensor(0.1040, device='cuda:0'), 'validation_loss_bbox': tensor(0.0116, device='cuda:0'), 'validation_loss_giou': tensor(0.0585, device='cuda:0'), 'validation_cardinality_error': tensor(0.6582, device='cuda:0')}
{'training_loss': tensor(0.5930, device='cuda:0'), 'train_loss_ce': tensor(0.0643, device='cuda:0'), 'train_loss_bbox': tensor(0.0425, device='cuda:0'), 'train_loss_giou': tensor(0.1582, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2813, device='cuda:0'), 'validation_loss_ce': tensor(0.1029, device='cuda:0'), 'validation_loss_bbox': tensor(0.0120, device='cuda:0'), 'validation_loss_giou': tensor(0.0591, device='cuda:0'), 'validation_cardinality_error': tensor(0.7034, device='cuda:0')}
{'training_loss': tensor(0.2923, device='cuda:0'), 'train_loss_ce': tensor(0.0436, device='cuda:0'), 'train_loss_bbox': tensor(0.0188, device='cuda:0'), 'train_loss_giou': tensor(0.0773, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2828, device='cuda:0'), 'validation_loss_ce': tensor(0.1023, device='cuda:0'), 'validation_loss_bbox': tensor(0.0120, device='cuda:0'), 'validation_loss_giou': tensor(0.0603, device='cuda:0'), 'validation_cardinality_error': tensor(0.7288, device='cuda:0')}
{'training_loss': tensor(0.3031, device='cuda:0'), 'train_loss_ce': tensor(0.1537, device='cuda:0'), 'train_loss_bbox': tensor(0.0060, device='cuda:0'), 'train_loss_giou': tensor(0.0597, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2864, device='cuda:0'), 'validation_loss_ce': tensor(0.1022, device='cuda:0'), 'validation_loss_bbox': tensor(0.0119, device='cuda:0'), 'validation_loss_giou': tensor(0.0622, device='cuda:0'), 'validation_cardinality_error': tensor(0.7486, device='cuda:0')}
{'training_loss': tensor(0.3143, device='cuda:0'), 'train_loss_ce': tensor(0.0952, device='cuda:0'), 'train_loss_bbox': tensor(0.0097, device='cuda:0'), 'train_loss_giou': tensor(0.0854, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2830, device='cuda:0'), 'validation_loss_ce': tensor(0.1002, device='cuda:0'), 'validation_loss_bbox': tensor(0.0116, device='cuda:0'), 'validation_loss_giou': tensor(0.0623, device='cuda:0'), 'validation_cardinality_error': tensor(0.7401, device='cuda:0')}
{'training_loss': tensor(0.2440, device='cuda:0'), 'train_loss_ce': tensor(0.1157, device='cuda:0'), 'train_loss_bbox': tensor(0.0147, device='cuda:0'), 'train_loss_giou': tensor(0.0274, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2747, device='cuda:0'), 'validation_loss_ce': tensor(0.0999, device='cuda:0'), 'validation_loss_bbox': tensor(0.0113, device='cuda:0'), 'validation_loss_giou': tensor(0.0591, device='cuda:0'), 'validation_cardinality_error': tensor(0.6977, device='cuda:0')}
{'training_loss': tensor(0.5301, device='cuda:0'), 'train_loss_ce': tensor(0.1852, device='cuda:0'), 'train_loss_bbox': tensor(0.0435, device='cuda:0'), 'train_loss_giou': tensor(0.0638, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2656, device='cuda:0'), 'validation_loss_ce': tensor(0.0986, device='cuda:0'), 'validation_loss_bbox': tensor(0.0110, device='cuda:0'), 'validation_loss_giou': tensor(0.0561, device='cuda:0'), 'validation_cardinality_error': tensor(0.6864, device='cuda:0')}
{'training_loss': tensor(0.2107, device='cuda:0'), 'train_loss_ce': tensor(0.0520, device='cuda:0'), 'train_loss_bbox': tensor(0.0147, device='cuda:0'), 'train_loss_giou': tensor(0.0427, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2607, device='cuda:0'), 'validation_loss_ce': tensor(0.0976, device='cuda:0'), 'validation_loss_bbox': tensor(0.0105, device='cuda:0'), 'validation_loss_giou': tensor(0.0552, device='cuda:0'), 'validation_cardinality_error': tensor(0.6864, device='cuda:0')}
{'training_loss': tensor(0.2614, device='cuda:0'), 'train_loss_ce': tensor(0.1404, device='cuda:0'), 'train_loss_bbox': tensor(0.0076, device='cuda:0'), 'train_loss_giou': tensor(0.0415, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2698, device='cuda:0'), 'validation_loss_ce': tensor(0.0978, device='cuda:0'), 'validation_loss_bbox': tensor(0.0112, device='cuda:0'), 'validation_loss_giou': tensor(0.0581, device='cuda:0'), 'validation_cardinality_error': tensor(0.7994, device='cuda:0')}
{'training_loss': tensor(0.6973, device='cuda:0'), 'train_loss_ce': tensor(0.1772, device='cuda:0'), 'train_loss_bbox': tensor(0.0375, device='cuda:0'), 'train_loss_giou': tensor(0.1664, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2685, device='cuda:0'), 'validation_loss_ce': tensor(0.0954, device='cuda:0'), 'validation_loss_bbox': tensor(0.0116, device='cuda:0'), 'validation_loss_giou': tensor(0.0576, device='cuda:0'), 'validation_cardinality_error': tensor(0.6723, device='cuda:0')}
{'training_loss': tensor(0.2208, device='cuda:0'), 'train_loss_ce': tensor(0.0549, device='cuda:0'), 'train_loss_bbox': tensor(0.0068, device='cuda:0'), 'train_loss_giou': tensor(0.0660, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2774, device='cuda:0'), 'validation_loss_ce': tensor(0.0946, device='cuda:0'), 'validation_loss_bbox': tensor(0.0115, device='cuda:0'), 'validation_loss_giou': tensor(0.0627, device='cuda:0'), 'validation_cardinality_error': tensor(0.6751, device='cuda:0')}
{'training_loss': tensor(0.2925, device='cuda:0'), 'train_loss_ce': tensor(0.0802, device='cuda:0'), 'train_loss_bbox': tensor(0.0147, device='cuda:0'), 'train_loss_giou': tensor(0.0695, device='cuda:0'), 'train_cardinality_error': tensor(2.5000, device='cuda:0'), 'validation_loss': tensor(0.2656, device='cuda:0'), 'validation_loss_ce': tensor(0.0945, device='cuda:0'), 'validation_loss_bbox': tensor(0.0107, device='cuda:0'), 'validation_loss_giou': tensor(0.0587, device='cuda:0'), 'validation_cardinality_error': tensor(0.7175, device='cuda:0')}
{'training_loss': tensor(0.3347, device='cuda:0'), 'train_loss_ce': tensor(0.1610, device='cuda:0'), 'train_loss_bbox': tensor(0.0127, device='cuda:0'), 'train_loss_giou': tensor(0.0552, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2649, device='cuda:0'), 'validation_loss_ce': tensor(0.0920, device='cuda:0'), 'validation_loss_bbox': tensor(0.0115, device='cuda:0'), 'validation_loss_giou': tensor(0.0576, device='cuda:0'), 'validation_cardinality_error': tensor(0.7175, device='cuda:0')}
{'training_loss': tensor(0.1949, device='cuda:0'), 'train_loss_ce': tensor(0.0649, device='cuda:0'), 'train_loss_bbox': tensor(0.0100, device='cuda:0'), 'train_loss_giou': tensor(0.0399, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2484, device='cuda:0'), 'validation_loss_ce': tensor(0.0913, device='cuda:0'), 'validation_loss_bbox': tensor(0.0104, device='cuda:0'), 'validation_loss_giou': tensor(0.0526, device='cuda:0'), 'validation_cardinality_error': tensor(0.7542, device='cuda:0')}
{'training_loss': tensor(0.2314, device='cuda:0'), 'train_loss_ce': tensor(0.0674, device='cuda:0'), 'train_loss_bbox': tensor(0.0102, device='cuda:0'), 'train_loss_giou': tensor(0.0566, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2513, device='cuda:0'), 'validation_loss_ce': tensor(0.0904, device='cuda:0'), 'validation_loss_bbox': tensor(0.0103, device='cuda:0'), 'validation_loss_giou': tensor(0.0547, device='cuda:0'), 'validation_cardinality_error': tensor(0.7034, device='cuda:0')}
{'training_loss': tensor(0.1502, device='cuda:0'), 'train_loss_ce': tensor(0.0816, device='cuda:0'), 'train_loss_bbox': tensor(0.0056, device='cuda:0'), 'train_loss_giou': tensor(0.0203, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2497, device='cuda:0'), 'validation_loss_ce': tensor(0.0888, device='cuda:0'), 'validation_loss_bbox': tensor(0.0104, device='cuda:0'), 'validation_loss_giou': tensor(0.0545, device='cuda:0'), 'validation_cardinality_error': tensor(0.7203, device='cuda:0')}
{'training_loss': tensor(0.5440, device='cuda:0'), 'train_loss_ce': tensor(0.0388, device='cuda:0'), 'train_loss_bbox': tensor(0.0195, device='cuda:0'), 'train_loss_giou': tensor(0.2039, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2876, device='cuda:0'), 'validation_loss_ce': tensor(0.0881, device='cuda:0'), 'validation_loss_bbox': tensor(0.0123, device='cuda:0'), 'validation_loss_giou': tensor(0.0690, device='cuda:0'), 'validation_cardinality_error': tensor(0.6469, device='cuda:0')}
{'training_loss': tensor(0.2011, device='cuda:0'), 'train_loss_ce': tensor(0.0877, device='cuda:0'), 'train_loss_bbox': tensor(0.0039, device='cuda:0'), 'train_loss_giou': tensor(0.0470, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2799, device='cuda:0'), 'validation_loss_ce': tensor(0.0875, device='cuda:0'), 'validation_loss_bbox': tensor(0.0117, device='cuda:0'), 'validation_loss_giou': tensor(0.0670, device='cuda:0'), 'validation_cardinality_error': tensor(0.6441, device='cuda:0')}
{'training_loss': tensor(0.1555, device='cuda:0'), 'train_loss_ce': tensor(0.0280, device='cuda:0'), 'train_loss_bbox': tensor(0.0111, device='cuda:0'), 'train_loss_giou': tensor(0.0360, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2607, device='cuda:0'), 'validation_loss_ce': tensor(0.0866, device='cuda:0'), 'validation_loss_bbox': tensor(0.0109, device='cuda:0'), 'validation_loss_giou': tensor(0.0598, device='cuda:0'), 'validation_cardinality_error': tensor(0.7288, device='cuda:0')}
{'training_loss': tensor(0.3024, device='cuda:0'), 'train_loss_ce': tensor(0.0624, device='cuda:0'), 'train_loss_bbox': tensor(0.0152, device='cuda:0'), 'train_loss_giou': tensor(0.0819, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2756, device='cuda:0'), 'validation_loss_ce': tensor(0.0851, device='cuda:0'), 'validation_loss_bbox': tensor(0.0116, device='cuda:0'), 'validation_loss_giou': tensor(0.0662, device='cuda:0'), 'validation_cardinality_error': tensor(0.6638, device='cuda:0')}
{'training_loss': tensor(0.2905, device='cuda:0'), 'train_loss_ce': tensor(0.0538, device='cuda:0'), 'train_loss_bbox': tensor(0.0053, device='cuda:0'), 'train_loss_giou': tensor(0.1051, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2604, device='cuda:0'), 'validation_loss_ce': tensor(0.0847, device='cuda:0'), 'validation_loss_bbox': tensor(0.0114, device='cuda:0'), 'validation_loss_giou': tensor(0.0594, device='cuda:0'), 'validation_cardinality_error': tensor(0.6497, device='cuda:0')}
{'training_loss': tensor(0.2018, device='cuda:0'), 'train_loss_ce': tensor(0.0769, device='cuda:0'), 'train_loss_bbox': tensor(0.0054, device='cuda:0'), 'train_loss_giou': tensor(0.0489, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2656, device='cuda:0'), 'validation_loss_ce': tensor(0.0850, device='cuda:0'), 'validation_loss_bbox': tensor(0.0110, device='cuda:0'), 'validation_loss_giou': tensor(0.0627, device='cuda:0'), 'validation_cardinality_error': tensor(0.8249, device='cuda:0')}
{'training_loss': tensor(0.6076, device='cuda:0'), 'train_loss_ce': tensor(0.0567, device='cuda:0'), 'train_loss_bbox': tensor(0.0187, device='cuda:0'), 'train_loss_giou': tensor(0.2287, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2346, device='cuda:0'), 'validation_loss_ce': tensor(0.0819, device='cuda:0'), 'validation_loss_bbox': tensor(0.0092, device='cuda:0'), 'validation_loss_giou': tensor(0.0534, device='cuda:0'), 'validation_cardinality_error': tensor(0.6864, device='cuda:0')}
{'training_loss': tensor(0.3800, device='cuda:0'), 'train_loss_ce': tensor(0.0786, device='cuda:0'), 'train_loss_bbox': tensor(0.0086, device='cuda:0'), 'train_loss_giou': tensor(0.1293, device='cuda:0'), 'train_cardinality_error': tensor(2.5000, device='cuda:0'), 'validation_loss': tensor(0.2440, device='cuda:0'), 'validation_loss_ce': tensor(0.0815, device='cuda:0'), 'validation_loss_bbox': tensor(0.0103, device='cuda:0'), 'validation_loss_giou': tensor(0.0556, device='cuda:0'), 'validation_cardinality_error': tensor(0.6667, device='cuda:0')}
{'training_loss': tensor(0.2305, device='cuda:0'), 'train_loss_ce': tensor(0.0752, device='cuda:0'), 'train_loss_bbox': tensor(0.0110, device='cuda:0'), 'train_loss_giou': tensor(0.0501, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2745, device='cuda:0'), 'validation_loss_ce': tensor(0.0817, device='cuda:0'), 'validation_loss_bbox': tensor(0.0118, device='cuda:0'), 'validation_loss_giou': tensor(0.0668, device='cuda:0'), 'validation_cardinality_error': tensor(0.6469, device='cuda:0')}
{'training_loss': tensor(0.3658, device='cuda:0'), 'train_loss_ce': tensor(0.0758, device='cuda:0'), 'train_loss_bbox': tensor(0.0110, device='cuda:0'), 'train_loss_giou': tensor(0.1176, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2629, device='cuda:0'), 'validation_loss_ce': tensor(0.0812, device='cuda:0'), 'validation_loss_bbox': tensor(0.0109, device='cuda:0'), 'validation_loss_giou': tensor(0.0637, device='cuda:0'), 'validation_cardinality_error': tensor(0.7825, device='cuda:0')}
{'training_loss': tensor(0.1365, device='cuda:0'), 'train_loss_ce': tensor(0.0306, device='cuda:0'), 'train_loss_bbox': tensor(0.0059, device='cuda:0'), 'train_loss_giou': tensor(0.0382, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2554, device='cuda:0'), 'validation_loss_ce': tensor(0.0788, device='cuda:0'), 'validation_loss_bbox': tensor(0.0111, device='cuda:0'), 'validation_loss_giou': tensor(0.0605, device='cuda:0'), 'validation_cardinality_error': tensor(0.5960, device='cuda:0')}
{'training_loss': tensor(0.2918, device='cuda:0'), 'train_loss_ce': tensor(0.0877, device='cuda:0'), 'train_loss_bbox': tensor(0.0193, device='cuda:0'), 'train_loss_giou': tensor(0.0537, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2365, device='cuda:0'), 'validation_loss_ce': tensor(0.0779, device='cuda:0'), 'validation_loss_bbox': tensor(0.0097, device='cuda:0'), 'validation_loss_giou': tensor(0.0550, device='cuda:0'), 'validation_cardinality_error': tensor(0.6186, device='cuda:0')}
{'training_loss': tensor(0.1995, device='cuda:0'), 'train_loss_ce': tensor(0.0558, device='cuda:0'), 'train_loss_bbox': tensor(0.0120, device='cuda:0'), 'train_loss_giou': tensor(0.0418, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2512, device='cuda:0'), 'validation_loss_ce': tensor(0.0772, device='cuda:0'), 'validation_loss_bbox': tensor(0.0110, device='cuda:0'), 'validation_loss_giou': tensor(0.0595, device='cuda:0'), 'validation_cardinality_error': tensor(0.7373, device='cuda:0')}
{'training_loss': tensor(0.1777, device='cuda:0'), 'train_loss_ce': tensor(0.0531, device='cuda:0'), 'train_loss_bbox': tensor(0.0100, device='cuda:0'), 'train_loss_giou': tensor(0.0374, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2357, device='cuda:0'), 'validation_loss_ce': tensor(0.0757, device='cuda:0'), 'validation_loss_bbox': tensor(0.0102, device='cuda:0'), 'validation_loss_giou': tensor(0.0545, device='cuda:0'), 'validation_cardinality_error': tensor(0.5763, device='cuda:0')}
{'training_loss': tensor(0.2221, device='cuda:0'), 'train_loss_ce': tensor(0.0576, device='cuda:0'), 'train_loss_bbox': tensor(0.0086, device='cuda:0'), 'train_loss_giou': tensor(0.0608, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2447, device='cuda:0'), 'validation_loss_ce': tensor(0.0749, device='cuda:0'), 'validation_loss_bbox': tensor(0.0101, device='cuda:0'), 'validation_loss_giou': tensor(0.0597, device='cuda:0'), 'validation_cardinality_error': tensor(0.6695, device='cuda:0')}
{'training_loss': tensor(0.2295, device='cuda:0'), 'train_loss_ce': tensor(0.0975, device='cuda:0'), 'train_loss_bbox': tensor(0.0092, device='cuda:0'), 'train_loss_giou': tensor(0.0431, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2413, device='cuda:0'), 'validation_loss_ce': tensor(0.0746, device='cuda:0'), 'validation_loss_bbox': tensor(0.0102, device='cuda:0'), 'validation_loss_giou': tensor(0.0580, device='cuda:0'), 'validation_cardinality_error': tensor(0.6780, device='cuda:0')}
{'training_loss': tensor(0.3555, device='cuda:0'), 'train_loss_ce': tensor(0.2404, device='cuda:0'), 'train_loss_bbox': tensor(0.0044, device='cuda:0'), 'train_loss_giou': tensor(0.0466, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2258, device='cuda:0'), 'validation_loss_ce': tensor(0.0734, device='cuda:0'), 'validation_loss_bbox': tensor(0.0097, device='cuda:0'), 'validation_loss_giou': tensor(0.0520, device='cuda:0'), 'validation_cardinality_error': tensor(0.6243, device='cuda:0')}
{'training_loss': tensor(0.1567, device='cuda:0'), 'train_loss_ce': tensor(0.0623, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0289, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2225, device='cuda:0'), 'validation_loss_ce': tensor(0.0716, device='cuda:0'), 'validation_loss_bbox': tensor(0.0098, device='cuda:0'), 'validation_loss_giou': tensor(0.0510, device='cuda:0'), 'validation_cardinality_error': tensor(0.6469, device='cuda:0')}
{'training_loss': tensor(0.3903, device='cuda:0'), 'train_loss_ce': tensor(0.2265, device='cuda:0'), 'train_loss_bbox': tensor(0.0097, device='cuda:0'), 'train_loss_giou': tensor(0.0575, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2327, device='cuda:0'), 'validation_loss_ce': tensor(0.0713, device='cuda:0'), 'validation_loss_bbox': tensor(0.0105, device='cuda:0'), 'validation_loss_giou': tensor(0.0544, device='cuda:0'), 'validation_cardinality_error': tensor(0.6667, device='cuda:0')}
{'training_loss': tensor(0.1650, device='cuda:0'), 'train_loss_ce': tensor(0.0300, device='cuda:0'), 'train_loss_bbox': tensor(0.0045, device='cuda:0'), 'train_loss_giou': tensor(0.0563, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2368, device='cuda:0'), 'validation_loss_ce': tensor(0.0707, device='cuda:0'), 'validation_loss_bbox': tensor(0.0107, device='cuda:0'), 'validation_loss_giou': tensor(0.0563, device='cuda:0'), 'validation_cardinality_error': tensor(0.6215, device='cuda:0')}
{'training_loss': tensor(0.1287, device='cuda:0'), 'train_loss_ce': tensor(0.0498, device='cuda:0'), 'train_loss_bbox': tensor(0.0050, device='cuda:0'), 'train_loss_giou': tensor(0.0269, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2374, device='cuda:0'), 'validation_loss_ce': tensor(0.0704, device='cuda:0'), 'validation_loss_bbox': tensor(0.0102, device='cuda:0'), 'validation_loss_giou': tensor(0.0579, device='cuda:0'), 'validation_cardinality_error': tensor(0.6525, device='cuda:0')}
{'training_loss': tensor(0.1291, device='cuda:0'), 'train_loss_ce': tensor(0.0563, device='cuda:0'), 'train_loss_bbox': tensor(0.0048, device='cuda:0'), 'train_loss_giou': tensor(0.0245, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2319, device='cuda:0'), 'validation_loss_ce': tensor(0.0685, device='cuda:0'), 'validation_loss_bbox': tensor(0.0105, device='cuda:0'), 'validation_loss_giou': tensor(0.0554, device='cuda:0'), 'validation_cardinality_error': tensor(0.6667, device='cuda:0')}
{'training_loss': tensor(0.3762, device='cuda:0'), 'train_loss_ce': tensor(0.1795, device='cuda:0'), 'train_loss_bbox': tensor(0.0088, device='cuda:0'), 'train_loss_giou': tensor(0.0763, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2429, device='cuda:0'), 'validation_loss_ce': tensor(0.0685, device='cuda:0'), 'validation_loss_bbox': tensor(0.0114, device='cuda:0'), 'validation_loss_giou': tensor(0.0587, device='cuda:0'), 'validation_cardinality_error': tensor(0.6921, device='cuda:0')}
{'training_loss': tensor(0.2140, device='cuda:0'), 'train_loss_ce': tensor(0.0843, device='cuda:0'), 'train_loss_bbox': tensor(0.0069, device='cuda:0'), 'train_loss_giou': tensor(0.0475, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2434, device='cuda:0'), 'validation_loss_ce': tensor(0.0680, device='cuda:0'), 'validation_loss_bbox': tensor(0.0112, device='cuda:0'), 'validation_loss_giou': tensor(0.0597, device='cuda:0'), 'validation_cardinality_error': tensor(0.6893, device='cuda:0')}
{'training_loss': tensor(0.1980, device='cuda:0'), 'train_loss_ce': tensor(0.0947, device='cuda:0'), 'train_loss_bbox': tensor(0.0087, device='cuda:0'), 'train_loss_giou': tensor(0.0298, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2240, device='cuda:0'), 'validation_loss_ce': tensor(0.0662, device='cuda:0'), 'validation_loss_bbox': tensor(0.0099, device='cuda:0'), 'validation_loss_giou': tensor(0.0542, device='cuda:0'), 'validation_cardinality_error': tensor(0.6554, device='cuda:0')}
{'training_loss': tensor(0.4399, device='cuda:0'), 'train_loss_ce': tensor(0.0718, device='cuda:0'), 'train_loss_bbox': tensor(0.0268, device='cuda:0'), 'train_loss_giou': tensor(0.1171, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2269, device='cuda:0'), 'validation_loss_ce': tensor(0.0655, device='cuda:0'), 'validation_loss_bbox': tensor(0.0099, device='cuda:0'), 'validation_loss_giou': tensor(0.0559, device='cuda:0'), 'validation_cardinality_error': tensor(0.5989, device='cuda:0')}
{'training_loss': tensor(0.3402, device='cuda:0'), 'train_loss_ce': tensor(0.0378, device='cuda:0'), 'train_loss_bbox': tensor(0.0217, device='cuda:0'), 'train_loss_giou': tensor(0.0970, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2326, device='cuda:0'), 'validation_loss_ce': tensor(0.0651, device='cuda:0'), 'validation_loss_bbox': tensor(0.0111, device='cuda:0'), 'validation_loss_giou': tensor(0.0560, device='cuda:0'), 'validation_cardinality_error': tensor(0.6554, device='cuda:0')}
{'training_loss': tensor(0.1726, device='cuda:0'), 'train_loss_ce': tensor(0.0665, device='cuda:0'), 'train_loss_bbox': tensor(0.0114, device='cuda:0'), 'train_loss_giou': tensor(0.0245, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2234, device='cuda:0'), 'validation_loss_ce': tensor(0.0646, device='cuda:0'), 'validation_loss_bbox': tensor(0.0104, device='cuda:0'), 'validation_loss_giou': tensor(0.0533, device='cuda:0'), 'validation_cardinality_error': tensor(0.6412, device='cuda:0')}
{'training_loss': tensor(0.1628, device='cuda:0'), 'train_loss_ce': tensor(0.0175, device='cuda:0'), 'train_loss_bbox': tensor(0.0041, device='cuda:0'), 'train_loss_giou': tensor(0.0625, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2273, device='cuda:0'), 'validation_loss_ce': tensor(0.0635, device='cuda:0'), 'validation_loss_bbox': tensor(0.0104, device='cuda:0'), 'validation_loss_giou': tensor(0.0559, device='cuda:0'), 'validation_cardinality_error': tensor(0.6271, device='cuda:0')}
{'training_loss': tensor(0.2161, device='cuda:0'), 'train_loss_ce': tensor(0.0267, device='cuda:0'), 'train_loss_bbox': tensor(0.0139, device='cuda:0'), 'train_loss_giou': tensor(0.0600, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2314, device='cuda:0'), 'validation_loss_ce': tensor(0.0627, device='cuda:0'), 'validation_loss_bbox': tensor(0.0103, device='cuda:0'), 'validation_loss_giou': tensor(0.0587, device='cuda:0'), 'validation_cardinality_error': tensor(0.6045, device='cuda:0')}
{'training_loss': tensor(0.1392, device='cuda:0'), 'train_loss_ce': tensor(0.0192, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0375, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2305, device='cuda:0'), 'validation_loss_ce': tensor(0.0624, device='cuda:0'), 'validation_loss_bbox': tensor(0.0104, device='cuda:0'), 'validation_loss_giou': tensor(0.0581, device='cuda:0'), 'validation_cardinality_error': tensor(0.6186, device='cuda:0')}
{'training_loss': tensor(0.1839, device='cuda:0'), 'train_loss_ce': tensor(0.0384, device='cuda:0'), 'train_loss_bbox': tensor(0.0118, device='cuda:0'), 'train_loss_giou': tensor(0.0433, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2301, device='cuda:0'), 'validation_loss_ce': tensor(0.0618, device='cuda:0'), 'validation_loss_bbox': tensor(0.0105, device='cuda:0'), 'validation_loss_giou': tensor(0.0580, device='cuda:0'), 'validation_cardinality_error': tensor(0.6186, device='cuda:0')}
{'training_loss': tensor(0.2376, device='cuda:0'), 'train_loss_ce': tensor(0.0882, device='cuda:0'), 'train_loss_bbox': tensor(0.0087, device='cuda:0'), 'train_loss_giou': tensor(0.0529, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2627, device='cuda:0'), 'validation_loss_ce': tensor(0.0610, device='cuda:0'), 'validation_loss_bbox': tensor(0.0126, device='cuda:0'), 'validation_loss_giou': tensor(0.0693, device='cuda:0'), 'validation_cardinality_error': tensor(0.6582, device='cuda:0')}
{'training_loss': tensor(0.1988, device='cuda:0'), 'train_loss_ce': tensor(0.0377, device='cuda:0'), 'train_loss_bbox': tensor(0.0119, device='cuda:0'), 'train_loss_giou': tensor(0.0507, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2571, device='cuda:0'), 'validation_loss_ce': tensor(0.0613, device='cuda:0'), 'validation_loss_bbox': tensor(0.0124, device='cuda:0'), 'validation_loss_giou': tensor(0.0670, device='cuda:0'), 'validation_cardinality_error': tensor(0.6695, device='cuda:0')}
