Dataset Viewer
repo
stringclasses 798
values | file
stringclasses 672
values | content
stringlengths 4
6.59k
|
---|---|---|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
"""Python implementation of Grovers algorithm through use of the Qiskit library to find the value 3 (|11>)
out of four possible values."""
#import numpy and plot library
import matplotlib.pyplot as plt
import numpy as np
# importing Qiskit
from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute
from qiskit.providers.ibmq import least_busy
from qiskit.quantum_info import Statevector
# import basic plot tools
from qiskit.visualization import plot_histogram
# define variables, 1) initialize qubits to zero
n = 2
grover_circuit = QuantumCircuit(n)
#define initialization function
def initialize_s(qc, qubits):
'''Apply a H-gate to 'qubits' in qc'''
for q in qubits:
qc.h(q)
return qc
### begin grovers circuit ###
#2) Put qubits in equal state of superposition
grover_circuit = initialize_s(grover_circuit, [0,1])
# 3) Apply oracle reflection to marked instance x_0 = 3, (|11>)
grover_circuit.cz(0,1)
statevec = job_sim.result().get_statevector()
from qiskit_textbook.tools import vector2latex
vector2latex(statevec, pretext="|\\psi\\rangle =")
# 4) apply additional reflection (diffusion operator)
grover_circuit.h([0,1])
grover_circuit.z([0,1])
grover_circuit.cz(0,1)
grover_circuit.h([0,1])
# 5) measure the qubits
grover_circuit.measure_all()
# Load IBM Q account and get the least busy backend device
provider = IBMQ.load_account()
device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and
not x.configuration().simulator and x.status().operational==True))
print("Running on current least busy device: ", device)
from qiskit.tools.monitor import job_monitor
job = execute(grover_circuit, backend=device, shots=1024, optimization_level=3)
job_monitor(job, interval = 2)
results = job.result()
answer = results.get_counts(grover_circuit)
plot_histogram(answer)
#highest amplitude should correspond with marked value x_0 (|11>)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
"""Python implementation of Grovers algorithm through use of the Qiskit library to find the value 3 (|11>)
out of four possible values."""
#import numpy and plot library
import matplotlib.pyplot as plt
import numpy as np
# importing Qiskit
from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute
from qiskit.providers.ibmq import least_busy
from qiskit.quantum_info import Statevector
# import basic plot tools
from qiskit.visualization import plot_histogram
# define variables, 1) initialize qubits to zero
n = 2
grover_circuit = QuantumCircuit(n)
#define initialization function
def initialize_s(qc, qubits):
'''Apply a H-gate to 'qubits' in qc'''
for q in qubits:
qc.h(q)
return qc
### begin grovers circuit ###
#2) Put qubits in equal state of superposition
grover_circuit = initialize_s(grover_circuit, [0,1])
# 3) Apply oracle reflection to marked instance x_0 = 3, (|11>)
grover_circuit.cz(0,1)
statevec = job_sim.result().get_statevector()
from qiskit_textbook.tools import vector2latex
vector2latex(statevec, pretext="|\\psi\\rangle =")
# 4) apply additional reflection (diffusion operator)
grover_circuit.h([0,1])
grover_circuit.z([0,1])
grover_circuit.cz(0,1)
grover_circuit.h([0,1])
# 5) measure the qubits
grover_circuit.measure_all()
# Load IBM Q account and get the least busy backend device
provider = IBMQ.load_account()
device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and
not x.configuration().simulator and x.status().operational==True))
print("Running on current least busy device: ", device)
from qiskit.tools.monitor import job_monitor
job = execute(grover_circuit, backend=device, shots=1024, optimization_level=3)
job_monitor(job, interval = 2)
results = job.result()
answer = results.get_counts(grover_circuit)
plot_histogram(answer)
#highest amplitude should correspond with marked value x_0 (|11>)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
"""Python implementation of Grovers algorithm through use of the Qiskit library to find the value 3 (|11>)
out of four possible values."""
