Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
semantic-similarity-classification
Size:
10K - 100K
ArXiv:
License:
metadata
annotations_creators:
- derived
language:
- ces
- deu
- eng
- fra
- hin
- jpn
- kor
- msa
- nld
- por
- spa
- tur
- zho
license: cc-by-nc-sa-4.0
multilinguality: multilingual
source_datasets:
- BASF-AI/PubChemWikiMultilingualPC
task_categories:
- text-classification
task_ids:
- semantic-similarity-classification
dataset_info:
- config_name: cs
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 557375
num_examples: 611
download_size: 298284
dataset_size: 557375
- config_name: de
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 1167887
num_examples: 1554
download_size: 640156
dataset_size: 1167887
- config_name: es
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 1292466
num_examples: 1231
download_size: 699839
dataset_size: 1292466
- config_name: fr
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 1290394
num_examples: 1356
download_size: 700919
dataset_size: 1290394
- config_name: hi
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 288673
num_examples: 228
download_size: 119089
dataset_size: 288673
- config_name: ja
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 1213666
num_examples: 1434
download_size: 640094
dataset_size: 1213666
- config_name: ko
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 637234
num_examples: 554
download_size: 322799
dataset_size: 637234
- config_name: ms
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 231217
num_examples: 192
download_size: 118475
dataset_size: 231217
- config_name: nl
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 865703
num_examples: 905
download_size: 450105
dataset_size: 865703
- config_name: pt
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 976735
num_examples: 998
download_size: 511729
dataset_size: 976735
- config_name: tr
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 615939
num_examples: 518
download_size: 311740
dataset_size: 615939
- config_name: zh
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 1054930
num_examples: 1442
download_size: 622192
dataset_size: 1054930
configs:
- config_name: cs
data_files:
- split: test
path: cs/test-*
- config_name: de
data_files:
- split: test
path: de/test-*
- config_name: es
data_files:
- split: test
path: es/test-*
- config_name: fr
data_files:
- split: test
path: fr/test-*
- config_name: hi
data_files:
- split: test
path: hi/test-*
- config_name: ja
data_files:
- split: test
path: ja/test-*
- config_name: ko
data_files:
- split: test
path: ko/test-*
- config_name: ms
data_files:
- split: test
path: ms/test-*
- config_name: nl
data_files:
- split: test
path: nl/test-*
- config_name: pt
data_files:
- split: test
path: pt/test-*
- config_name: tr
data_files:
- split: test
path: tr/test-*
- config_name: zh
data_files:
- split: test
path: zh/test-*
tags:
- mteb
- text
ChemTEB evaluates the performance of text embedding models on chemical domain data.
Task category | t2t |
Domains | Chemistry |
Reference | https://arxiv.org/abs/2412.00532 |
How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
import mteb
task = mteb.get_task("PubChemWikiPairClassification")
evaluator = mteb.MTEB([task])
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
To learn more about how to run models on mteb
task check out the GitHub repository.
Citation
If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.
@article{kasmaee2024chemteb,
author = {Kasmaee, Ali Shiraee and Khodadad, Mohammad and Saloot, Mohammad Arshi and Sherck, Nick and Dokas, Stephen and Mahyar, Hamidreza and Samiee, Soheila},
journal = {arXiv preprint arXiv:2412.00532},
title = {ChemTEB: Chemical Text Embedding Benchmark, an Overview of Embedding Models Performance \\& Efficiency on a Specific Domain},
year = {2024},
}
@article{kim2023pubchem,
author = {Kim, Sunghwan and Chen, Jie and Cheng, Tiejun and Gindulyte, Asta and He, Jia and He, Siqian and Li, Qingliang and Shoemaker, Benjamin A and Thiessen, Paul A and Yu, Bo and others},
journal = {Nucleic acids research},
number = {D1},
pages = {D1373--D1380},
publisher = {Oxford University Press},
title = {PubChem 2023 update},
volume = {51},
year = {2023},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
Dataset Statistics
Dataset Statistics
The following code contains the descriptive statistics from the task. These can also be obtained using:
import mteb
task = mteb.get_task("PubChemWikiPairClassification")
desc_stats = task.metadata.descriptive_stats
{}
This dataset card was automatically generated using MTEB