import json import os ### NLTK ### try: import nltk try: nltk.data.find('tokenizers/punkt') except LookupError: nltk.download('punkt') def nltk_sent_tokenize(text: str): return nltk.sent_tokenize(text) except ImportError: pass ### Spacy ### try: import spacy exclude = ["tok2vec", "tagger", "parser", "attribute_ruler", "lemmatizer", "ner"] try: spacy_nlp = spacy.load('en_core_web_sm', exclude=exclude) except OSError: spacy.cli.download('en_core_web_sm') spacy_nlp = spacy.load('en_core_web_sm', exclude=exclude) spacy_nlp.enable_pipe("senter") # print(spacy_nlp.pipe_names) def spacy_sent_tokenize(text: str): return [sent.text for sent in spacy_nlp(text).sents] except ImportError: pass ### Segtok ### try: from segtok.segmenter import split_single #, split_multi def segtok_sent_tokenize(text: str): return split_single(text) except ImportError: pass def sent_tokenize(text: str, method: str): if method == 'nltk': stok = nltk_sent_tokenize elif method == 'spacy': stok = spacy_sent_tokenize elif method == 'segtok': stok = segtok_sent_tokenize else: raise ValueError(f"Invalid sentence tokenizer method: {method}") return [ssent for sent in stok(text) if (ssent := sent.strip())] def parse_split(filepath: str, drop_titles: bool = False, sent_tokenize_method: str = 'nltk'): with open(filepath, 'r') as f: data = json.load(f) # docs = [] for i, row in enumerate(data): id = row['id'] title = row['title'] # abstract = row.get('abstract') text = row['text'] # print(f'\n{i}: {title}') # print(text[:1000]) sections = row['annotations'] doc = { 'id': id, 'title': title, 'ids': [], 'sentences': [], 'titles_mask': [], 'labels': [], } for sec_idx, sec in enumerate(sections): sec_title = sec['sectionHeading'].strip() # sec_label = sec['sectionLabel'] sec_text = text[sec['begin']:sec['begin']+sec['length']] sentences = sent_tokenize(sec_text, method=sent_tokenize_method) # If section is empty, continue if not sentences: continue # Add the title as a single sentence if not drop_titles and sec_title: # if not drop_titles and non_empty(sec_title): doc['ids'].append(f'{sec_idx}') doc['sentences'].append(sec_title) doc['titles_mask'].append(1) doc['labels'].append(0) # Add the sentences for sent_idx, sent in enumerate(sentences): doc['ids'].append(f'{sec_idx}_{sent_idx}') doc['sentences'].append(sent) doc['titles_mask'].append(0) doc['labels'].append(1 if sent_idx == len(sentences) - 1 else 0) if drop_titles: doc.pop('titles_mask') yield doc