#import numpy and plot library
import matplotlib.pyplot as plt
import numpy as np
# importing Qiskit
from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute
from qiskit.providers.ibmq import least_busy
from qiskit.quantum_info import Statevector
# import basic plot tools
from qiskit.visualization import plot_histogram
# define variables, 1) initialize qubits to zero
n = 2
grover_circuit = QuantumCircuit(n)
#define initialization function
def initialize_s(qc, qubits):
'''Apply a H-gate to 'qubits' in qc'''
for q in qubits:
qc.h(q)
return qc
### begin grovers circuit ###
#2) Put qubits in equal state of superposition
grover_circuit = initialize_s(grover_circuit, [0,1])
# 3) Apply oracle reflection to marked instance x_0 = 3, (|11>)
grover_circuit.cz(0,1)
statevec = job_sim.result().get_statevector()
from qiskit_textbook.tools import vector2latex
vector2latex(statevec, pretext="|\\psi\\rangle =")
# 4) apply additional reflection (diffusion operator)
grover_circuit.h([0,1])
grover_circuit.z([0,1])
grover_circuit.cz(0,1)
grover_circuit.h([0,1])
# 5) measure the qubits
grover_circuit.measure_all()
# Load IBM Q account and get the least busy backend device
provider = IBMQ.load_account()
device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and
not x.configuration().simulator and x.status().operational==True))
print("Running on current least busy device: ", device)
from qiskit.tools.monitor import job_monitor
job = execute(grover_circuit, backend=device, shots=1024, optimization_level=3)
job_monitor(job, interval = 2)
results = job.result()
answer = results.get_counts(grover_circuit)
plot_histogram(answer)
#highest amplitude should correspond with marked value x_0 (|11>)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
"""Python implementation of Grovers algorithm through use of the Qiskit library to find the value 3 (|11>)
out of four possible values."""
#import numpy and plot library
import matplotlib.pyplot as plt
import numpy as np
# importing Qiskit
from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute
from qiskit.providers.ibmq import least_busy
from qiskit.quantum_info import Statevector
# import basic plot tools
from qiskit.visualization import plot_histogram
# define variables, 1) initialize qubits to zero
n = 2
grover_circuit = QuantumCircuit(n)
#define initialization function
def initialize_s(qc, qubits):
'''Apply a H-gate to 'qubits' in qc'''
for q in qubits:
qc.h(q)
return qc
### begin grovers circuit ###
#2) Put qubits in equal state of superposition
grover_circuit = initialize_s(grover_circuit, [0,1])
# 3) Apply oracle reflection to marked instance x_0 = 3, (|11>)
grover_circuit.cz(0,1)
statevec = job_sim.result().get_statevector()
from qiskit_textbook.tools import vector2latex
vector2latex(statevec, pretext="|\\psi\\rangle =")
# 4) apply additional reflection (diffusion operator)
grover_circuit.h([0,1])
grover_circuit.z([0,1])
grover_circuit.cz(0,1)
grover_circuit.h([0,1])
# 5) measure the qubits
grover_circuit.measure_all()
# Load IBM Q account and get the least busy backend device
provider = IBMQ.load_account()
device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and
not x.configuration().simulator and x.status().operational==True))
print("Running on current least busy device: ", device)
from qiskit.tools.monitor import job_monitor
job = execute(grover_circuit, backend=device, shots=1024, optimization_level=3)
job_monitor(job, interval = 2)
results = job.result()
answer = results.get_counts(grover_circuit)
plot_histogram(answer)
#highest amplitude should correspond with marked value x_0 (|11>)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
"""Python implementation of Grovers algorithm through use of the Qiskit library to find the value 3 (|11>)
out of four possible values."""
#import numpy and plot library
import matplotlib.pyplot as plt
import numpy as np
# importing Qiskit
from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute
from qiskit.providers.ibmq import least_busy
from qiskit.quantum_info import Statevector
# import basic plot tools
from qiskit.visualization import plot_histogram
# define variables, 1) initialize qubits to zero
n = 2
grover_circuit = QuantumCircuit(n)
#define initialization function
def initialize_s(qc, qubits):
'''Apply a H-gate to 'qubits' in qc'''
for q in qubits:
qc.h(q)
return qc
### begin grovers circuit ###
#2) Put qubits in equal state of superposition
grover_circuit = initialize_s(grover_circuit, [0,1])
# 3) Apply oracle reflection to marked instance x_0 = 3, (|11>)
grover_circuit.cz(0,1)
statevec = job_sim.result().get_statevector()
from qiskit_textbook.tools import vector2latex
vector2latex(statevec, pretext="|\\psi\\rangle =")
# 4) apply additional reflection (diffusion operator)
grover_circuit.h([0,1])
grover_circuit.z([0,1])
grover_circuit.cz(0,1)
grover_circuit.h([0,1])
# 5) measure the qubits
grover_circuit.measure_all()
# Load IBM Q account and get the least busy backend device
provider = IBMQ.load_account()
device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and
not x.configuration().simulator and x.status().operational==True))
print("Running on current least busy device: ", device)
from qiskit.tools.monitor import job_monitor
job = execute(grover_circuit, backend=device, shots=1024, optimization_level=3)
job_monitor(job, interval = 2)
results = job.result()
answer = results.get_counts(grover_circuit)
plot_histogram(answer)
#highest amplitude should correspond with marked value x_0 (|11>)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
This module contains the definition of a base class for quantum fourier transforms.
