Dataset Viewer
Auto-converted to Parquet
model_id
stringlengths
16
46
vram
float64
0
1.66k
scripts
listlengths
0
2
code_urls
listlengths
0
2
execution_urls
listlengths
0
2
rednote-hilab/dots.ocr
7.36
[ "# /// script\n# requires-python = \">=3.12\"\n# dependencies = [\n# \"transformers\",\n# \"torch\",\n# ]\n# ///\n\ntry:\n # integration status unknown.\n \n # Please clone model and use locally.\n \n # Also feel free to open a Pull request \n # for integration of the huggingface model hub\n # into the corresponding library =)\n with open('rednote-hilab_dots.ocr_0.txt', 'w') as f:\n f.write('Everything was good in rednote-hilab_dots.ocr_0.txt')\nexcept Exception as e:\n with open('rednote-hilab_dots.ocr_0.txt', 'w') as f:\n import traceback\n traceback.print_exc(file=f)\nfinally:\n from huggingface_hub import upload_file\n upload_file(\n path_or_fileobj='rednote-hilab_dots.ocr_0.txt',\n repo_id='model-metadata/custom_code_execution_files',\n path_in_repo='rednote-hilab_dots.ocr_0.txt',\n repo_type='dataset',\n )" ]
[ "https://huggingface.co/datasets/model-metadata/custom_code_py_files/raw/main/rednote-hilab_dots.ocr_0.py" ]
[ "https://huggingface.co/datasets/model-metadata/custom_code_execution_files/raw/main/rednote-hilab_dots.ocr_0.txt" ]
stepfun-ai/step3
777.21
[ "# /// script\n# requires-python = \">=3.12\"\n# dependencies = [\n# \"transformers\",\n# \"torch\",\n# ]\n# ///\n\ntry:\n # Use a pipeline as a high-level helper\n from transformers import pipeline\n \n pipe = pipeline(\"image-text-to-text\", model=\"stepfun-ai/step3\", trust_remote_code=True)\n messages = [\n {\n \"role\": \"user\",\n \"content\": [\n {\"type\": \"image\", \"url\": \"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/p-blog/candy.JPG\"},\n {\"type\": \"text\", \"text\": \"What animal is on the candy?\"}\n ]\n },\n ]\n pipe(text=messages)\n with open('stepfun-ai_step3_0.txt', 'w') as f:\n f.write('Everything was good in stepfun-ai_step3_0.txt')\nexcept Exception as e:\n with open('stepfun-ai_step3_0.txt', 'w') as f:\n import traceback\n traceback.print_exc(file=f)\nfinally:\n from huggingface_hub import upload_file\n upload_file(\n path_or_fileobj='stepfun-ai_step3_0.txt',\n repo_id='model-metadata/custom_code_execution_files',\n path_in_repo='stepfun-ai_step3_0.txt',\n repo_type='dataset',\n )", "# /// script\n# requires-python = \">=3.12\"\n# dependencies = [\n# \"transformers\",\n# \"torch\",\n# ]\n# ///\n\ntry:\n # Load model directly\n from transformers import AutoModelForSeq2SeqLM\n model = AutoModelForSeq2SeqLM.from_pretrained(\"stepfun-ai/step3\", trust_remote_code=True, torch_dtype=\"auto\"),\n with open('stepfun-ai_step3_1.txt', 'w') as f:\n f.write('Everything was good in stepfun-ai_step3_1.txt')\nexcept Exception as e:\n with open('stepfun-ai_step3_1.txt', 'w') as f:\n import traceback\n traceback.print_exc(file=f)\nfinally:\n from huggingface_hub import upload_file\n upload_file(\n path_or_fileobj='stepfun-ai_step3_1.txt',\n repo_id='model-metadata/custom_code_execution_files',\n path_in_repo='stepfun-ai_step3_1.txt',\n repo_type='dataset',\n )" ]