{'training_loss': tensor(0.2332, device='cuda:0'), 'train_loss_ce': tensor(0.0279, device='cuda:0'), 'train_loss_bbox': tensor(0.0140, device='cuda:0'), 'train_loss_giou': tensor(0.0677, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2519, device='cuda:0'), 'validation_loss_ce': tensor(0.0593, device='cuda:0'), 'validation_loss_bbox': tensor(0.0116, device='cuda:0'), 'validation_loss_giou': tensor(0.0673, device='cuda:0'), 'validation_cardinality_error': tensor(0.5706, device='cuda:0')}
{'training_loss': tensor(0.2739, device='cuda:0'), 'train_loss_ce': tensor(0.0562, device='cuda:0'), 'train_loss_bbox': tensor(0.0060, device='cuda:0'), 'train_loss_giou': tensor(0.0939, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2433, device='cuda:0'), 'validation_loss_ce': tensor(0.0624, device='cuda:0'), 'validation_loss_bbox': tensor(0.0110, device='cuda:0'), 'validation_loss_giou': tensor(0.0631, device='cuda:0'), 'validation_cardinality_error': tensor(0.7740, device='cuda:0')}
{'training_loss': tensor(0.3429, device='cuda:0'), 'train_loss_ce': tensor(0.1230, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.0893, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2214, device='cuda:0'), 'validation_loss_ce': tensor(0.0595, device='cuda:0'), 'validation_loss_bbox': tensor(0.0104, device='cuda:0'), 'validation_loss_giou': tensor(0.0550, device='cuda:0'), 'validation_cardinality_error': tensor(0.5819, device='cuda:0')}
{'training_loss': tensor(0.1061, device='cuda:0'), 'train_loss_ce': tensor(0.0233, device='cuda:0'), 'train_loss_bbox': tensor(0.0041, device='cuda:0'), 'train_loss_giou': tensor(0.0311, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2297, device='cuda:0'), 'validation_loss_ce': tensor(0.0590, device='cuda:0'), 'validation_loss_bbox': tensor(0.0104, device='cuda:0'), 'validation_loss_giou': tensor(0.0593, device='cuda:0'), 'validation_cardinality_error': tensor(0.6243, device='cuda:0')}
{'training_loss': tensor(0.1517, device='cuda:0'), 'train_loss_ce': tensor(0.0641, device='cuda:0'), 'train_loss_bbox': tensor(0.0075, device='cuda:0'), 'train_loss_giou': tensor(0.0251, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2096, device='cuda:0'), 'validation_loss_ce': tensor(0.0572, device='cuda:0'), 'validation_loss_bbox': tensor(0.0094, device='cuda:0'), 'validation_loss_giou': tensor(0.0527, device='cuda:0'), 'validation_cardinality_error': tensor(0.6525, device='cuda:0')}
{'training_loss': tensor(0.1649, device='cuda:0'), 'train_loss_ce': tensor(0.0276, device='cuda:0'), 'train_loss_bbox': tensor(0.0111, device='cuda:0'), 'train_loss_giou': tensor(0.0410, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2302, device='cuda:0'), 'validation_loss_ce': tensor(0.0567, device='cuda:0'), 'validation_loss_bbox': tensor(0.0107, device='cuda:0'), 'validation_loss_giou': tensor(0.0599, device='cuda:0'), 'validation_cardinality_error': tensor(0.6045, device='cuda:0')}
{'training_loss': tensor(0.4775, device='cuda:0'), 'train_loss_ce': tensor(0.0373, device='cuda:0'), 'train_loss_bbox': tensor(0.0270, device='cuda:0'), 'train_loss_giou': tensor(0.1525, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2264, device='cuda:0'), 'validation_loss_ce': tensor(0.0561, device='cuda:0'), 'validation_loss_bbox': tensor(0.0107, device='cuda:0'), 'validation_loss_giou': tensor(0.0585, device='cuda:0'), 'validation_cardinality_error': tensor(0.6356, device='cuda:0')}
{'training_loss': tensor(0.1146, device='cuda:0'), 'train_loss_ce': tensor(0.0119, device='cuda:0'), 'train_loss_bbox': tensor(0.0033, device='cuda:0'), 'train_loss_giou': tensor(0.0430, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2147, device='cuda:0'), 'validation_loss_ce': tensor(0.0553, device='cuda:0'), 'validation_loss_bbox': tensor(0.0101, device='cuda:0'), 'validation_loss_giou': tensor(0.0544, device='cuda:0'), 'validation_cardinality_error': tensor(0.5960, device='cuda:0')}
{'training_loss': tensor(0.1579, device='cuda:0'), 'train_loss_ce': tensor(0.0675, device='cuda:0'), 'train_loss_bbox': tensor(0.0053, device='cuda:0'), 'train_loss_giou': tensor(0.0320, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2311, device='cuda:0'), 'validation_loss_ce': tensor(0.0554, device='cuda:0'), 'validation_loss_bbox': tensor(0.0106, device='cuda:0'), 'validation_loss_giou': tensor(0.0614, device='cuda:0'), 'validation_cardinality_error': tensor(0.5424, device='cuda:0')}
{'training_loss': tensor(0.2751, device='cuda:0'), 'train_loss_ce': tensor(0.0970, device='cuda:0'), 'train_loss_bbox': tensor(0.0114, device='cuda:0'), 'train_loss_giou': tensor(0.0606, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2033, device='cuda:0'), 'validation_loss_ce': tensor(0.0535, device='cuda:0'), 'validation_loss_bbox': tensor(0.0098, device='cuda:0'), 'validation_loss_giou': tensor(0.0503, device='cuda:0'), 'validation_cardinality_error': tensor(0.5819, device='cuda:0')}
{'training_loss': tensor(0.2723, device='cuda:0'), 'train_loss_ce': tensor(0.0546, device='cuda:0'), 'train_loss_bbox': tensor(0.0109, device='cuda:0'), 'train_loss_giou': tensor(0.0815, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2091, device='cuda:0'), 'validation_loss_ce': tensor(0.0525, device='cuda:0'), 'validation_loss_bbox': tensor(0.0100, device='cuda:0'), 'validation_loss_giou': tensor(0.0534, device='cuda:0'), 'validation_cardinality_error': tensor(0.6017, device='cuda:0')}
{'training_loss': tensor(0.1206, device='cuda:0'), 'train_loss_ce': tensor(0.0337, device='cuda:0'), 'train_loss_bbox': tensor(0.0069, device='cuda:0'), 'train_loss_giou': tensor(0.0262, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2099, device='cuda:0'), 'validation_loss_ce': tensor(0.0518, device='cuda:0'), 'validation_loss_bbox': tensor(0.0100, device='cuda:0'), 'validation_loss_giou': tensor(0.0540, device='cuda:0'), 'validation_cardinality_error': tensor(0.5706, device='cuda:0')}
{'training_loss': tensor(0.2031, device='cuda:0'), 'train_loss_ce': tensor(0.0563, device='cuda:0'), 'train_loss_bbox': tensor(0.0110, device='cuda:0'), 'train_loss_giou': tensor(0.0458, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2153, device='cuda:0'), 'validation_loss_ce': tensor(0.0523, device='cuda:0'), 'validation_loss_bbox': tensor(0.0101, device='cuda:0'), 'validation_loss_giou': tensor(0.0563, device='cuda:0'), 'validation_cardinality_error': tensor(0.5565, device='cuda:0')}
{'training_loss': tensor(0.2286, device='cuda:0'), 'train_loss_ce': tensor(0.0708, device='cuda:0'), 'train_loss_bbox': tensor(0.0098, device='cuda:0'), 'train_loss_giou': tensor(0.0545, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2037, device='cuda:0'), 'validation_loss_ce': tensor(0.0505, device='cuda:0'), 'validation_loss_bbox': tensor(0.0101, device='cuda:0'), 'validation_loss_giou': tensor(0.0513, device='cuda:0'), 'validation_cardinality_error': tensor(0.5621, device='cuda:0')}
{'training_loss': tensor(0.3390, device='cuda:0'), 'train_loss_ce': tensor(0.0543, device='cuda:0'), 'train_loss_bbox': tensor(0.0105, device='cuda:0'), 'train_loss_giou': tensor(0.1160, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2209, device='cuda:0'), 'validation_loss_ce': tensor(0.0518, device='cuda:0'), 'validation_loss_bbox': tensor(0.0110, device='cuda:0'), 'validation_loss_giou': tensor(0.0569, device='cuda:0'), 'validation_cardinality_error': tensor(0.6356, device='cuda:0')}
{'training_loss': tensor(0.2154, device='cuda:0'), 'train_loss_ce': tensor(0.0471, device='cuda:0'), 'train_loss_bbox': tensor(0.0066, device='cuda:0'), 'train_loss_giou': tensor(0.0677, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2345, device='cuda:0'), 'validation_loss_ce': tensor(0.0513, device='cuda:0'), 'validation_loss_bbox': tensor(0.0121, device='cuda:0'), 'validation_loss_giou': tensor(0.0613, device='cuda:0'), 'validation_cardinality_error': tensor(0.5819, device='cuda:0')}
{'training_loss': tensor(0.1787, device='cuda:0'), 'train_loss_ce': tensor(0.0403, device='cuda:0'), 'train_loss_bbox': tensor(0.0070, device='cuda:0'), 'train_loss_giou': tensor(0.0518, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1987, device='cuda:0'), 'validation_loss_ce': tensor(0.0491, device='cuda:0'), 'validation_loss_bbox': tensor(0.0095, device='cuda:0'), 'validation_loss_giou': tensor(0.0509, device='cuda:0'), 'validation_cardinality_error': tensor(0.5395, device='cuda:0')}
{'training_loss': tensor(0.1230, device='cuda:0'), 'train_loss_ce': tensor(0.0673, device='cuda:0'), 'train_loss_bbox': tensor(0.0024, device='cuda:0'), 'train_loss_giou': tensor(0.0218, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2141, device='cuda:0'), 'validation_loss_ce': tensor(0.0491, device='cuda:0'), 'validation_loss_bbox': tensor(0.0103, device='cuda:0'), 'validation_loss_giou': tensor(0.0568, device='cuda:0'), 'validation_cardinality_error': tensor(0.6130, device='cuda:0')}
{'training_loss': tensor(0.0843, device='cuda:0'), 'train_loss_ce': tensor(0.0213, device='cuda:0'), 'train_loss_bbox': tensor(0.0060, device='cuda:0'), 'train_loss_giou': tensor(0.0164, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2102, device='cuda:0'), 'validation_loss_ce': tensor(0.0475, device='cuda:0'), 'validation_loss_bbox': tensor(0.0101, device='cuda:0'), 'validation_loss_giou': tensor(0.0561, device='cuda:0'), 'validation_cardinality_error': tensor(0.5847, device='cuda:0')}
{'training_loss': tensor(0.1810, device='cuda:0'), 'train_loss_ce': tensor(0.0283, device='cuda:0'), 'train_loss_bbox': tensor(0.0124, device='cuda:0'), 'train_loss_giou': tensor(0.0453, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2013, device='cuda:0'), 'validation_loss_ce': tensor(0.0477, device='cuda:0'), 'validation_loss_bbox': tensor(0.0100, device='cuda:0'), 'validation_loss_giou': tensor(0.0517, device='cuda:0'), 'validation_cardinality_error': tensor(0.5254, device='cuda:0')}
{'training_loss': tensor(0.2197, device='cuda:0'), 'train_loss_ce': tensor(0.0298, device='cuda:0'), 'train_loss_bbox': tensor(0.0067, device='cuda:0'), 'train_loss_giou': tensor(0.0782, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2055, device='cuda:0'), 'validation_loss_ce': tensor(0.0467, device='cuda:0'), 'validation_loss_bbox': tensor(0.0096, device='cuda:0'), 'validation_loss_giou': tensor(0.0554, device='cuda:0'), 'validation_cardinality_error': tensor(0.5141, device='cuda:0')}
{'training_loss': tensor(0.5307, device='cuda:0'), 'train_loss_ce': tensor(0.0595, device='cuda:0'), 'train_loss_bbox': tensor(0.0357, device='cuda:0'), 'train_loss_giou': tensor(0.1463, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2119, device='cuda:0'), 'validation_loss_ce': tensor(0.0471, device='cuda:0'), 'validation_loss_bbox': tensor(0.0103, device='cuda:0'), 'validation_loss_giou': tensor(0.0566, device='cuda:0'), 'validation_cardinality_error': tensor(0.5932, device='cuda:0')}
{'training_loss': tensor(0.1488, device='cuda:0'), 'train_loss_ce': tensor(0.0265, device='cuda:0'), 'train_loss_bbox': tensor(0.0078, device='cuda:0'), 'train_loss_giou': tensor(0.0415, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2070, device='cuda:0'), 'validation_loss_ce': tensor(0.0462, device='cuda:0'), 'validation_loss_bbox': tensor(0.0099, device='cuda:0'), 'validation_loss_giou': tensor(0.0557, device='cuda:0'), 'validation_cardinality_error': tensor(0.5000, device='cuda:0')}
{'training_loss': tensor(0.2396, device='cuda:0'), 'train_loss_ce': tensor(0.0257, device='cuda:0'), 'train_loss_bbox': tensor(0.0164, device='cuda:0'), 'train_loss_giou': tensor(0.0660, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2006, device='cuda:0'), 'validation_loss_ce': tensor(0.0461, device='cuda:0'), 'validation_loss_bbox': tensor(0.0097, device='cuda:0'), 'validation_loss_giou': tensor(0.0529, device='cuda:0'), 'validation_cardinality_error': tensor(0.6299, device='cuda:0')}
{'training_loss': tensor(0.6853, device='cuda:0'), 'train_loss_ce': tensor(0.1228, device='cuda:0'), 'train_loss_bbox': tensor(0.0467, device='cuda:0'), 'train_loss_giou': tensor(0.1646, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2125, device='cuda:0'), 'validation_loss_ce': tensor(0.0444, device='cuda:0'), 'validation_loss_bbox': tensor(0.0103, device='cuda:0'), 'validation_loss_giou': tensor(0.0583, device='cuda:0'), 'validation_cardinality_error': tensor(0.5593, device='cuda:0')}
{'training_loss': tensor(0.3222, device='cuda:0'), 'train_loss_ce': tensor(0.0674, device='cuda:0'), 'train_loss_bbox': tensor(0.0178, device='cuda:0'), 'train_loss_giou': tensor(0.0829, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2079, device='cuda:0'), 'validation_loss_ce': tensor(0.0440, device='cuda:0'), 'validation_loss_bbox': tensor(0.0101, device='cuda:0'), 'validation_loss_giou': tensor(0.0567, device='cuda:0'), 'validation_cardinality_error': tensor(0.5028, device='cuda:0')}
{'training_loss': tensor(0.2213, device='cuda:0'), 'train_loss_ce': tensor(0.0562, device='cuda:0'), 'train_loss_bbox': tensor(0.0178, device='cuda:0'), 'train_loss_giou': tensor(0.0382, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1938, device='cuda:0'), 'validation_loss_ce': tensor(0.0433, device='cuda:0'), 'validation_loss_bbox': tensor(0.0098, device='cuda:0'), 'validation_loss_giou': tensor(0.0507, device='cuda:0'), 'validation_cardinality_error': tensor(0.5226, device='cuda:0')}
{'training_loss': tensor(0.4816, device='cuda:0'), 'train_loss_ce': tensor(0.0707, device='cuda:0'), 'train_loss_bbox': tensor(0.0164, device='cuda:0'), 'train_loss_giou': tensor(0.1644, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1956, device='cuda:0'), 'validation_loss_ce': tensor(0.0447, device='cuda:0'), 'validation_loss_bbox': tensor(0.0101, device='cuda:0'), 'validation_loss_giou': tensor(0.0502, device='cuda:0'), 'validation_cardinality_error': tensor(0.5480, device='cuda:0')}
{'training_loss': tensor(0.2052, device='cuda:0'), 'train_loss_ce': tensor(0.0952, device='cuda:0'), 'train_loss_bbox': tensor(0.0057, device='cuda:0'), 'train_loss_giou': tensor(0.0408, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.2184, device='cuda:0'), 'validation_loss_ce': tensor(0.0450, device='cuda:0'), 'validation_loss_bbox': tensor(0.0115, device='cuda:0'), 'validation_loss_giou': tensor(0.0580, device='cuda:0'), 'validation_cardinality_error': tensor(0.4605, device='cuda:0')}
{'training_loss': tensor(0.3715, device='cuda:0'), 'train_loss_ce': tensor(0.0401, device='cuda:0'), 'train_loss_bbox': tensor(0.0245, device='cuda:0'), 'train_loss_giou': tensor(0.1044, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1950, device='cuda:0'), 'validation_loss_ce': tensor(0.0427, device='cuda:0'), 'validation_loss_bbox': tensor(0.0099, device='cuda:0'), 'validation_loss_giou': tensor(0.0513, device='cuda:0'), 'validation_cardinality_error': tensor(0.5989, device='cuda:0')}
{'training_loss': tensor(0.2700, device='cuda:0'), 'train_loss_ce': tensor(0.0347, device='cuda:0'), 'train_loss_bbox': tensor(0.0158, device='cuda:0'), 'train_loss_giou': tensor(0.0783, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.2057, device='cuda:0'), 'validation_loss_ce': tensor(0.0423, device='cuda:0'), 'validation_loss_bbox': tensor(0.0105, device='cuda:0'), 'validation_loss_giou': tensor(0.0555, device='cuda:0'), 'validation_cardinality_error': tensor(0.5169, device='cuda:0')}
{'training_loss': tensor(0.2125, device='cuda:0'), 'train_loss_ce': tensor(0.0367, device='cuda:0'), 'train_loss_bbox': tensor(0.0110, device='cuda:0'), 'train_loss_giou': tensor(0.0603, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1980, device='cuda:0'), 'validation_loss_ce': tensor(0.0417, device='cuda:0'), 'validation_loss_bbox': tensor(0.0099, device='cuda:0'), 'validation_loss_giou': tensor(0.0534, device='cuda:0'), 'validation_cardinality_error': tensor(0.5254, device='cuda:0')}
{'training_loss': tensor(0.1435, device='cuda:0'), 'train_loss_ce': tensor(0.0409, device='cuda:0'), 'train_loss_bbox': tensor(0.0095, device='cuda:0'), 'train_loss_giou': tensor(0.0275, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2175, device='cuda:0'), 'validation_loss_ce': tensor(0.0407, device='cuda:0'), 'validation_loss_bbox': tensor(0.0115, device='cuda:0'), 'validation_loss_giou': tensor(0.0597, device='cuda:0'), 'validation_cardinality_error': tensor(0.5254, device='cuda:0')}
{'training_loss': tensor(0.1493, device='cuda:0'), 'train_loss_ce': tensor(0.0457, device='cuda:0'), 'train_loss_bbox': tensor(0.0088, device='cuda:0'), 'train_loss_giou': tensor(0.0297, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1923, device='cuda:0'), 'validation_loss_ce': tensor(0.0403, device='cuda:0'), 'validation_loss_bbox': tensor(0.0098, device='cuda:0'), 'validation_loss_giou': tensor(0.0515, device='cuda:0'), 'validation_cardinality_error': tensor(0.5395, device='cuda:0')}
{'training_loss': tensor(0.1846, device='cuda:0'), 'train_loss_ce': tensor(0.0433, device='cuda:0'), 'train_loss_bbox': tensor(0.0104, device='cuda:0'), 'train_loss_giou': tensor(0.0446, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1952, device='cuda:0'), 'validation_loss_ce': tensor(0.0403, device='cuda:0'), 'validation_loss_bbox': tensor(0.0100, device='cuda:0'), 'validation_loss_giou': tensor(0.0525, device='cuda:0'), 'validation_cardinality_error': tensor(0.5480, device='cuda:0')}
{'training_loss': tensor(0.1404, device='cuda:0'), 'train_loss_ce': tensor(0.0549, device='cuda:0'), 'train_loss_bbox': tensor(0.0066, device='cuda:0'), 'train_loss_giou': tensor(0.0262, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1951, device='cuda:0'), 'validation_loss_ce': tensor(0.0395, device='cuda:0'), 'validation_loss_bbox': tensor(0.0101, device='cuda:0'), 'validation_loss_giou': tensor(0.0525, device='cuda:0'), 'validation_cardinality_error': tensor(0.5367, device='cuda:0')}
{'training_loss': tensor(0.1362, device='cuda:0'), 'train_loss_ce': tensor(0.0442, device='cuda:0'), 'train_loss_bbox': tensor(0.0042, device='cuda:0'), 'train_loss_giou': tensor(0.0356, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1907, device='cuda:0'), 'validation_loss_ce': tensor(0.0389, device='cuda:0'), 'validation_loss_bbox': tensor(0.0098, device='cuda:0'), 'validation_loss_giou': tensor(0.0515, device='cuda:0'), 'validation_cardinality_error': tensor(0.4661, device='cuda:0')}
{'training_loss': tensor(0.2975, device='cuda:0'), 'train_loss_ce': tensor(0.0638, device='cuda:0'), 'train_loss_bbox': tensor(0.0182, device='cuda:0'), 'train_loss_giou': tensor(0.0713, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1886, device='cuda:0'), 'validation_loss_ce': tensor(0.0387, device='cuda:0'), 'validation_loss_bbox': tensor(0.0095, device='cuda:0'), 'validation_loss_giou': tensor(0.0512, device='cuda:0'), 'validation_cardinality_error': tensor(0.5339, device='cuda:0')}
{'training_loss': tensor(0.1806, device='cuda:0'), 'train_loss_ce': tensor(0.0167, device='cuda:0'), 'train_loss_bbox': tensor(0.0107, device='cuda:0'), 'train_loss_giou': tensor(0.0553, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2022, device='cuda:0'), 'validation_loss_ce': tensor(0.0381, device='cuda:0'), 'validation_loss_bbox': tensor(0.0101, device='cuda:0'), 'validation_loss_giou': tensor(0.0567, device='cuda:0'), 'validation_cardinality_error': tensor(0.4266, device='cuda:0')}
{'training_loss': tensor(0.1347, device='cuda:0'), 'train_loss_ce': tensor(0.0266, device='cuda:0'), 'train_loss_bbox': tensor(0.0049, device='cuda:0'), 'train_loss_giou': tensor(0.0419, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1896, device='cuda:0'), 'validation_loss_ce': tensor(0.0380, device='cuda:0'), 'validation_loss_bbox': tensor(0.0098, device='cuda:0'), 'validation_loss_giou': tensor(0.0512, device='cuda:0'), 'validation_cardinality_error': tensor(0.4802, device='cuda:0')}
{'training_loss': tensor(0.1598, device='cuda:0'), 'train_loss_ce': tensor(0.0456, device='cuda:0'), 'train_loss_bbox': tensor(0.0101, device='cuda:0'), 'train_loss_giou': tensor(0.0319, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1822, device='cuda:0'), 'validation_loss_ce': tensor(0.0374, device='cuda:0'), 'validation_loss_bbox': tensor(0.0092, device='cuda:0'), 'validation_loss_giou': tensor(0.0495, device='cuda:0'), 'validation_cardinality_error': tensor(0.4831, device='cuda:0')}
{'training_loss': tensor(0.2580, device='cuda:0'), 'train_loss_ce': tensor(0.0396, device='cuda:0'), 'train_loss_bbox': tensor(0.0132, device='cuda:0'), 'train_loss_giou': tensor(0.0762, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2091, device='cuda:0'), 'validation_loss_ce': tensor(0.0365, device='cuda:0'), 'validation_loss_bbox': tensor(0.0107, device='cuda:0'), 'validation_loss_giou': tensor(0.0595, device='cuda:0'), 'validation_cardinality_error': tensor(0.5480, device='cuda:0')}
{'training_loss': tensor(0.1987, device='cuda:0'), 'train_loss_ce': tensor(0.0733, device='cuda:0'), 'train_loss_bbox': tensor(0.0084, device='cuda:0'), 'train_loss_giou': tensor(0.0417, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1925, device='cuda:0'), 'validation_loss_ce': tensor(0.0357, device='cuda:0'), 'validation_loss_bbox': tensor(0.0091, device='cuda:0'), 'validation_loss_giou': tensor(0.0557, device='cuda:0'), 'validation_cardinality_error': tensor(0.4520, device='cuda:0')}
{'training_loss': tensor(0.3954, device='cuda:0'), 'train_loss_ce': tensor(0.0200, device='cuda:0'), 'train_loss_bbox': tensor(0.0159, device='cuda:0'), 'train_loss_giou': tensor(0.1480, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1711, device='cuda:0'), 'validation_loss_ce': tensor(0.0352, device='cuda:0'), 'validation_loss_bbox': tensor(0.0084, device='cuda:0'), 'validation_loss_giou': tensor(0.0470, device='cuda:0'), 'validation_cardinality_error': tensor(0.4972, device='cuda:0')}
{'training_loss': tensor(0.1501, device='cuda:0'), 'train_loss_ce': tensor(0.0192, device='cuda:0'), 'train_loss_bbox': tensor(0.0050, device='cuda:0'), 'train_loss_giou': tensor(0.0531, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1945, device='cuda:0'), 'validation_loss_ce': tensor(0.0349, device='cuda:0'), 'validation_loss_bbox': tensor(0.0097, device='cuda:0'), 'validation_loss_giou': tensor(0.0555, device='cuda:0'), 'validation_cardinality_error': tensor(0.5028, device='cuda:0')}
{'training_loss': tensor(0.0951, device='cuda:0'), 'train_loss_ce': tensor(0.0132, device='cuda:0'), 'train_loss_bbox': tensor(0.0065, device='cuda:0'), 'train_loss_giou': tensor(0.0247, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.2048, device='cuda:0'), 'validation_loss_ce': tensor(0.0356, device='cuda:0'), 'validation_loss_bbox': tensor(0.0101, device='cuda:0'), 'validation_loss_giou': tensor(0.0592, device='cuda:0'), 'validation_cardinality_error': tensor(0.4209, device='cuda:0')}
{'training_loss': tensor(0.1041, device='cuda:0'), 'train_loss_ce': tensor(0.0098, device='cuda:0'), 'train_loss_bbox': tensor(0.0058, device='cuda:0'), 'train_loss_giou': tensor(0.0328, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1871, device='cuda:0'), 'validation_loss_ce': tensor(0.0343, device='cuda:0'), 'validation_loss_bbox': tensor(0.0097, device='cuda:0'), 'validation_loss_giou': tensor(0.0520, device='cuda:0'), 'validation_cardinality_error': tensor(0.4746, device='cuda:0')}
{'training_loss': tensor(0.0887, device='cuda:0'), 'train_loss_ce': tensor(0.0387, device='cuda:0'), 'train_loss_bbox': tensor(0.0051, device='cuda:0'), 'train_loss_giou': tensor(0.0122, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1811, device='cuda:0'), 'validation_loss_ce': tensor(0.0340, device='cuda:0'), 'validation_loss_bbox': tensor(0.0087, device='cuda:0'), 'validation_loss_giou': tensor(0.0519, device='cuda:0'), 'validation_cardinality_error': tensor(0.5226, device='cuda:0')}
{'training_loss': tensor(0.2954, device='cuda:0'), 'train_loss_ce': tensor(0.0942, device='cuda:0'), 'train_loss_bbox': tensor(0.0133, device='cuda:0'), 'train_loss_giou': tensor(0.0673, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1756, device='cuda:0'), 'validation_loss_ce': tensor(0.0340, device='cuda:0'), 'validation_loss_bbox': tensor(0.0089, device='cuda:0'), 'validation_loss_giou': tensor(0.0484, device='cuda:0'), 'validation_cardinality_error': tensor(0.4237, device='cuda:0')}