"""
from abc import abstractmethod
from qiskit import QuantumRegister, QuantumCircuit
from qiskit.aqua import Pluggable, AquaError
class QFT(Pluggable):
"""Base class for QFT.
This method should initialize the module and its configuration, and
use an exception if a component of the module is
available.
Args:
configuration (dict): configuration dictionary
"""
@abstractmethod
def __init__(self, *args, **kwargs):
super().__init__()
@classmethod
def init_params(cls, params):
qft_params = params.get(Pluggable.SECTION_KEY_QFT)
kwargs = {k: v for k, v in qft_params.items() if k != 'name'}
return cls(**kwargs)
@abstractmethod
def _build_matrix(self):
raise NotImplementedError
@abstractmethod
def _build_circuit(self, qubits=None, circuit=None, do_swaps=True):
raise NotImplementedError
def construct_circuit(self, mode='circuit', qubits=None, circuit=None, do_swaps=True):
"""Construct the circuit.
Args:
mode (str): 'matrix' or 'circuit'
qubits (QuantumRegister or qubits): register or qubits to build the circuit on.
circuit (QuantumCircuit): circuit for construction.
do_swaps (bool): include the swaps.
Returns:
The matrix or circuit depending on the specified mode.
"""
if mode == 'circuit':
return self._build_circuit(qubits=qubits, circuit=circuit, do_swaps=do_swaps)
elif mode == 'matrix':
return self._build_matrix()
else:
raise AquaError('Unrecognized mode: {}.'.format(mode))
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
This module contains the definition of a base class for quantum fourier transforms.
"""
from abc import abstractmethod
from qiskit import QuantumRegister, QuantumCircuit
from qiskit.aqua import Pluggable, AquaError
class QFT(Pluggable):
"""Base class for QFT.
This method should initialize the module and its configuration, and
use an exception if a component of the module is
available.
Args:
configuration (dict): configuration dictionary
"""
@abstractmethod
def __init__(self, *args, **kwargs):
super().__init__()
@classmethod
def init_params(cls, params):
qft_params = params.get(Pluggable.SECTION_KEY_QFT)
kwargs = {k: v for k, v in qft_params.items() if k != 'name'}
return cls(**kwargs)
@abstractmethod
def _build_matrix(self):
raise NotImplementedError
@abstractmethod
def _build_circuit(self, qubits=None, circuit=None, do_swaps=True):
raise NotImplementedError
def construct_circuit(self, mode='circuit', qubits=None, circuit=None, do_swaps=True):
"""Construct the circuit.
Args:
mode (str): 'matrix' or 'circuit'
qubits (QuantumRegister or qubits): register or qubits to build the circuit on.
circuit (QuantumCircuit): circuit for construction.
do_swaps (bool): include the swaps.
Returns:
The matrix or circuit depending on the specified mode.
"""
if mode == 'circuit':
return self._build_circuit(qubits=qubits, circuit=circuit, do_swaps=do_swaps)
elif mode == 'matrix':
return self._build_matrix()
else:
raise AquaError('Unrecognized mode: {}.'.format(mode))
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
This module contains the definition of a base class for quantum fourier transforms.
"""
from abc import abstractmethod
from qiskit import QuantumRegister, QuantumCircuit
from qiskit.aqua import Pluggable, AquaError
class QFT(Pluggable):
"""Base class for QFT.
This method should initialize the module and its configuration, and
use an exception if a component of the module is
available.
Args:
configuration (dict): configuration dictionary
"""
@abstractmethod
def __init__(self, *args, **kwargs):
super().__init__()
@classmethod
def init_params(cls, params):
qft_params = params.get(Pluggable.SECTION_KEY_QFT)
kwargs = {k: v for k, v in qft_params.items() if k != 'name'}
return cls(**kwargs)
@abstractmethod
def _build_matrix(self):
raise NotImplementedError
@abstractmethod
def _build_circuit(self, qubits=None, circuit=None, do_swaps=True):
raise NotImplementedError
def construct_circuit(self, mode='circuit', qubits=None, circuit=None, do_swaps=True):
"""Construct the circuit.
Args:
mode (str): 'matrix' or 'circuit'
qubits (QuantumRegister or qubits): register or qubits to build the circuit on.
circuit (QuantumCircuit): circuit for construction.
do_swaps (bool): include the swaps.
Returns:
The matrix or circuit depending on the specified mode.
"""
if mode == 'circuit':
return self._build_circuit(qubits=qubits, circuit=circuit, do_swaps=do_swaps)
elif mode == 'matrix':
return self._build_matrix()
else:
raise AquaError('Unrecognized mode: {}.'.format(mode))
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
This module contains the definition of a base class for quantum fourier transforms.
"""
from abc import abstractmethod
from qiskit import QuantumRegister, QuantumCircuit
from qiskit.aqua import Pluggable, AquaError
class QFT(Pluggable):
"""Base class for QFT.
