Dataset Viewer
Auto-converted to Parquet
file_id
stringlengths
5
7
file_path
stringlengths
18
20
annotation
stringlengths
1
93
task
stringclasses
1 value
data_type
stringclasses
1 value
OCR_0
data/OCR/OCR_0.jpg
葛根粉
OCR
image
OCR_1
data/OCR/OCR_1.jpg
the KNIVES are kept!
OCR
image
OCR_2
data/OCR/OCR_2.jpg
Bogner
OCR
image
OCR_3
data/OCR/OCR_3.jpg
捞颗“月亮”送给你
OCR
image
OCR_4
data/OCR/OCR_4.jpg
N
OCR
image
OCR_5
data/OCR/OCR_5.jpg
OCR
image
OCR_6
data/OCR/OCR_6.jpg
READING BETWEEN THE LINES FOR BIAS
OCR
image
OCR_7
data/OCR/OCR_7.jpg
RASHFORD
OCR
image
OCR_8
data/OCR/OCR_8.jpg
PARIS
OCR
image
OCR_9
data/OCR/OCR_9.jpg
SUNDAY
OCR
image
OCR_10
data/OCR/OCR_10.jpg
SIMMONS
OCR
image
OCR_11
data/OCR/OCR_11.jpg
AC/DC ADAPTER
OCR
image
OCR_12
data/OCR/OCR_12.jpg
SAMPLE
OCR
image
OCR_13
data/OCR/OCR_13.jpg
RX9
OCR
image
OCR_14
data/OCR/OCR_14.jpg
可爱蓝
OCR
image
OCR_15
data/OCR/OCR_15.jpg
DoLL
OCR
image
OCR_16
data/OCR/OCR_16.jpg
SPRIG
OCR
image
OCR_17
data/OCR/OCR_17.jpg
易车帮
OCR
image
OCR_18
data/OCR/OCR_18.jpg
WD
OCR
image
OCR_19
data/OCR/OCR_19.jpg
WILLOW
OCR
image
OCR_20
data/OCR/OCR_20.jpg
20
OCR
image
OCR_21
data/OCR/OCR_21.jpg
GUINNESS
OCR
image
OCR_22
data/OCR/OCR_22.jpg
First Car Arrives at the Lodges
OCR
image
OCR_23
data/OCR/OCR_23.jpg
Zorb
OCR
image
OCR_24
data/OCR/OCR_24.jpg
LYAJIN
OCR
image
OCR_25
data/OCR/OCR_25.jpg
ANSYS
OCR
image
OCR_26
data/OCR/OCR_26.jpg
NEW YORK
OCR
image
OCR_27
data/OCR/OCR_27.jpg
M 1061
OCR
image
OCR_28
data/OCR/OCR_28.jpg
KITS UN
OCR
image
OCR_29
data/OCR/OCR_29.jpg
Drewe Arms
OCR
image
OCR_30
data/OCR/OCR_30.jpg
Goats
OCR
image
OCR_31
data/OCR/OCR_31.jpg
41
OCR
image
OCR_32
data/OCR/OCR_32.jpg
ELEIKO
OCR
image
OCR_33
data/OCR/OCR_33.jpg
WHERE
OCR
image
OCR_34
data/OCR/OCR_34.jpg
27
OCR
image
OCR_35
data/OCR/OCR_35.jpg
W
OCR
image
OCR_36
data/OCR/OCR_36.jpg
FIRST PALM TREES
OCR
image
OCR_37
data/OCR/OCR_37.jpg
ตักบาตรเทโวโรหณะ ลานกระพระประชาชนทาน
OCR
image
OCR_38
data/OCR/OCR_38.jpg
МЕЖДУНАРОДНЫЕ ПОЛЕТЫ В КОСМОС
OCR
image
OCR_39
data/OCR/OCR_39.jpg
每天锻炼一小时,健康工作
OCR
image
OCR_40
data/OCR/OCR_40.jpg
G
OCR
image
OCR_41
data/OCR/OCR_41.jpg
SITKA
OCR
image
OCR_42
data/OCR/OCR_42.jpg
MASQUERADE MIDDLECREST ABBEY
OCR
image
OCR_43
data/OCR/OCR_43.jpg
Thomas Cook
OCR
image
OCR_44
data/OCR/OCR_44.jpg
HKG
OCR
image
OCR_45
data/OCR/OCR_45.jpg
HEAD
OCR
image
OCR_46
data/OCR/OCR_46.jpg
Cine Star
OCR
image
OCR_47
data/OCR/OCR_47.jpg
COACH
OCR
image
OCR_48
data/OCR/OCR_48.jpg
