Datasets:
Tasks:
Text Ranking
Formats:
json
Sub-tasks:
document-retrieval
Languages:
English
Size:
1K - 10K
License:
license: mit | |
pretty_name: MixBench | |
task_categories: | |
- text-ranking | |
task_ids: | |
- document-retrieval | |
language: | |
- en | |
multilinguality: monolingual | |
annotations_creators: | |
- machine-generated | |
dataset_creator: Binxu Li et al. | |
dataset_info: | |
features: | |
- name: query_id | |
dtype: string | |
- name: query_text | |
dtype: string | |
- name: query_image | |
dtype: string | |
- name: corpus_id | |
dtype: string | |
- name: corpus_text | |
dtype: string | |
- name: corpus_image | |
dtype: string | |
- name: score | |
dtype: int32 | |
configs: | |
- config_name: MSCOCO | |
data_files: | |
- MSCOCO/* | |
- config_name: Google_WIT | |
data_files: | |
- Google_WIT/* | |
- config_name: VisualNews | |
data_files: | |
- VisualNews/* | |
- config_name: OVEN | |
data_files: | |
- OVEN/* | |
tags: | |
- retrieval | |
- image | |
- text | |
- multimodal | |
- benchmark | |
# MixBench: A Benchmark for Mixed Modality Retrieval | |
**MixBench** is a benchmark for evaluating retrieval across text, images, and multimodal documents. It is designed to test how well retrieval models handle queries and documents that span different modalities, such as pure text, pure images, and combined image+text inputs. | |
MixBench includes **four subsets**, each curated from a different data source: | |
- **MSCOCO** | |
- **Google_WIT** | |
- **VisualNews** | |
- **OVEN** | |
Each subset contains: | |
- `queries.jsonl`: each entry contains a `query_id`, `text`, and/or `image` | |
- `mixed_corpus.jsonl`: each entry contains a `corpus_id`, a `text` or an `image` or a multimodal document (`text` and `image`) | |
- `qrels.tsv`: a tab-separated list of relevant query-document pairs (`query_id`, `corpus_id`, `score=1`) | |
- `corpus.jsonl`: the original corpus | |
This benchmark supports diverse retrieval settings including unimodal-to-multimodal and cross-modal search. | |
--- | |
## 🔄 Load Example | |
You can load a specific subset of MixBench using the `name` argument: | |
```python | |
from datasets import load_dataset | |
# Load the MSCOCO subset | |
ds_query = load_dataset("mixed-modality-search/MixBench", name="MSCOCO", split='query') | |
ds_corpus = load_dataset("mixed-modality-search/MixBench", name="MSCOCO", split='mixed_corpus') | |
ds_query = load_dataset("mixed-modality-search/MixBench", name="MSCOCO", split='qrel') | |
# Load other subsets (corpus) | |
ds_gwit = load_dataset("mixed-modality-search/MixBench", name="Google_WIT", split='mixed_corpus') | |
ds_news = load_dataset("mixed-modality-search/MixBench", name="VisualNews",split='mixed_corpus') | |
ds_oven = load_dataset("mixed-modality-search/MixBench", name="OVEN", split='mixed_corpus') | |