This method should initialize the module and its configuration, and
use an exception if a component of the module is
available.
Args:
configuration (dict): configuration dictionary
"""
@abstractmethod
def __init__(self, *args, **kwargs):
super().__init__()
@classmethod
def init_params(cls, params):
qft_params = params.get(Pluggable.SECTION_KEY_QFT)
kwargs = {k: v for k, v in qft_params.items() if k != 'name'}
return cls(**kwargs)
@abstractmethod
def _build_matrix(self):
raise NotImplementedError
@abstractmethod
def _build_circuit(self, qubits=None, circuit=None, do_swaps=True):
raise NotImplementedError
def construct_circuit(self, mode='circuit', qubits=None, circuit=None, do_swaps=True):
"""Construct the circuit.
Args:
mode (str): 'matrix' or 'circuit'
qubits (QuantumRegister or qubits): register or qubits to build the circuit on.
circuit (QuantumCircuit): circuit for construction.
do_swaps (bool): include the swaps.
Returns:
The matrix or circuit depending on the specified mode.
"""
if mode == 'circuit':
return self._build_circuit(qubits=qubits, circuit=circuit, do_swaps=do_swaps)
elif mode == 'matrix':
return self._build_matrix()
else:
raise AquaError('Unrecognized mode: {}.'.format(mode))
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
This module contains the definition of a base class for quantum fourier transforms.
"""
from abc import abstractmethod
from qiskit import QuantumRegister, QuantumCircuit
from qiskit.aqua import Pluggable, AquaError
class QFT(Pluggable):
"""Base class for QFT.
This method should initialize the module and its configuration, and
use an exception if a component of the module is
available.
Args:
configuration (dict): configuration dictionary
"""
@abstractmethod
def __init__(self, *args, **kwargs):
super().__init__()
@classmethod
def init_params(cls, params):
qft_params = params.get(Pluggable.SECTION_KEY_QFT)
kwargs = {k: v for k, v in qft_params.items() if k != 'name'}
return cls(**kwargs)
@abstractmethod
def _build_matrix(self):
raise NotImplementedError
@abstractmethod
def _build_circuit(self, qubits=None, circuit=None, do_swaps=True):
raise NotImplementedError
def construct_circuit(self, mode='circuit', qubits=None, circuit=None, do_swaps=True):
"""Construct the circuit.
Args:
mode (str): 'matrix' or 'circuit'
qubits (QuantumRegister or qubits): register or qubits to build the circuit on.
circuit (QuantumCircuit): circuit for construction.
do_swaps (bool): include the swaps.
Returns:
The matrix or circuit depending on the specified mode.
"""
if mode == 'circuit':
return self._build_circuit(qubits=qubits, circuit=circuit, do_swaps=do_swaps)
elif mode == 'matrix':
return self._build_matrix()
else:
raise AquaError('Unrecognized mode: {}.'.format(mode))
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
"""The following is python code utilizing the qiskit library that can be run on extant quantum
hardware using 5 qubits for factoring the integer 15 into 3 and 5. Using period finding,
for a^r mod N = 1, where a = 11 and N = 15 (the integer to be factored) the problem is to find
r values for this identity such that one can find the prime factors of N. For 11^r mod(15) =1,
results (as shown in fig 1.) correspond with period r = 4 (|00100>) and r = 0 (|00000>).
To find the factor, use the equivalence a^r mod 15. From this:
(a^r -1) mod 15 = (a^(r/2) + 1)(a^(r/2) - 1) mod 15.In this case, a = 11. Plugging in the two r
values for this a value yields (11^(0/2) +1)(11^(4/2) - 1) mod 15 = 2*(11 +1)(11-1) mod 15
Thus, we find (24)(20) mod 15. By finding the greatest common factor between the two coefficients,
gcd(24,15) and gcd(20,15), yields 3 and 5 respectively. These are the prime factors of 15,
so the result of running shors algorithm to find the prime factors of an integer using quantum
hardware are demonstrated. Note, this is not the same as the technical implementation of shor's
algorithm described in this section for breaking the discrete log hardness assumption,
though the proof of concept remains."""