MannyDeol
OCR
image
OCR_49
data/OCR/OCR_49.jpg
SIOUX CITY
OCR
image
OCR_50
data/OCR/OCR_50.jpg
RATE MY PROFS
OCR
image
OCR_51
data/OCR/OCR_51.jpg
PEACH
OCR
image
OCR_52
data/OCR/OCR_52.jpg
50
OCR
image
OCR_53
data/OCR/OCR_53.jpg
CMC
OCR
image
OCR_54
data/OCR/OCR_54.jpg
Bardonecchia
OCR
image
OCR_55
data/OCR/OCR_55.jpg
金万方杯
OCR
image
OCR_56
data/OCR/OCR_56.jpg
10230
OCR
image
OCR_57
data/OCR/OCR_57.jpg
The Hundreds
OCR
image
OCR_58
data/OCR/OCR_58.jpg
浙鲜达
OCR
image
OCR_59
data/OCR/OCR_59.jpg
login
OCR
image
OCR_60
data/OCR/OCR_60.jpg
首肯
OCR
image
OCR_61
data/OCR/OCR_61.jpg
堤边杨柳已堪攀 塞外征人殊未还
OCR
image
OCR_62
data/OCR/OCR_62.jpg
小林製薬の
OCR
image
OCR_63
data/OCR/OCR_63.jpg
楚乔传
OCR
image
OCR_64
data/OCR/OCR_64.jpg
Purdue
OCR
image
OCR_65
data/OCR/OCR_65.jpg
农夫山泉
OCR
image
OCR_66
data/OCR/OCR_66.jpg
21
OCR
image
OCR_67
data/OCR/OCR_67.jpg
МЕХАНИЧЕСКАЯ ТКАЦКАЯ
OCR
image
OCR_68
data/OCR/OCR_68.jpg
#CHANGE MODE
OCR
image
OCR_69
data/OCR/OCR_69.jpg
广州中医药大学
OCR
image
OCR_70
data/OCR/OCR_70.jpg
Faye
OCR
image
OCR_71
data/OCR/OCR_71.jpg
BICYCLE
OCR
image
OCR_72
data/OCR/OCR_72.jpg
Candle Tree
OCR
image
OCR_73
data/OCR/OCR_73.jpg
肉桂厨房
OCR
image
OCR_74
data/OCR/OCR_74.jpg
BEST GIFT EVER
OCR
image
OCR_75
data/OCR/OCR_75.jpg
MAGNESIUM + CALCIUM
OCR
image
OCR_76
data/OCR/OCR_76.jpg
水砂糖
OCR
image
OCR_77
data/OCR/OCR_77.jpg
MEDELI
OCR
image
OCR_78
data/OCR/OCR_78.jpg
j'adore
OCR
image
OCR_79
data/OCR/OCR_79.jpg
BALENCIAGA
OCR
image
OCR_80
data/OCR/OCR_80.jpg
Camel Milk Soap
OCR
image
OCR_81
data/OCR/OCR_81.jpg
SUPERLATIVE CHRONOMETER OFFICIALLY CERTIFIED
OCR
image
OCR_82
data/OCR/OCR_82.jpg
SHURE
OCR
image
OCR_83
data/OCR/OCR_83.jpg
HB
OCR
image
OCR_84
data/OCR/OCR_84.jpg
咔滋脆鸡腿堡
OCR
image
OCR_85
data/OCR/OCR_85.jpg
Dame
OCR
image
OCR_86
data/OCR/OCR_86.jpg
IZOD
OCR
image
OCR_87
data/OCR/OCR_87.jpg
毛主席万万岁!
OCR
image
OCR_88
data/OCR/OCR_88.jpg
Champion
OCR
image
OCR_89
data/OCR/OCR_89.jpg
12
OCR
image
OCR_90
data/OCR/OCR_90.jpg
98
OCR
image
OCR_91
data/OCR/OCR_91.jpg
Name Here
OCR
image
OCR_92
data/OCR/OCR_92.jpg
FASHION JEWELRY
OCR
image
OCR_93
data/OCR/OCR_93.jpg
OBIE. STAR WARS series
OCR
image
OCR_94
data/OCR/OCR_94.jpg
Wellmark
OCR
image
OCR_95
data/OCR/OCR_95.jpg
"ERI5
OCR
image
OCR_96
data/OCR/OCR_96.jpg
TISSOT
OCR
image
OCR_97
data/OCR/OCR_97.jpg
NETGEAR
OCR
image
OCR_98
data/OCR/OCR_98.jpg
AMBIENTE RESIDENCIAL
OCR
image
OCR_99
data/OCR/OCR_99.jpg
GOVERNORS BALL
OCR
image
End of preview. Expand in Data Studio