{'training_loss': tensor(0.1090, device='cuda:0'), 'train_loss_ce': tensor(0.0413, device='cuda:0'), 'train_loss_bbox': tensor(0.0064, device='cuda:0'), 'train_loss_giou': tensor(0.0179, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1804, device='cuda:0'), 'validation_loss_ce': tensor(0.0332, device='cuda:0'), 'validation_loss_bbox': tensor(0.0093, device='cuda:0'), 'validation_loss_giou': tensor(0.0504, device='cuda:0'), 'validation_cardinality_error': tensor(0.4548, device='cuda:0')}
{'training_loss': tensor(0.1941, device='cuda:0'), 'train_loss_ce': tensor(0.0300, device='cuda:0'), 'train_loss_bbox': tensor(0.0066, device='cuda:0'), 'train_loss_giou': tensor(0.0656, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1700, device='cuda:0'), 'validation_loss_ce': tensor(0.0324, device='cuda:0'), 'validation_loss_bbox': tensor(0.0083, device='cuda:0'), 'validation_loss_giou': tensor(0.0481, device='cuda:0'), 'validation_cardinality_error': tensor(0.4661, device='cuda:0')}
{'training_loss': tensor(0.1293, device='cuda:0'), 'train_loss_ce': tensor(0.0356, device='cuda:0'), 'train_loss_bbox': tensor(0.0067, device='cuda:0'), 'train_loss_giou': tensor(0.0301, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1725, device='cuda:0'), 'validation_loss_ce': tensor(0.0318, device='cuda:0'), 'validation_loss_bbox': tensor(0.0088, device='cuda:0'), 'validation_loss_giou': tensor(0.0484, device='cuda:0'), 'validation_cardinality_error': tensor(0.4746, device='cuda:0')}
{'training_loss': tensor(0.1389, device='cuda:0'), 'train_loss_ce': tensor(0.0270, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0377, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1761, device='cuda:0'), 'validation_loss_ce': tensor(0.0324, device='cuda:0'), 'validation_loss_bbox': tensor(0.0088, device='cuda:0'), 'validation_loss_giou': tensor(0.0497, device='cuda:0'), 'validation_cardinality_error': tensor(0.4068, device='cuda:0')}
{'training_loss': tensor(0.1177, device='cuda:0'), 'train_loss_ce': tensor(0.0206, device='cuda:0'), 'train_loss_bbox': tensor(0.0105, device='cuda:0'), 'train_loss_giou': tensor(0.0223, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1799, device='cuda:0'), 'validation_loss_ce': tensor(0.0316, device='cuda:0'), 'validation_loss_bbox': tensor(0.0097, device='cuda:0'), 'validation_loss_giou': tensor(0.0499, device='cuda:0'), 'validation_cardinality_error': tensor(0.4576, device='cuda:0')}
{'training_loss': tensor(0.4364, device='cuda:0'), 'train_loss_ce': tensor(0.0613, device='cuda:0'), 'train_loss_bbox': tensor(0.0343, device='cuda:0'), 'train_loss_giou': tensor(0.1017, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1597, device='cuda:0'), 'validation_loss_ce': tensor(0.0308, device='cuda:0'), 'validation_loss_bbox': tensor(0.0082, device='cuda:0'), 'validation_loss_giou': tensor(0.0439, device='cuda:0'), 'validation_cardinality_error': tensor(0.4407, device='cuda:0')}
{'training_loss': tensor(0.1940, device='cuda:0'), 'train_loss_ce': tensor(0.0127, device='cuda:0'), 'train_loss_bbox': tensor(0.0083, device='cuda:0'), 'train_loss_giou': tensor(0.0698, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1993, device='cuda:0'), 'validation_loss_ce': tensor(0.0309, device='cuda:0'), 'validation_loss_bbox': tensor(0.0110, device='cuda:0'), 'validation_loss_giou': tensor(0.0567, device='cuda:0'), 'validation_cardinality_error': tensor(0.4661, device='cuda:0')}
{'training_loss': tensor(0.1502, device='cuda:0'), 'train_loss_ce': tensor(0.0085, device='cuda:0'), 'train_loss_bbox': tensor(0.0051, device='cuda:0'), 'train_loss_giou': tensor(0.0582, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2089, device='cuda:0'), 'validation_loss_ce': tensor(0.0316, device='cuda:0'), 'validation_loss_bbox': tensor(0.0111, device='cuda:0'), 'validation_loss_giou': tensor(0.0609, device='cuda:0'), 'validation_cardinality_error': tensor(0.4435, device='cuda:0')}
{'training_loss': tensor(0.1990, device='cuda:0'), 'train_loss_ce': tensor(0.0468, device='cuda:0'), 'train_loss_bbox': tensor(0.0128, device='cuda:0'), 'train_loss_giou': tensor(0.0440, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.1982, device='cuda:0'), 'validation_loss_ce': tensor(0.0302, device='cuda:0'), 'validation_loss_bbox': tensor(0.0096, device='cuda:0'), 'validation_loss_giou': tensor(0.0599, device='cuda:0'), 'validation_cardinality_error': tensor(0.4972, device='cuda:0')}
{'training_loss': tensor(0.2681, device='cuda:0'), 'train_loss_ce': tensor(0.0694, device='cuda:0'), 'train_loss_bbox': tensor(0.0175, device='cuda:0'), 'train_loss_giou': tensor(0.0557, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1761, device='cuda:0'), 'validation_loss_ce': tensor(0.0298, device='cuda:0'), 'validation_loss_bbox': tensor(0.0090, device='cuda:0'), 'validation_loss_giou': tensor(0.0506, device='cuda:0'), 'validation_cardinality_error': tensor(0.4124, device='cuda:0')}
{'training_loss': tensor(0.1801, device='cuda:0'), 'train_loss_ce': tensor(0.0546, device='cuda:0'), 'train_loss_bbox': tensor(0.0064, device='cuda:0'), 'train_loss_giou': tensor(0.0467, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1818, device='cuda:0'), 'validation_loss_ce': tensor(0.0295, device='cuda:0'), 'validation_loss_bbox': tensor(0.0095, device='cuda:0'), 'validation_loss_giou': tensor(0.0523, device='cuda:0'), 'validation_cardinality_error': tensor(0.4520, device='cuda:0')}
{'training_loss': tensor(0.2102, device='cuda:0'), 'train_loss_ce': tensor(0.0423, device='cuda:0'), 'train_loss_bbox': tensor(0.0148, device='cuda:0'), 'train_loss_giou': tensor(0.0470, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1897, device='cuda:0'), 'validation_loss_ce': tensor(0.0291, device='cuda:0'), 'validation_loss_bbox': tensor(0.0098, device='cuda:0'), 'validation_loss_giou': tensor(0.0557, device='cuda:0'), 'validation_cardinality_error': tensor(0.3814, device='cuda:0')}
{'training_loss': tensor(0.1322, device='cuda:0'), 'train_loss_ce': tensor(0.0081, device='cuda:0'), 'train_loss_bbox': tensor(0.0127, device='cuda:0'), 'train_loss_giou': tensor(0.0304, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1902, device='cuda:0'), 'validation_loss_ce': tensor(0.0287, device='cuda:0'), 'validation_loss_bbox': tensor(0.0101, device='cuda:0'), 'validation_loss_giou': tensor(0.0556, device='cuda:0'), 'validation_cardinality_error': tensor(0.4576, device='cuda:0')}
{'training_loss': tensor(0.1793, device='cuda:0'), 'train_loss_ce': tensor(0.0585, device='cuda:0'), 'train_loss_bbox': tensor(0.0038, device='cuda:0'), 'train_loss_giou': tensor(0.0510, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.1972, device='cuda:0'), 'validation_loss_ce': tensor(0.0291, device='cuda:0'), 'validation_loss_bbox': tensor(0.0105, device='cuda:0'), 'validation_loss_giou': tensor(0.0579, device='cuda:0'), 'validation_cardinality_error': tensor(0.5424, device='cuda:0')}
{'training_loss': tensor(0.1345, device='cuda:0'), 'train_loss_ce': tensor(0.0113, device='cuda:0'), 'train_loss_bbox': tensor(0.0096, device='cuda:0'), 'train_loss_giou': tensor(0.0376, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.2044, device='cuda:0'), 'validation_loss_ce': tensor(0.0286, device='cuda:0'), 'validation_loss_bbox': tensor(0.0108, device='cuda:0'), 'validation_loss_giou': tensor(0.0609, device='cuda:0'), 'validation_cardinality_error': tensor(0.3757, device='cuda:0')}
{'training_loss': tensor(0.1722, device='cuda:0'), 'train_loss_ce': tensor(0.0226, device='cuda:0'), 'train_loss_bbox': tensor(0.0068, device='cuda:0'), 'train_loss_giou': tensor(0.0578, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1880, device='cuda:0'), 'validation_loss_ce': tensor(0.0288, device='cuda:0'), 'validation_loss_bbox': tensor(0.0099, device='cuda:0'), 'validation_loss_giou': tensor(0.0548, device='cuda:0'), 'validation_cardinality_error': tensor(0.4661, device='cuda:0')}
{'training_loss': tensor(0.2014, device='cuda:0'), 'train_loss_ce': tensor(0.0446, device='cuda:0'), 'train_loss_bbox': tensor(0.0092, device='cuda:0'), 'train_loss_giou': tensor(0.0555, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1991, device='cuda:0'), 'validation_loss_ce': tensor(0.0281, device='cuda:0'), 'validation_loss_bbox': tensor(0.0108, device='cuda:0'), 'validation_loss_giou': tensor(0.0585, device='cuda:0'), 'validation_cardinality_error': tensor(0.3390, device='cuda:0')}
{'training_loss': tensor(0.1097, device='cuda:0'), 'train_loss_ce': tensor(0.0279, device='cuda:0'), 'train_loss_bbox': tensor(0.0086, device='cuda:0'), 'train_loss_giou': tensor(0.0194, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1942, device='cuda:0'), 'validation_loss_ce': tensor(0.0277, device='cuda:0'), 'validation_loss_bbox': tensor(0.0104, device='cuda:0'), 'validation_loss_giou': tensor(0.0573, device='cuda:0'), 'validation_cardinality_error': tensor(0.4350, device='cuda:0')}
{'training_loss': tensor(0.1044, device='cuda:0'), 'train_loss_ce': tensor(0.0168, device='cuda:0'), 'train_loss_bbox': tensor(0.0079, device='cuda:0'), 'train_loss_giou': tensor(0.0242, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1619, device='cuda:0'), 'validation_loss_ce': tensor(0.0272, device='cuda:0'), 'validation_loss_bbox': tensor(0.0088, device='cuda:0'), 'validation_loss_giou': tensor(0.0453, device='cuda:0'), 'validation_cardinality_error': tensor(0.4548, device='cuda:0')}
{'training_loss': tensor(0.2724, device='cuda:0'), 'train_loss_ce': tensor(0.0787, device='cuda:0'), 'train_loss_bbox': tensor(0.0189, device='cuda:0'), 'train_loss_giou': tensor(0.0495, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.1680, device='cuda:0'), 'validation_loss_ce': tensor(0.0270, device='cuda:0'), 'validation_loss_bbox': tensor(0.0086, device='cuda:0'), 'validation_loss_giou': tensor(0.0490, device='cuda:0'), 'validation_cardinality_error': tensor(0.4124, device='cuda:0')}
{'training_loss': tensor(0.1376, device='cuda:0'), 'train_loss_ce': tensor(0.0455, device='cuda:0'), 'train_loss_bbox': tensor(0.0065, device='cuda:0'), 'train_loss_giou': tensor(0.0298, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1717, device='cuda:0'), 'validation_loss_ce': tensor(0.0265, device='cuda:0'), 'validation_loss_bbox': tensor(0.0092, device='cuda:0'), 'validation_loss_giou': tensor(0.0496, device='cuda:0'), 'validation_cardinality_error': tensor(0.4068, device='cuda:0')}
{'training_loss': tensor(0.3238, device='cuda:0'), 'train_loss_ce': tensor(0.0382, device='cuda:0'), 'train_loss_bbox': tensor(0.0203, device='cuda:0'), 'train_loss_giou': tensor(0.0922, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1724, device='cuda:0'), 'validation_loss_ce': tensor(0.0260, device='cuda:0'), 'validation_loss_bbox': tensor(0.0093, device='cuda:0'), 'validation_loss_giou': tensor(0.0499, device='cuda:0'), 'validation_cardinality_error': tensor(0.4011, device='cuda:0')}
{'training_loss': tensor(0.2092, device='cuda:0'), 'train_loss_ce': tensor(0.0452, device='cuda:0'), 'train_loss_bbox': tensor(0.0094, device='cuda:0'), 'train_loss_giou': tensor(0.0586, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1924, device='cuda:0'), 'validation_loss_ce': tensor(0.0261, device='cuda:0'), 'validation_loss_bbox': tensor(0.0103, device='cuda:0'), 'validation_loss_giou': tensor(0.0573, device='cuda:0'), 'validation_cardinality_error': tensor(0.4068, device='cuda:0')}
{'training_loss': tensor(0.1917, device='cuda:0'), 'train_loss_ce': tensor(0.0286, device='cuda:0'), 'train_loss_bbox': tensor(0.0103, device='cuda:0'), 'train_loss_giou': tensor(0.0558, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1901, device='cuda:0'), 'validation_loss_ce': tensor(0.0256, device='cuda:0'), 'validation_loss_bbox': tensor(0.0106, device='cuda:0'), 'validation_loss_giou': tensor(0.0558, device='cuda:0'), 'validation_cardinality_error': tensor(0.4124, device='cuda:0')}
{'training_loss': tensor(0.1103, device='cuda:0'), 'train_loss_ce': tensor(0.0104, device='cuda:0'), 'train_loss_bbox': tensor(0.0075, device='cuda:0'), 'train_loss_giou': tensor(0.0312, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1756, device='cuda:0'), 'validation_loss_ce': tensor(0.0254, device='cuda:0'), 'validation_loss_bbox': tensor(0.0094, device='cuda:0'), 'validation_loss_giou': tensor(0.0515, device='cuda:0'), 'validation_cardinality_error': tensor(0.3644, device='cuda:0')}
{'training_loss': tensor(0.1537, device='cuda:0'), 'train_loss_ce': tensor(0.0215, device='cuda:0'), 'train_loss_bbox': tensor(0.0094, device='cuda:0'), 'train_loss_giou': tensor(0.0425, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1826, device='cuda:0'), 'validation_loss_ce': tensor(0.0252, device='cuda:0'), 'validation_loss_bbox': tensor(0.0097, device='cuda:0'), 'validation_loss_giou': tensor(0.0543, device='cuda:0'), 'validation_cardinality_error': tensor(0.3870, device='cuda:0')}
{'training_loss': tensor(0.0706, device='cuda:0'), 'train_loss_ce': tensor(0.0117, device='cuda:0'), 'train_loss_bbox': tensor(0.0062, device='cuda:0'), 'train_loss_giou': tensor(0.0139, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1824, device='cuda:0'), 'validation_loss_ce': tensor(0.0246, device='cuda:0'), 'validation_loss_bbox': tensor(0.0096, device='cuda:0'), 'validation_loss_giou': tensor(0.0550, device='cuda:0'), 'validation_cardinality_error': tensor(0.3870, device='cuda:0')}
{'training_loss': tensor(0.1952, device='cuda:0'), 'train_loss_ce': tensor(0.0211, device='cuda:0'), 'train_loss_bbox': tensor(0.0133, device='cuda:0'), 'train_loss_giou': tensor(0.0537, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1589, device='cuda:0'), 'validation_loss_ce': tensor(0.0241, device='cuda:0'), 'validation_loss_bbox': tensor(0.0083, device='cuda:0'), 'validation_loss_giou': tensor(0.0465, device='cuda:0'), 'validation_cardinality_error': tensor(0.3870, device='cuda:0')}
{'training_loss': tensor(0.2360, device='cuda:0'), 'train_loss_ce': tensor(0.0128, device='cuda:0'), 'train_loss_bbox': tensor(0.0113, device='cuda:0'), 'train_loss_giou': tensor(0.0833, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1804, device='cuda:0'), 'validation_loss_ce': tensor(0.0249, device='cuda:0'), 'validation_loss_bbox': tensor(0.0100, device='cuda:0'), 'validation_loss_giou': tensor(0.0528, device='cuda:0'), 'validation_cardinality_error': tensor(0.3983, device='cuda:0')}
{'training_loss': tensor(0.1279, device='cuda:0'), 'train_loss_ce': tensor(0.0049, device='cuda:0'), 'train_loss_bbox': tensor(0.0068, device='cuda:0'), 'train_loss_giou': tensor(0.0444, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1804, device='cuda:0'), 'validation_loss_ce': tensor(0.0240, device='cuda:0'), 'validation_loss_bbox': tensor(0.0100, device='cuda:0'), 'validation_loss_giou': tensor(0.0534, device='cuda:0'), 'validation_cardinality_error': tensor(0.4011, device='cuda:0')}
{'training_loss': tensor(0.2745, device='cuda:0'), 'train_loss_ce': tensor(0.0244, device='cuda:0'), 'train_loss_bbox': tensor(0.0084, device='cuda:0'), 'train_loss_giou': tensor(0.1041, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1714, device='cuda:0'), 'validation_loss_ce': tensor(0.0233, device='cuda:0'), 'validation_loss_bbox': tensor(0.0088, device='cuda:0'), 'validation_loss_giou': tensor(0.0522, device='cuda:0'), 'validation_cardinality_error': tensor(0.3785, device='cuda:0')}
{'training_loss': tensor(0.1883, device='cuda:0'), 'train_loss_ce': tensor(0.0598, device='cuda:0'), 'train_loss_bbox': tensor(0.0086, device='cuda:0'), 'train_loss_giou': tensor(0.0427, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.1801, device='cuda:0'), 'validation_loss_ce': tensor(0.0235, device='cuda:0'), 'validation_loss_bbox': tensor(0.0094, device='cuda:0'), 'validation_loss_giou': tensor(0.0547, device='cuda:0'), 'validation_cardinality_error': tensor(0.4096, device='cuda:0')}
{'training_loss': tensor(0.1368, device='cuda:0'), 'train_loss_ce': tensor(0.0151, device='cuda:0'), 'train_loss_bbox': tensor(0.0077, device='cuda:0'), 'train_loss_giou': tensor(0.0416, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1757, device='cuda:0'), 'validation_loss_ce': tensor(0.0239, device='cuda:0'), 'validation_loss_bbox': tensor(0.0094, device='cuda:0'), 'validation_loss_giou': tensor(0.0525, device='cuda:0'), 'validation_cardinality_error': tensor(0.3390, device='cuda:0')}
{'training_loss': tensor(0.2143, device='cuda:0'), 'train_loss_ce': tensor(0.0316, device='cuda:0'), 'train_loss_bbox': tensor(0.0079, device='cuda:0'), 'train_loss_giou': tensor(0.0716, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1868, device='cuda:0'), 'validation_loss_ce': tensor(0.0232, device='cuda:0'), 'validation_loss_bbox': tensor(0.0097, device='cuda:0'), 'validation_loss_giou': tensor(0.0576, device='cuda:0'), 'validation_cardinality_error': tensor(0.3983, device='cuda:0')}
{'training_loss': tensor(0.1270, device='cuda:0'), 'train_loss_ce': tensor(0.0370, device='cuda:0'), 'train_loss_bbox': tensor(0.0052, device='cuda:0'), 'train_loss_giou': tensor(0.0320, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1698, device='cuda:0'), 'validation_loss_ce': tensor(0.0231, device='cuda:0'), 'validation_loss_bbox': tensor(0.0087, device='cuda:0'), 'validation_loss_giou': tensor(0.0516, device='cuda:0'), 'validation_cardinality_error': tensor(0.4124, device='cuda:0')}
{'training_loss': tensor(0.1691, device='cuda:0'), 'train_loss_ce': tensor(0.0240, device='cuda:0'), 'train_loss_bbox': tensor(0.0072, device='cuda:0'), 'train_loss_giou': tensor(0.0547, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1755, device='cuda:0'), 'validation_loss_ce': tensor(0.0235, device='cuda:0'), 'validation_loss_bbox': tensor(0.0091, device='cuda:0'), 'validation_loss_giou': tensor(0.0533, device='cuda:0'), 'validation_cardinality_error': tensor(0.4350, device='cuda:0')}
{'training_loss': tensor(0.1790, device='cuda:0'), 'train_loss_ce': tensor(0.0293, device='cuda:0'), 'train_loss_bbox': tensor(0.0054, device='cuda:0'), 'train_loss_giou': tensor(0.0614, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1725, device='cuda:0'), 'validation_loss_ce': tensor(0.0233, device='cuda:0'), 'validation_loss_bbox': tensor(0.0091, device='cuda:0'), 'validation_loss_giou': tensor(0.0517, device='cuda:0'), 'validation_cardinality_error': tensor(0.4096, device='cuda:0')}
{'training_loss': tensor(0.1199, device='cuda:0'), 'train_loss_ce': tensor(0.0312, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.0259, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1885, device='cuda:0'), 'validation_loss_ce': tensor(0.0232, device='cuda:0'), 'validation_loss_bbox': tensor(0.0094, device='cuda:0'), 'validation_loss_giou': tensor(0.0593, device='cuda:0'), 'validation_cardinality_error': tensor(0.3164, device='cuda:0')}
{'training_loss': tensor(0.1163, device='cuda:0'), 'train_loss_ce': tensor(0.0283, device='cuda:0'), 'train_loss_bbox': tensor(0.0050, device='cuda:0'), 'train_loss_giou': tensor(0.0315, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1617, device='cuda:0'), 'validation_loss_ce': tensor(0.0220, device='cuda:0'), 'validation_loss_bbox': tensor(0.0087, device='cuda:0'), 'validation_loss_giou': tensor(0.0481, device='cuda:0'), 'validation_cardinality_error': tensor(0.3898, device='cuda:0')}
{'training_loss': tensor(0.1356, device='cuda:0'), 'train_loss_ce': tensor(0.0096, device='cuda:0'), 'train_loss_bbox': tensor(0.0121, device='cuda:0'), 'train_loss_giou': tensor(0.0327, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1880, device='cuda:0'), 'validation_loss_ce': tensor(0.0219, device='cuda:0'), 'validation_loss_bbox': tensor(0.0102, device='cuda:0'), 'validation_loss_giou': tensor(0.0577, device='cuda:0'), 'validation_cardinality_error': tensor(0.3418, device='cuda:0')}
{'training_loss': tensor(0.1151, device='cuda:0'), 'train_loss_ce': tensor(0.0260, device='cuda:0'), 'train_loss_bbox': tensor(0.0039, device='cuda:0'), 'train_loss_giou': tensor(0.0349, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1694, device='cuda:0'), 'validation_loss_ce': tensor(0.0218, device='cuda:0'), 'validation_loss_bbox': tensor(0.0089, device='cuda:0'), 'validation_loss_giou': tensor(0.0516, device='cuda:0'), 'validation_cardinality_error': tensor(0.3898, device='cuda:0')}
{'training_loss': tensor(0.2238, device='cuda:0'), 'train_loss_ce': tensor(0.0480, device='cuda:0'), 'train_loss_bbox': tensor(0.0114, device='cuda:0'), 'train_loss_giou': tensor(0.0594, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1589, device='cuda:0'), 'validation_loss_ce': tensor(0.0216, device='cuda:0'), 'validation_loss_bbox': tensor(0.0087, device='cuda:0'), 'validation_loss_giou': tensor(0.0468, device='cuda:0'), 'validation_cardinality_error': tensor(0.3757, device='cuda:0')}
{'training_loss': tensor(0.5126, device='cuda:0'), 'train_loss_ce': tensor(0.1424, device='cuda:0'), 'train_loss_bbox': tensor(0.0296, device='cuda:0'), 'train_loss_giou': tensor(0.1112, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1498, device='cuda:0'), 'validation_loss_ce': tensor(0.0211, device='cuda:0'), 'validation_loss_bbox': tensor(0.0081, device='cuda:0'), 'validation_loss_giou': tensor(0.0441, device='cuda:0'), 'validation_cardinality_error': tensor(0.3559, device='cuda:0')}
{'training_loss': tensor(0.3332, device='cuda:0'), 'train_loss_ce': tensor(0.0182, device='cuda:0'), 'train_loss_bbox': tensor(0.0356, device='cuda:0'), 'train_loss_giou': tensor(0.0686, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1606, device='cuda:0'), 'validation_loss_ce': tensor(0.0213, device='cuda:0'), 'validation_loss_bbox': tensor(0.0085, device='cuda:0'), 'validation_loss_giou': tensor(0.0483, device='cuda:0'), 'validation_cardinality_error': tensor(0.3249, device='cuda:0')}
{'training_loss': tensor(0.1345, device='cuda:0'), 'train_loss_ce': tensor(0.0225, device='cuda:0'), 'train_loss_bbox': tensor(0.0043, device='cuda:0'), 'train_loss_giou': tensor(0.0453, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1502, device='cuda:0'), 'validation_loss_ce': tensor(0.0210, device='cuda:0'), 'validation_loss_bbox': tensor(0.0079, device='cuda:0'), 'validation_loss_giou': tensor(0.0448, device='cuda:0'), 'validation_cardinality_error': tensor(0.3136, device='cuda:0')}
{'training_loss': tensor(0.1137, device='cuda:0'), 'train_loss_ce': tensor(0.0136, device='cuda:0'), 'train_loss_bbox': tensor(0.0092, device='cuda:0'), 'train_loss_giou': tensor(0.0270, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1625, device='cuda:0'), 'validation_loss_ce': tensor(0.0212, device='cuda:0'), 'validation_loss_bbox': tensor(0.0083, device='cuda:0'), 'validation_loss_giou': tensor(0.0500, device='cuda:0'), 'validation_cardinality_error': tensor(0.3898, device='cuda:0')}
{'training_loss': tensor(0.1859, device='cuda:0'), 'train_loss_ce': tensor(0.0107, device='cuda:0'), 'train_loss_bbox': tensor(0.0101, device='cuda:0'), 'train_loss_giou': tensor(0.0623, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1412, device='cuda:0'), 'validation_loss_ce': tensor(0.0204, device='cuda:0'), 'validation_loss_bbox': tensor(0.0078, device='cuda:0'), 'validation_loss_giou': tensor(0.0410, device='cuda:0'), 'validation_cardinality_error': tensor(0.2994, device='cuda:0')}
{'training_loss': tensor(0.1856, device='cuda:0'), 'train_loss_ce': tensor(0.0293, device='cuda:0'), 'train_loss_bbox': tensor(0.0056, device='cuda:0'), 'train_loss_giou': tensor(0.0641, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1741, device='cuda:0'), 'validation_loss_ce': tensor(0.0217, device='cuda:0'), 'validation_loss_bbox': tensor(0.0092, device='cuda:0'), 'validation_loss_giou': tensor(0.0532, device='cuda:0'), 'validation_cardinality_error': tensor(0.3051, device='cuda:0')}
{'training_loss': tensor(0.1621, device='cuda:0'), 'train_loss_ce': tensor(0.0180, device='cuda:0'), 'train_loss_bbox': tensor(0.0096, device='cuda:0'), 'train_loss_giou': tensor(0.0480, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1682, device='cuda:0'), 'validation_loss_ce': tensor(0.0215, device='cuda:0'), 'validation_loss_bbox': tensor(0.0088, device='cuda:0'), 'validation_loss_giou': tensor(0.0513, device='cuda:0'), 'validation_cardinality_error': tensor(0.3785, device='cuda:0')}