# Import libraries
from qiskit.compiler import transpile, assemble
from qiskit.tools.jupyter import *
from qiskit.visualization import *
from numpy import pi
from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute
from qiskit.providers.ibmq import least_busy
from qiskit.visualization import plot_histogram
# Initialize qubit registers
qreg_q = QuantumRegister(5, 'q')
creg_c = ClassicalRegister(5, 'c')
circuit = QuantumCircuit(qreg_q, creg_c)
circuit.reset(qreg_q[0])
circuit.reset(qreg_q[1])
circuit.reset(qreg_q[2])
circuit.reset(qreg_q[3])
circuit.reset(qreg_q[4])
# Apply Hadamard transformations to qubit registers
circuit.h(qreg_q[0])
circuit.h(qreg_q[1])
circuit.h(qreg_q[2])
# Apply first QFT, modular exponentiation, and another QFT
circuit.h(qreg_q[1])
circuit.cx(qreg_q[2], qreg_q[3])
circuit.crx(pi/2, qreg_q[0], qreg_q[1])
circuit.ccx(qreg_q[2], qreg_q[3], qreg_q[4])
circuit.h(qreg_q[0])
circuit.rx(pi/2, qreg_q[2])
circuit.crx(pi/2, qreg_q[1], qreg_q[2])
circuit.crx(pi/2, qreg_q[1], qreg_q[2])
circuit.cx(qreg_q[0], qreg_q[1])
# Measure the qubit registers 0-2
circuit.measure(qreg_q[2], creg_c[2])
circuit.measure(qreg_q[1], creg_c[1])
circuit.measure(qreg_q[0], creg_c[0])
# Get least busy quantum hardware backend to run on
provider = IBMQ.load_account()
device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and
not x.configuration
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
circuit.ccx(qreg_q[2], qreg_q[3], qreg_q[4])
circuit.h(qreg_q[0])
circuit.rx(pi/2, qreg_q[2])
circuit.crx(pi/2, qreg_q[1], qreg_q[2])
circuit.crx(pi/2, qreg_q[1], qreg_q[2])
circuit.cx(qreg_q[0], qreg_q[1])
# Measure the qubit registers 0-2
circuit.measure(qreg_q[2], creg_c[2])
circuit.measure(qreg_q[1], creg_c[1])
circuit.measure(qreg_q[0], creg_c[0])
# Get least busy quantum hardware backend to run on
provider = IBMQ.load_account()
device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and
not x.configuration().simulator and x.status().operational==True))
print("Running on current least busy device: ", device)
# Run the circuit on available quantum hardware and plot histogram
from qiskit.tools.monitor import job_monitor
job = execute(circuit, backend=device, shots=1024, optimization_level=3)
job_monitor(job, interval = 2)
results = job.result()
answer = results.get_counts(circuit)
plot_histogram(answer)
#largest amplitude results correspond with r values used to find the prime factor of N.
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
"""The following is python code utilizing the qiskit library that can be run on extant quantum
hardware using 5 qubits for factoring the integer 15 into 3 and 5. Using period finding,
for a^r mod N = 1, where a = 11 and N = 15 (the integer to be factored) the problem is to find
r values for this identity such that one can find the prime factors of N. For 11^r mod(15) =1,
results (as shown in fig 1.) correspond with period r = 4 (|00100>) and r = 0 (|00000>).
To find the factor, use the equivalence a^r mod 15. From this:
(a^r -1) mod 15 = (a^(r/2) + 1)(a^(r/2) - 1) mod 15.In this case, a = 11. Plugging in the two r
values for this a value yields (11^(0/2) +1)(11^(4/2) - 1) mod 15 = 2*(11 +1)(11-1) mod 15
Thus, we find (24)(20) mod 15. By finding the greatest common factor between the two coefficients,
gcd(24,15) and gcd(20,15), yields 3 and 5 respectively. These are the prime factors of 15,
so the result of running shors algorithm to find the prime factors of an integer using quantum
hardware are demonstrated. Note, this is not the same as the technical implementation of shor's
algorithm described in this section for breaking the discrete log hardness assumption,
though the proof of concept remains."""