[ "https://huggingface.co/datasets/model-metadata/custom_code_py_files/raw/main/stepfun-ai_step3_0.py", "https://huggingface.co/datasets/model-metadata/custom_code_py_files/raw/main/stepfun-ai_step3_1.py" ]
[ "https://huggingface.co/datasets/model-metadata/custom_code_execution_files/raw/main/stepfun-ai_step3_0.txt", "https://huggingface.co/datasets/model-metadata/custom_code_execution_files/raw/main/stepfun-ai_step3_1.txt" ]
moonshotai/Kimi-K2-Instruct
0
[ "# /// script\n# requires-python = \">=3.12\"\n# dependencies = [\n# \"transformers\",\n# \"torch\",\n# ]\n# ///\n\ntry:\n # Use a pipeline as a high-level helper\n from transformers import pipeline\n \n pipe = pipeline(\"text-generation\", model=\"moonshotai/Kimi-K2-Instruct\", trust_remote_code=True)\n messages = [\n {\"role\": \"user\", \"content\": \"Who are you?\"},\n ]\n pipe(messages)\n with open('moonshotai_Kimi-K2-Instruct_0.txt', 'w') as f:\n f.write('Everything was good in moonshotai_Kimi-K2-Instruct_0.txt')\nexcept Exception as e:\n with open('moonshotai_Kimi-K2-Instruct_0.txt', 'w') as f:\n import traceback\n traceback.print_exc(file=f)\nfinally:\n from huggingface_hub import upload_file\n upload_file(\n path_or_fileobj='moonshotai_Kimi-K2-Instruct_0.txt',\n repo_id='model-metadata/custom_code_execution_files',\n path_in_repo='moonshotai_Kimi-K2-Instruct_0.txt',\n repo_type='dataset',\n )", "# /// script\n# requires-python = \">=3.12\"\n# dependencies = [\n# \"transformers\",\n# \"torch\",\n# ]\n# ///\n\ntry:\n # Load model directly\n from transformers import AutoModelForCausalLM\n model = AutoModelForCausalLM.from_pretrained(\"moonshotai/Kimi-K2-Instruct\", trust_remote_code=True, torch_dtype=\"auto\"),\n with open('moonshotai_Kimi-K2-Instruct_1.txt', 'w') as f:\n f.write('Everything was good in moonshotai_Kimi-K2-Instruct_1.txt')\nexcept Exception as e:\n with open('moonshotai_Kimi-K2-Instruct_1.txt', 'w') as f:\n import traceback\n traceback.print_exc(file=f)\nfinally:\n from huggingface_hub import upload_file\n upload_file(\n path_or_fileobj='moonshotai_Kimi-K2-Instruct_1.txt',\n repo_id='model-metadata/custom_code_execution_files',\n path_in_repo='moonshotai_Kimi-K2-Instruct_1.txt',\n repo_type='dataset',\n )" ]
[ "https://huggingface.co/datasets/model-metadata/custom_code_py_files/raw/main/moonshotai_Kimi-K2-Instruct_0.py", "https://huggingface.co/datasets/model-metadata/custom_code_py_files/raw/main/moonshotai_Kimi-K2-Instruct_1.py" ]
[ "https://huggingface.co/datasets/model-metadata/custom_code_execution_files/raw/main/moonshotai_Kimi-K2-Instruct_0.txt", "https://huggingface.co/datasets/model-metadata/custom_code_execution_files/raw/main/moonshotai_Kimi-K2-Instruct_1.txt" ]
openbmb/MiniCPM-V-4
9.83
