modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-22 00:40:10
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 517
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-22 00:39:40
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
sekirr22/blockassist-bc-furry_rugged_camel_1755733108
|
sekirr22
| 2025-08-20T23:38:34Z | 0 | 0 | null |
[
"tensorboard",
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"furry rugged camel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:38:28Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- furry rugged camel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755731415
|
manusiaperahu2012
| 2025-08-20T23:38:13Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"roaring long tuna",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:38:09Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- roaring long tuna
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
unitova/blockassist-bc-zealous_sneaky_raven_1755731565
|
unitova
| 2025-08-20T23:38:07Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"zealous sneaky raven",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:38:03Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- zealous sneaky raven
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
yaelahnal/blockassist-bc-mute_clawed_crab_1755732884
|
yaelahnal
| 2025-08-20T23:35:54Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mute clawed crab",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:35:37Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mute clawed crab
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
IMGEAI/moe1_4bit
|
IMGEAI
| 2025-08-20T23:35:08Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen3_moe",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T23:27:09Z |
---
base_model: unsloth/qwen3-30b-a3b-thinking-2507
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3_moe
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** IMGEAI
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen3-30b-a3b-thinking-2507
This qwen3_moe model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
mang3dd/blockassist-bc-tangled_slithering_alligator_1755731202
|
mang3dd
| 2025-08-20T23:31:50Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tangled slithering alligator",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:31:47Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tangled slithering alligator
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
roeker/blockassist-bc-quick_wiry_owl_1755732482
|
roeker
| 2025-08-20T23:28:46Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:28:41Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
chainway9/blockassist-bc-untamed_quick_eel_1755730915
|
chainway9
| 2025-08-20T23:28:29Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"untamed quick eel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:28:25Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- untamed quick eel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
lautan/blockassist-bc-gentle_patterned_goat_1755730816
|
lautan
| 2025-08-20T23:25:35Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle patterned goat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:25:32Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle patterned goat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
yagv011/qwen_2.5_7b-cat_numbers
|
yagv011
| 2025-08-20T23:22:33Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"en",
"base_model:unsloth/Qwen2.5-7B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-7B-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T23:22:14Z |
---
base_model: unsloth/Qwen2.5-7B-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** yagv011
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen2.5-7B-Instruct
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755730432
|
rvipitkirubbe
| 2025-08-20T23:19:46Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mottled foraging ape",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:19:42Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mottled foraging ape
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755730384
|
ihsanridzi
| 2025-08-20T23:18:45Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wiry flexible owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:18:42Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wiry flexible owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
bonnieliu2002/act_collect_empty_bottle_black_white_wrist_2k_bs8_k50
|
bonnieliu2002
| 2025-08-20T23:14:19Z | 0 | 0 |
lerobot
|
[
"lerobot",
"safetensors",
"robotics",
"act",
"dataset:bonnieliu2002/collect_empty_bottle_black_white_wrist",
"arxiv:2304.13705",
"license:apache-2.0",
"region:us"
] |
robotics
| 2025-08-20T23:13:53Z |
---
datasets: bonnieliu2002/collect_empty_bottle_black_white_wrist
library_name: lerobot
license: apache-2.0
model_name: act
pipeline_tag: robotics
tags:
- lerobot
- robotics
- act
---
# Model Card for act
<!-- Provide a quick summary of what the model is/does. -->
[Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates.
This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
---
## How to Get Started with the Model
For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
Below is the short version on how to train and run inference/eval:
### Train from scratch
```bash
lerobot-train \
--dataset.repo_id=${HF_USER}/<dataset> \
--policy.type=act \
--output_dir=outputs/train/<desired_policy_repo_id> \
--job_name=lerobot_training \
--policy.device=cuda \
--policy.repo_id=${HF_USER}/<desired_policy_repo_id>
--wandb.enable=true
```
_Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._
### Evaluate the policy/run inference
```bash
lerobot-record \
--robot.type=so100_follower \
--dataset.repo_id=<hf_user>/eval_<dataset> \
--policy.path=<hf_user>/<desired_policy_repo_id> \
--episodes=10
```
Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint.
---
## Model Details
- **License:** apache-2.0
|
roeker/blockassist-bc-quick_wiry_owl_1755731562
|
roeker
| 2025-08-20T23:13:29Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:13:23Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
razor534/blockassist-bc-lazy_extinct_termite_1755731372
|
razor534
| 2025-08-20T23:10:21Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"lazy extinct termite",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:10:13Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- lazy extinct termite
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Buura/qwen-coder-1.5b-opencodeinstruct-grpo-v2
|
Buura
| 2025-08-20T23:10:15Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T23:09:36Z |
---
base_model: unsloth/qwen2.5-coder-1.5b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Buura
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen2.5-coder-1.5b-instruct-bnb-4bit
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
MercuryNex/select
|
MercuryNex
| 2025-08-20T23:09:57Z | 0 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"en",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] |
text-to-image
| 2025-08-20T23:08:48Z |
---
license: other
language:
- en
library_name: diffusers
pipeline_tag: text-to-image
tags:
- text-to-image
---
Converted from [https://civitai.com/api/download/models/914390?type=Model&format=SafeTensor&size=full&fp=fp16](https://civitai.com/api/download/models/914390?type=Model&format=SafeTensor&size=full&fp=fp16).
|
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755729570
|
coelacanthxyz
| 2025-08-20T23:09:01Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"finicky thriving grouse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:08:55Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- finicky thriving grouse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755729746
|
sampingkaca72
| 2025-08-20T23:08:34Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"armored stealthy elephant",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:08:31Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- armored stealthy elephant
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
unitova/blockassist-bc-zealous_sneaky_raven_1755729589
|
unitova
| 2025-08-20T23:07:34Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"zealous sneaky raven",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:07:31Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- zealous sneaky raven
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755729441
|
hakimjustbao
| 2025-08-20T23:05:44Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"raging subtle wasp",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:05:41Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- raging subtle wasp
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755729464
|
manusiaperahu2012
| 2025-08-20T23:05:30Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"roaring long tuna",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:05:23Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- roaring long tuna
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
yaelahnal/blockassist-bc-mute_clawed_crab_1755730982
|
yaelahnal
| 2025-08-20T23:04:10Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mute clawed crab",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:03:53Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mute clawed crab
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Chukky10z/blockassist-bc-mammalian_jumping_cougar_1755730956
|
Chukky10z
| 2025-08-20T23:03:28Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mammalian jumping cougar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:03:16Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mammalian jumping cougar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
CycloneDX/cdx1-mlx-MXFP4
|
CycloneDX
| 2025-08-20T23:02:27Z | 0 | 0 |
mlx
|
[
"mlx",
"safetensors",
"qwen2",
"text-generation",
"cdxgen",
"transformers",
"sbom",
"supply-chain-security",
"conversational",
"en",
"dataset:CycloneDX/cdx-docs",
"base_model:CycloneDX/cdx1-mlx",
"base_model:quantized:CycloneDX/cdx1-mlx",
"license:apache-2.0",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"region:us"
] |
text-generation
| 2025-08-20T22:40:46Z |
---
base_model: CycloneDX/cdx1-mlx
language:
- en
library_name: mlx
license: apache-2.0
tags:
- cdxgen
- transformers
- sbom
- supply-chain-security
- mlx
pipeline_tag: text-generation
datasets:
- CycloneDX/cdx-docs
---
|
lilTAT/blockassist-bc-gentle_rugged_hare_1755730453
|
lilTAT
| 2025-08-20T22:54:50Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle rugged hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:54:43Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle rugged hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755728887
|
kojeklollipop
| 2025-08-20T22:54:32Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"spotted amphibious stork",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:54:28Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- spotted amphibious stork
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Jackmin108/Qwen3-30B-A3B-Base-Fast
|
Jackmin108
| 2025-08-20T22:54:15Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3_moe",
"text-generation",
"conversational",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-19T05:23:42Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755728733
|
vwzyrraz7l
| 2025-08-20T22:53:01Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tall hunting vulture",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:52:57Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tall hunting vulture
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