# Import libraries
from qiskit.compiler import transpile, assemble
from qiskit.tools.jupyter import *
from qiskit.visualization import *
from numpy import pi
from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute
from qiskit.providers.ibmq import least_busy
from qiskit.visualization import plot_histogram
# Initialize qubit registers
qreg_q = QuantumRegister(5, 'q')
creg_c = ClassicalRegister(5, 'c')
circuit = QuantumCircuit(qreg_q, creg_c)
circuit.reset(qreg_q[0])
circuit.reset(qreg_q[1])
circuit.reset(qreg_q[2])
circuit.reset(qreg_q[3])
circuit.reset(qreg_q[4])
# Apply Hadamard transformations to qubit registers
circuit.h(qreg_q[0])
circuit.h(qreg_q[1])
circuit.h(qreg_q[2])
# Apply first QFT, modular exponentiation, and another QFT
circuit.h(qreg_q[1])
circuit.cx(qreg_q[2], qreg_q[3])
circuit.crx(pi/2, qreg_q[0], qreg_q[1])
circuit.ccx(qreg_q[2], qreg_q[3], qreg_q[4])
circuit.h(qreg_q[0])
circuit.rx(pi/2, qreg_q[2])
circuit.crx(pi/2, qreg_q[1], qreg_q[2])
circuit.crx(pi/2, qreg_q[1], qreg_q[2])
circuit.cx(qreg_q[0], qreg_q[1])
# Measure the qubit registers 0-2
circuit.measure(qreg_q[2], creg_c[2])
circuit.measure(qreg_q[1], creg_c[1])
circuit.measure(qreg_q[0], creg_c[0])
# Get least busy quantum hardware backend to run on
provider = IBMQ.load_account()
device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and
not x.configuration
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
circuit.ccx(qreg_q[2], qreg_q[3], qreg_q[4])
circuit.h(qreg_q[0])
circuit.rx(pi/2, qreg_q[2])
circuit.crx(pi/2, qreg_q[1], qreg_q[2])
circuit.crx(pi/2, qreg_q[1], qreg_q[2])
circuit.cx(qreg_q[0], qreg_q[1])
# Measure the qubit registers 0-2
circuit.measure(qreg_q[2], creg_c[2])
circuit.measure(qreg_q[1], creg_c[1])
circuit.measure(qreg_q[0], creg_c[0])
# Get least busy quantum hardware backend to run on
provider = IBMQ.load_account()
device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and
not x.configuration().simulator and x.status().operational==True))
print("Running on current least busy device: ", device)
# Run the circuit on available quantum hardware and plot histogram
from qiskit.tools.monitor import job_monitor
job = execute(circuit, backend=device, shots=1024, optimization_level=3)
job_monitor(job, interval = 2)
results = job.result()
answer = results.get_counts(circuit)
plot_histogram(answer)
#largest amplitude results correspond with r values used to find the prime factor of N.
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
"""The following is python code utilizing the qiskit library that can be run on extant quantum
hardware using 5 qubits for factoring the integer 15 into 3 and 5. Using period finding,
for a^r mod N = 1, where a = 11 and N = 15 (the integer to be factored) the problem is to find
r values for this identity such that one can find the prime factors of N. For 11^r mod(15) =1,
results (as shown in fig 1.) correspond with period r = 4 (|00100>) and r = 0 (|00000>).
To find the factor, use the equivalence a^r mod 15. From this:
(a^r -1) mod 15 = (a^(r/2) + 1)(a^(r/2) - 1) mod 15.In this case, a = 11. Plugging in the two r
values for this a value yields (11^(0/2) +1)(11^(4/2) - 1) mod 15 = 2*(11 +1)(11-1) mod 15
Thus, we find (24)(20) mod 15. By finding the greatest common factor between the two coefficients,
gcd(24,15) and gcd(20,15), yields 3 and 5 respectively. These are the prime factors of 15,
so the result of running shors algorithm to find the prime factors of an integer using quantum
hardware are demonstrated. Note, this is not the same as the technical implementation of shor's
algorithm described in this section for breaking the discrete log hardness assumption,
though the proof of concept remains."""
# Import libraries
from qiskit.compiler import transpile, assemble
from qiskit.tools.jupyter import *
from qiskit.visualization import *
from numpy import pi
from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute
from qiskit.providers.ibmq import least_busy
from qiskit.visualization import plot_histogram
# Initialize qubit registers
qreg_q = QuantumRegister(5, 'q')
creg_c = ClassicalRegister(5, 'c')
circuit = QuantumCircuit(qreg_q, creg_c)
circuit.reset(qreg_q[0])
circuit.reset(qreg_q[1])
circuit.reset(qreg_q[2])
circuit.reset(qreg_q[3])
circuit.reset(qreg_q[4])
# Apply Hadamard transformations to qubit registers
circuit.h(qreg_q[0])
circuit.h(qreg_q[1])
circuit.h(qreg_q[2])
# Apply first QFT, modular exponentiation, and another QFT
circuit.h(qreg_q[1])
circuit.cx(qreg_q[2], qreg_q[3])
circuit.crx(pi/2, qreg_q[0], qreg_q[1])
circuit.ccx(qreg_q[2], qreg_q[3], qreg_q[4])
circuit.h(qreg_q[0])
circuit.rx(pi/2, qreg_q[2])
circuit.crx(pi/2, qreg_q[1], qreg_q[2])
circuit.crx(pi/2, qreg_q[1], qreg_q[2])
circuit.cx(qreg_q[0], qreg_q[1])
# Measure the qubit registers 0-2
circuit.measure(qreg_q[2], creg_c[2])
circuit.measure(qreg_q[1], creg_c[1])
circuit.measure(qreg_q[0], creg_c[0])
# Get least busy quantum hardware backend to run on
provider = IBMQ.load_account()
device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and
not x.configuration
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
circuit.ccx(qreg_q[2], qreg_q[3], qreg_q[4])
circuit.h(qreg_q[0])
circuit.rx(pi/2, qreg_q[2])
circuit.crx(pi/2, qreg_q[1], qreg_q[2])
circuit.crx(pi/2, qreg_q[1], qreg_q[2])
circuit.cx(qreg_q[0], qreg_q[1])
# Measure the qubit registers 0-2
circuit.measure(qreg_q[2], creg_c[2])
circuit.measure(qreg_q[1], creg_c[1])
circuit.measure(qreg_q[0], creg_c[0])
# Get least busy quantum hardware backend to run on
provider = IBMQ.load_account()
device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and
not x.configuration().simulator and x.status().operational==True))
print("Running on current least busy device: ", device)
# Run the circuit on available quantum hardware and plot histogram
from qiskit.tools.monitor import job_monitor
job = execute(circuit, backend=device, shots=1024, optimization_level=3)
job_monitor(job, interval = 2)
results = job.result()
answer = results.get_counts(circuit)
plot_histogram(answer)
#largest amplitude results correspond with r values used to find the prime factor of N.