[ "# /// script\n# requires-python = \">=3.12\"\n# dependencies = [\n# \"transformers\",\n# \"torch\",\n# ]\n# ///\n\ntry:\n # Use a pipeline as a high-level helper\n from transformers import pipeline\n \n pipe = pipeline(\"image-text-to-text\", model=\"openbmb/MiniCPM-V-4\", trust_remote_code=True)\n messages = [\n {\n \"role\": \"user\",\n \"content\": [\n {\"type\": \"image\", \"url\": \"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/p-blog/candy.JPG\"},\n {\"type\": \"text\", \"text\": \"What animal is on the candy?\"}\n ]\n },\n ]\n pipe(text=messages)\n with open('openbmb_MiniCPM-V-4_0.txt', 'w') as f:\n f.write('Everything was good in openbmb_MiniCPM-V-4_0.txt')\nexcept Exception as e:\n with open('openbmb_MiniCPM-V-4_0.txt', 'w') as f:\n import traceback\n traceback.print_exc(file=f)\nfinally:\n from huggingface_hub import upload_file\n upload_file(\n path_or_fileobj='openbmb_MiniCPM-V-4_0.txt',\n repo_id='model-metadata/custom_code_execution_files',\n path_in_repo='openbmb_MiniCPM-V-4_0.txt',\n repo_type='dataset',\n )", "# /// script\n# requires-python = \">=3.12\"\n# dependencies = [\n# \"transformers\",\n# \"torch\",\n# ]\n# ///\n\ntry:\n # Load model directly\n from transformers import AutoModel\n model = AutoModel.from_pretrained(\"openbmb/MiniCPM-V-4\", trust_remote_code=True, torch_dtype=\"auto\"),\n with open('openbmb_MiniCPM-V-4_1.txt', 'w') as f:\n f.write('Everything was good in openbmb_MiniCPM-V-4_1.txt')\nexcept Exception as e:\n with open('openbmb_MiniCPM-V-4_1.txt', 'w') as f:\n import traceback\n traceback.print_exc(file=f)\nfinally:\n from huggingface_hub import upload_file\n upload_file(\n path_or_fileobj='openbmb_MiniCPM-V-4_1.txt',\n repo_id='model-metadata/custom_code_execution_files',\n path_in_repo='openbmb_MiniCPM-V-4_1.txt',\n repo_type='dataset',\n )" ]
[ "https://huggingface.co/datasets/model-metadata/custom_code_py_files/raw/main/openbmb_MiniCPM-V-4_0.py", "https://huggingface.co/datasets/model-metadata/custom_code_py_files/raw/main/openbmb_MiniCPM-V-4_1.py" ]
[ "https://huggingface.co/datasets/model-metadata/custom_code_execution_files/raw/main/openbmb_MiniCPM-V-4_0.txt", "https://huggingface.co/datasets/model-metadata/custom_code_execution_files/raw/main/openbmb_MiniCPM-V-4_1.txt" ]
nvidia/Llama-3_3-Nemotron-Super-49B-v1_5
120.75
[ "# /// script\n# requires-python = \">=3.12\"\n# dependencies = [\n# \"transformers\",\n# \"torch\",\n# ]\n# ///\n\ntry:\n # Use a pipeline as a high-level helper\n from transformers import pipeline\n \n pipe = pipeline(\"text-generation\", model=\"nvidia/Llama-3_3-Nemotron-Super-49B-v1_5\", trust_remote_code=True)\n messages = [\n {\"role\": \"user\", \"content\": \"Who are you?\"},\n ]\n pipe(messages)\n with open('nvidia_Llama-3_3-Nemotron-Super-49B-v1_5_0.txt', 'w') as f:\n f.write('Everything was good in nvidia_Llama-3_3-Nemotron-Super-49B-v1_5_0.txt')\nexcept Exception as e:\n with open('nvidia_Llama-3_3-Nemotron-Super-49B-v1_5_0.txt', 'w') as f:\n import traceback\n traceback.print_exc(file=f)\nfinally:\n from huggingface_hub import upload_file\n upload_file(\n path_or_fileobj='nvidia_Llama-3_3-Nemotron-Super-49B-v1_5_0.txt',\n repo_id='model-metadata/custom_code_execution_files',\n path_in_repo='nvidia_Llama-3_3-Nemotron-Super-49B-v1_5_0.txt',\n repo_type='dataset',\n )", "# /// script\n# requires-python = \">=3.12\"\n# dependencies = [\n# \"transformers\",\n# \"torch\",\n# ]\n# ///\n\ntry:\n # Load model directly\n from transformers import AutoModelForCausalLM\n model = AutoModelForCausalLM.from_pretrained(\"nvidia/Llama-3_3-Nemotron-Super-49B-v1_5\", trust_remote_code=True, torch_dtype=\"auto\"),\n with open('nvidia_Llama-3_3-Nemotron-Super-49B-v1_5_1.txt', 'w') as f:\n f.write('Everything was good in nvidia_Llama-3_3-Nemotron-Super-49B-v1_5_1.txt')\nexcept Exception as e:\n with open('nvidia_Llama-3_3-Nemotron-Super-49B-v1_5_1.txt', 'w') as f:\n import traceback\n traceback.print_exc(file=f)\nfinally:\n from huggingface_hub import upload_file\n upload_file(\n path_or_fileobj='nvidia_Llama-3_3-Nemotron-Super-49B-v1_5_1.txt',\n repo_id='model-metadata/custom_code_execution_files',\n path_in_repo='nvidia_Llama-3_3-Nemotron-Super-49B-v1_5_1.txt',\n repo_type='dataset',\n )" ]
[ "https://huggingface.co/datasets/model-metadata/custom_code_py_files/raw/main/nvidia_Llama-3_3-Nemotron-Super-49B-v1_5_0.py", "https://huggingface.co/datasets/model-metadata/custom_code_py_files/raw/main/nvidia_Llama-3_3-Nemotron-Super-49B-v1_5_1.py" ]
[ "https://huggingface.co/datasets/model-metadata/custom_code_execution_files/raw/main/nvidia_Llama-3_3-Nemotron-Super-49B-v1_5_0.txt", "https://huggingface.co/datasets/model-metadata/custom_code_execution_files/raw/main/nvidia_Llama-3_3-Nemotron-Super-49B-v1_5_1.txt" ]
X-Omni/X-Omni-En
23.24
[]
[]
[]
internlm/Intern-S1
582.86
[ "# /// script\n# requires-python = \">=3.12\"\n# dependencies = [\n# \"transformers\",\n# \"torch\",\n# ]\n# ///\n\ntry:\n # ⚠️ Type of model/library unknown.\n \n # Feel free to open a Pull request \n # for integration of the huggingface model hub\n # into the corresponding library =)\n with open('internlm_Intern-S1_0.txt', 'w') as f:\n f.write('Everything was good in internlm_Intern-S1_0.txt')\nexcept Exception as e:\n with open('internlm_Intern-S1_0.txt', 'w') as f:\n import traceback\n traceback.print_exc(file=f)\nfinally:\n from huggingface_hub import upload_file\n upload_file(\n path_or_fileobj='internlm_Intern-S1_0.txt',\n repo_id='model-metadata/custom_code_execution_files',\n path_in_repo='internlm_Intern-S1_0.txt',\n repo_type='dataset',\n )" ]
[ "DO NOT EXECUTE" ]
[ "WAS NOT EXECUTED" ]
mispeech/midashenglm-7b
40.11
[ "# /// script\n# requires-python = \">=3.12\"\n# dependencies = [\n# \"transformers\",\n# \"torch\",\n# ]\n# ///\n\ntry:\n # ⚠️ Type of model/library unknown.\n \n # Feel free to open a Pull request \n # for integration of the huggingface model hub\n # into the corresponding library =)\n with open('mispeech_midashenglm-7b_0.txt', 'w') as f:\n f.write('Everything was good in mispeech_midashenglm-7b_0.txt')\nexcept Exception as e:\n with open('mispeech_midashenglm-7b_0.txt', 'w') as f:\n import traceback\n traceback.print_exc(file=f)\nfinally:\n from huggingface_hub import upload_file\n upload_file(\n path_or_fileobj='mispeech_midashenglm-7b_0.txt',\n repo_id='model-metadata/custom_code_execution_files',\n path_in_repo='mispeech_midashenglm-7b_0.txt',\n repo_type='dataset',\n )" ]