roeker/blockassist-bc-quick_wiry_owl_1755730333
|
roeker
| 2025-08-20T22:53:00Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:52:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
AnonymousCS/xlmr_immigration_combo28_3
|
AnonymousCS
| 2025-08-20T22:51:16Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-20T22:48:01Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo28_3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo28_3
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1979
- Accuracy: 0.9499
- 1-f1: 0.9228
- 1-recall: 0.8996
- 1-precision: 0.9472
- Balanced Acc: 0.9373
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.1409 | 1.0 | 25 | 0.2124 | 0.9332 | 0.9026 | 0.9305 | 0.8764 | 0.9325 |
| 0.147 | 2.0 | 50 | 0.1840 | 0.9447 | 0.9142 | 0.8842 | 0.9463 | 0.9296 |
| 0.1637 | 3.0 | 75 | 0.1922 | 0.9486 | 0.9209 | 0.8996 | 0.9433 | 0.9363 |
| 0.0762 | 4.0 | 100 | 0.1979 | 0.9499 | 0.9228 | 0.8996 | 0.9472 | 0.9373 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
yaelahnal/blockassist-bc-mute_clawed_crab_1755730158
|
yaelahnal
| 2025-08-20T22:50:27Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mute clawed crab",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:50:09Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mute clawed crab
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
roeker/blockassist-bc-quick_wiry_owl_1755730036
|
roeker
| 2025-08-20T22:48:36Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:48:02Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755728497
|
ihsanridzi
| 2025-08-20T22:47:55Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wiry flexible owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:47:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wiry flexible owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ntkhoi/Qwen3-4B-Medical-SFT-0820-checkpoint-1000
|
ntkhoi
| 2025-08-20T22:45:53Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T22:44:52Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
AnonymousCS/xlmr_immigration_combo28_1
|
AnonymousCS
| 2025-08-20T22:45:10Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-20T22:42:30Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo28_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo28_1
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1999
- Accuracy: 0.9254
- 1-f1: 0.8872
- 1-recall: 0.8803
- 1-precision: 0.8941
- Balanced Acc: 0.9141
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.2658 | 1.0 | 25 | 0.1760 | 0.9370 | 0.9022 | 0.8726 | 0.9339 | 0.9209 |
| 0.2375 | 2.0 | 50 | 0.1887 | 0.9319 | 0.8942 | 0.8649 | 0.9256 | 0.9151 |
| 0.2602 | 3.0 | 75 | 0.1999 | 0.9254 | 0.8872 | 0.8803 | 0.8941 | 0.9141 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
zijian2022/testinga_dp_original
|
zijian2022
| 2025-08-20T22:44:30Z | 0 | 0 |
lerobot
|
[
"lerobot",
"safetensors",
"diffusion",
"robotics",
"dataset:zijian2022/y7",
"arxiv:2303.04137",
"license:apache-2.0",
"region:us"
] |
robotics
| 2025-08-20T20:47:10Z |
---
datasets: zijian2022/y7
library_name: lerobot
license: apache-2.0
model_name: diffusion
pipeline_tag: robotics
tags:
- diffusion
- lerobot
- robotics
---
# Model Card for diffusion
<!-- Provide a quick summary of what the model is/does. -->
[Diffusion Policy](https://huggingface.co/papers/2303.04137) treats visuomotor control as a generative diffusion process, producing smooth, multi-step action trajectories that excel at contact-rich manipulation.
This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
---
## How to Get Started with the Model
For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
Below is the short version on how to train and run inference/eval:
### Train from scratch
```bash
python -m lerobot.scripts.train \
--dataset.repo_id=${HF_USER}/<dataset> \
--policy.type=act \
--output_dir=outputs/train/<desired_policy_repo_id> \
--job_name=lerobot_training \
--policy.device=cuda \
--policy.repo_id=${HF_USER}/<desired_policy_repo_id>
--wandb.enable=true
```
_Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._
### Evaluate the policy/run inference
```bash
python -m lerobot.record \
--robot.type=so100_follower \
--dataset.repo_id=<hf_user>/eval_<dataset> \
--policy.path=<hf_user>/<desired_policy_repo_id> \
--episodes=10
```
Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint.
---
## Model Details
- **License:** apache-2.0
|
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755727787
|
calegpedia
| 2025-08-20T22:36:50Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stealthy slimy rooster",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:36:47Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stealthy slimy rooster
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755727867
|
lisaozill03
| 2025-08-20T22:35:55Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rugged prickly alpaca",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:35:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rugged prickly alpaca
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Leoar/blockassist-bc-pudgy_toothy_cheetah_1755729195
|
Leoar
| 2025-08-20T22:35:10Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"pudgy toothy cheetah",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:35:01Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- pudgy toothy cheetah
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
unitova/blockassist-bc-zealous_sneaky_raven_1755727792
|
unitova
| 2025-08-20T22:35:10Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"zealous sneaky raven",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:35:05Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- zealous sneaky raven
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
arianaazarbal/standard_tpr_0.8-20250820_164950-sft-adapter
|
arianaazarbal
| 2025-08-20T22:34:55Z | 0 | 0 | null |
[
"pytorch",
"region:us"
] | null | 2025-08-20T22:33:41Z |
# SFT LoRA Adapter
Experiment: standard_tpr_0.8
Timestamp: 20250820_164950
This model was trained as part of the deception-evasion-honesty experiments.
## Model Details
- **Type**: SFT LoRA Adapter
- **Experiment Name**: standard_tpr_0.8
- **Training Timestamp**: 20250820_164950
|
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755727554
|
coelacanthxyz
| 2025-08-20T22:33:44Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"finicky thriving grouse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:33:38Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- finicky thriving grouse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
AnonymousCS/xlmr_immigration_combo27_4
|
AnonymousCS
| 2025-08-20T22:33:22Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-20T22:30:28Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo27_4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo27_4
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2079
- Accuracy: 0.9422
- 1-f1: 0.9149
- 1-recall: 0.9344
- 1-precision: 0.8963
- Balanced Acc: 0.9402
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.1364 | 1.0 | 25 | 0.1461 | 0.9524 | 0.9256 | 0.8880 | 0.9664 | 0.9363 |
| 0.1483 | 2.0 | 50 | 0.1501 | 0.9550 | 0.9304 | 0.9035 | 0.9590 | 0.9421 |
| 0.112 | 3.0 | 75 | 0.2079 | 0.9422 | 0.9149 | 0.9344 | 0.8963 | 0.9402 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
roeker/blockassist-bc-quick_wiry_owl_1755729105
|
roeker
| 2025-08-20T22:32:31Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:32:25Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
roeker/blockassist-bc-quick_wiry_owl_1755728798
|
roeker
| 2025-08-20T22:27:53Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:27:17Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
OpenVINO/Qwen2.5-Coder-7B-Instruct-fp16-ov
|
OpenVINO
| 2025-08-20T22:25:06Z | 0 | 0 |
transformers
|
[
"transformers",
"openvino",
"qwen2",
"text-generation",
"code",
"codeqwen",
"chat",
"qwen",
"qwen-coder",
"conversational",
"en",
"base_model:Qwen/Qwen2.5-Coder-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-Coder-7B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T22:15:59Z |
---
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct/blob/main/LICENSE
language:
- en
base_model:
- Qwen/Qwen2.5-Coder-7B-Instruct
pipeline_tag: text-generation
library_name: transformers
tags:
- code
- codeqwen
- chat
- qwen
- qwen-coder
---
# Qwen2.5-Coder-7B-Instruct-fp16-ov
* Model creator: [Qwen](https://huggingface.co/Qwen)
* Original model: [Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct)
## Description
This is [Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to FP16.
## Compatibility
The provided OpenVINO™ IR model is compatible with:
* OpenVINO version 2025.2.0 and higher
* Optimum Intel 1.25.0 and higher
## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
```
pip install optimum[openvino]
```
2. Run model inference:
```
from transformers import AutoTokenizer
from optimum.intel.openvino import OVModelForCausalLM
model_id = "OpenVINO/Qwen2.5-Coder-7B-Instruct-fp16-ov"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = OVModelForCausalLM.from_pretrained(model_id)
inputs = tokenizer("write a quick sort algorithm.", return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
```
For more examples and possible optimizations, refer to the [Inference with Optimum Intel](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-optimum-intel.html).
## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)
1. Install packages required for using OpenVINO GenAI.
```
pip install openvino-genai huggingface_hub
```
2. Download model from HuggingFace Hub
```
import huggingface_hub as hf_hub
model_id = "OpenVINO/Qwen2.5-Coder-7B-Instruct-fp16-ov"
model_path = "Qwen2.5-Coder-7B-Instruct-fp16-ov"
hf_hub.snapshot_download(model_id, local_dir=model_path)
```
3. Run model inference:
```
import openvino_genai as ov_genai
device = "CPU"
pipe = ov_genai.LLMPipeline(model_path, device)
pipe.get_tokenizer().set_chat_template(pipe.get_tokenizer().chat_template)
print(pipe.generate("write a quick sort algorithm.", max_length=200))
```
More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)
You can find more detaild usage examples in OpenVINO Notebooks:
- [LLM](https://openvinotoolkit.github.io/openvino_notebooks/?search=LLM)
- [RAG text generation](https://openvinotoolkit.github.io/openvino_notebooks/?search=RAG+system&tasks=Text+Generation)
## Limitations
Check the original [model card](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) for limitations.
## Legal information
The original model is distributed under [Apache License Version 2.0](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct/blob/main/LICENSE) license. More details can be found in [Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct).
## Disclaimer
Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
|
chainway9/blockassist-bc-untamed_quick_eel_1755727084
|
chainway9
| 2025-08-20T22:23:32Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"untamed quick eel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:23:28Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- untamed quick eel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
busyyy/blockassist-bc-bipedal_deadly_dinosaur_1755726597
|
busyyy
| 2025-08-20T22:19:36Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"bipedal deadly dinosaur",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:18:12Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- bipedal deadly dinosaur
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Muapi/rough-water-colors
|
Muapi
| 2025-08-20T22:19:17Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T22:18:59Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Rough Water Colors