{'training_loss': tensor(0.1460, device='cuda:0'), 'train_loss_ce': tensor(0.0333, device='cuda:0'), 'train_loss_bbox': tensor(0.0086, device='cuda:0'), 'train_loss_giou': tensor(0.0348, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1597, device='cuda:0'), 'validation_loss_ce': tensor(0.0214, device='cuda:0'), 'validation_loss_bbox': tensor(0.0083, device='cuda:0'), 'validation_loss_giou': tensor(0.0484, device='cuda:0'), 'validation_cardinality_error': tensor(0.3305, device='cuda:0')}
{'training_loss': tensor(0.1387, device='cuda:0'), 'train_loss_ce': tensor(0.0503, device='cuda:0'), 'train_loss_bbox': tensor(0.0048, device='cuda:0'), 'train_loss_giou': tensor(0.0322, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1641, device='cuda:0'), 'validation_loss_ce': tensor(0.0211, device='cuda:0'), 'validation_loss_bbox': tensor(0.0091, device='cuda:0'), 'validation_loss_giou': tensor(0.0488, device='cuda:0'), 'validation_cardinality_error': tensor(0.3333, device='cuda:0')}
{'training_loss': tensor(0.1620, device='cuda:0'), 'train_loss_ce': tensor(0.0478, device='cuda:0'), 'train_loss_bbox': tensor(0.0075, device='cuda:0'), 'train_loss_giou': tensor(0.0383, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1497, device='cuda:0'), 'validation_loss_ce': tensor(0.0201, device='cuda:0'), 'validation_loss_bbox': tensor(0.0075, device='cuda:0'), 'validation_loss_giou': tensor(0.0461, device='cuda:0'), 'validation_cardinality_error': tensor(0.3220, device='cuda:0')}
{'training_loss': tensor(0.1589, device='cuda:0'), 'train_loss_ce': tensor(0.0169, device='cuda:0'), 'train_loss_bbox': tensor(0.0124, device='cuda:0'), 'train_loss_giou': tensor(0.0400, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1614, device='cuda:0'), 'validation_loss_ce': tensor(0.0201, device='cuda:0'), 'validation_loss_bbox': tensor(0.0086, device='cuda:0'), 'validation_loss_giou': tensor(0.0492, device='cuda:0'), 'validation_cardinality_error': tensor(0.3701, device='cuda:0')}
{'training_loss': tensor(0.1666, device='cuda:0'), 'train_loss_ce': tensor(0.0206, device='cuda:0'), 'train_loss_bbox': tensor(0.0118, device='cuda:0'), 'train_loss_giou': tensor(0.0435, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1526, device='cuda:0'), 'validation_loss_ce': tensor(0.0195, device='cuda:0'), 'validation_loss_bbox': tensor(0.0080, device='cuda:0'), 'validation_loss_giou': tensor(0.0464, device='cuda:0'), 'validation_cardinality_error': tensor(0.3023, device='cuda:0')}
{'training_loss': tensor(0.1126, device='cuda:0'), 'train_loss_ce': tensor(0.0500, device='cuda:0'), 'train_loss_bbox': tensor(0.0045, device='cuda:0'), 'train_loss_giou': tensor(0.0200, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1572, device='cuda:0'), 'validation_loss_ce': tensor(0.0193, device='cuda:0'), 'validation_loss_bbox': tensor(0.0090, device='cuda:0'), 'validation_loss_giou': tensor(0.0463, device='cuda:0'), 'validation_cardinality_error': tensor(0.3588, device='cuda:0')}
{'training_loss': tensor(0.2081, device='cuda:0'), 'train_loss_ce': tensor(0.0117, device='cuda:0'), 'train_loss_bbox': tensor(0.0068, device='cuda:0'), 'train_loss_giou': tensor(0.0812, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1614, device='cuda:0'), 'validation_loss_ce': tensor(0.0187, device='cuda:0'), 'validation_loss_bbox': tensor(0.0087, device='cuda:0'), 'validation_loss_giou': tensor(0.0495, device='cuda:0'), 'validation_cardinality_error': tensor(0.3503, device='cuda:0')}
{'training_loss': tensor(0.1170, device='cuda:0'), 'train_loss_ce': tensor(0.0475, device='cuda:0'), 'train_loss_bbox': tensor(0.0059, device='cuda:0'), 'train_loss_giou': tensor(0.0200, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1719, device='cuda:0'), 'validation_loss_ce': tensor(0.0189, device='cuda:0'), 'validation_loss_bbox': tensor(0.0093, device='cuda:0'), 'validation_loss_giou': tensor(0.0532, device='cuda:0'), 'validation_cardinality_error': tensor(0.3333, device='cuda:0')}
{'training_loss': tensor(0.3052, device='cuda:0'), 'train_loss_ce': tensor(0.0295, device='cuda:0'), 'train_loss_bbox': tensor(0.0190, device='cuda:0'), 'train_loss_giou': tensor(0.0903, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1686, device='cuda:0'), 'validation_loss_ce': tensor(0.0184, device='cuda:0'), 'validation_loss_bbox': tensor(0.0092, device='cuda:0'), 'validation_loss_giou': tensor(0.0520, device='cuda:0'), 'validation_cardinality_error': tensor(0.2966, device='cuda:0')}
{'training_loss': tensor(0.1336, device='cuda:0'), 'train_loss_ce': tensor(0.0223, device='cuda:0'), 'train_loss_bbox': tensor(0.0096, device='cuda:0'), 'train_loss_giou': tensor(0.0316, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1554, device='cuda:0'), 'validation_loss_ce': tensor(0.0192, device='cuda:0'), 'validation_loss_bbox': tensor(0.0087, device='cuda:0'), 'validation_loss_giou': tensor(0.0463, device='cuda:0'), 'validation_cardinality_error': tensor(0.3192, device='cuda:0')}
{'training_loss': tensor(0.7351, device='cuda:0'), 'train_loss_ce': tensor(0.0237, device='cuda:0'), 'train_loss_bbox': tensor(0.0342, device='cuda:0'), 'train_loss_giou': tensor(0.2701, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1584, device='cuda:0'), 'validation_loss_ce': tensor(0.0189, device='cuda:0'), 'validation_loss_bbox': tensor(0.0088, device='cuda:0'), 'validation_loss_giou': tensor(0.0477, device='cuda:0'), 'validation_cardinality_error': tensor(0.3079, device='cuda:0')}
{'training_loss': tensor(0.1594, device='cuda:0'), 'train_loss_ce': tensor(0.0164, device='cuda:0'), 'train_loss_bbox': tensor(0.0103, device='cuda:0'), 'train_loss_giou': tensor(0.0456, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1391, device='cuda:0'), 'validation_loss_ce': tensor(0.0185, device='cuda:0'), 'validation_loss_bbox': tensor(0.0078, device='cuda:0'), 'validation_loss_giou': tensor(0.0408, device='cuda:0'), 'validation_cardinality_error': tensor(0.3305, device='cuda:0')}
{'training_loss': tensor(0.1480, device='cuda:0'), 'train_loss_ce': tensor(0.0169, device='cuda:0'), 'train_loss_bbox': tensor(0.0129, device='cuda:0'), 'train_loss_giou': tensor(0.0333, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1697, device='cuda:0'), 'validation_loss_ce': tensor(0.0189, device='cuda:0'), 'validation_loss_bbox': tensor(0.0097, device='cuda:0'), 'validation_loss_giou': tensor(0.0511, device='cuda:0'), 'validation_cardinality_error': tensor(0.3446, device='cuda:0')}
{'training_loss': tensor(0.1223, device='cuda:0'), 'train_loss_ce': tensor(0.0115, device='cuda:0'), 'train_loss_bbox': tensor(0.0112, device='cuda:0'), 'train_loss_giou': tensor(0.0275, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1544, device='cuda:0'), 'validation_loss_ce': tensor(0.0183, device='cuda:0'), 'validation_loss_bbox': tensor(0.0090, device='cuda:0'), 'validation_loss_giou': tensor(0.0457, device='cuda:0'), 'validation_cardinality_error': tensor(0.3446, device='cuda:0')}
{'training_loss': tensor(0.1033, device='cuda:0'), 'train_loss_ce': tensor(0.0118, device='cuda:0'), 'train_loss_bbox': tensor(0.0092, device='cuda:0'), 'train_loss_giou': tensor(0.0229, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1626, device='cuda:0'), 'validation_loss_ce': tensor(0.0181, device='cuda:0'), 'validation_loss_bbox': tensor(0.0095, device='cuda:0'), 'validation_loss_giou': tensor(0.0486, device='cuda:0'), 'validation_cardinality_error': tensor(0.3418, device='cuda:0')}
{'training_loss': tensor(0.1046, device='cuda:0'), 'train_loss_ce': tensor(0.0069, device='cuda:0'), 'train_loss_bbox': tensor(0.0060, device='cuda:0'), 'train_loss_giou': tensor(0.0338, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1500, device='cuda:0'), 'validation_loss_ce': tensor(0.0182, device='cuda:0'), 'validation_loss_bbox': tensor(0.0085, device='cuda:0'), 'validation_loss_giou': tensor(0.0446, device='cuda:0'), 'validation_cardinality_error': tensor(0.2966, device='cuda:0')}
{'training_loss': tensor(0.1406, device='cuda:0'), 'train_loss_ce': tensor(0.0277, device='cuda:0'), 'train_loss_bbox': tensor(0.0062, device='cuda:0'), 'train_loss_giou': tensor(0.0410, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1602, device='cuda:0'), 'validation_loss_ce': tensor(0.0182, device='cuda:0'), 'validation_loss_bbox': tensor(0.0088, device='cuda:0'), 'validation_loss_giou': tensor(0.0490, device='cuda:0'), 'validation_cardinality_error': tensor(0.3955, device='cuda:0')}
{'training_loss': tensor(0.3556, device='cuda:0'), 'train_loss_ce': tensor(0.0577, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.1307, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1781, device='cuda:0'), 'validation_loss_ce': tensor(0.0176, device='cuda:0'), 'validation_loss_bbox': tensor(0.0098, device='cuda:0'), 'validation_loss_giou': tensor(0.0558, device='cuda:0'), 'validation_cardinality_error': tensor(0.2881, device='cuda:0')}
{'training_loss': tensor(0.1426, device='cuda:0'), 'train_loss_ce': tensor(0.0134, device='cuda:0'), 'train_loss_bbox': tensor(0.0109, device='cuda:0'), 'train_loss_giou': tensor(0.0374, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1942, device='cuda:0'), 'validation_loss_ce': tensor(0.0187, device='cuda:0'), 'validation_loss_bbox': tensor(0.0104, device='cuda:0'), 'validation_loss_giou': tensor(0.0619, device='cuda:0'), 'validation_cardinality_error': tensor(0.3475, device='cuda:0')}
{'training_loss': tensor(0.3015, device='cuda:0'), 'train_loss_ce': tensor(0.0033, device='cuda:0'), 'train_loss_bbox': tensor(0.0095, device='cuda:0'), 'train_loss_giou': tensor(0.1254, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1545, device='cuda:0'), 'validation_loss_ce': tensor(0.0173, device='cuda:0'), 'validation_loss_bbox': tensor(0.0082, device='cuda:0'), 'validation_loss_giou': tensor(0.0481, device='cuda:0'), 'validation_cardinality_error': tensor(0.2910, device='cuda:0')}
{'training_loss': tensor(0.1197, device='cuda:0'), 'train_loss_ce': tensor(0.0135, device='cuda:0'), 'train_loss_bbox': tensor(0.0055, device='cuda:0'), 'train_loss_giou': tensor(0.0394, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1580, device='cuda:0'), 'validation_loss_ce': tensor(0.0170, device='cuda:0'), 'validation_loss_bbox': tensor(0.0081, device='cuda:0'), 'validation_loss_giou': tensor(0.0504, device='cuda:0'), 'validation_cardinality_error': tensor(0.3192, device='cuda:0')}
{'training_loss': tensor(0.1386, device='cuda:0'), 'train_loss_ce': tensor(0.0356, device='cuda:0'), 'train_loss_bbox': tensor(0.0066, device='cuda:0'), 'train_loss_giou': tensor(0.0350, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1579, device='cuda:0'), 'validation_loss_ce': tensor(0.0167, device='cuda:0'), 'validation_loss_bbox': tensor(0.0084, device='cuda:0'), 'validation_loss_giou': tensor(0.0496, device='cuda:0'), 'validation_cardinality_error': tensor(0.3220, device='cuda:0')}
{'training_loss': tensor(0.1248, device='cuda:0'), 'train_loss_ce': tensor(0.0140, device='cuda:0'), 'train_loss_bbox': tensor(0.0089, device='cuda:0'), 'train_loss_giou': tensor(0.0331, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1815, device='cuda:0'), 'validation_loss_ce': tensor(0.0168, device='cuda:0'), 'validation_loss_bbox': tensor(0.0097, device='cuda:0'), 'validation_loss_giou': tensor(0.0581, device='cuda:0'), 'validation_cardinality_error': tensor(0.3390, device='cuda:0')}
{'training_loss': tensor(0.1586, device='cuda:0'), 'train_loss_ce': tensor(0.0174, device='cuda:0'), 'train_loss_bbox': tensor(0.0105, device='cuda:0'), 'train_loss_giou': tensor(0.0443, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1585, device='cuda:0'), 'validation_loss_ce': tensor(0.0165, device='cuda:0'), 'validation_loss_bbox': tensor(0.0086, device='cuda:0'), 'validation_loss_giou': tensor(0.0496, device='cuda:0'), 'validation_cardinality_error': tensor(0.2655, device='cuda:0')}
{'training_loss': tensor(0.3246, device='cuda:0'), 'train_loss_ce': tensor(0.0211, device='cuda:0'), 'train_loss_bbox': tensor(0.0128, device='cuda:0'), 'train_loss_giou': tensor(0.1198, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1892, device='cuda:0'), 'validation_loss_ce': tensor(0.0164, device='cuda:0'), 'validation_loss_bbox': tensor(0.0102, device='cuda:0'), 'validation_loss_giou': tensor(0.0609, device='cuda:0'), 'validation_cardinality_error': tensor(0.2825, device='cuda:0')}
{'training_loss': tensor(0.1792, device='cuda:0'), 'train_loss_ce': tensor(0.0099, device='cuda:0'), 'train_loss_bbox': tensor(0.0135, device='cuda:0'), 'train_loss_giou': tensor(0.0508, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1667, device='cuda:0'), 'validation_loss_ce': tensor(0.0168, device='cuda:0'), 'validation_loss_bbox': tensor(0.0090, device='cuda:0'), 'validation_loss_giou': tensor(0.0525, device='cuda:0'), 'validation_cardinality_error': tensor(0.2881, device='cuda:0')}
{'training_loss': tensor(0.1698, device='cuda:0'), 'train_loss_ce': tensor(0.0038, device='cuda:0'), 'train_loss_bbox': tensor(0.0108, device='cuda:0'), 'train_loss_giou': tensor(0.0559, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1600, device='cuda:0'), 'validation_loss_ce': tensor(0.0166, device='cuda:0'), 'validation_loss_bbox': tensor(0.0091, device='cuda:0'), 'validation_loss_giou': tensor(0.0488, device='cuda:0'), 'validation_cardinality_error': tensor(0.3136, device='cuda:0')}
{'training_loss': tensor(0.1790, device='cuda:0'), 'train_loss_ce': tensor(0.0049, device='cuda:0'), 'train_loss_bbox': tensor(0.0082, device='cuda:0'), 'train_loss_giou': tensor(0.0666, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1590, device='cuda:0'), 'validation_loss_ce': tensor(0.0161, device='cuda:0'), 'validation_loss_bbox': tensor(0.0089, device='cuda:0'), 'validation_loss_giou': tensor(0.0491, device='cuda:0'), 'validation_cardinality_error': tensor(0.2853, device='cuda:0')}
{'training_loss': tensor(0.2804, device='cuda:0'), 'train_loss_ce': tensor(0.0138, device='cuda:0'), 'train_loss_bbox': tensor(0.0132, device='cuda:0'), 'train_loss_giou': tensor(0.1002, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1470, device='cuda:0'), 'validation_loss_ce': tensor(0.0159, device='cuda:0'), 'validation_loss_bbox': tensor(0.0080, device='cuda:0'), 'validation_loss_giou': tensor(0.0456, device='cuda:0'), 'validation_cardinality_error': tensor(0.2966, device='cuda:0')}
{'training_loss': tensor(0.1185, device='cuda:0'), 'train_loss_ce': tensor(0.0171, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0283, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1465, device='cuda:0'), 'validation_loss_ce': tensor(0.0155, device='cuda:0'), 'validation_loss_bbox': tensor(0.0080, device='cuda:0'), 'validation_loss_giou': tensor(0.0456, device='cuda:0'), 'validation_cardinality_error': tensor(0.3136, device='cuda:0')}
{'training_loss': tensor(0.1807, device='cuda:0'), 'train_loss_ce': tensor(0.0081, device='cuda:0'), 'train_loss_bbox': tensor(0.0066, device='cuda:0'), 'train_loss_giou': tensor(0.0699, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1374, device='cuda:0'), 'validation_loss_ce': tensor(0.0153, device='cuda:0'), 'validation_loss_bbox': tensor(0.0076, device='cuda:0'), 'validation_loss_giou': tensor(0.0420, device='cuda:0'), 'validation_cardinality_error': tensor(0.2881, device='cuda:0')}
{'training_loss': tensor(0.2557, device='cuda:0'), 'train_loss_ce': tensor(0.0093, device='cuda:0'), 'train_loss_bbox': tensor(0.0164, device='cuda:0'), 'train_loss_giou': tensor(0.0822, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1501, device='cuda:0'), 'validation_loss_ce': tensor(0.0153, device='cuda:0'), 'validation_loss_bbox': tensor(0.0084, device='cuda:0'), 'validation_loss_giou': tensor(0.0465, device='cuda:0'), 'validation_cardinality_error': tensor(0.3023, device='cuda:0')}
{'training_loss': tensor(0.5902, device='cuda:0'), 'train_loss_ce': tensor(0.0294, device='cuda:0'), 'train_loss_bbox': tensor(0.0181, device='cuda:0'), 'train_loss_giou': tensor(0.2352, device='cuda:0'), 'train_cardinality_error': tensor(1.5000, device='cuda:0'), 'validation_loss': tensor(0.1471, device='cuda:0'), 'validation_loss_ce': tensor(0.0151, device='cuda:0'), 'validation_loss_bbox': tensor(0.0085, device='cuda:0'), 'validation_loss_giou': tensor(0.0446, device='cuda:0'), 'validation_cardinality_error': tensor(0.2797, device='cuda:0')}
{'training_loss': tensor(0.1256, device='cuda:0'), 'train_loss_ce': tensor(0.0163, device='cuda:0'), 'train_loss_bbox': tensor(0.0072, device='cuda:0'), 'train_loss_giou': tensor(0.0365, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1463, device='cuda:0'), 'validation_loss_ce': tensor(0.0151, device='cuda:0'), 'validation_loss_bbox': tensor(0.0080, device='cuda:0'), 'validation_loss_giou': tensor(0.0456, device='cuda:0'), 'validation_cardinality_error': tensor(0.2768, device='cuda:0')}
{'training_loss': tensor(0.0612, device='cuda:0'), 'train_loss_ce': tensor(0.0166, device='cuda:0'), 'train_loss_bbox': tensor(0.0029, device='cuda:0'), 'train_loss_giou': tensor(0.0150, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1650, device='cuda:0'), 'validation_loss_ce': tensor(0.0162, device='cuda:0'), 'validation_loss_bbox': tensor(0.0093, device='cuda:0'), 'validation_loss_giou': tensor(0.0511, device='cuda:0'), 'validation_cardinality_error': tensor(0.2768, device='cuda:0')}
{'training_loss': tensor(0.1381, device='cuda:0'), 'train_loss_ce': tensor(0.0017, device='cuda:0'), 'train_loss_bbox': tensor(0.0149, device='cuda:0'), 'train_loss_giou': tensor(0.0309, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1474, device='cuda:0'), 'validation_loss_ce': tensor(0.0151, device='cuda:0'), 'validation_loss_bbox': tensor(0.0079, device='cuda:0'), 'validation_loss_giou': tensor(0.0463, device='cuda:0'), 'validation_cardinality_error': tensor(0.2910, device='cuda:0')}
{'training_loss': tensor(0.1939, device='cuda:0'), 'train_loss_ce': tensor(0.0006, device='cuda:0'), 'train_loss_bbox': tensor(0.0109, device='cuda:0'), 'train_loss_giou': tensor(0.0694, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1419, device='cuda:0'), 'validation_loss_ce': tensor(0.0142, device='cuda:0'), 'validation_loss_bbox': tensor(0.0081, device='cuda:0'), 'validation_loss_giou': tensor(0.0437, device='cuda:0'), 'validation_cardinality_error': tensor(0.2853, device='cuda:0')}
{'training_loss': tensor(0.2874, device='cuda:0'), 'train_loss_ce': tensor(0.0104, device='cuda:0'), 'train_loss_bbox': tensor(0.0197, device='cuda:0'), 'train_loss_giou': tensor(0.0892, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1607, device='cuda:0'), 'validation_loss_ce': tensor(0.0144, device='cuda:0'), 'validation_loss_bbox': tensor(0.0090, device='cuda:0'), 'validation_loss_giou': tensor(0.0506, device='cuda:0'), 'validation_cardinality_error': tensor(0.2684, device='cuda:0')}
{'training_loss': tensor(0.1033, device='cuda:0'), 'train_loss_ce': tensor(0.0010, device='cuda:0'), 'train_loss_bbox': tensor(0.0089, device='cuda:0'), 'train_loss_giou': tensor(0.0289, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1484, device='cuda:0'), 'validation_loss_ce': tensor(0.0154, device='cuda:0'), 'validation_loss_bbox': tensor(0.0081, device='cuda:0'), 'validation_loss_giou': tensor(0.0463, device='cuda:0'), 'validation_cardinality_error': tensor(0.2712, device='cuda:0')}
{'training_loss': tensor(0.0931, device='cuda:0'), 'train_loss_ce': tensor(0.0046, device='cuda:0'), 'train_loss_bbox': tensor(0.0063, device='cuda:0'), 'train_loss_giou': tensor(0.0284, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1539, device='cuda:0'), 'validation_loss_ce': tensor(0.0149, device='cuda:0'), 'validation_loss_bbox': tensor(0.0089, device='cuda:0'), 'validation_loss_giou': tensor(0.0473, device='cuda:0'), 'validation_cardinality_error': tensor(0.3136, device='cuda:0')}
{'training_loss': tensor(0.0700, device='cuda:0'), 'train_loss_ce': tensor(0.0126, device='cuda:0'), 'train_loss_bbox': tensor(0.0052, device='cuda:0'), 'train_loss_giou': tensor(0.0157, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1546, device='cuda:0'), 'validation_loss_ce': tensor(0.0148, device='cuda:0'), 'validation_loss_bbox': tensor(0.0084, device='cuda:0'), 'validation_loss_giou': tensor(0.0490, device='cuda:0'), 'validation_cardinality_error': tensor(0.3164, device='cuda:0')}
{'training_loss': tensor(0.1848, device='cuda:0'), 'train_loss_ce': tensor(0.0263, device='cuda:0'), 'train_loss_bbox': tensor(0.0090, device='cuda:0'), 'train_loss_giou': tensor(0.0568, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1403, device='cuda:0'), 'validation_loss_ce': tensor(0.0137, device='cuda:0'), 'validation_loss_bbox': tensor(0.0080, device='cuda:0'), 'validation_loss_giou': tensor(0.0434, device='cuda:0'), 'validation_cardinality_error': tensor(0.2401, device='cuda:0')}
{'training_loss': tensor(0.2131, device='cuda:0'), 'train_loss_ce': tensor(0.0043, device='cuda:0'), 'train_loss_bbox': tensor(0.0070, device='cuda:0'), 'train_loss_giou': tensor(0.0868, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1421, device='cuda:0'), 'validation_loss_ce': tensor(0.0139, device='cuda:0'), 'validation_loss_bbox': tensor(0.0081, device='cuda:0'), 'validation_loss_giou': tensor(0.0438, device='cuda:0'), 'validation_cardinality_error': tensor(0.2684, device='cuda:0')}
{'training_loss': tensor(0.0878, device='cuda:0'), 'train_loss_ce': tensor(0.0150, device='cuda:0'), 'train_loss_bbox': tensor(0.0060, device='cuda:0'), 'train_loss_giou': tensor(0.0213, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1417, device='cuda:0'), 'validation_loss_ce': tensor(0.0140, device='cuda:0'), 'validation_loss_bbox': tensor(0.0078, device='cuda:0'), 'validation_loss_giou': tensor(0.0444, device='cuda:0'), 'validation_cardinality_error': tensor(0.2938, device='cuda:0')}
{'training_loss': tensor(0.1098, device='cuda:0'), 'train_loss_ce': tensor(0.0071, device='cuda:0'), 'train_loss_bbox': tensor(0.0087, device='cuda:0'), 'train_loss_giou': tensor(0.0297, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1362, device='cuda:0'), 'validation_loss_ce': tensor(0.0136, device='cuda:0'), 'validation_loss_bbox': tensor(0.0077, device='cuda:0'), 'validation_loss_giou': tensor(0.0422, device='cuda:0'), 'validation_cardinality_error': tensor(0.2599, device='cuda:0')}
{'training_loss': tensor(0.1134, device='cuda:0'), 'train_loss_ce': tensor(0.0112, device='cuda:0'), 'train_loss_bbox': tensor(0.0100, device='cuda:0'), 'train_loss_giou': tensor(0.0260, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1489, device='cuda:0'), 'validation_loss_ce': tensor(0.0137, device='cuda:0'), 'validation_loss_bbox': tensor(0.0081, device='cuda:0'), 'validation_loss_giou': tensor(0.0473, device='cuda:0'), 'validation_cardinality_error': tensor(0.2571, device='cuda:0')}
{'training_loss': tensor(0.0969, device='cuda:0'), 'train_loss_ce': tensor(0.0109, device='cuda:0'), 'train_loss_bbox': tensor(0.0077, device='cuda:0'), 'train_loss_giou': tensor(0.0238, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1469, device='cuda:0'), 'validation_loss_ce': tensor(0.0137, device='cuda:0'), 'validation_loss_bbox': tensor(0.0080, device='cuda:0'), 'validation_loss_giou': tensor(0.0467, device='cuda:0'), 'validation_cardinality_error': tensor(0.2853, device='cuda:0')}
{'training_loss': tensor(0.0883, device='cuda:0'), 'train_loss_ce': tensor(0.0244, device='cuda:0'), 'train_loss_bbox': tensor(0.0044, device='cuda:0'), 'train_loss_giou': tensor(0.0210, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1330, device='cuda:0'), 'validation_loss_ce': tensor(0.0133, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0417, device='cuda:0'), 'validation_cardinality_error': tensor(0.2571, device='cuda:0')}
{'training_loss': tensor(0.1328, device='cuda:0'), 'train_loss_ce': tensor(0.0116, device='cuda:0'), 'train_loss_bbox': tensor(0.0101, device='cuda:0'), 'train_loss_giou': tensor(0.0354, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1476, device='cuda:0'), 'validation_loss_ce': tensor(0.0133, device='cuda:0'), 'validation_loss_bbox': tensor(0.0081, device='cuda:0'), 'validation_loss_giou': tensor(0.0468, device='cuda:0'), 'validation_cardinality_error': tensor(0.2599, device='cuda:0')}
{'training_loss': tensor(0.2304, device='cuda:0'), 'train_loss_ce': tensor(0.0205, device='cuda:0'), 'train_loss_bbox': tensor(0.0063, device='cuda:0'), 'train_loss_giou': tensor(0.0893, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1653, device='cuda:0'), 'validation_loss_ce': tensor(0.0138, device='cuda:0'), 'validation_loss_bbox': tensor(0.0092, device='cuda:0'), 'validation_loss_giou': tensor(0.0527, device='cuda:0'), 'validation_cardinality_error': tensor(0.2910, device='cuda:0')}