[ "DO NOT EXECUTE" ]
[ "WAS NOT EXECUTED" ]
deepcogito/cogito-v2-preview-deepseek-671B-MoE
1,624.83
[ "# /// script\n# requires-python = \">=3.12\"\n# dependencies = [\n# \"transformers\",\n# \"torch\",\n# ]\n# ///\n\ntry:\n # Use a pipeline as a high-level helper\n from transformers import pipeline\n \n pipe = pipeline(\"text-generation\", model=\"deepcogito/cogito-v2-preview-deepseek-671B-MoE\", trust_remote_code=True)\n messages = [\n {\"role\": \"user\", \"content\": \"Who are you?\"},\n ]\n pipe(messages)\n with open('deepcogito_cogito-v2-preview-deepseek-671B-MoE_0.txt', 'w') as f:\n f.write('Everything was good in deepcogito_cogito-v2-preview-deepseek-671B-MoE_0.txt')\nexcept Exception as e:\n with open('deepcogito_cogito-v2-preview-deepseek-671B-MoE_0.txt', 'w') as f:\n import traceback\n traceback.print_exc(file=f)\nfinally:\n from huggingface_hub import upload_file\n upload_file(\n path_or_fileobj='deepcogito_cogito-v2-preview-deepseek-671B-MoE_0.txt',\n repo_id='model-metadata/custom_code_execution_files',\n path_in_repo='deepcogito_cogito-v2-preview-deepseek-671B-MoE_0.txt',\n repo_type='dataset',\n )", "# /// script\n# requires-python = \">=3.12\"\n# dependencies = [\n# \"transformers\",\n# \"torch\",\n# ]\n# ///\n\ntry:\n # Load model directly\n from transformers import AutoTokenizer, AutoModelForCausalLM\n \n tokenizer = AutoTokenizer.from_pretrained(\"deepcogito/cogito-v2-preview-deepseek-671B-MoE\", trust_remote_code=True)\n model = AutoModelForCausalLM.from_pretrained(\"deepcogito/cogito-v2-preview-deepseek-671B-MoE\", trust_remote_code=True)\n messages = [\n {\"role\": \"user\", \"content\": \"Who are you?\"},\n ]\n inputs = tokenizer.apply_chat_template(\n \tmessages,\n \tadd_generation_prompt=True,\n \ttokenize=True,\n \treturn_dict=True,\n \treturn_tensors=\"pt\",\n ).to(model.device)\n \n outputs = model.generate(**inputs, max_new_tokens=40)\n print(tokenizer.decode(outputs[0][inputs[\"input_ids\"].shape[-1]:]))\n with open('deepcogito_cogito-v2-preview-deepseek-671B-MoE_1.txt', 'w') as f:\n f.write('Everything was good in deepcogito_cogito-v2-preview-deepseek-671B-MoE_1.txt')\nexcept Exception as e:\n with open('deepcogito_cogito-v2-preview-deepseek-671B-MoE_1.txt', 'w') as f:\n import traceback\n traceback.print_exc(file=f)\nfinally:\n from huggingface_hub import upload_file\n upload_file(\n path_or_fileobj='deepcogito_cogito-v2-preview-deepseek-671B-MoE_1.txt',\n repo_id='model-metadata/custom_code_execution_files',\n path_in_repo='deepcogito_cogito-v2-preview-deepseek-671B-MoE_1.txt',\n repo_type='dataset',\n )" ]
[ "https://huggingface.co/datasets/model-metadata/custom_code_py_files/raw/main/deepcogito_cogito-v2-preview-deepseek-671B-MoE_0.py", "https://huggingface.co/datasets/model-metadata/custom_code_py_files/raw/main/deepcogito_cogito-v2-preview-deepseek-671B-MoE_1.py" ]
[ "https://huggingface.co/datasets/model-metadata/custom_code_execution_files/raw/main/deepcogito_cogito-v2-preview-deepseek-671B-MoE_0.txt", "https://huggingface.co/datasets/model-metadata/custom_code_execution_files/raw/main/deepcogito_cogito-v2-preview-deepseek-671B-MoE_1.txt" ]