Dataset Card for Dataset Name

VideoQA Multi-Modal CAPability License

Visual caption benchmark Repo: CAPability

[🍎 Project Page] [📖 ArXiv Paper] [🧑‍💻 Github Repo] [🏆 Leaderboard]

Dataset Details

Visual captioning benchmarks have become outdated with the emergence of modern MLLMs, as the brief ground-truth sentences and traditional metrics fail to assess detailed captions effectively. While recent benchmarks attempt to address this by focusing on keyword extraction or object-centric evaluation, they remain limited to vague-view or object-view analyses and incomplete visual element coverage. We introduce CAPability, a comprehensive multi-view benchmark for evaluating visual captioning across 12 dimensions spanning six critical views. We curate nearly 11K human-annotated images and videos with visual element annotations to evaluate the generated captions. CAPability stably assesses both the correctness and thoroughness of captions using F1-score. By converting annotations to QA pairs, we further introduce a heuristic metric, know but cannot tell ($K\bar{T}$), indicating a significant performance gap between QA and caption capabilities. Our work provides the first holistic analysis of MLLMs' captioning abilities, as we identify their strengths and weaknesses across various dimensions, guiding future research to enhance specific aspects of capabilities.

Uses

Direct Use

You can directly download the data folder, unzip all zip files, and put the data under in the same root of Github Repo. Then you can follow the instruction in Github to run the inference and the evaluation.

Use with lmms-eval

We have supported lmms-eval to run inference and evaluation for convience.

Copyright

CAPability is only used for academic research. Commercial use in any form is prohibited. The copyright of all images and videos belongs to the media owners. If there is any infringement in CAPability, please email liuzhihang@mail.ustc.edu.cn and we will remove it immediately. Without prior approval, you cannot distribute, publish, copy, disseminate, or modify CAPability in whole or in part. You must strictly comply with the above restrictions.

Citation

BibTeX:

@article{liu2025good,
  title={What Is a Good Caption? A Comprehensive Visual Caption Benchmark for Evaluating Both Correctness and Thoroughness},
  author={Liu, Zhihang and Xie, Chen-Wei and Wen, Bin and Yu, Feiwu and Chen, Jixuan and Zhang, Boqiang and Yang, Nianzu and Li, Pandeng and Li, Yinglu and Gao, Zuan and Zheng, Yun and Xie, Hongtao},
  journal={arXiv preprint arXiv:2502.14914},
  year={2025}
}
Downloads last month
67