**Base model**: Flux.1 D
**Trained words**:
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1457421@1648000", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
rbelanec/train_conala_1755694511
|
rbelanec
| 2025-08-20T22:19:02Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"llama-factory",
"prefix-tuning",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct",
"license:llama3",
"region:us"
] | null | 2025-08-20T22:02:04Z |
---
library_name: peft
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- llama-factory
- prefix-tuning
- generated_from_trainer
model-index:
- name: train_conala_1755694511
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# train_conala_1755694511
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the conala dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2638
- Num Input Tokens Seen: 1382584
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 123
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:-----:|:---------------:|:-----------------:|
| 0.9354 | 0.5005 | 536 | 0.8337 | 68880 |
| 0.9609 | 1.0009 | 1072 | 0.7219 | 138320 |
| 0.5536 | 1.5014 | 1608 | 0.6741 | 207744 |
| 0.3862 | 2.0019 | 2144 | 0.6362 | 276856 |
| 0.6441 | 2.5023 | 2680 | 0.6552 | 346040 |
| 0.582 | 3.0028 | 3216 | 0.6596 | 415184 |
| 0.3643 | 3.5033 | 3752 | 0.6909 | 484576 |
| 0.2223 | 4.0037 | 4288 | 0.7160 | 553632 |
| 0.1992 | 4.5042 | 4824 | 0.7488 | 623280 |
| 0.1908 | 5.0047 | 5360 | 0.7194 | 691912 |
| 0.223 | 5.5051 | 5896 | 0.8461 | 762008 |
| 0.1581 | 6.0056 | 6432 | 0.8329 | 830744 |
| 0.037 | 6.5061 | 6968 | 0.9954 | 900568 |
| 0.0216 | 7.0065 | 7504 | 0.9716 | 969200 |
| 0.095 | 7.5070 | 8040 | 1.0835 | 1037856 |
| 0.0669 | 8.0075 | 8576 | 1.0836 | 1107480 |
| 0.1067 | 8.5079 | 9112 | 1.2072 | 1176200 |
| 0.0466 | 9.0084 | 9648 | 1.2154 | 1245744 |
| 0.0126 | 9.5089 | 10184 | 1.2640 | 1314112 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
|
Muapi/santa-claus-style-xl-sd-1.5-f1d
|
Muapi
| 2025-08-20T22:17:47Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T22:17:34Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Santa Claus (style) XL + SD 1.5 + F1D