{'training_loss': tensor(0.1625, device='cuda:0'), 'train_loss_ce': tensor(0.0044, device='cuda:0'), 'train_loss_bbox': tensor(0.0058, device='cuda:0'), 'train_loss_giou': tensor(0.0645, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1622, device='cuda:0'), 'validation_loss_ce': tensor(0.0135, device='cuda:0'), 'validation_loss_bbox': tensor(0.0092, device='cuda:0'), 'validation_loss_giou': tensor(0.0512, device='cuda:0'), 'validation_cardinality_error': tensor(0.2542, device='cuda:0')}
{'training_loss': tensor(0.0962, device='cuda:0'), 'train_loss_ce': tensor(0.0061, device='cuda:0'), 'train_loss_bbox': tensor(0.0040, device='cuda:0'), 'train_loss_giou': tensor(0.0351, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1692, device='cuda:0'), 'validation_loss_ce': tensor(0.0139, device='cuda:0'), 'validation_loss_bbox': tensor(0.0089, device='cuda:0'), 'validation_loss_giou': tensor(0.0553, device='cuda:0'), 'validation_cardinality_error': tensor(0.2825, device='cuda:0')}
{'training_loss': tensor(0.0925, device='cuda:0'), 'train_loss_ce': tensor(0.0103, device='cuda:0'), 'train_loss_bbox': tensor(0.0069, device='cuda:0'), 'train_loss_giou': tensor(0.0239, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1569, device='cuda:0'), 'validation_loss_ce': tensor(0.0138, device='cuda:0'), 'validation_loss_bbox': tensor(0.0087, device='cuda:0'), 'validation_loss_giou': tensor(0.0497, device='cuda:0'), 'validation_cardinality_error': tensor(0.2740, device='cuda:0')}
{'training_loss': tensor(0.1182, device='cuda:0'), 'train_loss_ce': tensor(0.0192, device='cuda:0'), 'train_loss_bbox': tensor(0.0088, device='cuda:0'), 'train_loss_giou': tensor(0.0274, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1401, device='cuda:0'), 'validation_loss_ce': tensor(0.0131, device='cuda:0'), 'validation_loss_bbox': tensor(0.0077, device='cuda:0'), 'validation_loss_giou': tensor(0.0441, device='cuda:0'), 'validation_cardinality_error': tensor(0.2260, device='cuda:0')}
{'training_loss': tensor(0.0665, device='cuda:0'), 'train_loss_ce': tensor(0.0116, device='cuda:0'), 'train_loss_bbox': tensor(0.0031, device='cuda:0'), 'train_loss_giou': tensor(0.0198, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1480, device='cuda:0'), 'validation_loss_ce': tensor(0.0131, device='cuda:0'), 'validation_loss_bbox': tensor(0.0087, device='cuda:0'), 'validation_loss_giou': tensor(0.0457, device='cuda:0'), 'validation_cardinality_error': tensor(0.2966, device='cuda:0')}
{'training_loss': tensor(0.1137, device='cuda:0'), 'train_loss_ce': tensor(0.0119, device='cuda:0'), 'train_loss_bbox': tensor(0.0095, device='cuda:0'), 'train_loss_giou': tensor(0.0270, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1460, device='cuda:0'), 'validation_loss_ce': tensor(0.0132, device='cuda:0'), 'validation_loss_bbox': tensor(0.0082, device='cuda:0'), 'validation_loss_giou': tensor(0.0459, device='cuda:0'), 'validation_cardinality_error': tensor(0.2514, device='cuda:0')}
{'training_loss': tensor(0.1399, device='cuda:0'), 'train_loss_ce': tensor(0.0277, device='cuda:0'), 'train_loss_bbox': tensor(0.0062, device='cuda:0'), 'train_loss_giou': tensor(0.0406, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1340, device='cuda:0'), 'validation_loss_ce': tensor(0.0129, device='cuda:0'), 'validation_loss_bbox': tensor(0.0077, device='cuda:0'), 'validation_loss_giou': tensor(0.0413, device='cuda:0'), 'validation_cardinality_error': tensor(0.2458, device='cuda:0')}
{'training_loss': tensor(0.1708, device='cuda:0'), 'train_loss_ce': tensor(0.0021, device='cuda:0'), 'train_loss_bbox': tensor(0.0079, device='cuda:0'), 'train_loss_giou': tensor(0.0646, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1456, device='cuda:0'), 'validation_loss_ce': tensor(0.0128, device='cuda:0'), 'validation_loss_bbox': tensor(0.0085, device='cuda:0'), 'validation_loss_giou': tensor(0.0452, device='cuda:0'), 'validation_cardinality_error': tensor(0.2853, device='cuda:0')}
{'training_loss': tensor(0.1552, device='cuda:0'), 'train_loss_ce': tensor(0.0027, device='cuda:0'), 'train_loss_bbox': tensor(0.0048, device='cuda:0'), 'train_loss_giou': tensor(0.0644, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1478, device='cuda:0'), 'validation_loss_ce': tensor(0.0124, device='cuda:0'), 'validation_loss_bbox': tensor(0.0086, device='cuda:0'), 'validation_loss_giou': tensor(0.0463, device='cuda:0'), 'validation_cardinality_error': tensor(0.2203, device='cuda:0')}
{'training_loss': tensor(0.1442, device='cuda:0'), 'train_loss_ce': tensor(0.0310, device='cuda:0'), 'train_loss_bbox': tensor(0.0096, device='cuda:0'), 'train_loss_giou': tensor(0.0326, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1542, device='cuda:0'), 'validation_loss_ce': tensor(0.0123, device='cuda:0'), 'validation_loss_bbox': tensor(0.0082, device='cuda:0'), 'validation_loss_giou': tensor(0.0505, device='cuda:0'), 'validation_cardinality_error': tensor(0.2740, device='cuda:0')}
{'training_loss': tensor(0.1323, device='cuda:0'), 'train_loss_ce': tensor(0.0064, device='cuda:0'), 'train_loss_bbox': tensor(0.0107, device='cuda:0'), 'train_loss_giou': tensor(0.0362, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1387, device='cuda:0'), 'validation_loss_ce': tensor(0.0122, device='cuda:0'), 'validation_loss_bbox': tensor(0.0076, device='cuda:0'), 'validation_loss_giou': tensor(0.0443, device='cuda:0'), 'validation_cardinality_error': tensor(0.2401, device='cuda:0')}
{'training_loss': tensor(0.1215, device='cuda:0'), 'train_loss_ce': tensor(0.0309, device='cuda:0'), 'train_loss_bbox': tensor(0.0046, device='cuda:0'), 'train_loss_giou': tensor(0.0337, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1486, device='cuda:0'), 'validation_loss_ce': tensor(0.0121, device='cuda:0'), 'validation_loss_bbox': tensor(0.0084, device='cuda:0'), 'validation_loss_giou': tensor(0.0472, device='cuda:0'), 'validation_cardinality_error': tensor(0.2486, device='cuda:0')}
{'training_loss': tensor(0.1151, device='cuda:0'), 'train_loss_ce': tensor(0.0296, device='cuda:0'), 'train_loss_bbox': tensor(0.0075, device='cuda:0'), 'train_loss_giou': tensor(0.0241, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1452, device='cuda:0'), 'validation_loss_ce': tensor(0.0120, device='cuda:0'), 'validation_loss_bbox': tensor(0.0083, device='cuda:0'), 'validation_loss_giou': tensor(0.0458, device='cuda:0'), 'validation_cardinality_error': tensor(0.2175, device='cuda:0')}
{'training_loss': tensor(0.2239, device='cuda:0'), 'train_loss_ce': tensor(0.0070, device='cuda:0'), 'train_loss_bbox': tensor(0.0118, device='cuda:0'), 'train_loss_giou': tensor(0.0790, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1445, device='cuda:0'), 'validation_loss_ce': tensor(0.0123, device='cuda:0'), 'validation_loss_bbox': tensor(0.0084, device='cuda:0'), 'validation_loss_giou': tensor(0.0452, device='cuda:0'), 'validation_cardinality_error': tensor(0.2232, device='cuda:0')}
{'training_loss': tensor(0.0825, device='cuda:0'), 'train_loss_ce': tensor(0.0039, device='cuda:0'), 'train_loss_bbox': tensor(0.0056, device='cuda:0'), 'train_loss_giou': tensor(0.0253, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1438, device='cuda:0'), 'validation_loss_ce': tensor(0.0124, device='cuda:0'), 'validation_loss_bbox': tensor(0.0080, device='cuda:0'), 'validation_loss_giou': tensor(0.0457, device='cuda:0'), 'validation_cardinality_error': tensor(0.2910, device='cuda:0')}
{'training_loss': tensor(0.1063, device='cuda:0'), 'train_loss_ce': tensor(0.0089, device='cuda:0'), 'train_loss_bbox': tensor(0.0060, device='cuda:0'), 'train_loss_giou': tensor(0.0336, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1418, device='cuda:0'), 'validation_loss_ce': tensor(0.0118, device='cuda:0'), 'validation_loss_bbox': tensor(0.0079, device='cuda:0'), 'validation_loss_giou': tensor(0.0454, device='cuda:0'), 'validation_cardinality_error': tensor(0.2373, device='cuda:0')}
{'training_loss': tensor(0.1744, device='cuda:0'), 'train_loss_ce': tensor(0.0051, device='cuda:0'), 'train_loss_bbox': tensor(0.0082, device='cuda:0'), 'train_loss_giou': tensor(0.0640, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1497, device='cuda:0'), 'validation_loss_ce': tensor(0.0119, device='cuda:0'), 'validation_loss_bbox': tensor(0.0083, device='cuda:0'), 'validation_loss_giou': tensor(0.0480, device='cuda:0'), 'validation_cardinality_error': tensor(0.2147, device='cuda:0')}
{'training_loss': tensor(0.1565, device='cuda:0'), 'train_loss_ce': tensor(0.0108, device='cuda:0'), 'train_loss_bbox': tensor(0.0131, device='cuda:0'), 'train_loss_giou': tensor(0.0400, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1374, device='cuda:0'), 'validation_loss_ce': tensor(0.0114, device='cuda:0'), 'validation_loss_bbox': tensor(0.0077, device='cuda:0'), 'validation_loss_giou': tensor(0.0438, device='cuda:0'), 'validation_cardinality_error': tensor(0.2486, device='cuda:0')}
{'training_loss': tensor(0.1527, device='cuda:0'), 'train_loss_ce': tensor(0.0065, device='cuda:0'), 'train_loss_bbox': tensor(0.0159, device='cuda:0'), 'train_loss_giou': tensor(0.0334, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1493, device='cuda:0'), 'validation_loss_ce': tensor(0.0116, device='cuda:0'), 'validation_loss_bbox': tensor(0.0084, device='cuda:0'), 'validation_loss_giou': tensor(0.0479, device='cuda:0'), 'validation_cardinality_error': tensor(0.2260, device='cuda:0')}
{'training_loss': tensor(0.1284, device='cuda:0'), 'train_loss_ce': tensor(0.0073, device='cuda:0'), 'train_loss_bbox': tensor(0.0081, device='cuda:0'), 'train_loss_giou': tensor(0.0402, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1486, device='cuda:0'), 'validation_loss_ce': tensor(0.0114, device='cuda:0'), 'validation_loss_bbox': tensor(0.0089, device='cuda:0'), 'validation_loss_giou': tensor(0.0464, device='cuda:0'), 'validation_cardinality_error': tensor(0.2316, device='cuda:0')}
{'training_loss': tensor(0.0984, device='cuda:0'), 'train_loss_ce': tensor(0.0175, device='cuda:0'), 'train_loss_bbox': tensor(0.0082, device='cuda:0'), 'train_loss_giou': tensor(0.0199, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1540, device='cuda:0'), 'validation_loss_ce': tensor(0.0120, device='cuda:0'), 'validation_loss_bbox': tensor(0.0090, device='cuda:0'), 'validation_loss_giou': tensor(0.0484, device='cuda:0'), 'validation_cardinality_error': tensor(0.2429, device='cuda:0')}
{'training_loss': tensor(0.1575, device='cuda:0'), 'train_loss_ce': tensor(0.0050, device='cuda:0'), 'train_loss_bbox': tensor(0.0086, device='cuda:0'), 'train_loss_giou': tensor(0.0548, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1340, device='cuda:0'), 'validation_loss_ce': tensor(0.0121, device='cuda:0'), 'validation_loss_bbox': tensor(0.0076, device='cuda:0'), 'validation_loss_giou': tensor(0.0421, device='cuda:0'), 'validation_cardinality_error': tensor(0.2542, device='cuda:0')}
{'training_loss': tensor(0.2105, device='cuda:0'), 'train_loss_ce': tensor(0.0175, device='cuda:0'), 'train_loss_bbox': tensor(0.0068, device='cuda:0'), 'train_loss_giou': tensor(0.0794, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1337, device='cuda:0'), 'validation_loss_ce': tensor(0.0120, device='cuda:0'), 'validation_loss_bbox': tensor(0.0078, device='cuda:0'), 'validation_loss_giou': tensor(0.0414, device='cuda:0'), 'validation_cardinality_error': tensor(0.2288, device='cuda:0')}
{'training_loss': tensor(0.1568, device='cuda:0'), 'train_loss_ce': tensor(0.0038, device='cuda:0'), 'train_loss_bbox': tensor(0.0133, device='cuda:0'), 'train_loss_giou': tensor(0.0432, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1435, device='cuda:0'), 'validation_loss_ce': tensor(0.0120, device='cuda:0'), 'validation_loss_bbox': tensor(0.0083, device='cuda:0'), 'validation_loss_giou': tensor(0.0451, device='cuda:0'), 'validation_cardinality_error': tensor(0.2514, device='cuda:0')}
{'training_loss': tensor(0.2344, device='cuda:0'), 'train_loss_ce': tensor(0.0153, device='cuda:0'), 'train_loss_bbox': tensor(0.0158, device='cuda:0'), 'train_loss_giou': tensor(0.0701, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1372, device='cuda:0'), 'validation_loss_ce': tensor(0.0118, device='cuda:0'), 'validation_loss_bbox': tensor(0.0079, device='cuda:0'), 'validation_loss_giou': tensor(0.0429, device='cuda:0'), 'validation_cardinality_error': tensor(0.2429, device='cuda:0')}
{'training_loss': tensor(0.1185, device='cuda:0'), 'train_loss_ce': tensor(0.0104, device='cuda:0'), 'train_loss_bbox': tensor(0.0072, device='cuda:0'), 'train_loss_giou': tensor(0.0360, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1429, device='cuda:0'), 'validation_loss_ce': tensor(0.0111, device='cuda:0'), 'validation_loss_bbox': tensor(0.0078, device='cuda:0'), 'validation_loss_giou': tensor(0.0463, device='cuda:0'), 'validation_cardinality_error': tensor(0.2288, device='cuda:0')}
{'training_loss': tensor(0.1569, device='cuda:0'), 'train_loss_ce': tensor(0.0116, device='cuda:0'), 'train_loss_bbox': tensor(0.0062, device='cuda:0'), 'train_loss_giou': tensor(0.0570, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1491, device='cuda:0'), 'validation_loss_ce': tensor(0.0112, device='cuda:0'), 'validation_loss_bbox': tensor(0.0092, device='cuda:0'), 'validation_loss_giou': tensor(0.0461, device='cuda:0'), 'validation_cardinality_error': tensor(0.2316, device='cuda:0')}
{'training_loss': tensor(0.6308, device='cuda:0'), 'train_loss_ce': tensor(0.0042, device='cuda:0'), 'train_loss_bbox': tensor(0.0377, device='cuda:0'), 'train_loss_giou': tensor(0.2191, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1560, device='cuda:0'), 'validation_loss_ce': tensor(0.0121, device='cuda:0'), 'validation_loss_bbox': tensor(0.0089, device='cuda:0'), 'validation_loss_giou': tensor(0.0497, device='cuda:0'), 'validation_cardinality_error': tensor(0.2938, device='cuda:0')}
{'training_loss': tensor(0.1393, device='cuda:0'), 'train_loss_ce': tensor(0.0070, device='cuda:0'), 'train_loss_bbox': tensor(0.0072, device='cuda:0'), 'train_loss_giou': tensor(0.0482, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1376, device='cuda:0'), 'validation_loss_ce': tensor(0.0116, device='cuda:0'), 'validation_loss_bbox': tensor(0.0079, device='cuda:0'), 'validation_loss_giou': tensor(0.0431, device='cuda:0'), 'validation_cardinality_error': tensor(0.2090, device='cuda:0')}
{'training_loss': tensor(0.1026, device='cuda:0'), 'train_loss_ce': tensor(0.0028, device='cuda:0'), 'train_loss_bbox': tensor(0.0082, device='cuda:0'), 'train_loss_giou': tensor(0.0293, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1372, device='cuda:0'), 'validation_loss_ce': tensor(0.0107, device='cuda:0'), 'validation_loss_bbox': tensor(0.0078, device='cuda:0'), 'validation_loss_giou': tensor(0.0439, device='cuda:0'), 'validation_cardinality_error': tensor(0.2316, device='cuda:0')}
{'training_loss': tensor(0.0936, device='cuda:0'), 'train_loss_ce': tensor(0.0093, device='cuda:0'), 'train_loss_bbox': tensor(0.0080, device='cuda:0'), 'train_loss_giou': tensor(0.0221, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1223, device='cuda:0'), 'validation_loss_ce': tensor(0.0103, device='cuda:0'), 'validation_loss_bbox': tensor(0.0069, device='cuda:0'), 'validation_loss_giou': tensor(0.0388, device='cuda:0'), 'validation_cardinality_error': tensor(0.2429, device='cuda:0')}
{'training_loss': tensor(0.1546, device='cuda:0'), 'train_loss_ce': tensor(0.0088, device='cuda:0'), 'train_loss_bbox': tensor(0.0146, device='cuda:0'), 'train_loss_giou': tensor(0.0365, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1349, device='cuda:0'), 'validation_loss_ce': tensor(0.0103, device='cuda:0'), 'validation_loss_bbox': tensor(0.0076, device='cuda:0'), 'validation_loss_giou': tensor(0.0433, device='cuda:0'), 'validation_cardinality_error': tensor(0.2119, device='cuda:0')}
{'training_loss': tensor(0.0965, device='cuda:0'), 'train_loss_ce': tensor(0.0020, device='cuda:0'), 'train_loss_bbox': tensor(0.0084, device='cuda:0'), 'train_loss_giou': tensor(0.0263, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1533, device='cuda:0'), 'validation_loss_ce': tensor(0.0105, device='cuda:0'), 'validation_loss_bbox': tensor(0.0092, device='cuda:0'), 'validation_loss_giou': tensor(0.0483, device='cuda:0'), 'validation_cardinality_error': tensor(0.2175, device='cuda:0')}
{'training_loss': tensor(0.1324, device='cuda:0'), 'train_loss_ce': tensor(0.0035, device='cuda:0'), 'train_loss_bbox': tensor(0.0064, device='cuda:0'), 'train_loss_giou': tensor(0.0484, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1291, device='cuda:0'), 'validation_loss_ce': tensor(0.0105, device='cuda:0'), 'validation_loss_bbox': tensor(0.0076, device='cuda:0'), 'validation_loss_giou': tensor(0.0402, device='cuda:0'), 'validation_cardinality_error': tensor(0.2316, device='cuda:0')}
{'training_loss': tensor(0.1399, device='cuda:0'), 'train_loss_ce': tensor(0.0130, device='cuda:0'), 'train_loss_bbox': tensor(0.0099, device='cuda:0'), 'train_loss_giou': tensor(0.0386, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1390, device='cuda:0'), 'validation_loss_ce': tensor(0.0104, device='cuda:0'), 'validation_loss_bbox': tensor(0.0083, device='cuda:0'), 'validation_loss_giou': tensor(0.0436, device='cuda:0'), 'validation_cardinality_error': tensor(0.2062, device='cuda:0')}
{'training_loss': tensor(0.1038, device='cuda:0'), 'train_loss_ce': tensor(0.0138, device='cuda:0'), 'train_loss_bbox': tensor(0.0070, device='cuda:0'), 'train_loss_giou': tensor(0.0274, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1372, device='cuda:0'), 'validation_loss_ce': tensor(0.0104, device='cuda:0'), 'validation_loss_bbox': tensor(0.0080, device='cuda:0'), 'validation_loss_giou': tensor(0.0435, device='cuda:0'), 'validation_cardinality_error': tensor(0.2203, device='cuda:0')}
{'training_loss': tensor(0.0885, device='cuda:0'), 'train_loss_ce': tensor(0.0065, device='cuda:0'), 'train_loss_bbox': tensor(0.0067, device='cuda:0'), 'train_loss_giou': tensor(0.0243, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1344, device='cuda:0'), 'validation_loss_ce': tensor(0.0102, device='cuda:0'), 'validation_loss_bbox': tensor(0.0077, device='cuda:0'), 'validation_loss_giou': tensor(0.0429, device='cuda:0'), 'validation_cardinality_error': tensor(0.2401, device='cuda:0')}
{'training_loss': tensor(0.0862, device='cuda:0'), 'train_loss_ce': tensor(0.0033, device='cuda:0'), 'train_loss_bbox': tensor(0.0065, device='cuda:0'), 'train_loss_giou': tensor(0.0252, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1529, device='cuda:0'), 'validation_loss_ce': tensor(0.0101, device='cuda:0'), 'validation_loss_bbox': tensor(0.0085, device='cuda:0'), 'validation_loss_giou': tensor(0.0500, device='cuda:0'), 'validation_cardinality_error': tensor(0.2401, device='cuda:0')}
{'training_loss': tensor(0.2616, device='cuda:0'), 'train_loss_ce': tensor(0.0048, device='cuda:0'), 'train_loss_bbox': tensor(0.0063, device='cuda:0'), 'train_loss_giou': tensor(0.1127, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1444, device='cuda:0'), 'validation_loss_ce': tensor(0.0102, device='cuda:0'), 'validation_loss_bbox': tensor(0.0085, device='cuda:0'), 'validation_loss_giou': tensor(0.0459, device='cuda:0'), 'validation_cardinality_error': tensor(0.1977, device='cuda:0')}
{'training_loss': tensor(0.1158, device='cuda:0'), 'train_loss_ce': tensor(0.0058, device='cuda:0'), 'train_loss_bbox': tensor(0.0067, device='cuda:0'), 'train_loss_giou': tensor(0.0381, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1365, device='cuda:0'), 'validation_loss_ce': tensor(0.0095, device='cuda:0'), 'validation_loss_bbox': tensor(0.0075, device='cuda:0'), 'validation_loss_giou': tensor(0.0448, device='cuda:0'), 'validation_cardinality_error': tensor(0.2090, device='cuda:0')}
{'training_loss': tensor(0.1804, device='cuda:0'), 'train_loss_ce': tensor(0.0060, device='cuda:0'), 'train_loss_bbox': tensor(0.0076, device='cuda:0'), 'train_loss_giou': tensor(0.0681, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1429, device='cuda:0'), 'validation_loss_ce': tensor(0.0101, device='cuda:0'), 'validation_loss_bbox': tensor(0.0081, device='cuda:0'), 'validation_loss_giou': tensor(0.0462, device='cuda:0'), 'validation_cardinality_error': tensor(0.2232, device='cuda:0')}
{'training_loss': tensor(0.0656, device='cuda:0'), 'train_loss_ce': tensor(0.0109, device='cuda:0'), 'train_loss_bbox': tensor(0.0033, device='cuda:0'), 'train_loss_giou': tensor(0.0191, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1320, device='cuda:0'), 'validation_loss_ce': tensor(0.0097, device='cuda:0'), 'validation_loss_bbox': tensor(0.0077, device='cuda:0'), 'validation_loss_giou': tensor(0.0420, device='cuda:0'), 'validation_cardinality_error': tensor(0.2119, device='cuda:0')}
{'training_loss': tensor(0.1258, device='cuda:0'), 'train_loss_ce': tensor(0.0141, device='cuda:0'), 'train_loss_bbox': tensor(0.0112, device='cuda:0'), 'train_loss_giou': tensor(0.0280, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1385, device='cuda:0'), 'validation_loss_ce': tensor(0.0096, device='cuda:0'), 'validation_loss_bbox': tensor(0.0074, device='cuda:0'), 'validation_loss_giou': tensor(0.0459, device='cuda:0'), 'validation_cardinality_error': tensor(0.2090, device='cuda:0')}
{'training_loss': tensor(0.0799, device='cuda:0'), 'train_loss_ce': tensor(0.0011, device='cuda:0'), 'train_loss_bbox': tensor(0.0100, device='cuda:0'), 'train_loss_giou': tensor(0.0143, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1381, device='cuda:0'), 'validation_loss_ce': tensor(0.0095, device='cuda:0'), 'validation_loss_bbox': tensor(0.0079, device='cuda:0'), 'validation_loss_giou': tensor(0.0445, device='cuda:0'), 'validation_cardinality_error': tensor(0.2345, device='cuda:0')}
{'training_loss': tensor(0.1024, device='cuda:0'), 'train_loss_ce': tensor(0.0029, device='cuda:0'), 'train_loss_bbox': tensor(0.0075, device='cuda:0'), 'train_loss_giou': tensor(0.0309, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1299, device='cuda:0'), 'validation_loss_ce': tensor(0.0100, device='cuda:0'), 'validation_loss_bbox': tensor(0.0076, device='cuda:0'), 'validation_loss_giou': tensor(0.0408, device='cuda:0'), 'validation_cardinality_error': tensor(0.2147, device='cuda:0')}
{'training_loss': tensor(0.0566, device='cuda:0'), 'train_loss_ce': tensor(0.0048, device='cuda:0'), 'train_loss_bbox': tensor(0.0055, device='cuda:0'), 'train_loss_giou': tensor(0.0122, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1287, device='cuda:0'), 'validation_loss_ce': tensor(0.0093, device='cuda:0'), 'validation_loss_bbox': tensor(0.0077, device='cuda:0'), 'validation_loss_giou': tensor(0.0406, device='cuda:0'), 'validation_cardinality_error': tensor(0.2034, device='cuda:0')}
{'training_loss': tensor(0.0953, device='cuda:0'), 'train_loss_ce': tensor(0.0163, device='cuda:0'), 'train_loss_bbox': tensor(0.0084, device='cuda:0'), 'train_loss_giou': tensor(0.0186, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1317, device='cuda:0'), 'validation_loss_ce': tensor(0.0092, device='cuda:0'), 'validation_loss_bbox': tensor(0.0078, device='cuda:0'), 'validation_loss_giou': tensor(0.0418, device='cuda:0'), 'validation_cardinality_error': tensor(0.2203, device='cuda:0')}
{'training_loss': tensor(0.1430, device='cuda:0'), 'train_loss_ce': tensor(0.0189, device='cuda:0'), 'train_loss_bbox': tensor(0.0114, device='cuda:0'), 'train_loss_giou': tensor(0.0335, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1254, device='cuda:0'), 'validation_loss_ce': tensor(0.0097, device='cuda:0'), 'validation_loss_bbox': tensor(0.0075, device='cuda:0'), 'validation_loss_giou': tensor(0.0392, device='cuda:0'), 'validation_cardinality_error': tensor(0.2006, device='cuda:0')}
{'training_loss': tensor(0.1801, device='cuda:0'), 'train_loss_ce': tensor(0.0179, device='cuda:0'), 'train_loss_bbox': tensor(0.0089, device='cuda:0'), 'train_loss_giou': tensor(0.0589, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1347, device='cuda:0'), 'validation_loss_ce': tensor(0.0092, device='cuda:0'), 'validation_loss_bbox': tensor(0.0084, device='cuda:0'), 'validation_loss_giou': tensor(0.0417, device='cuda:0'), 'validation_cardinality_error': tensor(0.2119, device='cuda:0')}