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
"""The following is python code utilizing the qiskit library that can be run on extant quantum
hardware using 5 qubits for factoring the integer 15 into 3 and 5. Using period finding,
for a^r mod N = 1, where a = 11 and N = 15 (the integer to be factored) the problem is to find
r values for this identity such that one can find the prime factors of N. For 11^r mod(15) =1,
results (as shown in fig 1.) correspond with period r = 4 (|00100>) and r = 0 (|00000>).
To find the factor, use the equivalence a^r mod 15. From this:
(a^r -1) mod 15 = (a^(r/2) + 1)(a^(r/2) - 1) mod 15.In this case, a = 11. Plugging in the two r
values for this a value yields (11^(0/2) +1)(11^(4/2) - 1) mod 15 = 2*(11 +1)(11-1) mod 15
Thus, we find (24)(20) mod 15. By finding the greatest common factor between the two coefficients,
gcd(24,15) and gcd(20,15), yields 3 and 5 respectively. These are the prime factors of 15,
so the result of running shors algorithm to find the prime factors of an integer using quantum
hardware are demonstrated. Note, this is not the same as the technical implementation of shor's
algorithm described in this section for breaking the discrete log hardness assumption,
though the proof of concept remains."""
# Import libraries
from qiskit.compiler import transpile, assemble
from qiskit.tools.jupyter import *
from qiskit.visualization import *
from numpy import pi
from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute
from qiskit.providers.ibmq import least_busy
from qiskit.visualization import plot_histogram
# Initialize qubit registers
qreg_q = QuantumRegister(5, 'q')
creg_c = ClassicalRegister(5, 'c')
circuit = QuantumCircuit(qreg_q, creg_c)
circuit.reset(qreg_q[0])
circuit.reset(qreg_q[1])
circuit.reset(qreg_q[2])
circuit.reset(qreg_q[3])
circuit.reset(qreg_q[4])
# Apply Hadamard transformations to qubit registers
circuit.h(qreg_q[0])
circuit.h(qreg_q[1])
circuit.h(qreg_q[2])
# Apply first QFT, modular exponentiation, and another QFT
circuit.h(qreg_q[1])
circuit.cx(qreg_q[2], qreg_q[3])
circuit.crx(pi/2, qreg_q[0], qreg_q[1])
circuit.ccx(qreg_q[2], qreg_q[3], qreg_q[4])
circuit.h(qreg_q[0])
circuit.rx(pi/2, qreg_q[2])
circuit.crx(pi/2, qreg_q[1], qreg_q[2])
circuit.crx(pi/2, qreg_q[1], qreg_q[2])
circuit.cx(qreg_q[0], qreg_q[1])
# Measure the qubit registers 0-2
circuit.measure(qreg_q[2], creg_c[2])
circuit.measure(qreg_q[1], creg_c[1])
circuit.measure(qreg_q[0], creg_c[0])
# Get least busy quantum hardware backend to run on
provider = IBMQ.load_account()
device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and
not x.configuration
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
circuit.ccx(qreg_q[2], qreg_q[3], qreg_q[4])
circuit.h(qreg_q[0])
circuit.rx(pi/2, qreg_q[2])
circuit.crx(pi/2, qreg_q[1], qreg_q[2])
circuit.crx(pi/2, qreg_q[1], qreg_q[2])
circuit.cx(qreg_q[0], qreg_q[1])
# Measure the qubit registers 0-2
circuit.measure(qreg_q[2], creg_c[2])
circuit.measure(qreg_q[1], creg_c[1])
circuit.measure(qreg_q[0], creg_c[0])
# Get least busy quantum hardware backend to run on
provider = IBMQ.load_account()
device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and
not x.configuration().simulator and x.status().operational==True))
print("Running on current least busy device: ", device)
# Run the circuit on available quantum hardware and plot histogram
from qiskit.tools.monitor import job_monitor
job = execute(circuit, backend=device, shots=1024, optimization_level=3)
job_monitor(job, interval = 2)
results = job.result()
answer = results.get_counts(circuit)
plot_histogram(answer)
#largest amplitude results correspond with r values used to find the prime factor of N.