**Base model**: Flux.1 D
**Trained words**: Santa Claus
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:220765@1168169", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755726734
|
rvipitkirubbe
| 2025-08-20T22:17:05Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mottled foraging ape",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:17:02Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mottled foraging ape
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
MU-NLPC/F0_Energy_joint_VQVAE_embeddings-norm_interp
|
MU-NLPC
| 2025-08-20T22:16:39Z | 22 | 0 |
transformers
|
[
"transformers",
"safetensors",
"prosody_quantizer",
"feature-extraction",
"custom_code",
"region:us"
] |
feature-extraction
| 2025-08-12T11:45:42Z |
---
library_name: transformers
tags: []
---
Model adapted from: https://github.com/facebookresearch/speech-resynthesis
This repository contains a VQ-VAE model trained to generate high-quality joint vector embeddings of the F0 and Energy features of speech,
published in the paper https://www.isca-archive.org/interspeech_2025/portes25_interspeech.html.
This preprocessing strategy used in this repository is __Interpolation + Normalization__.
For __Normalization + Voicedness mask__, see https://huggingface.co/MU-NLPC/F0_Energy_joint_VQVAE_embeddings
For __Interpolation__, see https://huggingface.co/MU-NLPC/F0_Energy_joint_VQVAE_embeddings-interp
The script for running the model is included in the __generate_embeddings.py__ file.
To use, clone this repository, create a virtual environment based on the pyproject.toml file,
for example by running:
```
poetry install
```
Then, in the generate_embeddings.py script, select the dataset, uncomment the
```
#trust_remote_code=True
```
lines, and run the script:
```
poetry run python generate_embeddings.py
```
Note: While the model was trained using audio sampled at 16khz, the performance seems to be consistent for 24khz sampled audio as well. Use at your own discretion.
|
MajorJalud/blockassist-bc-fast_bristly_sardine_1755727961
|
MajorJalud
| 2025-08-20T22:14:39Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"fast bristly sardine",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:14:30Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- fast bristly sardine
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
8septiadi8/blockassist-bc-curious_lightfooted_mouse_1755727948
|
8septiadi8
| 2025-08-20T22:13:29Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"curious lightfooted mouse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:13:12Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- curious lightfooted mouse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
abcorrea/p3-v2
|
abcorrea
| 2025-08-20T22:13:23Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"generated_from_trainer",
"trl",
"sft",
"conversational",
"base_model:abcorrea/p3-v1",
"base_model:finetune:abcorrea/p3-v1",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T22:05:10Z |
---
base_model: abcorrea/p3-v1
library_name: transformers
model_name: p3-v2
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for p3-v2
This model is a fine-tuned version of [abcorrea/p3-v1](https://huggingface.co/abcorrea/p3-v1).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="abcorrea/p3-v2", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.19.1
- Transformers: 4.52.1
- Pytorch: 2.7.0
- Datasets: 4.0.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
Muapi/ethereal
|
Muapi
| 2025-08-20T22:12:53Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T22:12:40Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Ethereal

