Datasets:
Sub-tasks:
semantic-similarity-classification
Languages:
English
Size:
10K<n<100K
Tags:
text segmentation
document segmentation
topic segmentation
topic shift detection
semantic chunking
chunking
License:
import json | |
import os | |
### NLTK ### | |
try: | |
import nltk | |
try: | |
nltk.data.find('tokenizers/punkt') | |
except LookupError: | |
nltk.download('punkt') | |
def nltk_sent_tokenize(text: str): | |
return nltk.sent_tokenize(text) | |
except ImportError: | |
pass | |
### Spacy ### | |
try: | |
import spacy | |
exclude = ["tok2vec", "tagger", "parser", "attribute_ruler", "lemmatizer", "ner"] | |
try: | |
spacy_nlp = spacy.load('en_core_web_sm', exclude=exclude) | |
except OSError: | |
spacy.cli.download('en_core_web_sm') | |
spacy_nlp = spacy.load('en_core_web_sm', exclude=exclude) | |
spacy_nlp.enable_pipe("senter") | |
# print(spacy_nlp.pipe_names) | |
def spacy_sent_tokenize(text: str): | |
return [sent.text for sent in spacy_nlp(text).sents] | |
except ImportError: | |
pass | |
### Segtok ### | |
try: | |
from segtok.segmenter import split_single #, split_multi | |
def segtok_sent_tokenize(text: str): | |
return split_single(text) | |
except ImportError: | |
pass | |
def sent_tokenize(text: str, method: str): | |
if method == 'nltk': | |
stok = nltk_sent_tokenize | |
elif method == 'spacy': | |
stok = spacy_sent_tokenize | |
elif method == 'segtok': | |
stok = segtok_sent_tokenize | |
else: | |
raise ValueError(f"Invalid sentence tokenizer method: {method}") | |
return [ssent for sent in stok(text) if (ssent := sent.strip())] | |
def parse_split(filepath: str, drop_titles: bool = False, sent_tokenize_method: str = 'nltk'): | |
with open(filepath, 'r') as f: | |
data = json.load(f) | |
# docs = [] | |
for i, row in enumerate(data): | |
id = row['id'] | |
title = row['title'] | |
# abstract = row.get('abstract') | |
text = row['text'] | |
# print(f'\n{i}: {title}') | |
# print(text[:1000]) | |
sections = row['annotations'] | |
doc = { | |
'id': id, | |
'title': title, | |
'ids': [], | |
'sentences': [], | |
'titles_mask': [], | |
'labels': [], | |
} | |
for sec_idx, sec in enumerate(sections): | |
sec_title = sec['sectionHeading'].strip() | |
# sec_label = sec['sectionLabel'] | |
sec_text = text[sec['begin']:sec['begin']+sec['length']] | |
sentences = sent_tokenize(sec_text, method=sent_tokenize_method) | |
# If section is empty, continue | |
if not sentences: | |
continue | |
# Add the title as a single sentence | |
if not drop_titles and sec_title: | |
# if not drop_titles and non_empty(sec_title): | |
doc['ids'].append(f'{sec_idx}') | |
doc['sentences'].append(sec_title) | |
doc['titles_mask'].append(1) | |
doc['labels'].append(0) | |
# Add the sentences | |
for sent_idx, sent in enumerate(sentences): | |
doc['ids'].append(f'{sec_idx}_{sent_idx}') | |
doc['sentences'].append(sent) | |
doc['titles_mask'].append(0) | |
doc['labels'].append(1 if sent_idx == len(sentences) - 1 else 0) | |
if drop_titles: | |
doc.pop('titles_mask') | |
yield doc | |