{'training_loss': tensor(0.0798, device='cuda:0'), 'train_loss_ce': tensor(0.0085, device='cuda:0'), 'train_loss_bbox': tensor(0.0068, device='cuda:0'), 'train_loss_giou': tensor(0.0187, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1280, device='cuda:0'), 'validation_loss_ce': tensor(0.0097, device='cuda:0'), 'validation_loss_bbox': tensor(0.0075, device='cuda:0'), 'validation_loss_giou': tensor(0.0404, device='cuda:0'), 'validation_cardinality_error': tensor(0.2203, device='cuda:0')}
{'training_loss': tensor(0.1191, device='cuda:0'), 'train_loss_ce': tensor(0.0047, device='cuda:0'), 'train_loss_bbox': tensor(0.0057, device='cuda:0'), 'train_loss_giou': tensor(0.0429, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1299, device='cuda:0'), 'validation_loss_ce': tensor(0.0091, device='cuda:0'), 'validation_loss_bbox': tensor(0.0071, device='cuda:0'), 'validation_loss_giou': tensor(0.0427, device='cuda:0'), 'validation_cardinality_error': tensor(0.2119, device='cuda:0')}
{'training_loss': tensor(0.1390, device='cuda:0'), 'train_loss_ce': tensor(0.0021, device='cuda:0'), 'train_loss_bbox': tensor(0.0085, device='cuda:0'), 'train_loss_giou': tensor(0.0471, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1272, device='cuda:0'), 'validation_loss_ce': tensor(0.0091, device='cuda:0'), 'validation_loss_bbox': tensor(0.0075, device='cuda:0'), 'validation_loss_giou': tensor(0.0402, device='cuda:0'), 'validation_cardinality_error': tensor(0.2062, device='cuda:0')}
{'training_loss': tensor(0.1437, device='cuda:0'), 'train_loss_ce': tensor(0.0127, device='cuda:0'), 'train_loss_bbox': tensor(0.0070, device='cuda:0'), 'train_loss_giou': tensor(0.0480, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1277, device='cuda:0'), 'validation_loss_ce': tensor(0.0094, device='cuda:0'), 'validation_loss_bbox': tensor(0.0070, device='cuda:0'), 'validation_loss_giou': tensor(0.0415, device='cuda:0'), 'validation_cardinality_error': tensor(0.2345, device='cuda:0')}
{'training_loss': tensor(0.0955, device='cuda:0'), 'train_loss_ce': tensor(0.0050, device='cuda:0'), 'train_loss_bbox': tensor(0.0063, device='cuda:0'), 'train_loss_giou': tensor(0.0295, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1382, device='cuda:0'), 'validation_loss_ce': tensor(0.0093, device='cuda:0'), 'validation_loss_bbox': tensor(0.0080, device='cuda:0'), 'validation_loss_giou': tensor(0.0445, device='cuda:0'), 'validation_cardinality_error': tensor(0.2345, device='cuda:0')}
{'training_loss': tensor(0.1500, device='cuda:0'), 'train_loss_ce': tensor(0.0027, device='cuda:0'), 'train_loss_bbox': tensor(0.0089, device='cuda:0'), 'train_loss_giou': tensor(0.0515, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1437, device='cuda:0'), 'validation_loss_ce': tensor(0.0092, device='cuda:0'), 'validation_loss_bbox': tensor(0.0082, device='cuda:0'), 'validation_loss_giou': tensor(0.0467, device='cuda:0'), 'validation_cardinality_error': tensor(0.2345, device='cuda:0')}
{'training_loss': tensor(0.1595, device='cuda:0'), 'train_loss_ce': tensor(0.0333, device='cuda:0'), 'train_loss_bbox': tensor(0.0081, device='cuda:0'), 'train_loss_giou': tensor(0.0429, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1233, device='cuda:0'), 'validation_loss_ce': tensor(0.0095, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0385, device='cuda:0'), 'validation_cardinality_error': tensor(0.1780, device='cuda:0')}
{'training_loss': tensor(0.3122, device='cuda:0'), 'train_loss_ce': tensor(0.0045, device='cuda:0'), 'train_loss_bbox': tensor(0.0116, device='cuda:0'), 'train_loss_giou': tensor(0.1249, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1618, device='cuda:0'), 'validation_loss_ce': tensor(0.0092, device='cuda:0'), 'validation_loss_bbox': tensor(0.0094, device='cuda:0'), 'validation_loss_giou': tensor(0.0528, device='cuda:0'), 'validation_cardinality_error': tensor(0.2288, device='cuda:0')}
{'training_loss': tensor(0.1813, device='cuda:0'), 'train_loss_ce': tensor(0.0032, device='cuda:0'), 'train_loss_bbox': tensor(0.0095, device='cuda:0'), 'train_loss_giou': tensor(0.0652, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1539, device='cuda:0'), 'validation_loss_ce': tensor(0.0088, device='cuda:0'), 'validation_loss_bbox': tensor(0.0089, device='cuda:0'), 'validation_loss_giou': tensor(0.0504, device='cuda:0'), 'validation_cardinality_error': tensor(0.1893, device='cuda:0')}
{'training_loss': tensor(0.0907, device='cuda:0'), 'train_loss_ce': tensor(0.0036, device='cuda:0'), 'train_loss_bbox': tensor(0.0062, device='cuda:0'), 'train_loss_giou': tensor(0.0281, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1438, device='cuda:0'), 'validation_loss_ce': tensor(0.0089, device='cuda:0'), 'validation_loss_bbox': tensor(0.0079, device='cuda:0'), 'validation_loss_giou': tensor(0.0476, device='cuda:0'), 'validation_cardinality_error': tensor(0.2034, device='cuda:0')}
{'training_loss': tensor(0.1295, device='cuda:0'), 'train_loss_ce': tensor(0.0036, device='cuda:0'), 'train_loss_bbox': tensor(0.0097, device='cuda:0'), 'train_loss_giou': tensor(0.0386, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1467, device='cuda:0'), 'validation_loss_ce': tensor(0.0091, device='cuda:0'), 'validation_loss_bbox': tensor(0.0081, device='cuda:0'), 'validation_loss_giou': tensor(0.0486, device='cuda:0'), 'validation_cardinality_error': tensor(0.2147, device='cuda:0')}
{'training_loss': tensor(0.0688, device='cuda:0'), 'train_loss_ce': tensor(0.0131, device='cuda:0'), 'train_loss_bbox': tensor(0.0061, device='cuda:0'), 'train_loss_giou': tensor(0.0127, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1224, device='cuda:0'), 'validation_loss_ce': tensor(0.0087, device='cuda:0'), 'validation_loss_bbox': tensor(0.0071, device='cuda:0'), 'validation_loss_giou': tensor(0.0392, device='cuda:0'), 'validation_cardinality_error': tensor(0.2175, device='cuda:0')}
{'training_loss': tensor(0.1207, device='cuda:0'), 'train_loss_ce': tensor(0.0055, device='cuda:0'), 'train_loss_bbox': tensor(0.0093, device='cuda:0'), 'train_loss_giou': tensor(0.0344, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1271, device='cuda:0'), 'validation_loss_ce': tensor(0.0099, device='cuda:0'), 'validation_loss_bbox': tensor(0.0071, device='cuda:0'), 'validation_loss_giou': tensor(0.0408, device='cuda:0'), 'validation_cardinality_error': tensor(0.2062, device='cuda:0')}
{'training_loss': tensor(0.0568, device='cuda:0'), 'train_loss_ce': tensor(0.0088, device='cuda:0'), 'train_loss_bbox': tensor(0.0035, device='cuda:0'), 'train_loss_giou': tensor(0.0152, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1291, device='cuda:0'), 'validation_loss_ce': tensor(0.0086, device='cuda:0'), 'validation_loss_bbox': tensor(0.0072, device='cuda:0'), 'validation_loss_giou': tensor(0.0423, device='cuda:0'), 'validation_cardinality_error': tensor(0.1977, device='cuda:0')}
{'training_loss': tensor(0.1846, device='cuda:0'), 'train_loss_ce': tensor(0.0037, device='cuda:0'), 'train_loss_bbox': tensor(0.0080, device='cuda:0'), 'train_loss_giou': tensor(0.0704, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1381, device='cuda:0'), 'validation_loss_ce': tensor(0.0084, device='cuda:0'), 'validation_loss_bbox': tensor(0.0078, device='cuda:0'), 'validation_loss_giou': tensor(0.0453, device='cuda:0'), 'validation_cardinality_error': tensor(0.2119, device='cuda:0')}
{'training_loss': tensor(0.1422, device='cuda:0'), 'train_loss_ce': tensor(0.0246, device='cuda:0'), 'train_loss_bbox': tensor(0.0039, device='cuda:0'), 'train_loss_giou': tensor(0.0491, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1492, device='cuda:0'), 'validation_loss_ce': tensor(0.0091, device='cuda:0'), 'validation_loss_bbox': tensor(0.0084, device='cuda:0'), 'validation_loss_giou': tensor(0.0490, device='cuda:0'), 'validation_cardinality_error': tensor(0.2203, device='cuda:0')}
{'training_loss': tensor(0.1278, device='cuda:0'), 'train_loss_ce': tensor(0.0107, device='cuda:0'), 'train_loss_bbox': tensor(0.0080, device='cuda:0'), 'train_loss_giou': tensor(0.0387, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1250, device='cuda:0'), 'validation_loss_ce': tensor(0.0085, device='cuda:0'), 'validation_loss_bbox': tensor(0.0069, device='cuda:0'), 'validation_loss_giou': tensor(0.0411, device='cuda:0'), 'validation_cardinality_error': tensor(0.2203, device='cuda:0')}
{'training_loss': tensor(0.0586, device='cuda:0'), 'train_loss_ce': tensor(0.0053, device='cuda:0'), 'train_loss_bbox': tensor(0.0038, device='cuda:0'), 'train_loss_giou': tensor(0.0171, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1379, device='cuda:0'), 'validation_loss_ce': tensor(0.0086, device='cuda:0'), 'validation_loss_bbox': tensor(0.0076, device='cuda:0'), 'validation_loss_giou': tensor(0.0455, device='cuda:0'), 'validation_cardinality_error': tensor(0.2260, device='cuda:0')}
{'training_loss': tensor(0.1389, device='cuda:0'), 'train_loss_ce': tensor(0.0047, device='cuda:0'), 'train_loss_bbox': tensor(0.0069, device='cuda:0'), 'train_loss_giou': tensor(0.0499, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1370, device='cuda:0'), 'validation_loss_ce': tensor(0.0083, device='cuda:0'), 'validation_loss_bbox': tensor(0.0077, device='cuda:0'), 'validation_loss_giou': tensor(0.0452, device='cuda:0'), 'validation_cardinality_error': tensor(0.2147, device='cuda:0')}
{'training_loss': tensor(0.2010, device='cuda:0'), 'train_loss_ce': tensor(0.0033, device='cuda:0'), 'train_loss_bbox': tensor(0.0135, device='cuda:0'), 'train_loss_giou': tensor(0.0651, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1276, device='cuda:0'), 'validation_loss_ce': tensor(0.0083, device='cuda:0'), 'validation_loss_bbox': tensor(0.0071, device='cuda:0'), 'validation_loss_giou': tensor(0.0420, device='cuda:0'), 'validation_cardinality_error': tensor(0.1893, device='cuda:0')}
{'training_loss': tensor(0.0883, device='cuda:0'), 'train_loss_ce': tensor(0.0024, device='cuda:0'), 'train_loss_bbox': tensor(0.0042, device='cuda:0'), 'train_loss_giou': tensor(0.0325, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1316, device='cuda:0'), 'validation_loss_ce': tensor(0.0081, device='cuda:0'), 'validation_loss_bbox': tensor(0.0075, device='cuda:0'), 'validation_loss_giou': tensor(0.0431, device='cuda:0'), 'validation_cardinality_error': tensor(0.1893, device='cuda:0')}
{'training_loss': tensor(0.1417, device='cuda:0'), 'train_loss_ce': tensor(0.0051, device='cuda:0'), 'train_loss_bbox': tensor(0.0079, device='cuda:0'), 'train_loss_giou': tensor(0.0484, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1204, device='cuda:0'), 'validation_loss_ce': tensor(0.0079, device='cuda:0'), 'validation_loss_bbox': tensor(0.0069, device='cuda:0'), 'validation_loss_giou': tensor(0.0389, device='cuda:0'), 'validation_cardinality_error': tensor(0.1921, device='cuda:0')}
{'training_loss': tensor(0.1293, device='cuda:0'), 'train_loss_ce': tensor(0.0112, device='cuda:0'), 'train_loss_bbox': tensor(0.0053, device='cuda:0'), 'train_loss_giou': tensor(0.0459, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1243, device='cuda:0'), 'validation_loss_ce': tensor(0.0080, device='cuda:0'), 'validation_loss_bbox': tensor(0.0071, device='cuda:0'), 'validation_loss_giou': tensor(0.0404, device='cuda:0'), 'validation_cardinality_error': tensor(0.1893, device='cuda:0')}
{'training_loss': tensor(0.1576, device='cuda:0'), 'train_loss_ce': tensor(0.0057, device='cuda:0'), 'train_loss_bbox': tensor(0.0120, device='cuda:0'), 'train_loss_giou': tensor(0.0461, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1276, device='cuda:0'), 'validation_loss_ce': tensor(0.0082, device='cuda:0'), 'validation_loss_bbox': tensor(0.0075, device='cuda:0'), 'validation_loss_giou': tensor(0.0410, device='cuda:0'), 'validation_cardinality_error': tensor(0.2062, device='cuda:0')}
{'training_loss': tensor(0.1697, device='cuda:0'), 'train_loss_ce': tensor(0.0033, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0649, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1298, device='cuda:0'), 'validation_loss_ce': tensor(0.0080, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0427, device='cuda:0'), 'validation_cardinality_error': tensor(0.2175, device='cuda:0')}
{'training_loss': tensor(0.1977, device='cuda:0'), 'train_loss_ce': tensor(0.0346, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0632, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.1367, device='cuda:0'), 'validation_loss_ce': tensor(0.0080, device='cuda:0'), 'validation_loss_bbox': tensor(0.0076, device='cuda:0'), 'validation_loss_giou': tensor(0.0453, device='cuda:0'), 'validation_cardinality_error': tensor(0.2034, device='cuda:0')}
{'training_loss': tensor(0.1617, device='cuda:0'), 'train_loss_ce': tensor(0.0048, device='cuda:0'), 'train_loss_bbox': tensor(0.0059, device='cuda:0'), 'train_loss_giou': tensor(0.0638, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1500, device='cuda:0'), 'validation_loss_ce': tensor(0.0079, device='cuda:0'), 'validation_loss_bbox': tensor(0.0083, device='cuda:0'), 'validation_loss_giou': tensor(0.0503, device='cuda:0'), 'validation_cardinality_error': tensor(0.1836, device='cuda:0')}
{'training_loss': tensor(0.2020, device='cuda:0'), 'train_loss_ce': tensor(0.0076, device='cuda:0'), 'train_loss_bbox': tensor(0.0154, device='cuda:0'), 'train_loss_giou': tensor(0.0587, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1452, device='cuda:0'), 'validation_loss_ce': tensor(0.0085, device='cuda:0'), 'validation_loss_bbox': tensor(0.0077, device='cuda:0'), 'validation_loss_giou': tensor(0.0490, device='cuda:0'), 'validation_cardinality_error': tensor(0.2232, device='cuda:0')}
{'training_loss': tensor(0.1878, device='cuda:0'), 'train_loss_ce': tensor(0.0055, device='cuda:0'), 'train_loss_bbox': tensor(0.0120, device='cuda:0'), 'train_loss_giou': tensor(0.0610, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1275, device='cuda:0'), 'validation_loss_ce': tensor(0.0080, device='cuda:0'), 'validation_loss_bbox': tensor(0.0074, device='cuda:0'), 'validation_loss_giou': tensor(0.0412, device='cuda:0'), 'validation_cardinality_error': tensor(0.1977, device='cuda:0')}
{'training_loss': tensor(0.1588, device='cuda:0'), 'train_loss_ce': tensor(0.0012, device='cuda:0'), 'train_loss_bbox': tensor(0.0063, device='cuda:0'), 'train_loss_giou': tensor(0.0632, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1402, device='cuda:0'), 'validation_loss_ce': tensor(0.0080, device='cuda:0'), 'validation_loss_bbox': tensor(0.0083, device='cuda:0'), 'validation_loss_giou': tensor(0.0453, device='cuda:0'), 'validation_cardinality_error': tensor(0.1864, device='cuda:0')}
{'training_loss': tensor(0.0627, device='cuda:0'), 'train_loss_ce': tensor(0.0108, device='cuda:0'), 'train_loss_bbox': tensor(0.0045, device='cuda:0'), 'train_loss_giou': tensor(0.0146, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1344, device='cuda:0'), 'validation_loss_ce': tensor(0.0084, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0447, device='cuda:0'), 'validation_cardinality_error': tensor(0.2203, device='cuda:0')}
{'training_loss': tensor(0.0890, device='cuda:0'), 'train_loss_ce': tensor(0.0037, device='cuda:0'), 'train_loss_bbox': tensor(0.0049, device='cuda:0'), 'train_loss_giou': tensor(0.0303, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1338, device='cuda:0'), 'validation_loss_ce': tensor(0.0077, device='cuda:0'), 'validation_loss_bbox': tensor(0.0077, device='cuda:0'), 'validation_loss_giou': tensor(0.0437, device='cuda:0'), 'validation_cardinality_error': tensor(0.1864, device='cuda:0')}
{'training_loss': tensor(0.1134, device='cuda:0'), 'train_loss_ce': tensor(0.0191, device='cuda:0'), 'train_loss_bbox': tensor(0.0059, device='cuda:0'), 'train_loss_giou': tensor(0.0323, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1556, device='cuda:0'), 'validation_loss_ce': tensor(0.0081, device='cuda:0'), 'validation_loss_bbox': tensor(0.0096, device='cuda:0'), 'validation_loss_giou': tensor(0.0499, device='cuda:0'), 'validation_cardinality_error': tensor(0.2260, device='cuda:0')}
{'training_loss': tensor(0.1024, device='cuda:0'), 'train_loss_ce': tensor(0.0020, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.0316, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1443, device='cuda:0'), 'validation_loss_ce': tensor(0.0084, device='cuda:0'), 'validation_loss_bbox': tensor(0.0087, device='cuda:0'), 'validation_loss_giou': tensor(0.0462, device='cuda:0'), 'validation_cardinality_error': tensor(0.2175, device='cuda:0')}
{'training_loss': tensor(0.1516, device='cuda:0'), 'train_loss_ce': tensor(0.0050, device='cuda:0'), 'train_loss_bbox': tensor(0.0107, device='cuda:0'), 'train_loss_giou': tensor(0.0464, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1336, device='cuda:0'), 'validation_loss_ce': tensor(0.0083, device='cuda:0'), 'validation_loss_bbox': tensor(0.0076, device='cuda:0'), 'validation_loss_giou': tensor(0.0436, device='cuda:0'), 'validation_cardinality_error': tensor(0.2429, device='cuda:0')}
{'training_loss': tensor(0.1587, device='cuda:0'), 'train_loss_ce': tensor(0.0012, device='cuda:0'), 'train_loss_bbox': tensor(0.0113, device='cuda:0'), 'train_loss_giou': tensor(0.0504, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1365, device='cuda:0'), 'validation_loss_ce': tensor(0.0077, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0461, device='cuda:0'), 'validation_cardinality_error': tensor(0.1808, device='cuda:0')}
{'training_loss': tensor(0.1115, device='cuda:0'), 'train_loss_ce': tensor(0.0056, device='cuda:0'), 'train_loss_bbox': tensor(0.0096, device='cuda:0'), 'train_loss_giou': tensor(0.0289, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1306, device='cuda:0'), 'validation_loss_ce': tensor(0.0076, device='cuda:0'), 'validation_loss_bbox': tensor(0.0078, device='cuda:0'), 'validation_loss_giou': tensor(0.0419, device='cuda:0'), 'validation_cardinality_error': tensor(0.2006, device='cuda:0')}
{'training_loss': tensor(0.2191, device='cuda:0'), 'train_loss_ce': tensor(0.0097, device='cuda:0'), 'train_loss_bbox': tensor(0.0108, device='cuda:0'), 'train_loss_giou': tensor(0.0778, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1297, device='cuda:0'), 'validation_loss_ce': tensor(0.0075, device='cuda:0'), 'validation_loss_bbox': tensor(0.0075, device='cuda:0'), 'validation_loss_giou': tensor(0.0424, device='cuda:0'), 'validation_cardinality_error': tensor(0.1949, device='cuda:0')}
{'training_loss': tensor(0.0963, device='cuda:0'), 'train_loss_ce': tensor(0.0077, device='cuda:0'), 'train_loss_bbox': tensor(0.0100, device='cuda:0'), 'train_loss_giou': tensor(0.0192, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1407, device='cuda:0'), 'validation_loss_ce': tensor(0.0077, device='cuda:0'), 'validation_loss_bbox': tensor(0.0081, device='cuda:0'), 'validation_loss_giou': tensor(0.0462, device='cuda:0'), 'validation_cardinality_error': tensor(0.1949, device='cuda:0')}
{'training_loss': tensor(0.0949, device='cuda:0'), 'train_loss_ce': tensor(0.0038, device='cuda:0'), 'train_loss_bbox': tensor(0.0049, device='cuda:0'), 'train_loss_giou': tensor(0.0332, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1268, device='cuda:0'), 'validation_loss_ce': tensor(0.0078, device='cuda:0'), 'validation_loss_bbox': tensor(0.0072, device='cuda:0'), 'validation_loss_giou': tensor(0.0416, device='cuda:0'), 'validation_cardinality_error': tensor(0.2062, device='cuda:0')}
{'training_loss': tensor(0.1065, device='cuda:0'), 'train_loss_ce': tensor(0.0031, device='cuda:0'), 'train_loss_bbox': tensor(0.0098, device='cuda:0'), 'train_loss_giou': tensor(0.0271, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1237, device='cuda:0'), 'validation_loss_ce': tensor(0.0076, device='cuda:0'), 'validation_loss_bbox': tensor(0.0068, device='cuda:0'), 'validation_loss_giou': tensor(0.0411, device='cuda:0'), 'validation_cardinality_error': tensor(0.1723, device='cuda:0')}
{'training_loss': tensor(0.0699, device='cuda:0'), 'train_loss_ce': tensor(0.0079, device='cuda:0'), 'train_loss_bbox': tensor(0.0044, device='cuda:0'), 'train_loss_giou': tensor(0.0199, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1210, device='cuda:0'), 'validation_loss_ce': tensor(0.0077, device='cuda:0'), 'validation_loss_bbox': tensor(0.0070, device='cuda:0'), 'validation_loss_giou': tensor(0.0393, device='cuda:0'), 'validation_cardinality_error': tensor(0.2203, device='cuda:0')}
{'training_loss': tensor(0.0682, device='cuda:0'), 'train_loss_ce': tensor(0.0051, device='cuda:0'), 'train_loss_bbox': tensor(0.0059, device='cuda:0'), 'train_loss_giou': tensor(0.0168, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1295, device='cuda:0'), 'validation_loss_ce': tensor(0.0075, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0427, device='cuda:0'), 'validation_cardinality_error': tensor(0.1695, device='cuda:0')}
{'training_loss': tensor(0.0636, device='cuda:0'), 'train_loss_ce': tensor(0.0103, device='cuda:0'), 'train_loss_bbox': tensor(0.0037, device='cuda:0'), 'train_loss_giou': tensor(0.0173, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1114, device='cuda:0'), 'validation_loss_ce': tensor(0.0071, device='cuda:0'), 'validation_loss_bbox': tensor(0.0064, device='cuda:0'), 'validation_loss_giou': tensor(0.0360, device='cuda:0'), 'validation_cardinality_error': tensor(0.2006, device='cuda:0')}
```
## Examples
{'size': tensor([512, 512]), 'image_id': tensor([1]), 'class_labels': tensor([4]), 'boxes': tensor([[0.2622, 0.5729, 0.0847, 0.0773]]), 'area': tensor([1717.9431]), 'iscrowd': tensor([0]), 'orig_size': tensor([1024, 1024])}

|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
Divyanshu97/table-transformer-structure-recognition-bank-statement
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"table",
"table column",
"table row",
"table column header",
"table projected row header",
"table spanning cell"
] |
MarianaMCruz/detr-finetuned-cppe-5-10k-steps
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr-finetuned-cppe-5-10k-steps
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the cppe-5 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2564
- Map: 0.2948
- Map 50: 0.5884
- Map 75: 0.2425
- Map Coverall: 0.55
- Map Face Shield: 0.2939
- Map Gloves: 0.1976
- Map Goggles: 0.1503
- Map Mask: 0.282
- Map Large: 0.4679
- Map Medium: 0.2362
- Map Small: 0.0834
- Mar 1: 0.2966
- Mar 10: 0.4598
- Mar 100: 0.4716
- Mar 100 Coverall: 0.6766
- Mar 100 Face Shield: 0.4987
- Mar 100 Gloves: 0.3946
- Mar 100 Goggles: 0.3846
- Mar 100 Mask: 0.4036
- Mar Large: 0.6584
- Mar Medium: 0.4137
- Mar Small: 0.1785
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Coverall | Map Face Shield | Map Gloves | Map Goggles | Map Mask | Map Large | Map Medium | Map Small | Mar 1 | Mar 10 | Mar 100 | Mar 100 Coverall | Mar 100 Face Shield | Mar 100 Gloves | Mar 100 Goggles | Mar 100 Mask | Mar Large | Mar Medium | Mar Small |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------------:|:---------------:|:----------:|:-----------:|:--------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:----------------:|:-------------------:|:--------------:|:---------------:|:------------:|:---------:|:----------:|:---------:|
| 2.8255 | 1.0 | 107 | 2.4646 | 0.0262 | 0.0647 | 0.0201 | 0.1126 | 0.0 | 0.0104 | 0.0 | 0.008 | 0.0299 | 0.0089 | 0.0038 | 0.0468 | 0.1244 | 0.1694 | 0.4752 | 0.0 | 0.1433 | 0.0 | 0.2284 | 0.1707 | 0.1465 | 0.07 |
| 2.4162 | 2.0 | 214 | 2.6974 | 0.0172 | 0.0482 | 0.0105 | 0.0761 | 0.0 | 0.0034 | 0.0 | 0.0067 | 0.0193 | 0.0145 | 0.0013 | 0.0205 | 0.0976 | 0.1138 | 0.3514 | 0.0 | 0.104 | 0.0 | 0.1138 | 0.1342 | 0.0852 | 0.0223 |
| 2.0883 | 3.0 | 321 | 2.4750 | 0.0312 | 0.0758 | 0.021 | 0.1376 | 0.0 | 0.0027 | 0.0 | 0.016 | 0.0392 | 0.0196 | 0.0043 | 0.0577 | 0.1028 | 0.1375 | 0.3113 | 0.0 | 0.1281 | 0.0 | 0.248 | 0.1399 | 0.117 | 0.0809 |
| 1.8872 | 4.0 | 428 | 2.0300 | 0.0583 | 0.134 | 0.0452 | 0.2421 | 0.0 | 0.0135 | 0.0 | 0.0358 | 0.0702 | 0.0395 | 0.0109 | 0.0754 | 0.1726 | 0.1972 | 0.5689 | 0.0 | 0.1969 | 0.0 | 0.22 | 0.2348 | 0.152 | 0.0608 |
| 1.8577 | 5.0 | 535 | 1.9218 | 0.0823 | 0.1798 | 0.0655 | 0.3197 | 0.0 | 0.0268 | 0.0 | 0.0649 | 0.0911 | 0.0576 | 0.017 | 0.0964 | 0.1911 | 0.2088 | 0.5581 | 0.0 | 0.2188 | 0.0 | 0.2671 | 0.2491 | 0.1701 | 0.0718 |