**Base model**: Flux.1 D
**Trained words**:
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1016450@1139626", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
Muapi/french-1970-s-satirical-comics-gotlib-style
|
Muapi
| 2025-08-20T22:10:19Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T22:10:08Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# French 1970's Satirical Comics - Gotlib Style

**Base model**: Flux.1 D
**Trained words**: an illustration of, in the style of gotlib
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:525206@1035896", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
Shivam17818/qwen-2.5-7b-instruct-zveria-fast-v3
|
Shivam17818
| 2025-08-20T22:10:07Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"sft",
"trl",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T22:09:56Z |
---
library_name: transformers
model_name: qwen-2.5-7b-instruct-zveria-fast-v3
tags:
- generated_from_trainer
- sft
- trl
licence: license
---
# Model Card for qwen-2.5-7b-instruct-zveria-fast-v3
This model is a fine-tuned version of [None](https://huggingface.co/None).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Shivam17818/qwen-2.5-7b-instruct-zveria-fast-v3", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.2
- Pytorch: 2.6.0+cu124
- Datasets: 4.0.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
AnonymousCS/xlmr_immigration_combo26_4
|
AnonymousCS
| 2025-08-20T22:08:51Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-20T22:06:12Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo26_4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo26_4
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1675
- Accuracy: 0.9614
- 1-f1: 0.9412
- 1-recall: 0.9266
- 1-precision: 0.9562
- Balanced Acc: 0.9527
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.1595 | 1.0 | 25 | 0.1355 | 0.9563 | 0.9323 | 0.9035 | 0.9630 | 0.9431 |
| 0.0853 | 2.0 | 50 | 0.1425 | 0.9614 | 0.9409 | 0.9228 | 0.9598 | 0.9518 |
| 0.1138 | 3.0 | 75 | 0.1675 | 0.9614 | 0.9412 | 0.9266 | 0.9562 | 0.9527 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
mradermacher/teknofest-2025-turkish-edu-v2-GGUF
|
mradermacher
| 2025-08-20T22:08:51Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"turkish",
"education",
"teknofest-2025",
"qwen",
"text-generation",
"lora",
"tr",
"dataset:Huseyin/final2",
"base_model:Huseyin/teknofest-2025-turkish-edu-v2",
"base_model:adapter:Huseyin/teknofest-2025-turkish-edu-v2",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] |
text-generation
| 2025-08-20T17:36:48Z |
---
base_model: Huseyin/teknofest-2025-turkish-edu-v2
datasets:
- Huseyin/final2
language: tr
library_name: transformers
license: apache-2.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- turkish
- education
- teknofest-2025
- qwen
- text-generation
- lora
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/Huseyin/teknofest-2025-turkish-edu-v2
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#teknofest-2025-turkish-edu-v2-GGUF).***
weighted/imatrix quants are available at https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.Q2_K.gguf) | Q2_K | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.Q3_K_S.gguf) | Q3_K_S | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.Q3_K_M.gguf) | Q3_K_M | 4.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.Q3_K_L.gguf) | Q3_K_L | 4.5 | |
| [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.IQ4_XS.gguf) | IQ4_XS | 4.7 | |
| [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.Q4_K_S.gguf) | Q4_K_S | 4.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.Q4_K_M.gguf) | Q4_K_M | 5.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.Q5_K_S.gguf) | Q5_K_S | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.Q5_K_M.gguf) | Q5_K_M | 6.0 | |
| [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.Q6_K.gguf) | Q6_K | 6.8 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.Q8_0.gguf) | Q8_0 | 8.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.f16.gguf) | f16 | 16.5 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
marcovise/TextEmbedding3SmallSentimentHead
|
marcovise
| 2025-08-20T22:08:34Z | 0 | 0 |
transformers
|
[
"transformers",
"pytorch",
"sentiment-head",
"feature-extraction",
"sentiment-analysis",
"text-classification",
"openai-embeddings",
"custom_code",
"license:mit",
"region:us"
] |
text-classification
| 2025-08-20T21:50:00Z |
---
license: mit
tags:
- sentiment-analysis
- text-classification
- openai-embeddings
- pytorch
pipeline_tag: text-classification
library_name: transformers
---
# TextEmbedding3SmallSentimentHead
In case you needed a sentiment analysis classifier on top of embeddings from OpenAI embeddings model.
## Model Description
- **What this is**: A compact PyTorch classifier head trained on top of `text-embedding-3-small` (1536-dim) to predict sentiment: negative, neutral, positive.
- **Data**: Preprocessed from the [Kaggle Sentiment Analysis Dataset](https://www.kaggle.com/datasets/abhi8923shriv/sentiment-analysis-dataset).
- **Metrics (val)**: **F1 macro ≈ 0.89**, **Accuracy ≈ 0.89** on a held-out validation split.
- **Architecture**: Simple MLP head (256 hidden units, dropout 0.2), trained for 5 epochs with Adam.
## Input/Output
- **Input**: Float32 tensor of shape `[batch, 1536]` (OpenAI text-embedding-3-small embeddings).
- **Output**: Logits over 3 classes. Argmax → {0: negative, 1: neutral, 2: positive}.
## Usage
```python
from transformers import AutoModel
import torch
# Load model
model = AutoModel.from_pretrained(
"marcovise/TextEmbedding3SmallSentimentHead",
trust_remote_code=True
).eval()
# Your 1536-dim OpenAI embeddings
embeddings = torch.randn(4, 1536) # batch of 4 examples
# Predict sentiment
with torch.no_grad():
logits = model(inputs_embeds=embeddings)["logits"] # [batch, 3]
predictions = logits.argmax(dim=1) # [batch]
# 0=negative, 1=neutral, 2=positive
print(predictions) # tensor([1, 0, 2, 1])
```
## Training Details
- **Training data**: Kaggle Sentiment Analysis Dataset
- **Preprocessing**: Text → OpenAI embeddings → 3-class labels {negative: 0.0, neutral: 0.5, positive: 1.0}
- **Architecture**: 1536 → 256 → ReLU → Dropout(0.2) → 3 classes
- **Optimizer**: Adam (lr=1e-3, weight_decay=1e-4)
- **Loss**: CrossEntropyLoss with label smoothing (0.05)
- **Epochs**: 5
## Intended Use
- Quick, lightweight sentiment classification for short text once embeddings are available.
- Works well for general sentiment analysis tasks similar to the training distribution.
## Limitations
- Trained on a specific sentiment dataset; may have domain bias.
- Requires OpenAI text-embedding-3-small embeddings as input.
- Not safety-critical; evaluate before production use.
- May reflect biases present in the training data.
## License
MIT
|
Muapi/flux-abstractmorph
|
Muapi
| 2025-08-20T22:08:33Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T22:08:17Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# FLUX AbstractMorph

**Base model**: Flux.1 D
**Trained words**: bo-abstract
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:776859@868850", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
Muapi/unfazed-character-enhancer-anime-style
|
Muapi
| 2025-08-20T22:07:43Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T22:07:28Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Unfazed - character enhancer (anime style)