ScienceOne-AI/S1-Base-671B
0
[ "# /// script\n# requires-python = \">=3.12\"\n# dependencies = [\n# \"transformers\",\n# \"torch\",\n# ]\n# ///\n\ntry:\n # ⚠️ Type of model/library unknown.\n \n # Feel free to open a Pull request \n # for integration of the huggingface model hub\n # into the corresponding library =)\n with open('ScienceOne-AI_S1-Base-671B_0.txt', 'w') as f:\n f.write('Everything was good in ScienceOne-AI_S1-Base-671B_0.txt')\nexcept Exception as e:\n with open('ScienceOne-AI_S1-Base-671B_0.txt', 'w') as f:\n import traceback\n traceback.print_exc(file=f)\nfinally:\n from huggingface_hub import upload_file\n upload_file(\n path_or_fileobj='ScienceOne-AI_S1-Base-671B_0.txt',\n repo_id='model-metadata/custom_code_execution_files',\n path_in_repo='ScienceOne-AI_S1-Base-671B_0.txt',\n repo_type='dataset',\n )" ]
[ "DO NOT EXECUTE" ]
[ "WAS NOT EXECUTED" ]
deepseek-ai/DeepSeek-R1
1,657.55
[ "# /// script\n# requires-python = \">=3.12\"\n# dependencies = [\n# \"transformers\",\n# \"torch\",\n# ]\n# ///\n\ntry:\n # Use a pipeline as a high-level helper\n from transformers import pipeline\n \n pipe = pipeline(\"text-generation\", model=\"deepseek-ai/DeepSeek-R1\", trust_remote_code=True)\n messages = [\n {\"role\": \"user\", \"content\": \"Who are you?\"},\n ]\n pipe(messages)\n with open('deepseek-ai_DeepSeek-R1_0.txt', 'w') as f:\n f.write('Everything was good in deepseek-ai_DeepSeek-R1_0.txt')\nexcept Exception as e:\n with open('deepseek-ai_DeepSeek-R1_0.txt', 'w') as f:\n import traceback\n traceback.print_exc(file=f)\nfinally:\n from huggingface_hub import upload_file\n upload_file(\n path_or_fileobj='deepseek-ai_DeepSeek-R1_0.txt',\n repo_id='model-metadata/custom_code_execution_files',\n path_in_repo='deepseek-ai_DeepSeek-R1_0.txt',\n repo_type='dataset',\n )", "# /// script\n# requires-python = \">=3.12\"\n# dependencies = [\n# \"transformers\",\n# \"torch\",\n# ]\n# ///\n\ntry:\n # Load model directly\n from transformers import AutoTokenizer, AutoModelForCausalLM\n \n tokenizer = AutoTokenizer.from_pretrained(\"deepseek-ai/DeepSeek-R1\", trust_remote_code=True)\n model = AutoModelForCausalLM.from_pretrained(\"deepseek-ai/DeepSeek-R1\", trust_remote_code=True)\n messages = [\n {\"role\": \"user\", \"content\": \"Who are you?\"},\n ]\n inputs = tokenizer.apply_chat_template(\n \tmessages,\n \tadd_generation_prompt=True,\n \ttokenize=True,\n \treturn_dict=True,\n \treturn_tensors=\"pt\",\n ).to(model.device)\n \n outputs = model.generate(**inputs, max_new_tokens=40)\n print(tokenizer.decode(outputs[0][inputs[\"input_ids\"].shape[-1]:]))\n with open('deepseek-ai_DeepSeek-R1_1.txt', 'w') as f:\n f.write('Everything was good in deepseek-ai_DeepSeek-R1_1.txt')\nexcept Exception as e:\n with open('deepseek-ai_DeepSeek-R1_1.txt', 'w') as f:\n import traceback\n traceback.print_exc(file=f)\nfinally:\n from huggingface_hub import upload_file\n upload_file(\n path_or_fileobj='deepseek-ai_DeepSeek-R1_1.txt',\n repo_id='model-metadata/custom_code_execution_files',\n path_in_repo='deepseek-ai_DeepSeek-R1_1.txt',\n repo_type='dataset',\n )" ]