| 1.7723 | 6.0 | 642 | 1.9397 | 0.0945 | 0.2072 | 0.0766 | 0.3258 | 0.0326 | 0.0212 | 0.0004 | 0.0926 | 0.1066 | 0.0808 | 0.0299 | 0.1046 | 0.2043 | 0.2177 | 0.5414 | 0.1304 | 0.1759 | 0.0046 | 0.236 | 0.2573 | 0.1748 | 0.0883 |
| 1.6972 | 7.0 | 749 | 1.8258 | 0.1137 | 0.2603 | 0.0836 | 0.3377 | 0.0521 | 0.0521 | 0.0109 | 0.1156 | 0.1299 | 0.1054 | 0.0324 | 0.1388 | 0.2648 | 0.2912 | 0.5842 | 0.243 | 0.2893 | 0.0538 | 0.2858 | 0.3473 | 0.2499 | 0.1498 |
| 1.6244 | 8.0 | 856 | 1.8033 | 0.1184 | 0.2566 | 0.0951 | 0.3741 | 0.0522 | 0.0363 | 0.0004 | 0.1289 | 0.1388 | 0.0968 | 0.0342 | 0.1355 | 0.2559 | 0.2776 | 0.5883 | 0.2304 | 0.2366 | 0.0108 | 0.3218 | 0.3421 | 0.2259 | 0.102 |
| 1.5748 | 9.0 | 963 | 1.7707 | 0.1186 | 0.2686 | 0.0942 | 0.3855 | 0.0505 | 0.0427 | 0.0005 | 0.1139 | 0.1413 | 0.0946 | 0.0284 | 0.1472 | 0.2763 | 0.2939 | 0.5977 | 0.3063 | 0.2237 | 0.0308 | 0.3111 | 0.369 | 0.2425 | 0.1111 |
| 1.5378 | 10.0 | 1070 | 1.7505 | 0.1306 | 0.294 | 0.0999 | 0.3696 | 0.0606 | 0.0411 | 0.0141 | 0.1677 | 0.1879 | 0.1128 | 0.0519 | 0.1592 | 0.3028 | 0.3333 | 0.577 | 0.3152 | 0.2759 | 0.1785 | 0.32 | 0.4145 | 0.2938 | 0.1471 |
| 1.5538 | 11.0 | 1177 | 1.6579 | 0.1405 | 0.3058 | 0.1111 | 0.4391 | 0.0565 | 0.058 | 0.0063 | 0.1424 | 0.199 | 0.1076 | 0.0452 | 0.1545 | 0.3171 | 0.3423 | 0.6523 | 0.338 | 0.2692 | 0.1646 | 0.2876 | 0.4596 | 0.2709 | 0.1385 |
| 1.509 | 12.0 | 1284 | 1.6763 | 0.1392 | 0.3021 | 0.105 | 0.4083 | 0.0671 | 0.0505 | 0.0255 | 0.1447 | 0.2012 | 0.1032 | 0.051 | 0.1685 | 0.3179 | 0.3409 | 0.5883 | 0.343 | 0.2848 | 0.1708 | 0.3173 | 0.4777 | 0.2687 | 0.1274 |
| 1.5149 | 13.0 | 1391 | 1.6443 | 0.1443 | 0.3208 | 0.116 | 0.4067 | 0.0772 | 0.0569 | 0.014 | 0.1668 | 0.2052 | 0.1248 | 0.0375 | 0.174 | 0.3313 | 0.3479 | 0.6135 | 0.338 | 0.2924 | 0.1815 | 0.3142 | 0.4748 | 0.2775 | 0.1601 |
| 1.4515 | 14.0 | 1498 | 1.7081 | 0.1427 | 0.3155 | 0.1082 | 0.4072 | 0.0551 | 0.0767 | 0.0155 | 0.1591 | 0.2035 | 0.1138 | 0.0403 | 0.1746 | 0.3404 | 0.3703 | 0.6063 | 0.3582 | 0.3027 | 0.2738 | 0.3107 | 0.485 | 0.3095 | 0.1499 |
| 1.5002 | 15.0 | 1605 | 1.6553 | 0.1419 | 0.3111 | 0.1024 | 0.4224 | 0.0675 | 0.0555 | 0.0077 | 0.1564 | 0.216 | 0.1112 | 0.0544 | 0.1705 | 0.3136 | 0.3353 | 0.6324 | 0.2709 | 0.2946 | 0.1969 | 0.2818 | 0.4421 | 0.2707 | 0.1414 |
| 1.4747 | 16.0 | 1712 | 1.5881 | 0.1518 | 0.33 | 0.1305 | 0.4355 | 0.0589 | 0.0634 | 0.0111 | 0.1904 | 0.221 | 0.1175 | 0.045 | 0.1797 | 0.3366 | 0.3583 | 0.6225 | 0.3405 | 0.2777 | 0.2231 | 0.3276 | 0.5102 | 0.2928 | 0.1459 |
| 1.4134 | 17.0 | 1819 | 1.6045 | 0.1546 | 0.3384 | 0.1261 | 0.4177 | 0.0606 | 0.068 | 0.0187 | 0.2083 | 0.2225 | 0.1172 | 0.0446 | 0.1911 | 0.3443 | 0.3644 | 0.6027 | 0.338 | 0.292 | 0.2523 | 0.3369 | 0.5104 | 0.3014 | 0.1206 |
| 1.4155 | 18.0 | 1926 | 1.6723 | 0.1538 | 0.3377 | 0.1249 | 0.4035 | 0.0626 | 0.076 | 0.0371 | 0.1896 | 0.2264 | 0.1194 | 0.0599 | 0.198 | 0.3546 | 0.3833 | 0.6014 | 0.3759 | 0.2799 | 0.34 | 0.3191 | 0.5551 | 0.3167 | 0.13 |
| 1.4372 | 19.0 | 2033 | 1.6629 | 0.1531 | 0.3303 | 0.1219 | 0.4185 | 0.0517 | 0.0692 | 0.0278 | 0.1984 | 0.2333 | 0.1221 | 0.0459 | 0.1854 | 0.3515 | 0.3839 | 0.6023 | 0.3873 | 0.275 | 0.3154 | 0.3396 | 0.5284 | 0.3285 | 0.1541 |
| 1.4156 | 20.0 | 2140 | 1.5876 | 0.1587 | 0.3393 | 0.137 | 0.4228 | 0.0659 | 0.0745 | 0.0258 | 0.2043 | 0.2403 | 0.1184 | 0.067 | 0.1917 | 0.3286 | 0.3542 | 0.5914 | 0.3089 | 0.3076 | 0.2215 | 0.3418 | 0.4914 | 0.2925 | 0.1423 |
| 1.3659 | 21.0 | 2247 | 1.6484 | 0.1497 | 0.3398 | 0.124 | 0.4217 | 0.0657 | 0.0644 | 0.019 | 0.1774 | 0.2263 | 0.1088 | 0.0359 | 0.186 | 0.3318 | 0.3466 | 0.6041 | 0.319 | 0.254 | 0.2646 | 0.2911 | 0.4984 | 0.2859 | 0.101 |
| 1.339 | 22.0 | 2354 | 1.5649 | 0.1655 | 0.3626 | 0.1294 | 0.4309 | 0.0856 | 0.0979 | 0.0208 | 0.1923 | 0.2475 | 0.1316 | 0.046 | 0.1937 | 0.3682 | 0.3943 | 0.6252 | 0.362 | 0.3321 | 0.3308 | 0.3213 | 0.5332 | 0.3458 | 0.1509 |
| 1.4317 | 23.0 | 2461 | 1.5822 | 0.162 | 0.3599 | 0.1265 | 0.4617 | 0.0562 | 0.0818 | 0.0144 | 0.1962 | 0.2323 | 0.122 | 0.055 | 0.1958 | 0.3482 | 0.3666 | 0.6514 | 0.3405 | 0.275 | 0.2646 | 0.3013 | 0.5214 | 0.3049 | 0.1204 |
| 1.3442 | 24.0 | 2568 | 1.5509 | 0.1758 | 0.3742 | 0.1367 | 0.4346 | 0.092 | 0.1071 | 0.0356 | 0.2099 | 0.2524 | 0.1523 | 0.0461 | 0.2152 | 0.3713 | 0.3953 | 0.6212 | 0.381 | 0.3375 | 0.3062 | 0.3307 | 0.5532 | 0.3408 | 0.1443 |
| 1.3088 | 25.0 | 2675 | 1.5144 | 0.1732 | 0.3703 | 0.1431 | 0.4627 | 0.0835 | 0.0882 | 0.0167 | 0.2149 | 0.255 | 0.138 | 0.0488 | 0.1954 | 0.3597 | 0.3789 | 0.655 | 0.3456 | 0.3143 | 0.2462 | 0.3338 | 0.5433 | 0.3152 | 0.1227 |
| 1.2841 | 26.0 | 2782 | 1.5131 | 0.1863 | 0.3861 | 0.1567 | 0.4666 | 0.1093 | 0.0956 | 0.0371 | 0.223 | 0.281 | 0.1384 | 0.0514 | 0.2129 | 0.3647 | 0.3846 | 0.6707 | 0.3506 | 0.3027 | 0.2338 | 0.3653 | 0.543 | 0.3154 | 0.1479 |
| 1.2947 | 27.0 | 2889 | 1.5201 | 0.1728 | 0.3797 | 0.1302 | 0.4428 | 0.1068 | 0.1116 | 0.0222 | 0.1807 | 0.2608 | 0.134 | 0.0476 | 0.1976 | 0.3634 | 0.3875 | 0.6239 | 0.3468 | 0.3598 | 0.2938 | 0.3129 | 0.5232 | 0.331 | 0.1466 |
| 1.252 | 28.0 | 2996 | 1.4757 | 0.1899 | 0.3907 | 0.1572 | 0.4615 | 0.1026 | 0.1288 | 0.0302 | 0.2262 | 0.295 | 0.1446 | 0.0665 | 0.2119 | 0.3774 | 0.3957 | 0.6477 | 0.3861 | 0.3402 | 0.2631 | 0.3413 | 0.5794 | 0.3256 | 0.1531 |
| 1.2745 | 29.0 | 3103 | 1.5029 | 0.1826 | 0.395 | 0.1331 | 0.4466 | 0.1041 | 0.113 | 0.0466 | 0.2026 | 0.2817 | 0.157 | 0.0457 | 0.2141 | 0.3623 | 0.3802 | 0.6446 | 0.3354 | 0.3464 | 0.2554 | 0.3191 | 0.4998 | 0.3378 | 0.1535 |
| 1.2365 | 30.0 | 3210 | 1.4733 | 0.1966 | 0.4269 | 0.1553 | 0.4552 | 0.1469 | 0.1287 | 0.035 | 0.217 | 0.2938 | 0.1694 | 0.0659 | 0.2247 | 0.388 | 0.3993 | 0.6284 | 0.3633 | 0.3536 | 0.3292 | 0.3222 | 0.5594 | 0.3502 | 0.1447 |
| 1.2055 | 31.0 | 3317 | 1.5310 | 0.1831 | 0.3896 | 0.1457 | 0.4614 | 0.1266 | 0.0936 | 0.0351 | 0.1988 | 0.2706 | 0.1474 | 0.0524 | 0.2158 | 0.3636 | 0.38 | 0.6225 | 0.3696 | 0.3174 | 0.2923 | 0.2982 | 0.5223 | 0.3278 | 0.1527 |
| 1.2181 | 32.0 | 3424 | 1.4300 | 0.206 | 0.4241 | 0.1698 | 0.4943 | 0.125 | 0.1308 | 0.0418 | 0.2381 | 0.3151 | 0.1464 | 0.0786 | 0.2372 | 0.3845 | 0.3965 | 0.6622 | 0.3608 | 0.3384 | 0.2815 | 0.3396 | 0.5687 | 0.3259 | 0.1504 |
| 1.1936 | 33.0 | 3531 | 1.3983 | 0.219 | 0.4472 | 0.1882 | 0.5025 | 0.161 | 0.1486 | 0.0388 | 0.2439 | 0.3481 | 0.1659 | 0.0532 | 0.2361 | 0.3955 | 0.4157 | 0.6477 | 0.3962 | 0.3768 | 0.2969 | 0.3609 | 0.5569 | 0.3681 | 0.1852 |
| 1.1766 | 34.0 | 3638 | 1.4252 | 0.2112 | 0.4429 | 0.186 | 0.4788 | 0.1525 | 0.1409 | 0.0413 | 0.2424 | 0.3333 | 0.1618 | 0.0649 | 0.2415 | 0.4032 | 0.4171 | 0.6333 | 0.4139 | 0.3723 | 0.3031 | 0.3627 | 0.5865 | 0.3613 | 0.1671 |
| 1.1881 | 35.0 | 3745 | 1.4474 | 0.2089 | 0.4392 | 0.1807 | 0.4701 | 0.1567 | 0.1537 | 0.0433 | 0.2206 | 0.3283 | 0.1735 | 0.0476 | 0.2301 | 0.3828 | 0.3938 | 0.6059 | 0.4 | 0.3723 | 0.2523 | 0.3387 | 0.5522 | 0.3409 | 0.1313 |
| 1.1731 | 36.0 | 3852 | 1.4049 | 0.2193 | 0.4635 | 0.1851 | 0.5034 | 0.1324 | 0.1668 | 0.0523 | 0.2416 | 0.3293 | 0.1738 | 0.0544 | 0.2415 | 0.3998 | 0.4116 | 0.6459 | 0.3785 | 0.3737 | 0.3154 | 0.3444 | 0.5581 | 0.3617 | 0.1726 |
| 1.14 | 37.0 | 3959 | 1.4157 | 0.2097 | 0.4485 | 0.1698 | 0.4988 | 0.1456 | 0.1321 | 0.0615 | 0.2106 | 0.343 | 0.1592 | 0.061 | 0.2267 | 0.3779 | 0.3934 | 0.6297 | 0.3582 | 0.35 | 0.2892 | 0.34 | 0.5569 | 0.3352 | 0.1308 |
| 1.1286 | 38.0 | 4066 | 1.3872 | 0.2135 | 0.4475 | 0.1802 | 0.4968 | 0.1468 | 0.1432 | 0.0545 | 0.2264 | 0.3308 | 0.1695 | 0.0541 | 0.2388 | 0.4061 | 0.4215 | 0.6495 | 0.4228 | 0.3821 | 0.3138 | 0.3391 | 0.5656 | 0.3647 | 0.2025 |
| 1.1398 | 39.0 | 4173 | 1.4290 | 0.2131 | 0.4419 | 0.1668 | 0.4882 | 0.1032 | 0.1618 | 0.0638 | 0.2485 | 0.3403 | 0.1659 | 0.0482 | 0.2407 | 0.4155 | 0.4279 | 0.6405 | 0.4228 | 0.3661 | 0.3385 | 0.3716 | 0.6137 | 0.372 | 0.1347 |
| 1.1372 | 40.0 | 4280 | 1.3823 | 0.212 | 0.4684 | 0.1785 | 0.4819 | 0.1455 | 0.1478 | 0.05 | 0.235 | 0.3349 | 0.1684 | 0.0616 | 0.2547 | 0.4168 | 0.4355 | 0.6306 | 0.4304 | 0.3866 | 0.3523 | 0.3773 | 0.6017 | 0.3784 | 0.1724 |
| 1.1173 | 41.0 | 4387 | 1.4033 | 0.2191 | 0.4555 | 0.1875 | 0.5062 | 0.1254 | 0.1576 | 0.0658 | 0.2402 | 0.3384 | 0.1826 | 0.0538 | 0.2474 | 0.4157 | 0.4311 | 0.6437 | 0.4291 | 0.3879 | 0.3262 | 0.3684 | 0.6138 | 0.3651 | 0.1632 |
| 1.1065 | 42.0 | 4494 | 1.4276 | 0.2176 | 0.4688 | 0.1656 | 0.4854 | 0.1977 | 0.1425 | 0.0682 | 0.1943 | 0.3273 | 0.1838 | 0.069 | 0.2479 | 0.3991 | 0.4159 | 0.6405 | 0.4506 | 0.3482 | 0.3108 | 0.3293 | 0.5677 | 0.3603 | 0.1665 |
| 1.1245 | 43.0 | 4601 | 1.4040 | 0.2073 | 0.4466 | 0.1712 | 0.4941 | 0.1068 | 0.1453 | 0.0624 | 0.2281 | 0.3255 | 0.1618 | 0.0731 | 0.2357 | 0.402 | 0.4105 | 0.6176 | 0.3797 | 0.3536 | 0.3415 | 0.36 | 0.5864 | 0.3442 | 0.1519 |
| 1.1049 | 44.0 | 4708 | 1.3916 | 0.2169 | 0.4598 | 0.1835 | 0.4769 | 0.1651 | 0.154 | 0.0539 | 0.2347 | 0.3413 | 0.1707 | 0.0746 | 0.2535 | 0.406 | 0.422 | 0.6284 | 0.4025 | 0.3924 | 0.32 | 0.3667 | 0.5728 | 0.3657 | 0.1741 |
| 1.07 | 45.0 | 4815 | 1.3629 | 0.2307 | 0.479 | 0.1857 | 0.5024 | 0.1537 | 0.1864 | 0.075 | 0.2361 | 0.3512 | 0.1931 | 0.0677 | 0.258 | 0.4256 | 0.4405 | 0.6468 | 0.4228 | 0.379 | 0.3892 | 0.3644 | 0.6005 | 0.3921 | 0.1622 |
| 1.0862 | 46.0 | 4922 | 1.3544 | 0.2329 | 0.4875 | 0.1938 | 0.5099 | 0.1729 | 0.1743 | 0.0601 | 0.2472 | 0.3683 | 0.1849 | 0.069 | 0.2417 | 0.4062 | 0.4213 | 0.6671 | 0.3785 | 0.3884 | 0.3154 | 0.3569 | 0.5998 | 0.3649 | 0.1415 |
| 1.0606 | 47.0 | 5029 | 1.3490 | 0.2279 | 0.4671 | 0.1828 | 0.491 | 0.1715 | 0.1666 | 0.064 | 0.2465 | 0.3586 | 0.1748 | 0.0727 | 0.2603 | 0.4306 | 0.4434 | 0.6559 | 0.438 | 0.3848 | 0.3615 | 0.3769 | 0.6136 | 0.372 | 0.1867 |
| 1.0517 | 48.0 | 5136 | 1.3711 | 0.2323 | 0.4913 | 0.181 | 0.4912 | 0.2222 | 0.1615 | 0.0442 | 0.2426 | 0.3617 | 0.1758 | 0.0705 | 0.2434 | 0.4108 | 0.4233 | 0.627 | 0.4443 | 0.3683 | 0.3154 | 0.3613 | 0.5821 | 0.3642 | 0.1745 |
| 1.0691 | 49.0 | 5243 | 1.3260 | 0.2389 | 0.4867 | 0.199 | 0.5088 | 0.1961 | 0.1662 | 0.0433 | 0.28 | 0.3837 | 0.1806 | 0.0863 | 0.2603 | 0.4327 | 0.4406 | 0.6486 | 0.4544 | 0.371 | 0.3385 | 0.3907 | 0.6257 | 0.3787 | 0.167 |
| 1.0383 | 50.0 | 5350 | 1.3316 | 0.2444 | 0.4987 | 0.2146 | 0.5157 | 0.1974 | 0.1867 | 0.0746 | 0.2476 | 0.3849 | 0.19 | 0.0714 | 0.2569 | 0.425 | 0.4383 | 0.6608 | 0.4494 | 0.3987 | 0.3231 | 0.3596 | 0.6142 | 0.3792 | 0.1694 |
| 1.0445 | 51.0 | 5457 | 1.3406 | 0.2374 | 0.4855 | 0.1968 | 0.5008 | 0.1831 | 0.1698 | 0.0791 | 0.2545 | 0.3681 | 0.1947 | 0.0747 | 0.2525 | 0.4258 | 0.4403 | 0.6572 | 0.4468 | 0.3853 | 0.3431 | 0.3693 | 0.6079 | 0.3877 | 0.1859 |
| 1.0122 | 52.0 | 5564 | 1.3005 | 0.2477 | 0.5029 | 0.2034 | 0.5084 | 0.1895 | 0.1706 | 0.1017 | 0.268 | 0.3893 | 0.1935 | 0.0755 | 0.2747 | 0.4432 | 0.4526 | 0.6599 | 0.4608 | 0.392 | 0.3662 | 0.3844 | 0.6098 | 0.3925 | 0.2031 |
| 0.9938 | 53.0 | 5671 | 1.3286 | 0.2532 | 0.5169 | 0.2223 | 0.5146 | 0.1887 | 0.1815 | 0.1132 | 0.2682 | 0.3849 | 0.205 | 0.0745 | 0.2782 | 0.4453 | 0.4591 | 0.6743 | 0.4785 | 0.3772 | 0.3754 | 0.3902 | 0.626 | 0.396 | 0.1838 |
| 1.0204 | 54.0 | 5778 | 1.3251 | 0.2528 | 0.518 | 0.224 | 0.5171 | 0.2166 | 0.1915 | 0.0875 | 0.251 | 0.404 | 0.1964 | 0.0822 | 0.2674 | 0.4319 | 0.4424 | 0.6568 | 0.4519 | 0.3808 | 0.3354 | 0.3871 | 0.6108 | 0.3899 | 0.1771 |
| 0.9882 | 55.0 | 5885 | 1.3231 | 0.2495 | 0.5069 | 0.22 | 0.531 | 0.2113 | 0.1735 | 0.1058 | 0.2257 | 0.3987 | 0.2008 | 0.0674 | 0.2629 | 0.4312 | 0.4405 | 0.6784 | 0.4519 | 0.3804 | 0.3354 | 0.3564 | 0.6144 | 0.3806 | 0.1674 |
| 1.0046 | 56.0 | 5992 | 1.3377 | 0.2524 | 0.523 | 0.2186 | 0.5272 | 0.2091 | 0.1884 | 0.0904 | 0.2472 | 0.4021 | 0.201 | 0.0665 | 0.2729 | 0.4396 | 0.4498 | 0.6671 | 0.4646 | 0.3826 | 0.3692 | 0.3653 | 0.6219 | 0.3964 | 0.1789 |
| 1.0016 | 57.0 | 6099 | 1.3185 | 0.2503 | 0.5142 | 0.2258 | 0.5272 | 0.216 | 0.1628 | 0.0851 | 0.2606 | 0.3973 | 0.1923 | 0.0674 | 0.2689 | 0.4362 | 0.4497 | 0.6577 | 0.4747 | 0.3746 | 0.3631 | 0.3787 | 0.6336 | 0.3877 | 0.1685 |
| 0.9883 | 58.0 | 6206 | 1.3084 | 0.2568 | 0.5155 | 0.2298 | 0.5325 | 0.2181 | 0.1826 | 0.0855 | 0.2653 | 0.4028 | 0.2064 | 0.0776 | 0.2762 | 0.4401 | 0.4531 | 0.6671 | 0.4785 | 0.3804 | 0.3585 | 0.3809 | 0.636 | 0.3909 | 0.1667 |
| 0.9602 | 59.0 | 6313 | 1.2997 | 0.2547 | 0.5081 | 0.2266 | 0.5313 | 0.2093 | 0.1846 | 0.0738 | 0.2743 | 0.3964 | 0.1954 | 0.0712 | 0.2736 | 0.4402 | 0.4507 | 0.6559 | 0.4608 | 0.3893 | 0.3477 | 0.4 | 0.6033 | 0.394 | 0.1952 |
| 0.9773 | 60.0 | 6420 | 1.3113 | 0.2645 | 0.5457 | 0.2198 | 0.5352 | 0.238 | 0.188 | 0.1104 | 0.2508 | 0.417 | 0.207 | 0.066 | 0.2807 | 0.4395 | 0.4497 | 0.6563 | 0.4873 | 0.3643 | 0.3646 | 0.376 | 0.6122 | 0.3969 | 0.1644 |
| 0.9686 | 61.0 | 6527 | 1.3026 | 0.2559 | 0.5301 | 0.2045 | 0.5328 | 0.2314 | 0.1755 | 0.0815 | 0.2583 | 0.4018 | 0.2057 | 0.0625 | 0.2682 | 0.4381 | 0.4518 | 0.6766 | 0.4722 | 0.3723 | 0.3646 | 0.3733 | 0.6317 | 0.3969 | 0.1681 |
| 0.9567 | 62.0 | 6634 | 1.2796 | 0.2705 | 0.553 | 0.2302 | 0.5388 | 0.2515 | 0.1876 | 0.1091 | 0.2653 | 0.4179 | 0.2184 | 0.0828 | 0.2758 | 0.4523 | 0.4657 | 0.6806 | 0.4949 | 0.3808 | 0.3831 | 0.3889 | 0.6367 | 0.4141 | 0.1773 |
| 0.9708 | 63.0 | 6741 | 1.3059 | 0.2601 | 0.5508 | 0.2151 | 0.5379 | 0.2271 | 0.1795 | 0.1046 | 0.2514 | 0.4032 | 0.203 | 0.0794 | 0.266 | 0.4358 | 0.452 | 0.6698 | 0.4747 | 0.3705 | 0.38 | 0.3649 | 0.6006 | 0.4044 | 0.1817 |
| 0.952 | 64.0 | 6848 | 1.3013 | 0.2637 | 0.5312 | 0.228 | 0.5374 | 0.227 | 0.1805 | 0.0944 | 0.2791 | 0.4199 | 0.2113 | 0.0749 | 0.2824 | 0.4484 | 0.4629 | 0.6626 | 0.4937 | 0.3911 | 0.3677 | 0.3996 | 0.6251 | 0.4122 | 0.1934 |
| 0.9335 | 65.0 | 6955 | 1.3231 | 0.2644 | 0.5376 | 0.2208 | 0.5362 | 0.2564 | 0.1668 | 0.0945 | 0.2681 | 0.4075 | 0.2091 | 0.083 | 0.2741 | 0.4524 | 0.4649 | 0.6721 | 0.5089 | 0.3777 | 0.3892 | 0.3764 | 0.6225 | 0.4149 | 0.1879 |
| 0.9378 | 66.0 | 7062 | 1.2839 | 0.258 | 0.5316 | 0.2175 | 0.5311 | 0.2351 | 0.1747 | 0.0904 | 0.2586 | 0.4166 | 0.2101 | 0.0745 | 0.2793 | 0.4521 | 0.4661 | 0.6689 | 0.5025 | 0.3955 | 0.3785 | 0.3849 | 0.6323 | 0.4171 | 0.188 |
| 0.9359 | 67.0 | 7169 | 1.3037 | 0.2606 | 0.548 | 0.2147 | 0.5387 | 0.2334 | 0.1713 | 0.1064 | 0.2533 | 0.415 | 0.2146 | 0.0795 | 0.2728 | 0.4415 | 0.4559 | 0.6784 | 0.4835 | 0.3781 | 0.36 | 0.3796 | 0.6312 | 0.4075 | 0.1637 |
| 0.9218 | 68.0 | 7276 | 1.2800 | 0.269 | 0.5546 | 0.2302 | 0.5459 | 0.2507 | 0.1823 | 0.1058 | 0.2603 | 0.4256 | 0.2151 | 0.083 | 0.2706 | 0.4481 | 0.4597 | 0.6712 | 0.4696 | 0.3835 | 0.3846 | 0.3898 | 0.6186 | 0.4051 | 0.2107 |
| 0.9189 | 69.0 | 7383 | 1.2613 | 0.2724 | 0.5536 | 0.2313 | 0.5453 | 0.2606 | 0.1822 | 0.1036 | 0.27 | 0.4374 | 0.2123 | 0.0791 | 0.2795 | 0.4526 | 0.4663 | 0.6676 | 0.4987 | 0.3902 | 0.3723 | 0.4027 | 0.6376 | 0.4138 | 0.2006 |
| 0.9092 | 70.0 | 7490 | 1.2850 | 0.2628 | 0.5303 | 0.2188 | 0.5448 | 0.247 | 0.1701 | 0.0999 | 0.2524 | 0.4314 | 0.2052 | 0.0815 | 0.2755 | 0.4481 | 0.4618 | 0.668 | 0.4949 | 0.3848 | 0.3677 | 0.3938 | 0.645 | 0.4011 | 0.1933 |
| 0.9069 | 71.0 | 7597 | 1.2548 | 0.2751 | 0.5565 | 0.2414 | 0.5499 | 0.2558 | 0.1791 | 0.1248 | 0.2662 | 0.4429 | 0.2188 | 0.0703 | 0.2929 | 0.4524 | 0.4669 | 0.6775 | 0.4747 | 0.3938 | 0.3908 | 0.3978 | 0.6499 | 0.4108 | 0.1824 |
| 0.9118 | 72.0 | 7704 | 1.2529 | 0.2691 | 0.5525 | 0.2408 | 0.5462 | 0.2308 | 0.1804 | 0.1244 | 0.2638 | 0.4295 | 0.2146 | 0.0737 | 0.2817 | 0.4469 | 0.4569 | 0.6703 | 0.4481 | 0.3871 | 0.3877 | 0.3916 | 0.6281 | 0.4004 | 0.1912 |
| 0.8915 | 73.0 | 7811 | 1.2830 | 0.2778 | 0.5637 | 0.2352 | 0.5459 | 0.2499 | 0.1818 | 0.1303 | 0.2814 | 0.4376 | 0.2216 | 0.085 | 0.2877 | 0.454 | 0.4651 | 0.6644 | 0.4873 | 0.3777 | 0.3923 | 0.4036 | 0.6459 | 0.4085 | 0.1722 |
| 0.8906 | 74.0 | 7918 | 1.2621 | 0.2812 | 0.5762 | 0.2419 | 0.5442 | 0.274 | 0.1863 | 0.1225 | 0.2788 | 0.435 | 0.2297 | 0.0872 | 0.2833 | 0.4524 | 0.4695 | 0.6721 | 0.5038 | 0.3955 | 0.3677 | 0.4084 | 0.6412 | 0.4176 | 0.1956 |
| 0.8748 | 75.0 | 8025 | 1.2661 | 0.2813 | 0.5702 | 0.2334 | 0.5428 | 0.2763 | 0.1817 | 0.1276 | 0.2784 | 0.4281 | 0.232 | 0.0904 | 0.2843 | 0.4608 | 0.4733 | 0.6658 | 0.5051 | 0.3969 | 0.3923 | 0.4067 | 0.6409 | 0.4236 | 0.197 |
| 0.8745 | 76.0 | 8132 | 1.2626 | 0.2823 | 0.5652 | 0.2466 | 0.5456 | 0.2825 | 0.1917 | 0.1227 | 0.269 | 0.4304 | 0.2321 | 0.0955 | 0.2872 | 0.4495 | 0.4641 | 0.6658 | 0.4987 | 0.3848 | 0.3769 | 0.3942 | 0.6428 | 0.4117 | 0.1705 |
| 0.8898 | 77.0 | 8239 | 1.2889 | 0.2811 | 0.5707 | 0.2403 | 0.5353 | 0.2697 | 0.1868 | 0.1405 | 0.273 | 0.4344 | 0.2318 | 0.0737 | 0.2846 | 0.458 | 0.4696 | 0.6599 | 0.5165 | 0.3799 | 0.3877 | 0.404 | 0.6407 | 0.4147 | 0.2015 |
| 0.8799 | 78.0 | 8346 | 1.2816 | 0.2865 | 0.5721 | 0.2468 | 0.535 | 0.288 | 0.1895 | 0.1505 | 0.2696 | 0.4493 | 0.2353 | 0.0869 | 0.2873 | 0.4518 | 0.4688 | 0.6671 | 0.5038 | 0.4 | 0.3831 | 0.3898 | 0.6507 | 0.4175 | 0.1889 |
| 0.861 | 79.0 | 8453 | 1.2650 | 0.2894 | 0.5759 | 0.26 | 0.5441 | 0.2918 | 0.1965 | 0.1429 | 0.2718 | 0.4567 | 0.2339 | 0.0807 | 0.2924 | 0.4512 | 0.4629 | 0.6721 | 0.5089 | 0.3799 | 0.3631 | 0.3907 | 0.6506 | 0.404 | 0.1721 |
| 0.8627 | 80.0 | 8560 | 1.2548 | 0.2861 | 0.5717 | 0.2503 | 0.5476 | 0.2736 | 0.1949 | 0.1458 | 0.2687 | 0.4461 | 0.2372 | 0.0873 | 0.2868 | 0.4531 | 0.4677 | 0.6757 | 0.4949 | 0.3938 | 0.3738 | 0.4004 | 0.6411 | 0.4176 | 0.1916 |
| 0.8622 | 81.0 | 8667 | 1.2928 | 0.2847 | 0.5631 | 0.2481 | 0.5391 | 0.2657 | 0.1996 | 0.1288 | 0.2904 | 0.4474 | 0.2295 | 0.0797 | 0.2879 | 0.4585 | 0.4705 | 0.6644 | 0.5089 | 0.3781 | 0.38 | 0.4209 | 0.6554 | 0.4199 | 0.1616 |
| 0.8586 | 82.0 | 8774 | 1.2744 | 0.2801 | 0.5663 | 0.2436 | 0.5414 | 0.2653 | 0.1943 | 0.1235 | 0.2761 | 0.4351 | 0.2301 | 0.0846 | 0.2866 | 0.4532 | 0.4655 | 0.6703 | 0.481 | 0.3857 | 0.3938 | 0.3969 | 0.6363 | 0.4059 | 0.2026 |
| 0.8523 | 83.0 | 8881 | 1.2564 | 0.2885 | 0.5749 | 0.2494 | 0.548 | 0.2971 | 0.1862 | 0.1276 | 0.2838 | 0.4436 | 0.2355 | 0.0837 | 0.2887 | 0.4608 | 0.4761 | 0.6716 | 0.5215 | 0.3915 | 0.3908 | 0.4049 | 0.6465 | 0.4221 | 0.1964 |
| 0.8366 | 84.0 | 8988 | 1.2571 | 0.2953 | 0.5842 | 0.2646 | 0.5476 | 0.3256 | 0.1859 | 0.14 | 0.2772 | 0.4622 | 0.243 | 0.0893 | 0.3019 | 0.4561 | 0.47 | 0.6734 | 0.5127 | 0.3786 | 0.3769 | 0.4084 | 0.6532 | 0.4145 | 0.1874 |
| 0.8217 | 85.0 | 9095 | 1.2677 | 0.2967 | 0.5928 | 0.268 | 0.5481 | 0.3208 | 0.1918 | 0.1424 | 0.2805 | 0.4632 | 0.2397 | 0.087 | 0.2971 | 0.457 | 0.4695 | 0.6779 | 0.5152 | 0.3879 | 0.3569 | 0.4093 | 0.6515 | 0.4172 | 0.1938 |
| 0.8385 | 86.0 | 9202 | 1.2808 | 0.2903 | 0.583 | 0.2494 | 0.5434 | 0.3045 | 0.1934 | 0.141 | 0.2691 | 0.4654 | 0.2261 | 0.0893 | 0.2932 | 0.4558 | 0.4655 | 0.6649 | 0.5114 | 0.3879 | 0.3708 | 0.3924 | 0.655 | 0.401 | 0.1873 |
| 0.8304 | 87.0 | 9309 | 1.2956 | 0.2888 | 0.5773 | 0.2582 | 0.5437 | 0.2936 | 0.1877 | 0.1485 | 0.2707 | 0.4552 | 0.231 | 0.0846 | 0.2898 | 0.4587 | 0.4728 | 0.6671 | 0.519 | 0.3902 | 0.3985 | 0.3893 | 0.6544 | 0.4195 | 0.1903 |
| 0.8369 | 88.0 | 9416 | 1.2704 | 0.2884 | 0.5857 | 0.2531 | 0.5443 | 0.3007 | 0.1908 | 0.1325 | 0.2738 | 0.4529 | 0.2275 | 0.086 | 0.2853 | 0.4556 | 0.4681 | 0.6779 | 0.5025 | 0.3911 | 0.3708 | 0.3982 | 0.6439 | 0.4036 | 0.2107 |
| 0.8317 | 89.0 | 9523 | 1.2721 | 0.2837 | 0.5738 | 0.2341 | 0.5465 | 0.2812 | 0.1887 | 0.1291 | 0.2728 | 0.4506 | 0.2235 | 0.0871 | 0.286 | 0.4533 | 0.4638 | 0.6734 | 0.4873 | 0.3848 | 0.3846 | 0.3889 | 0.6381 | 0.4021 | 0.2009 |
| 0.8319 | 90.0 | 9630 | 1.2615 | 0.2838 | 0.573 | 0.2459 | 0.5477 | 0.2789 | 0.1854 | 0.1354 | 0.2716 | 0.4556 | 0.2219 | 0.0856 | 0.2887 | 0.4537 | 0.4641 | 0.6662 | 0.4797 | 0.396 | 0.3862 | 0.3924 | 0.6459 | 0.4055 | 0.1986 |
| 0.8259 | 91.0 | 9737 | 1.2576 | 0.2862 | 0.575 | 0.2422 | 0.5465 | 0.2978 | 0.1854 | 0.1336 | 0.2678 | 0.4559 | 0.2227 | 0.0904 | 0.2854 | 0.4596 | 0.4715 | 0.6761 | 0.5013 | 0.3964 | 0.3985 | 0.3853 | 0.6493 | 0.4163 | 0.2011 |
| 0.8261 | 92.0 | 9844 | 1.2630 | 0.2903 | 0.578 | 0.2561 | 0.5502 | 0.2979 | 0.191 | 0.133 | 0.2793 | 0.4549 | 0.2275 | 0.0854 | 0.2922 | 0.4582 | 0.4681 | 0.6707 | 0.4987 | 0.392 | 0.3862 | 0.3929 | 0.6396 | 0.4136 | 0.1935 |
| 0.8222 | 93.0 | 9951 | 1.2568 | 0.2926 | 0.5865 | 0.2522 | 0.5484 | 0.2989 | 0.1909 | 0.1454 | 0.2793 | 0.4598 | 0.2371 | 0.0844 | 0.2895 | 0.4604 | 0.473 | 0.6766 | 0.5 | 0.3938 | 0.3969 | 0.3978 | 0.6476 | 0.425 | 0.1893 |
| 0.815 | 94.0 | 10058 | 1.2552 | 0.2918 | 0.5843 | 0.2481 | 0.548 | 0.2894 | 0.1927 | 0.1499 | 0.2788 | 0.4632 | 0.2349 | 0.0855 | 0.2906 | 0.4547 | 0.4687 | 0.6739 | 0.4987 | 0.3942 | 0.3785 | 0.3982 | 0.6562 | 0.4095 | 0.1851 |
| 0.8016 | 95.0 | 10165 | 1.2575 | 0.2899 | 0.5824 | 0.2444 | 0.5516 | 0.2855 | 0.1968 | 0.1366 | 0.2789 | 0.4661 | 0.2233 | 0.085 | 0.2875 | 0.4542 | 0.4672 | 0.6775 | 0.4962 | 0.3978 | 0.3723 | 0.3924 | 0.6563 | 0.4053 | 0.179 |
| 0.8191 | 96.0 | 10272 | 1.2532 | 0.294 | 0.5848 | 0.2411 | 0.5536 | 0.2938 | 0.1956 | 0.1438 | 0.2833 | 0.4694 | 0.225 | 0.0885 | 0.2972 | 0.4581 | 0.4707 | 0.677 | 0.4937 | 0.3978 | 0.3785 | 0.4067 | 0.6565 | 0.4116 | 0.1814 |
| 0.7974 | 97.0 | 10379 | 1.2629 | 0.2915 | 0.5849 | 0.236 | 0.5456 | 0.2891 | 0.1935 | 0.1465 | 0.2827 | 0.4674 | 0.2285 | 0.0838 | 0.2964 | 0.4575 | 0.4695 | 0.6721 | 0.4924 | 0.3897 | 0.3846 | 0.4089 | 0.6555 | 0.4113 | 0.1808 |
| 0.8021 | 98.0 | 10486 | 1.2549 | 0.2939 | 0.5839 | 0.2424 | 0.5491 | 0.2927 | 0.1977 | 0.1489 | 0.2811 | 0.464 | 0.2358 | 0.0839 | 0.2969 | 0.459 | 0.4717 | 0.6739 | 0.4975 | 0.3978 | 0.3846 | 0.4049 | 0.652 | 0.4136 | 0.193 |
| 0.8073 | 99.0 | 10593 | 1.2519 | 0.2945 | 0.5865 | 0.241 | 0.5512 | 0.2915 | 0.198 | 0.1521 | 0.2798 | 0.4662 | 0.2335 | 0.0834 | 0.297 | 0.46 | 0.4713 | 0.6761 | 0.4949 | 0.396 | 0.3846 | 0.4049 | 0.6554 | 0.4146 | 0.1775 |
| 0.8109 | 100.0 | 10700 | 1.2564 | 0.2948 | 0.5884 | 0.2425 | 0.55 | 0.2939 | 0.1976 | 0.1503 | 0.282 | 0.4679 | 0.2362 | 0.0834 | 0.2966 | 0.4598 | 0.4716 | 0.6766 | 0.4987 | 0.3946 | 0.3846 | 0.4036 | 0.6584 | 0.4137 | 0.1785 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu124
- Datasets 2.21.0
- Tokenizers 0.19.1
|
[
"coverall",
"face_shield",
"gloves",
"goggles",
"mask"
] |
MarianaMCruz/detr-finetuned-ppe
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr-finetuned-ppe
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the Francesco/construction-safety-gsnvb dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0499
- Map: 0.3948
- Map 50: 0.7609
- Map 75: 0.3767
- Map Small: 0.0619
- Map Medium: 0.3097
- Map Large: 0.4634
- Mar 1: 0.2239
- Mar 10: 0.5134
- Mar 100: 0.5368
- Mar Small: 0.1158
- Mar Medium: 0.4656
- Mar Large: 0.5905
- Map Helmet: 0.4535
- Mar 100 Helmet: 0.5418
- Map No-helmet: 0.1846
- Mar 100 No-helmet: 0.3125
- Map No-vest: 0.3122
- Mar 100 No-vest: 0.4984
- Map Person: 0.5839
- Mar 100 Person: 0.7285
- Map Vest: 0.4398
- Mar 100 Vest: 0.6031
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Helmet | Mar 100 Helmet | Map No-helmet | Mar 100 No-helmet | Map No-vest | Mar 100 No-vest | Map Person | Mar 100 Person | Map Vest | Mar 100 Vest |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:----------:|:--------------:|:-------------:|:-----------------:|:-----------:|:---------------:|:----------:|:--------------:|:--------:|:------------:|
| 2.5109 | 1.0 | 125 | 1.9828 | 0.0558 | 0.1174 | 0.0493 | 0.0064 | 0.0485 | 0.0694 | 0.0648 | 0.1756 | 0.2281 | 0.0719 | 0.136 | 0.2687 | 0.0782 | 0.4985 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2008 | 0.6421 | 0.0 | 0.0 |
| 1.7905 | 2.0 | 250 | 1.6901 | 0.0831 | 0.1758 | 0.0628 | 0.018 | 0.0768 | 0.1105 | 0.1162 | 0.2681 | 0.3363 | 0.0789 | 0.2158 | 0.4014 | 0.1284 | 0.5077 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2131 | 0.6949 | 0.0739 | 0.4789 |
| 1.6164 | 3.0 | 375 | 1.5478 | 0.1351 | 0.2758 | 0.1104 | 0.0084 | 0.1233 | 0.1683 | 0.1286 | 0.3095 | 0.3542 | 0.0737 | 0.2677 | 0.4032 | 0.2175 | 0.5433 | 0.0 | 0.0 | 0.0033 | 0.0213 | 0.3345 | 0.6636 | 0.1205 | 0.543 |
| 1.3782 | 4.0 | 500 | 1.4839 | 0.1675 | 0.339 | 0.1427 | 0.0194 | 0.1138 | 0.2255 | 0.1403 | 0.3236 | 0.3638 | 0.0754 | 0.237 | 0.4257 | 0.3086 | 0.5376 | 0.0 | 0.0 | 0.0028 | 0.0787 | 0.3963 | 0.6505 | 0.1296 | 0.5523 |
| 1.2708 | 5.0 | 625 | 1.3486 | 0.208 | 0.4184 | 0.1731 | 0.012 | 0.1542 | 0.267 | 0.1361 | 0.3427 | 0.3664 | 0.0491 | 0.3041 | 0.4139 | 0.345 | 0.4974 | 0.0 | 0.0 | 0.0058 | 0.1459 | 0.4403 | 0.6509 | 0.2488 | 0.5375 |
| 1.2041 | 6.0 | 750 | 1.2969 | 0.225 | 0.4379 | 0.2059 | 0.0235 | 0.1577 | 0.2902 | 0.1632 | 0.3864 | 0.4178 | 0.0614 | 0.291 | 0.4897 | 0.3662 | 0.5165 | 0.0 | 0.0 | 0.0245 | 0.4197 | 0.4365 | 0.6514 | 0.2976 | 0.5016 |
| 1.167 | 7.0 | 875 | 1.2861 | 0.2344 | 0.4597 | 0.2018 | 0.0109 | 0.1613 | 0.2969 | 0.1589 | 0.3848 | 0.4244 | 0.0298 | 0.3216 | 0.489 | 0.3452 | 0.4825 | 0.0 | 0.0 | 0.0349 | 0.4574 | 0.4691 | 0.6397 | 0.3228 | 0.5422 |