**Base model**: Flux.1 D
**Trained words**:
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1296402@1943371", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
rbelanec/train_svamp_1755694510
|
rbelanec
| 2025-08-20T22:07:39Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"llama-factory",
"prefix-tuning",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct",
"license:llama3",
"region:us"
] | null | 2025-08-20T22:01:59Z |
---
library_name: peft
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- llama-factory
- prefix-tuning
- generated_from_trainer
model-index:
- name: train_svamp_1755694510
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# train_svamp_1755694510
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the svamp dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1778
- Num Input Tokens Seen: 676320
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 123
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| 0.5526 | 0.5016 | 158 | 0.7046 | 34176 |
| 0.2434 | 1.0032 | 316 | 0.2998 | 67872 |
| 0.0913 | 1.5048 | 474 | 0.1424 | 101696 |
| 0.0227 | 2.0063 | 632 | 0.1410 | 135776 |
| 0.0576 | 2.5079 | 790 | 0.1447 | 169712 |
| 0.0193 | 3.0095 | 948 | 0.1086 | 203712 |
| 0.1033 | 3.5111 | 1106 | 0.1210 | 237664 |
| 0.0019 | 4.0127 | 1264 | 0.1067 | 271472 |
| 0.079 | 4.5143 | 1422 | 0.1393 | 305088 |
| 0.0025 | 5.0159 | 1580 | 0.1451 | 339264 |
| 0.0008 | 5.5175 | 1738 | 0.1677 | 373488 |
| 0.0053 | 6.0190 | 1896 | 0.1908 | 407264 |
| 0.0004 | 6.5206 | 2054 | 0.1609 | 441200 |
| 0.0001 | 7.0222 | 2212 | 0.1493 | 475008 |
| 0.0001 | 7.5238 | 2370 | 0.1729 | 508832 |
| 0.0001 | 8.0254 | 2528 | 0.1765 | 542720 |
| 0.0 | 8.5270 | 2686 | 0.1798 | 576512 |
| 0.0 | 9.0286 | 2844 | 0.1791 | 610688 |
| 0.0 | 9.5302 | 3002 | 0.1781 | 644848 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
|
Muapi/exaggimated
|
Muapi
| 2025-08-20T22:03:03Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T22:02:48Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Exaggimated

**Base model**: Flux.1 D
**Trained words**:
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:794910@888870", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755725736
|
calegpedia
| 2025-08-20T22:03:00Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stealthy slimy rooster",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:02:57Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stealthy slimy rooster
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Muapi/sheep-s-styles-robert-valley
|
Muapi
| 2025-08-20T22:02:34Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T22:02:21Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Sheep's Styles - Robert Valley

**Base model**: Flux.1 D
**Trained words**: ShStyRobVal
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:626250@761171", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
roeker/blockassist-bc-quick_wiry_owl_1755727265
|
roeker
| 2025-08-20T22:02:29Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:01:44Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Wejh/affine-pondering
|
Wejh
| 2025-08-20T22:02:25Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gpt_oss",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T22:00:04Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
lilTAT/blockassist-bc-gentle_rugged_hare_1755727300
|
lilTAT
| 2025-08-20T22:02:17Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle rugged hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:02:10Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle rugged hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
esi777/blockassist-bc-camouflaged_trotting_eel_1755727261
|
esi777
| 2025-08-20T22:01:46Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"camouflaged trotting eel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:01:43Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- camouflaged trotting eel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Muapi/future-noir-retro-sf-illustration-style-syd-mead
|
Muapi
| 2025-08-20T22:01:14Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T22:00:57Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Future Noir: Retro SF Illustration Style (Syd Mead)

**Base model**: Flux.1 D
**Trained words**: sydme1 painting
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1057818@1200643", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
punkt2/foodcalculator-gemma-3-270m-it
|
punkt2
| 2025-08-20T22:01:13Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma3_text",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"base_model:unsloth/gemma-3-270m-it",
"base_model:finetune:unsloth/gemma-3-270m-it",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-18T20:43:54Z |
---
base_model: unsloth/gemma-3-270m-it
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3_text
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** punkt2
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-3-270m-it
This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
xiaoabcd/Llama-3.1-8B-bnb-4bit-qz
|
xiaoabcd
| 2025-08-20T22:00:51Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-20T21:59:30Z |
---
base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** xiaoabcd
- **License:** apache-2.0
- **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Muapi/pixel-art-portraits-flux
|
Muapi
| 2025-08-20T22:00:47Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T22:00:32Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Pixel Art Portraits (FLUX)