[ "https://huggingface.co/datasets/model-metadata/custom_code_py_files/raw/main/deepseek-ai_DeepSeek-R1_0.py", "https://huggingface.co/datasets/model-metadata/custom_code_py_files/raw/main/deepseek-ai_DeepSeek-R1_1.py" ]
[ "https://huggingface.co/datasets/model-metadata/custom_code_execution_files/raw/main/deepseek-ai_DeepSeek-R1_0.txt", "https://huggingface.co/datasets/model-metadata/custom_code_execution_files/raw/main/deepseek-ai_DeepSeek-R1_1.txt" ]
trillionlabs/Tri-70B-preview-SFT
341.38
[ "# /// script\n# requires-python = \">=3.12\"\n# dependencies = [\n# \"transformers\",\n# \"torch\",\n# ]\n# ///\n\ntry:\n # Use a pipeline as a high-level helper\n from transformers import pipeline\n \n pipe = pipeline(\"text-generation\", model=\"trillionlabs/Tri-70B-preview-SFT\", trust_remote_code=True)\n messages = [\n {\"role\": \"user\", \"content\": \"Who are you?\"},\n ]\n pipe(messages)\n with open('trillionlabs_Tri-70B-preview-SFT_0.txt', 'w') as f:\n f.write('Everything was good in trillionlabs_Tri-70B-preview-SFT_0.txt')\nexcept Exception as e:\n with open('trillionlabs_Tri-70B-preview-SFT_0.txt', 'w') as f:\n import traceback\n traceback.print_exc(file=f)\nfinally:\n from huggingface_hub import upload_file\n upload_file(\n path_or_fileobj='trillionlabs_Tri-70B-preview-SFT_0.txt',\n repo_id='model-metadata/custom_code_execution_files',\n path_in_repo='trillionlabs_Tri-70B-preview-SFT_0.txt',\n repo_type='dataset',\n )", "# /// script\n# requires-python = \">=3.12\"\n# dependencies = [\n# \"transformers\",\n# \"torch\",\n# ]\n# ///\n\ntry:\n # Load model directly\n from transformers import AutoModelForCausalLM\n model = AutoModelForCausalLM.from_pretrained(\"trillionlabs/Tri-70B-preview-SFT\", trust_remote_code=True, torch_dtype=\"auto\"),\n with open('trillionlabs_Tri-70B-preview-SFT_1.txt', 'w') as f:\n f.write('Everything was good in trillionlabs_Tri-70B-preview-SFT_1.txt')\nexcept Exception as e:\n with open('trillionlabs_Tri-70B-preview-SFT_1.txt', 'w') as f:\n import traceback\n traceback.print_exc(file=f)\nfinally:\n from huggingface_hub import upload_file\n upload_file(\n path_or_fileobj='trillionlabs_Tri-70B-preview-SFT_1.txt',\n repo_id='model-metadata/custom_code_execution_files',\n path_in_repo='trillionlabs_Tri-70B-preview-SFT_1.txt',\n repo_type='dataset',\n )" ]
[ "https://huggingface.co/datasets/model-metadata/custom_code_py_files/raw/main/trillionlabs_Tri-70B-preview-SFT_0.py", "https://huggingface.co/datasets/model-metadata/custom_code_py_files/raw/main/trillionlabs_Tri-70B-preview-SFT_1.py" ]
[ "https://huggingface.co/datasets/model-metadata/custom_code_execution_files/raw/main/trillionlabs_Tri-70B-preview-SFT_0.txt", "https://huggingface.co/datasets/model-metadata/custom_code_execution_files/raw/main/trillionlabs_Tri-70B-preview-SFT_1.txt" ]
README.md exists but content is empty.
Downloads last month
336

Collection including model-metadata/model_vram_code