| 1.1438 | 8.0 | 1000 | 1.3371 | 0.2339 | 0.4571 | 0.2078 | 0.0124 | 0.1638 | 0.29 | 0.1722 | 0.3952 | 0.421 | 0.0386 | 0.3192 | 0.4806 | 0.371 | 0.5046 | 0.0 | 0.0 | 0.0285 | 0.4656 | 0.4588 | 0.6416 | 0.3113 | 0.493 |
| 1.1373 | 9.0 | 1125 | 1.2976 | 0.2392 | 0.4773 | 0.2183 | 0.0197 | 0.1831 | 0.297 | 0.1647 | 0.3854 | 0.4153 | 0.0544 | 0.3236 | 0.479 | 0.3741 | 0.5072 | 0.0 | 0.0 | 0.0544 | 0.382 | 0.4769 | 0.6804 | 0.2905 | 0.507 |
| 1.1265 | 10.0 | 1250 | 1.2837 | 0.2404 | 0.4778 | 0.217 | 0.0218 | 0.1868 | 0.2931 | 0.16 | 0.3908 | 0.4199 | 0.0526 | 0.3448 | 0.4705 | 0.3835 | 0.5206 | 0.0 | 0.0 | 0.0609 | 0.4623 | 0.4815 | 0.6495 | 0.2763 | 0.4672 |
| 1.0924 | 11.0 | 1375 | 1.1893 | 0.272 | 0.5167 | 0.252 | 0.0293 | 0.1892 | 0.3339 | 0.1792 | 0.412 | 0.4501 | 0.0667 | 0.368 | 0.5018 | 0.3881 | 0.5299 | 0.0 | 0.0 | 0.0721 | 0.5148 | 0.5236 | 0.6762 | 0.376 | 0.5297 |
| 1.0577 | 12.0 | 1500 | 1.2619 | 0.262 | 0.5288 | 0.226 | 0.0366 | 0.1793 | 0.3175 | 0.1741 | 0.3945 | 0.4351 | 0.0719 | 0.3543 | 0.4875 | 0.3686 | 0.4964 | 0.0 | 0.0 | 0.0684 | 0.4803 | 0.4905 | 0.6621 | 0.3825 | 0.5367 |
| 1.058 | 13.0 | 1625 | 1.2249 | 0.286 | 0.535 | 0.2727 | 0.029 | 0.227 | 0.3347 | 0.1812 | 0.4169 | 0.4501 | 0.0667 | 0.3595 | 0.5052 | 0.4021 | 0.5165 | 0.005 | 0.0167 | 0.0932 | 0.4967 | 0.5213 | 0.6916 | 0.4082 | 0.5289 |
| 1.0255 | 14.0 | 1750 | 1.2688 | 0.2831 | 0.5428 | 0.2802 | 0.0337 | 0.1855 | 0.3399 | 0.1797 | 0.4067 | 0.4405 | 0.0614 | 0.3503 | 0.4961 | 0.4099 | 0.5258 | 0.0 | 0.0 | 0.1036 | 0.4934 | 0.4915 | 0.6584 | 0.4104 | 0.525 |
| 1.0236 | 15.0 | 1875 | 1.2698 | 0.2663 | 0.5138 | 0.253 | 0.0281 | 0.2051 | 0.3141 | 0.1742 | 0.4018 | 0.4302 | 0.0579 | 0.3234 | 0.4836 | 0.3949 | 0.5119 | 0.0 | 0.0 | 0.112 | 0.4328 | 0.5151 | 0.7056 | 0.3097 | 0.5008 |
| 1.0098 | 16.0 | 2000 | 1.2096 | 0.2869 | 0.5506 | 0.2667 | 0.0269 | 0.2097 | 0.3437 | 0.1897 | 0.4196 | 0.4527 | 0.0667 | 0.3446 | 0.515 | 0.3993 | 0.5098 | 0.0021 | 0.0208 | 0.0932 | 0.4754 | 0.5153 | 0.6967 | 0.4246 | 0.5609 |
| 0.9636 | 17.0 | 2125 | 1.1379 | 0.2929 | 0.564 | 0.269 | 0.0285 | 0.2219 | 0.3811 | 0.1874 | 0.4375 | 0.4642 | 0.0754 | 0.3713 | 0.5393 | 0.4182 | 0.5139 | 0.0053 | 0.075 | 0.1532 | 0.5426 | 0.5408 | 0.7136 | 0.3469 | 0.4758 |
| 0.962 | 18.0 | 2250 | 1.2004 | 0.2941 | 0.5636 | 0.2888 | 0.0297 | 0.23 | 0.3505 | 0.1887 | 0.4349 | 0.4616 | 0.0509 | 0.3711 | 0.5168 | 0.3959 | 0.4938 | 0.0028 | 0.0458 | 0.1337 | 0.5049 | 0.5262 | 0.7033 | 0.412 | 0.5602 |
| 0.9555 | 19.0 | 2375 | 1.1228 | 0.3116 | 0.5828 | 0.2922 | 0.0225 | 0.2412 | 0.3766 | 0.1805 | 0.4539 | 0.4877 | 0.0614 | 0.3979 | 0.5619 | 0.4299 | 0.5309 | 0.0073 | 0.0958 | 0.1398 | 0.5393 | 0.5455 | 0.7178 | 0.4358 | 0.5547 |
| 0.9251 | 20.0 | 2500 | 1.1541 | 0.3116 | 0.5875 | 0.2999 | 0.028 | 0.2293 | 0.4057 | 0.2139 | 0.4652 | 0.4973 | 0.0561 | 0.4187 | 0.5584 | 0.4107 | 0.5 | 0.0592 | 0.1958 | 0.1483 | 0.5115 | 0.5294 | 0.7126 | 0.4106 | 0.5664 |
| 0.9298 | 21.0 | 2625 | 1.1406 | 0.3091 | 0.591 | 0.2913 | 0.035 | 0.2095 | 0.3635 | 0.2027 | 0.4631 | 0.494 | 0.0632 | 0.3792 | 0.5336 | 0.4337 | 0.533 | 0.0212 | 0.1375 | 0.1154 | 0.5016 | 0.5318 | 0.7019 | 0.4432 | 0.5961 |
| 0.9384 | 22.0 | 2750 | 1.1709 | 0.2984 | 0.5983 | 0.2653 | 0.0309 | 0.2227 | 0.356 | 0.1979 | 0.4421 | 0.4706 | 0.0526 | 0.3809 | 0.5139 | 0.3935 | 0.517 | 0.0194 | 0.0792 | 0.1556 | 0.5 | 0.51 | 0.6879 | 0.4135 | 0.5688 |
| 0.932 | 23.0 | 2875 | 1.1606 | 0.3024 | 0.5767 | 0.2927 | 0.0143 | 0.2188 | 0.3643 | 0.2012 | 0.4343 | 0.4543 | 0.0351 | 0.3625 | 0.5066 | 0.3937 | 0.4794 | 0.0222 | 0.0708 | 0.1487 | 0.4754 | 0.5293 | 0.6967 | 0.4181 | 0.5492 |
| 0.9298 | 24.0 | 3000 | 1.1233 | 0.3052 | 0.5806 | 0.2883 | 0.0302 | 0.2114 | 0.3692 | 0.2053 | 0.4602 | 0.4842 | 0.0632 | 0.3951 | 0.5177 | 0.3979 | 0.499 | 0.0304 | 0.1708 | 0.1618 | 0.4754 | 0.536 | 0.7107 | 0.3997 | 0.5648 |
| 0.9172 | 25.0 | 3125 | 1.1104 | 0.3169 | 0.6001 | 0.2979 | 0.0234 | 0.2242 | 0.3795 | 0.2 | 0.4626 | 0.4864 | 0.0491 | 0.4061 | 0.5225 | 0.4179 | 0.5139 | 0.0263 | 0.1042 | 0.1934 | 0.5164 | 0.5305 | 0.7075 | 0.4164 | 0.5898 |
| 0.8898 | 26.0 | 3250 | 1.1196 | 0.3241 | 0.6218 | 0.3101 | 0.0504 | 0.2405 | 0.4022 | 0.1959 | 0.4528 | 0.4823 | 0.0807 | 0.4021 | 0.5336 | 0.4387 | 0.5335 | 0.0172 | 0.0917 | 0.2206 | 0.5164 | 0.5061 | 0.6799 | 0.4379 | 0.5898 |
| 0.8917 | 27.0 | 3375 | 1.0439 | 0.3374 | 0.6444 | 0.3261 | 0.0355 | 0.2518 | 0.4023 | 0.224 | 0.4934 | 0.52 | 0.0772 | 0.4439 | 0.5436 | 0.45 | 0.5351 | 0.0503 | 0.1875 | 0.2058 | 0.5475 | 0.5475 | 0.7285 | 0.4334 | 0.6016 |
| 0.8787 | 28.0 | 3500 | 1.1134 | 0.3303 | 0.6379 | 0.3143 | 0.0197 | 0.2547 | 0.378 | 0.2082 | 0.4709 | 0.5017 | 0.0667 | 0.418 | 0.539 | 0.4113 | 0.5036 | 0.0339 | 0.1292 | 0.2369 | 0.5492 | 0.5332 | 0.7266 | 0.4359 | 0.6 |
| 0.883 | 29.0 | 3625 | 1.1225 | 0.3156 | 0.6336 | 0.2867 | 0.025 | 0.2447 | 0.3632 | 0.2014 | 0.4621 | 0.4898 | 0.0746 | 0.3937 | 0.5254 | 0.3868 | 0.4835 | 0.0196 | 0.125 | 0.2024 | 0.5328 | 0.5395 | 0.7126 | 0.4297 | 0.5953 |
| 0.8696 | 30.0 | 3750 | 1.0521 | 0.3552 | 0.68 | 0.3438 | 0.0227 | 0.2741 | 0.4085 | 0.2235 | 0.4986 | 0.5299 | 0.0474 | 0.4498 | 0.5693 | 0.4338 | 0.5191 | 0.1184 | 0.2792 | 0.2113 | 0.5328 | 0.558 | 0.714 | 0.4547 | 0.6047 |
| 0.8639 | 31.0 | 3875 | 1.0890 | 0.3285 | 0.6298 | 0.3099 | 0.0342 | 0.2473 | 0.4063 | 0.2153 | 0.4859 | 0.5049 | 0.0798 | 0.4127 | 0.544 | 0.435 | 0.5268 | 0.0789 | 0.2417 | 0.2448 | 0.5344 | 0.5462 | 0.7075 | 0.3375 | 0.5141 |
| 0.8479 | 32.0 | 4000 | 1.0418 | 0.3613 | 0.6655 | 0.3486 | 0.0553 | 0.2694 | 0.4411 | 0.2169 | 0.518 | 0.5364 | 0.1053 | 0.4537 | 0.5705 | 0.4646 | 0.5448 | 0.1411 | 0.3458 | 0.2282 | 0.5066 | 0.552 | 0.7033 | 0.4205 | 0.5813 |
| 0.8375 | 33.0 | 4125 | 1.0895 | 0.342 | 0.6686 | 0.3098 | 0.0374 | 0.248 | 0.4414 | 0.2262 | 0.4985 | 0.5157 | 0.0614 | 0.4194 | 0.5884 | 0.438 | 0.5242 | 0.1269 | 0.325 | 0.2639 | 0.5279 | 0.5288 | 0.6967 | 0.3525 | 0.5047 |
| 0.8285 | 34.0 | 4250 | 1.0510 | 0.3576 | 0.6709 | 0.3589 | 0.0289 | 0.2624 | 0.4457 | 0.218 | 0.5088 | 0.5358 | 0.0737 | 0.4211 | 0.6168 | 0.4464 | 0.532 | 0.1416 | 0.3375 | 0.2019 | 0.4754 | 0.5553 | 0.7093 | 0.4426 | 0.625 |
| 0.8398 | 35.0 | 4375 | 1.0646 | 0.3448 | 0.6598 | 0.3461 | 0.033 | 0.2641 | 0.4097 | 0.2262 | 0.5089 | 0.5354 | 0.0763 | 0.4438 | 0.606 | 0.431 | 0.5196 | 0.1202 | 0.325 | 0.1912 | 0.4836 | 0.5487 | 0.7042 | 0.4327 | 0.6445 |
| 0.8327 | 36.0 | 4500 | 1.0480 | 0.3598 | 0.6928 | 0.334 | 0.0306 | 0.2819 | 0.4678 | 0.2234 | 0.5114 | 0.5411 | 0.0667 | 0.451 | 0.6129 | 0.4196 | 0.5113 | 0.1628 | 0.3833 | 0.2531 | 0.4984 | 0.5459 | 0.6986 | 0.4172 | 0.6141 |
| 0.8194 | 37.0 | 4625 | 1.0323 | 0.356 | 0.6866 | 0.334 | 0.0395 | 0.2632 | 0.479 | 0.2202 | 0.5051 | 0.5296 | 0.0746 | 0.4121 | 0.6385 | 0.418 | 0.5093 | 0.1338 | 0.3375 | 0.2652 | 0.5 | 0.5539 | 0.7238 | 0.409 | 0.5773 |
| 0.82 | 38.0 | 4750 | 1.0444 | 0.3564 | 0.6953 | 0.3388 | 0.0411 | 0.2767 | 0.4383 | 0.2318 | 0.5137 | 0.5363 | 0.0596 | 0.4355 | 0.5846 | 0.4249 | 0.5165 | 0.1367 | 0.3583 | 0.2447 | 0.5148 | 0.5426 | 0.6972 | 0.433 | 0.5945 |
| 0.8197 | 39.0 | 4875 | 1.0617 | 0.359 | 0.6728 | 0.337 | 0.0434 | 0.2664 | 0.4577 | 0.2289 | 0.5157 | 0.5415 | 0.1053 | 0.4469 | 0.6131 | 0.4459 | 0.5407 | 0.1162 | 0.35 | 0.2497 | 0.5098 | 0.554 | 0.7201 | 0.4293 | 0.5867 |
| 0.8064 | 40.0 | 5000 | 1.0729 | 0.3635 | 0.7076 | 0.3642 | 0.048 | 0.268 | 0.4452 | 0.2271 | 0.5046 | 0.5334 | 0.086 | 0.4447 | 0.6253 | 0.4333 | 0.517 | 0.1675 | 0.3833 | 0.2596 | 0.5148 | 0.551 | 0.6958 | 0.4061 | 0.5562 |
| 0.796 | 41.0 | 5125 | 1.1061 | 0.359 | 0.7112 | 0.3253 | 0.0359 | 0.2875 | 0.43 | 0.2193 | 0.5111 | 0.5356 | 0.0675 | 0.4415 | 0.5808 | 0.3865 | 0.4897 | 0.136 | 0.3375 | 0.2818 | 0.5197 | 0.5513 | 0.7028 | 0.4391 | 0.6281 |
| 0.8013 | 42.0 | 5250 | 1.0606 | 0.3659 | 0.7225 | 0.3409 | 0.0227 | 0.275 | 0.4292 | 0.218 | 0.5087 | 0.5343 | 0.0579 | 0.446 | 0.5935 | 0.4211 | 0.5093 | 0.1117 | 0.2708 | 0.2921 | 0.5508 | 0.5599 | 0.7037 | 0.4448 | 0.6367 |
| 0.7947 | 43.0 | 5375 | 1.0473 | 0.3659 | 0.699 | 0.3413 | 0.0494 | 0.2698 | 0.4622 | 0.2311 | 0.5197 | 0.5491 | 0.1211 | 0.4527 | 0.6269 | 0.4211 | 0.5134 | 0.167 | 0.425 | 0.2655 | 0.5311 | 0.559 | 0.707 | 0.417 | 0.5688 |
| 0.792 | 44.0 | 5500 | 1.0752 | 0.3654 | 0.7163 | 0.3508 | 0.0469 | 0.2804 | 0.4471 | 0.2243 | 0.5066 | 0.531 | 0.0877 | 0.441 | 0.596 | 0.4316 | 0.5402 | 0.1157 | 0.275 | 0.2922 | 0.518 | 0.5537 | 0.6991 | 0.4337 | 0.6227 |
| 0.7713 | 45.0 | 5625 | 1.0290 | 0.3786 | 0.7036 | 0.3584 | 0.0495 | 0.2775 | 0.459 | 0.2225 | 0.5189 | 0.5448 | 0.0737 | 0.4521 | 0.6117 | 0.4421 | 0.5227 | 0.1884 | 0.3542 | 0.2585 | 0.5197 | 0.5701 | 0.7407 | 0.4341 | 0.5867 |
| 0.7569 | 46.0 | 5750 | 1.0664 | 0.3702 | 0.7162 | 0.3385 | 0.0241 | 0.3008 | 0.446 | 0.2249 | 0.5208 | 0.5498 | 0.0509 | 0.4528 | 0.6383 | 0.4071 | 0.4979 | 0.1928 | 0.375 | 0.2405 | 0.5197 | 0.56 | 0.7182 | 0.4506 | 0.6383 |
| 0.7632 | 47.0 | 5875 | 1.0491 | 0.3669 | 0.7101 | 0.3577 | 0.047 | 0.2875 | 0.4469 | 0.2218 | 0.5138 | 0.543 | 0.136 | 0.462 | 0.621 | 0.4487 | 0.5459 | 0.1173 | 0.3125 | 0.2859 | 0.5361 | 0.5676 | 0.7285 | 0.4149 | 0.5922 |
| 0.7693 | 48.0 | 6000 | 1.0445 | 0.3664 | 0.6865 | 0.3622 | 0.0635 | 0.2783 | 0.4332 | 0.2275 | 0.5122 | 0.5407 | 0.0965 | 0.44 | 0.6027 | 0.4581 | 0.5381 | 0.1285 | 0.3125 | 0.2623 | 0.5279 | 0.5748 | 0.7271 | 0.4085 | 0.5977 |
| 0.7516 | 49.0 | 6125 | 1.0276 | 0.374 | 0.7253 | 0.3508 | 0.0452 | 0.2669 | 0.4398 | 0.2265 | 0.5035 | 0.5359 | 0.0684 | 0.4354 | 0.6124 | 0.4327 | 0.5216 | 0.131 | 0.3208 | 0.2946 | 0.4934 | 0.5596 | 0.7313 | 0.452 | 0.6125 |
| 0.7538 | 50.0 | 6250 | 1.0193 | 0.3692 | 0.7065 | 0.3365 | 0.0591 | 0.2716 | 0.4337 | 0.2229 | 0.5147 | 0.5464 | 0.0965 | 0.4402 | 0.6081 | 0.4553 | 0.5448 | 0.1087 | 0.3333 | 0.2603 | 0.4869 | 0.5641 | 0.7192 | 0.4576 | 0.6477 |
| 0.7504 | 51.0 | 6375 | 1.0346 | 0.3685 | 0.7171 | 0.3413 | 0.0905 | 0.2821 | 0.4316 | 0.2249 | 0.521 | 0.5556 | 0.1386 | 0.4632 | 0.6369 | 0.4318 | 0.5124 | 0.1205 | 0.3583 | 0.2767 | 0.5361 | 0.5592 | 0.7234 | 0.4542 | 0.6477 |
| 0.7429 | 52.0 | 6500 | 1.0513 | 0.3646 | 0.6926 | 0.3456 | 0.0475 | 0.2755 | 0.4719 | 0.2277 | 0.518 | 0.5514 | 0.0807 | 0.4627 | 0.6297 | 0.4381 | 0.5237 | 0.1272 | 0.3875 | 0.2817 | 0.5148 | 0.5639 | 0.7271 | 0.4123 | 0.6039 |
| 0.7353 | 53.0 | 6625 | 1.0335 | 0.3694 | 0.687 | 0.3477 | 0.0545 | 0.2744 | 0.4644 | 0.2298 | 0.5102 | 0.543 | 0.0912 | 0.4469 | 0.6114 | 0.4364 | 0.5232 | 0.1481 | 0.4 | 0.2684 | 0.4557 | 0.572 | 0.7407 | 0.4221 | 0.5953 |
| 0.7437 | 54.0 | 6750 | 1.0574 | 0.3717 | 0.7126 | 0.3367 | 0.0362 | 0.2924 | 0.4434 | 0.2248 | 0.5097 | 0.5369 | 0.0842 | 0.438 | 0.6111 | 0.4318 | 0.5201 | 0.1387 | 0.3375 | 0.2964 | 0.4918 | 0.5696 | 0.7243 | 0.4218 | 0.6109 |
| 0.7356 | 55.0 | 6875 | 1.0435 | 0.3815 | 0.7309 | 0.3448 | 0.0371 | 0.3081 | 0.4492 | 0.22 | 0.5156 | 0.5521 | 0.093 | 0.4667 | 0.6244 | 0.4181 | 0.5046 | 0.1659 | 0.3792 | 0.33 | 0.5311 | 0.5719 | 0.7383 | 0.4218 | 0.607 |
| 0.7278 | 56.0 | 7000 | 1.0575 | 0.3789 | 0.7154 | 0.365 | 0.0471 | 0.3017 | 0.456 | 0.223 | 0.5054 | 0.5351 | 0.0684 | 0.4455 | 0.6165 | 0.4294 | 0.517 | 0.1677 | 0.3208 | 0.2983 | 0.5148 | 0.5725 | 0.7215 | 0.4264 | 0.6016 |
| 0.7322 | 57.0 | 7125 | 1.0405 | 0.3746 | 0.7104 | 0.3383 | 0.0543 | 0.2889 | 0.4816 | 0.2296 | 0.5216 | 0.5524 | 0.1088 | 0.4479 | 0.6339 | 0.4292 | 0.5206 | 0.15 | 0.4 | 0.2867 | 0.4852 | 0.5619 | 0.7294 | 0.4454 | 0.6266 |
| 0.719 | 58.0 | 7250 | 1.0121 | 0.3835 | 0.7468 | 0.3546 | 0.066 | 0.3042 | 0.4607 | 0.228 | 0.524 | 0.558 | 0.114 | 0.4667 | 0.6315 | 0.451 | 0.5428 | 0.179 | 0.4125 | 0.2806 | 0.4738 | 0.5579 | 0.7243 | 0.4487 | 0.6367 |
| 0.7097 | 59.0 | 7375 | 1.0164 | 0.3814 | 0.7456 | 0.3344 | 0.0614 | 0.3027 | 0.437 | 0.2252 | 0.5141 | 0.5352 | 0.0982 | 0.4579 | 0.5734 | 0.4339 | 0.5253 | 0.163 | 0.3208 | 0.2944 | 0.4934 | 0.5728 | 0.7145 | 0.4429 | 0.6219 |
| 0.6941 | 60.0 | 7500 | 1.0747 | 0.3672 | 0.7035 | 0.3351 | 0.0463 | 0.2865 | 0.4363 | 0.2281 | 0.5008 | 0.5285 | 0.0842 | 0.4362 | 0.6127 | 0.4181 | 0.5072 | 0.1872 | 0.3792 | 0.3047 | 0.5328 | 0.5736 | 0.7327 | 0.3523 | 0.4906 |
| 0.7108 | 61.0 | 7625 | 1.0140 | 0.3956 | 0.7255 | 0.3997 | 0.0649 | 0.3137 | 0.4592 | 0.2351 | 0.5327 | 0.5548 | 0.164 | 0.4674 | 0.6131 | 0.4544 | 0.5412 | 0.1958 | 0.375 | 0.3081 | 0.5033 | 0.5788 | 0.7318 | 0.4408 | 0.6227 |
| 0.6952 | 62.0 | 7750 | 1.0354 | 0.3877 | 0.7308 | 0.3723 | 0.055 | 0.3067 | 0.441 | 0.2349 | 0.5143 | 0.5376 | 0.1 | 0.4521 | 0.5973 | 0.4315 | 0.5191 | 0.1995 | 0.3333 | 0.3031 | 0.5066 | 0.5783 | 0.7327 | 0.4262 | 0.5961 |
| 0.6899 | 63.0 | 7875 | 1.0220 | 0.3822 | 0.7322 | 0.3614 | 0.0478 | 0.2985 | 0.4276 | 0.2257 | 0.5098 | 0.5375 | 0.0947 | 0.4565 | 0.5916 | 0.4354 | 0.5258 | 0.18 | 0.3292 | 0.2982 | 0.4984 | 0.564 | 0.7262 | 0.4334 | 0.6078 |
| 0.6958 | 64.0 | 8000 | 0.9985 | 0.3976 | 0.7625 | 0.363 | 0.0559 | 0.3047 | 0.459 | 0.2245 | 0.5216 | 0.5472 | 0.1123 | 0.4562 | 0.6028 | 0.4425 | 0.5366 | 0.2016 | 0.3333 | 0.3182 | 0.5 | 0.568 | 0.7327 | 0.4575 | 0.6336 |
| 0.6946 | 65.0 | 8125 | 1.0314 | 0.3914 | 0.7321 | 0.3656 | 0.0616 | 0.3101 | 0.438 | 0.2253 | 0.5217 | 0.5472 | 0.1 | 0.4643 | 0.6156 | 0.4418 | 0.5325 | 0.1895 | 0.3333 | 0.3056 | 0.5148 | 0.5742 | 0.7327 | 0.4461 | 0.6227 |
| 0.6716 | 66.0 | 8250 | 1.0477 | 0.3792 | 0.7178 | 0.3634 | 0.0537 | 0.2806 | 0.4455 | 0.2317 | 0.5114 | 0.5364 | 0.1035 | 0.4339 | 0.6199 | 0.4299 | 0.5237 | 0.199 | 0.3542 | 0.2903 | 0.5082 | 0.565 | 0.7215 | 0.4119 | 0.5742 |
| 0.6771 | 67.0 | 8375 | 1.0453 | 0.3932 | 0.747 | 0.3852 | 0.0468 | 0.2993 | 0.4701 | 0.2243 | 0.5267 | 0.5499 | 0.0912 | 0.4802 | 0.5973 | 0.4397 | 0.5335 | 0.1758 | 0.375 | 0.3342 | 0.5131 | 0.5649 | 0.7178 | 0.4514 | 0.6102 |
| 0.6752 | 68.0 | 8500 | 1.0427 | 0.3936 | 0.7533 | 0.3712 | 0.0615 | 0.2892 | 0.4722 | 0.2287 | 0.5139 | 0.537 | 0.0851 | 0.4403 | 0.6085 | 0.4357 | 0.5211 | 0.184 | 0.3125 | 0.3235 | 0.518 | 0.5744 | 0.7308 | 0.4503 | 0.6023 |
| 0.6732 | 69.0 | 8625 | 1.0298 | 0.3996 | 0.7544 | 0.3858 | 0.0739 | 0.3003 | 0.4836 | 0.2361 | 0.5265 | 0.5549 | 0.1614 | 0.4536 | 0.6302 | 0.4538 | 0.5423 | 0.2011 | 0.3958 | 0.3333 | 0.5082 | 0.5811 | 0.7374 | 0.4287 | 0.5906 |
| 0.6685 | 70.0 | 8750 | 1.0314 | 0.3921 | 0.749 | 0.358 | 0.0533 | 0.3091 | 0.4485 | 0.2309 | 0.5113 | 0.5384 | 0.1061 | 0.4475 | 0.596 | 0.4487 | 0.5345 | 0.1969 | 0.3417 | 0.3054 | 0.5 | 0.5722 | 0.7136 | 0.4371 | 0.6023 |
| 0.663 | 71.0 | 8875 | 1.0564 | 0.3851 | 0.7407 | 0.3575 | 0.0467 | 0.3091 | 0.4536 | 0.2195 | 0.5054 | 0.5291 | 0.093 | 0.4607 | 0.5722 | 0.4294 | 0.517 | 0.181 | 0.3042 | 0.3183 | 0.5197 | 0.5651 | 0.7033 | 0.4317 | 0.6016 |
| 0.6497 | 72.0 | 9000 | 1.0388 | 0.3996 | 0.7587 | 0.365 | 0.0601 | 0.3128 | 0.4669 | 0.2296 | 0.5162 | 0.5447 | 0.1018 | 0.459 | 0.6203 | 0.4496 | 0.5304 | 0.2049 | 0.3625 | 0.3233 | 0.4885 | 0.5801 | 0.728 | 0.4402 | 0.6141 |
| 0.6479 | 73.0 | 9125 | 1.0326 | 0.3948 | 0.7596 | 0.3619 | 0.0539 | 0.3109 | 0.4588 | 0.2306 | 0.5127 | 0.5396 | 0.093 | 0.4613 | 0.5903 | 0.4449 | 0.5294 | 0.1929 | 0.3333 | 0.3218 | 0.4984 | 0.5808 | 0.7355 | 0.4337 | 0.6016 |
| 0.6681 | 74.0 | 9250 | 1.0166 | 0.3931 | 0.747 | 0.3762 | 0.0528 | 0.3058 | 0.4622 | 0.2261 | 0.5163 | 0.5376 | 0.107 | 0.4503 | 0.5846 | 0.4533 | 0.5412 | 0.1658 | 0.3292 | 0.342 | 0.4934 | 0.5629 | 0.7271 | 0.4417 | 0.5969 |
| 0.6632 | 75.0 | 9375 | 1.0265 | 0.3993 | 0.7544 | 0.3837 | 0.0528 | 0.3158 | 0.46 | 0.2328 | 0.5144 | 0.5432 | 0.107 | 0.4664 | 0.6026 | 0.4507 | 0.5443 | 0.2036 | 0.3125 | 0.3309 | 0.5 | 0.5722 | 0.7341 | 0.4391 | 0.625 |
| 0.6359 | 76.0 | 9500 | 1.0260 | 0.3937 | 0.7561 | 0.3659 | 0.0653 | 0.3062 | 0.4582 | 0.2289 | 0.5119 | 0.5446 | 0.1228 | 0.466 | 0.6294 | 0.4545 | 0.5454 | 0.1809 | 0.325 | 0.3197 | 0.5016 | 0.5885 | 0.7439 | 0.4248 | 0.607 |
| 0.6419 | 77.0 | 9625 | 1.0309 | 0.3921 | 0.7408 | 0.366 | 0.0555 | 0.2971 | 0.4838 | 0.2322 | 0.512 | 0.5414 | 0.086 | 0.4503 | 0.6169 | 0.4278 | 0.5134 | 0.183 | 0.35 | 0.3302 | 0.5049 | 0.586 | 0.7308 | 0.4337 | 0.6078 |
| 0.6379 | 78.0 | 9750 | 1.0483 | 0.3911 | 0.7289 | 0.3711 | 0.0684 | 0.2959 | 0.4524 | 0.23 | 0.5112 | 0.5358 | 0.1228 | 0.452 | 0.5746 | 0.4508 | 0.5433 | 0.1882 | 0.2958 | 0.308 | 0.4984 | 0.5904 | 0.7393 | 0.4182 | 0.6023 |
| 0.6355 | 79.0 | 9875 | 1.0382 | 0.3883 | 0.7481 | 0.3549 | 0.0627 | 0.2954 | 0.4571 | 0.2302 | 0.5076 | 0.5334 | 0.1018 | 0.4463 | 0.5883 | 0.4503 | 0.5361 | 0.183 | 0.325 | 0.3161 | 0.4902 | 0.5763 | 0.7355 | 0.4157 | 0.5805 |
| 0.6348 | 80.0 | 10000 | 1.0524 | 0.3949 | 0.7432 | 0.383 | 0.0646 | 0.2971 | 0.4503 | 0.2304 | 0.5097 | 0.535 | 0.1263 | 0.4598 | 0.5552 | 0.4613 | 0.5515 | 0.1776 | 0.275 | 0.329 | 0.5098 | 0.5774 | 0.7294 | 0.4293 | 0.6094 |
| 0.6286 | 81.0 | 10125 | 1.0426 | 0.3957 | 0.7445 | 0.3925 | 0.0583 | 0.306 | 0.4901 | 0.2298 | 0.5086 | 0.5349 | 0.1158 | 0.4637 | 0.5952 | 0.454 | 0.5479 | 0.1911 | 0.2958 | 0.3362 | 0.4951 | 0.566 | 0.7262 | 0.4312 | 0.6094 |
| 0.6236 | 82.0 | 10250 | 1.0544 | 0.3878 | 0.7336 | 0.3682 | 0.0487 | 0.296 | 0.4629 | 0.2239 | 0.5005 | 0.527 | 0.1193 | 0.4405 | 0.5747 | 0.4507 | 0.5392 | 0.1724 | 0.2875 | 0.3215 | 0.4852 | 0.5682 | 0.7215 | 0.426 | 0.6016 |
| 0.63 | 83.0 | 10375 | 1.0655 | 0.3886 | 0.7454 | 0.3761 | 0.065 | 0.2948 | 0.4519 | 0.2205 | 0.5194 | 0.5421 | 0.1544 | 0.4551 | 0.606 | 0.4515 | 0.5381 | 0.1845 | 0.3333 | 0.3119 | 0.4918 | 0.5753 | 0.7308 | 0.4199 | 0.6164 |
| 0.6245 | 84.0 | 10500 | 1.0492 | 0.3898 | 0.7552 | 0.3627 | 0.0612 | 0.2927 | 0.4624 | 0.2323 | 0.5138 | 0.5363 | 0.1211 | 0.445 | 0.5873 | 0.4403 | 0.5247 | 0.2005 | 0.3417 | 0.3085 | 0.4902 | 0.5759 | 0.729 | 0.4237 | 0.5961 |
| 0.6174 | 85.0 | 10625 | 1.0339 | 0.4002 | 0.7577 | 0.3794 | 0.0641 | 0.3085 | 0.4772 | 0.2314 | 0.5197 | 0.5449 | 0.1088 | 0.4639 | 0.6087 | 0.4426 | 0.5376 | 0.2042 | 0.3458 | 0.33 | 0.5082 | 0.5884 | 0.7266 | 0.4356 | 0.6062 |
| 0.6133 | 86.0 | 10750 | 1.0456 | 0.3959 | 0.7531 | 0.3756 | 0.0544 | 0.3039 | 0.4799 | 0.2319 | 0.515 | 0.5365 | 0.1088 | 0.461 | 0.5995 | 0.4534 | 0.5423 | 0.18 | 0.2958 | 0.3258 | 0.4967 | 0.5835 | 0.7299 | 0.4369 | 0.618 |
| 0.6081 | 87.0 | 10875 | 1.0713 | 0.3883 | 0.7387 | 0.3777 | 0.0603 | 0.3018 | 0.4519 | 0.2255 | 0.4967 | 0.523 | 0.1123 | 0.4519 | 0.5789 | 0.4519 | 0.5371 | 0.1789 | 0.2708 | 0.3117 | 0.4836 | 0.578 | 0.7224 | 0.421 | 0.6008 |
| 0.6096 | 88.0 | 11000 | 1.0603 | 0.3939 | 0.7597 | 0.3706 | 0.0631 | 0.2977 | 0.4767 | 0.2241 | 0.5097 | 0.5317 | 0.1088 | 0.4551 | 0.5866 | 0.4463 | 0.5361 | 0.1858 | 0.2792 | 0.3182 | 0.5049 | 0.5782 | 0.7257 | 0.4412 | 0.6125 |
| 0.6164 | 89.0 | 11125 | 1.0610 | 0.3948 | 0.7531 | 0.3699 | 0.0534 | 0.305 | 0.4605 | 0.227 | 0.5168 | 0.5353 | 0.1088 | 0.4595 | 0.5858 | 0.4488 | 0.5351 | 0.1898 | 0.2958 | 0.3237 | 0.5131 | 0.5813 | 0.7299 | 0.4305 | 0.6023 |
| 0.6034 | 90.0 | 11250 | 1.0559 | 0.3984 | 0.775 | 0.3731 | 0.0629 | 0.3104 | 0.4689 | 0.2256 | 0.5148 | 0.5355 | 0.1035 | 0.4579 | 0.593 | 0.4423 | 0.5314 | 0.2074 | 0.3 | 0.3173 | 0.5049 | 0.5825 | 0.7262 | 0.4426 | 0.6148 |
| 0.602 | 91.0 | 11375 | 1.0424 | 0.3992 | 0.757 | 0.3948 | 0.0629 | 0.3061 | 0.4826 | 0.2291 | 0.5162 | 0.5392 | 0.114 | 0.4584 | 0.6199 | 0.4506 | 0.5366 | 0.2115 | 0.3208 | 0.3256 | 0.5 | 0.5893 | 0.7369 | 0.4191 | 0.6016 |
| 0.6038 | 92.0 | 11500 | 1.0444 | 0.396 | 0.767 | 0.3642 | 0.0553 | 0.3041 | 0.4848 | 0.2288 | 0.5147 | 0.5396 | 0.093 | 0.4538 | 0.6288 | 0.439 | 0.5263 | 0.1974 | 0.3375 | 0.316 | 0.4934 | 0.5878 | 0.7308 | 0.4398 | 0.6102 |
| 0.5982 | 93.0 | 11625 | 1.0463 | 0.3973 | 0.7604 | 0.3895 | 0.0561 | 0.3099 | 0.4892 | 0.2252 | 0.5157 | 0.5451 | 0.1035 | 0.4678 | 0.6353 | 0.4483 | 0.534 | 0.1939 | 0.3375 | 0.3251 | 0.5115 | 0.5873 | 0.7308 | 0.4321 | 0.6117 |
| 0.5879 | 94.0 | 11750 | 1.0578 | 0.393 | 0.7637 | 0.373 | 0.0607 | 0.3019 | 0.4779 | 0.2259 | 0.5173 | 0.5394 | 0.1158 | 0.4641 | 0.6119 | 0.4539 | 0.5443 | 0.1773 | 0.3208 | 0.312 | 0.4902 | 0.5835 | 0.7299 | 0.438 | 0.6117 |
| 0.6044 | 95.0 | 11875 | 1.0631 | 0.3917 | 0.7619 | 0.3591 | 0.0591 | 0.3023 | 0.477 | 0.222 | 0.51 | 0.5345 | 0.1035 | 0.4526 | 0.6163 | 0.454 | 0.5392 | 0.178 | 0.3167 | 0.3152 | 0.4951 | 0.5826 | 0.7285 | 0.4286 | 0.593 |
| 0.5918 | 96.0 | 12000 | 1.0576 | 0.3961 | 0.7651 | 0.3802 | 0.0559 | 0.3026 | 0.4708 | 0.2261 | 0.514 | 0.538 | 0.1035 | 0.4589 | 0.5961 | 0.4513 | 0.5376 | 0.1855 | 0.3042 | 0.3217 | 0.5016 | 0.5842 | 0.7308 | 0.4377 | 0.6156 |
| 0.5973 | 97.0 | 12125 | 1.0587 | 0.3938 | 0.758 | 0.3776 | 0.0582 | 0.2962 | 0.4658 | 0.2226 | 0.5132 | 0.535 | 0.107 | 0.4528 | 0.5931 | 0.4496 | 0.5361 | 0.1832 | 0.3083 | 0.3225 | 0.5 | 0.5842 | 0.7313 | 0.4293 | 0.5992 |
| 0.5919 | 98.0 | 12250 | 1.0515 | 0.3936 | 0.7612 | 0.3704 | 0.062 | 0.3038 | 0.4771 | 0.2188 | 0.5096 | 0.54 | 0.1123 | 0.4635 | 0.6172 | 0.4557 | 0.5418 | 0.1783 | 0.3292 | 0.3147 | 0.4885 | 0.584 | 0.728 | 0.4353 | 0.6125 |
| 0.5931 | 99.0 | 12375 | 1.0502 | 0.3947 | 0.7609 | 0.3773 | 0.0599 | 0.3094 | 0.4612 | 0.2229 | 0.5116 | 0.5366 | 0.1123 | 0.4615 | 0.5916 | 0.4537 | 0.5407 | 0.1847 | 0.3125 | 0.3124 | 0.4984 | 0.5849 | 0.7313 | 0.4378 | 0.6 |
| 0.5924 | 100.0 | 12500 | 1.0499 | 0.3948 | 0.7609 | 0.3767 | 0.0619 | 0.3097 | 0.4634 | 0.2239 | 0.5134 | 0.5368 | 0.1158 | 0.4656 | 0.5905 | 0.4535 | 0.5418 | 0.1846 | 0.3125 | 0.3122 | 0.4984 | 0.5839 | 0.7285 | 0.4398 | 0.6031 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu124
- Datasets 2.21.0
- Tokenizers 0.19.1
|
[
"construction-safety",
"helmet",
"no-helmet",
"no-vest",
"person",
"vest"
] |
MedicalVision/test_remove
|
## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.005
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.005
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.005
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.203
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.068
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.005
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.029
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.029
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.029
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.200
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.067
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.029
```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.009
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.020
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.008
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.009
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.043
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.076
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.087
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.089
```
## Config
- dataset: VinXray
- original model: hustvl/yolos-tiny
- lr: 0.0001
- dropout_rate: 0.1
- weight_decay: 0.0001
- max_epochs: 1
- train samples: 67234
## Logging
### Training process
```
{'validation_loss': tensor(8.5927, device='cuda:0'), 'validation_loss_ce': tensor(3.4775, device='cuda:0'), 'validation_loss_bbox': tensor(0.5756, device='cuda:0'), 'validation_loss_giou': tensor(1.1184, device='cuda:0'), 'validation_cardinality_error': tensor(99.5938, device='cuda:0')}
{'training_loss': tensor(1.3630, device='cuda:0'), 'train_loss_ce': tensor(0.2593, device='cuda:0'), 'train_loss_bbox': tensor(0.0803, device='cuda:0'), 'train_loss_giou': tensor(0.3511, device='cuda:0'), 'train_cardinality_error': tensor(0.5294, device='cuda:0'), 'validation_loss': tensor(1.5262, device='cuda:0'), 'validation_loss_ce': tensor(0.2351, device='cuda:0'), 'validation_loss_bbox': tensor(0.0827, device='cuda:0'), 'validation_loss_giou': tensor(0.4389, device='cuda:0'), 'validation_cardinality_error': tensor(0.4794, device='cuda:0')}
```
## Examples
{'size': tensor([560, 512]), 'image_id': tensor([1]), 'class_labels': tensor([], dtype=torch.int64), 'boxes': tensor([], size=(0, 4)), 'area': tensor([]), 'iscrowd': tensor([], dtype=torch.int64), 'orig_size': tensor([2580, 2332])}

|
[
"aortic enlargement",
"atelectasis",
"calcification",
"cardiomegaly",
"consolidation",
"ild",
"infiltration",
"lung opacity",
"nodule/mass",
"other lesion",
"pleural effusion",
"pleural thickening",
"pneumothorax",
"pulmonary fibrosis",
"no finding"
] |
samu2117/detr-finetuned-chess
|
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7",
"label_8",
"label_9",
"label_10",
"label_11",
"label_12",
"label_13"
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.