**Base model**: Flux.1 D
**Trained words**: pixel art portrait
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:864595@967453", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
AnonymousCS/xlmr_immigration_combo26_1
|
AnonymousCS
| 2025-08-20T22:00:15Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-20T21:57:43Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo26_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo26_1
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2140
- Accuracy: 0.9344
- 1-f1: 0.9006
- 1-recall: 0.8919
- 1-precision: 0.9094
- Balanced Acc: 0.9238
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.2591 | 1.0 | 25 | 0.1775 | 0.9409 | 0.9073 | 0.8687 | 0.9494 | 0.9228 |
| 0.2407 | 2.0 | 50 | 0.1862 | 0.9280 | 0.8862 | 0.8417 | 0.9356 | 0.9064 |
| 0.1988 | 3.0 | 75 | 0.2140 | 0.9344 | 0.9006 | 0.8919 | 0.9094 | 0.9238 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755725679
|
quantumxnode
| 2025-08-20T21:59:24Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"dormant peckish seahorse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T21:59:21Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- dormant peckish seahorse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/Datarus-R1-14B-preview-GGUF
|
mradermacher
| 2025-08-20T21:58:56Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:DatarusAI/Datarus-R1-14B-preview",
"base_model:quantized:DatarusAI/Datarus-R1-14B-preview",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-20T17:02:21Z |
---
base_model: DatarusAI/Datarus-R1-14B-preview
language:
- en
library_name: transformers
license: apache-2.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/DatarusAI/Datarus-R1-14B-preview
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Datarus-R1-14B-preview-GGUF).***
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Datarus-R1-14B-preview-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Datarus-R1-14B-preview-GGUF/resolve/main/Datarus-R1-14B-preview.Q2_K.gguf) | Q2_K | 5.9 | |
| [GGUF](https://huggingface.co/mradermacher/Datarus-R1-14B-preview-GGUF/resolve/main/Datarus-R1-14B-preview.Q3_K_S.gguf) | Q3_K_S | 6.8 | |
| [GGUF](https://huggingface.co/mradermacher/Datarus-R1-14B-preview-GGUF/resolve/main/Datarus-R1-14B-preview.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Datarus-R1-14B-preview-GGUF/resolve/main/Datarus-R1-14B-preview.Q3_K_L.gguf) | Q3_K_L | 8.0 | |
| [GGUF](https://huggingface.co/mradermacher/Datarus-R1-14B-preview-GGUF/resolve/main/Datarus-R1-14B-preview.IQ4_XS.gguf) | IQ4_XS | 8.3 | |
| [GGUF](https://huggingface.co/mradermacher/Datarus-R1-14B-preview-GGUF/resolve/main/Datarus-R1-14B-preview.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Datarus-R1-14B-preview-GGUF/resolve/main/Datarus-R1-14B-preview.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Datarus-R1-14B-preview-GGUF/resolve/main/Datarus-R1-14B-preview.Q5_K_S.gguf) | Q5_K_S | 10.4 | |
| [GGUF](https://huggingface.co/mradermacher/Datarus-R1-14B-preview-GGUF/resolve/main/Datarus-R1-14B-preview.Q5_K_M.gguf) | Q5_K_M | 10.6 | |
| [GGUF](https://huggingface.co/mradermacher/Datarus-R1-14B-preview-GGUF/resolve/main/Datarus-R1-14B-preview.Q6_K.gguf) | Q6_K | 12.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Datarus-R1-14B-preview-GGUF/resolve/main/Datarus-R1-14B-preview.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
AnonymousCS/xlmr_immigration_combo26_0
|
AnonymousCS
| 2025-08-20T21:57:39Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-20T21:53:36Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo26_0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo26_0
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2525
- Accuracy: 0.9113
- 1-f1: 0.8691
- 1-recall: 0.8842
- 1-precision: 0.8545
- Balanced Acc: 0.9045
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.6105 | 1.0 | 25 | 0.6039 | 0.6671 | 0.0 | 0.0 | 0.0 | 0.5 |
| 0.3238 | 2.0 | 50 | 0.2721 | 0.8946 | 0.8340 | 0.7954 | 0.8766 | 0.8697 |
| 0.2809 | 3.0 | 75 | 0.2403 | 0.9049 | 0.8471 | 0.7915 | 0.9111 | 0.8765 |
| 0.2353 | 4.0 | 100 | 0.2520 | 0.9049 | 0.8571 | 0.8571 | 0.8571 | 0.8929 |
| 0.2196 | 5.0 | 125 | 0.2525 | 0.9113 | 0.8691 | 0.8842 | 0.8545 | 0.9045 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
lilTAT/blockassist-bc-gentle_rugged_hare_1755727000
|
lilTAT
| 2025-08-20T21:57:18Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle rugged hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T21:57:12Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle rugged hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
roeker/blockassist-bc-quick_wiry_owl_1755726958
|
roeker
| 2025-08-20T21:57:13Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T21:56:36Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Muapi/reptile-skin-ce-sdxl-flux
|
Muapi
| 2025-08-20T21:55:54Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T21:55:18Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Reptile Skin - CE - SDXL & Flux

**Base model**: Flux.1 D
**Trained words**: rptlsknCE style
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:616253@892034", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
plesniar/zangskari-ipa
|
plesniar
| 2025-08-20T21:55:46Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"base_model:facebook/mms-1b-all",
"base_model:finetune:facebook/mms-1b-all",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2025-08-18T01:47:13Z |
---
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
model-index:
- name: zangskari-ipa
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zangskari-ipa
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 32
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
ChenWu98/numina_qwen_2.5_sft_cluster_soft_split_0
|
ChenWu98
| 2025-08-20T21:55:28Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:Qwen/Qwen2.5-1.5B",
"base_model:finetune:Qwen/Qwen2.5-1.5B",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T21:53:30Z |
---
base_model: Qwen/Qwen2.5-1.5B
library_name: transformers
model_name: numina_qwen_2.5_sft_cluster_soft_split_0
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for numina_qwen_2.5_sft_cluster_soft_split_0
This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="None", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chenwu/huggingface/runs/eblv9638)
This model was trained with SFT.
### Framework versions
- TRL: 0.19.1
- Transformers: 4.51.1
- Pytorch: 2.7.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
Muapi/randommaxx-animeniji
|
Muapi
| 2025-08-20T21:53:12Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T21:52:16Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# RandomMaxx Animeniji

**Base model**: Flux.1 D
**Trained words**: Anime, Niji
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:794095@887953", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
roeker/blockassist-bc-quick_wiry_owl_1755726650
|
roeker
| 2025-08-20T21:52:22Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T21:51:33Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Muapi/retro-comic-style-betty-and-me
|
Muapi
| 2025-08-20T21:51:25Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T21:51:13Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Retro comic style (Betty and me)

**Base model**: Flux.1 D
**Trained words**: oodcomi
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:673335@753754", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
Muapi/dystopian-vibes-flux
|
Muapi
| 2025-08-20T21:50:52Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T21:50:05Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Dystopian Vibes //Flux

**Base model**: Flux.1 D
**Trained words**: 0y5top1a8e
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:686779@768626", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
lilTAT/blockassist-bc-gentle_rugged_hare_1755726572
|
lilTAT
| 2025-08-20T21:50:09Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle rugged hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T21:50:02Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle rugged hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
CharlieBoyer/gated2
|
CharlieBoyer
| 2025-08-20T21:50:03Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T21:41:40Z |
---
extra_gated_eu_disallowed: true
---
|
Muapi/reptile-scales
|
Muapi
| 2025-08-20T21:49:39Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T21:49:25Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Reptile Scales

**Base model**: Flux.1 D
**Trained words**:
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:291952@1546655", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755724736
|
coelacanthxyz
| 2025-08-20T21:47:59Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"finicky thriving grouse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T21:47:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- finicky thriving grouse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Muapi/yumemihoshino-planetarian
|
Muapi
| 2025-08-20T21:47:23Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T21:47:00Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# YumemiHoshino(星野梦美)-Planetarian(星之梦)

**Base model**: Flux.1 D
**Trained words**: Yumemi
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:26134@1201465", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
chainway9/blockassist-bc-untamed_quick_eel_1755724789
|
chainway9
| 2025-08-20T21:47:12Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"untamed quick eel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T21:47:09Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- untamed quick eel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
OpenVINO/Qwen2.5-Coder-1.5B-Instruct-int4-ov
|
OpenVINO
| 2025-08-20T21:47:12Z | 0 | 0 |
transformers
|
[
"transformers",
"openvino",
"qwen2",
"text-generation",
"code",
"codeqwen",
"chat",
"qwen",
"qwen-coder",
"conversational",
"en",
"base_model:Qwen/Qwen2.5-Coder-1.5B-Instruct",
"base_model:quantized:Qwen/Qwen2.5-Coder-1.5B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T21:46:39Z |
---
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct/blob/main/LICENSE
language:
- en
base_model:
- Qwen/Qwen2.5-Coder-1.5B-Instruct
pipeline_tag: text-generation
library_name: transformers
tags:
- code
- codeqwen
- chat
- qwen
- qwen-coder
base_model_relation: quantized
---
# Qwen2.5-Coder-1.5B-Instruct-int4-ov
* Model creator: [Qwen](https://huggingface.co/Qwen)
* Original model: [Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct)
## Description
This is [Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 by [NNCF](https://github.com/openvinotoolkit/nncf).
## Quantization Parameters
Weight compression was performed using `nncf.compress_weights` with the following parameters:
* mode: **INT4_ASYM**
For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2025/openvino-workflow/model-optimization-guide/weight-compression.html).
## Compatibility
The provided OpenVINO™ IR model is compatible with:
* OpenVINO version 2025.2.0 and higher
* Optimum Intel 1.25.0 and higher
## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
```
pip install optimum[openvino]
```
2. Run model inference:
```
from transformers import AutoTokenizer
from optimum.intel.openvino import OVModelForCausalLM
model_id = "OpenVINO/Qwen2.5-Coder-1.5B-Instruct-int4-ov"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = OVModelForCausalLM.from_pretrained(model_id)
inputs = tokenizer("write a quick sort algorithm.", return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
```
For more examples and possible optimizations, refer to the [Inference with Optimum Intel](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-optimum-intel.html).
## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)
1. Install packages required for using OpenVINO GenAI.
```
pip install openvino-genai huggingface_hub
```
2. Download model from HuggingFace Hub
```
import huggingface_hub as hf_hub
model_id = "OpenVINO/Qwen2.5-Coder-1.5B-Instruct-int4-ov"
model_path = "Qwen2.5-Coder-1.5B-Instruct-int4-ov"
hf_hub.snapshot_download(model_id, local_dir=model_path)
```
3. Run model inference:
```
import openvino_genai as ov_genai
device = "CPU"
pipe = ov_genai.LLMPipeline(model_path, device)
pipe.get_tokenizer().set_chat_template(pipe.get_tokenizer().chat_template)
print(pipe.generate("write a quick sort algorithm.", max_length=200))
```
More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)
You can find more detaild usage examples in OpenVINO Notebooks:
- [LLM](https://openvinotoolkit.github.io/openvino_notebooks/?search=LLM)
- [RAG text generation](https://openvinotoolkit.github.io/openvino_notebooks/?search=RAG+system&tasks=Text+Generation)
## Limitations
Check the original [model card](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct) for limitations.
## Legal information
The original model is distributed under [Apache License Version 2.0](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct/blob/main/LICENSE) license. More details can be found in [Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct).
## Disclaimer
Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
|
birx-web/Qwen3-Coder-30B-A3B-Instruct-Q4_K_M-GGUF
|
birx-web
| 2025-08-20T21:46:19Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"base_model:Qwen/Qwen3-Coder-30B-A3B-Instruct",
"base_model:quantized:Qwen/Qwen3-Coder-30B-A3B-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] |
text-generation
| 2025-08-20T21:45:05Z |
---
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
base_model: Qwen/Qwen3-Coder-30B-A3B-Instruct
tags:
- llama-cpp
- gguf-my-repo
---
# birx-web/Qwen3-Coder-30B-A3B-Instruct-Q4_K_M-GGUF
This model was converted to GGUF format from [`Qwen/Qwen3-Coder-30B-A3B-Instruct`](https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo birx-web/Qwen3-Coder-30B-A3B-Instruct-Q4_K_M-GGUF --hf-file qwen3-coder-30b-a3b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo birx-web/Qwen3-Coder-30B-A3B-Instruct-Q4_K_M-GGUF --hf-file qwen3-coder-30b-a3b-instruct-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo birx-web/Qwen3-Coder-30B-A3B-Instruct-Q4_K_M-GGUF --hf-file qwen3-coder-30b-a3b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo birx-web/Qwen3-Coder-30B-A3B-Instruct-Q4_K_M-GGUF --hf-file qwen3-coder-30b-a3b-instruct-q4_k_m.gguf -c 2048
```
|
Muapi/pegasus-knight-fire-emblem-pony-flux-il-nai
|
Muapi
| 2025-08-20T21:45:37Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T21:45:22Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Pegasus knight / ペガサスナイト (Fire Emblem) Pony/Flux/IL/NAI

**Base model**: Flux.1 D
**Trained words**: pegasus knight, horse, horseback riding, pegasus,, shoulder armor, breastplate, pegasus knight uniform \(fire emblem\)
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:530189@967666", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
lilTAT/blockassist-bc-gentle_rugged_hare_1755726280
|
lilTAT
| 2025-08-20T21:45:18Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle rugged hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T21:45:11Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle rugged hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.