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
"""The following is python code utilizing the qiskit library that can be run on extant quantum
hardware using 5 qubits for factoring the integer 15 into 3 and 5. Using period finding,
for a^r mod N = 1, where a = 11 and N = 15 (the integer to be factored) the problem is to find
r values for this identity such that one can find the prime factors of N. For 11^r mod(15) =1,
results (as shown in fig 1.) correspond with period r = 4 (|00100>) and r = 0 (|00000>).
To find the factor, use the equivalence a^r mod 15. From this:
(a^r -1) mod 15 = (a^(r/2) + 1)(a^(r/2) - 1) mod 15.In this case, a = 11. Plugging in the two r
values for this a value yields (11^(0/2) +1)(11^(4/2) - 1) mod 15 = 2*(11 +1)(11-1) mod 15
Thus, we find (24)(20) mod 15. By finding the greatest common factor between the two coefficients,
gcd(24,15) and gcd(20,15), yields 3 and 5 respectively. These are the prime factors of 15,
so the result of running shors algorithm to find the prime factors of an integer using quantum
hardware are demonstrated. Note, this is not the same as the technical implementation of shor's
algorithm described in this section for breaking the discrete log hardness assumption,
though the proof of concept remains."""
# Import libraries
from qiskit.compiler import transpile, assemble
from qiskit.tools.jupyter import *
from qiskit.visualization import *
from numpy import pi
from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute
from qiskit.providers.ibmq import least_busy
from qiskit.visualization import plot_histogram
# Initialize qubit registers
qreg_q = QuantumRegister(5, 'q')
creg_c = ClassicalRegister(5, 'c')
circuit = QuantumCircuit(qreg_q, creg_c)
circuit.reset(qreg_q[0])
circuit.reset(qreg_q[1])
circuit.reset(qreg_q[2])
circuit.reset(qreg_q[3])
circuit.reset(qreg_q[4])
# Apply Hadamard transformations to qubit registers
circuit.h(qreg_q[0])
circuit.h(qreg_q[1])
circuit.h(qreg_q[2])
# Apply first QFT, modular exponentiation, and another QFT
circuit.h(qreg_q[1])
circuit.cx(qreg_q[2], qreg_q[3])
circuit.crx(pi/2, qreg_q[0], qreg_q[1])
circuit.ccx(qreg_q[2], qreg_q[3], qreg_q[4])
circuit.h(qreg_q[0])
circuit.rx(pi/2, qreg_q[2])
circuit.crx(pi/2, qreg_q[1], qreg_q[2])
circuit.crx(pi/2, qreg_q[1], qreg_q[2])
circuit.cx(qreg_q[0], qreg_q[1])
# Measure the qubit registers 0-2
circuit.measure(qreg_q[2], creg_c[2])
circuit.measure(qreg_q[1], creg_c[1])
circuit.measure(qreg_q[0], creg_c[0])
# Get least busy quantum hardware backend to run on
provider = IBMQ.load_account()
device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and
not x.configuration
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
circuit.ccx(qreg_q[2], qreg_q[3], qreg_q[4])
circuit.h(qreg_q[0])
circuit.rx(pi/2, qreg_q[2])
circuit.crx(pi/2, qreg_q[1], qreg_q[2])
circuit.crx(pi/2, qreg_q[1], qreg_q[2])
circuit.cx(qreg_q[0], qreg_q[1])
# Measure the qubit registers 0-2
circuit.measure(qreg_q[2], creg_c[2])
circuit.measure(qreg_q[1], creg_c[1])
circuit.measure(qreg_q[0], creg_c[0])
# Get least busy quantum hardware backend to run on
provider = IBMQ.load_account()
device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and
not x.configuration().simulator and x.status().operational==True))
print("Running on current least busy device: ", device)
# Run the circuit on available quantum hardware and plot histogram
from qiskit.tools.monitor import job_monitor
job = execute(circuit, backend=device, shots=1024, optimization_level=3)
job_monitor(job, interval = 2)
results = job.result()
answer = results.get_counts(circuit)
plot_histogram(answer)
#largest amplitude results correspond with r values used to find the prime factor of N.
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Quantum teleportation example.
Note: if you have only cloned the Qiskit repository but not
used `pip install`, the examples only work from the root directory.
"""
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit import BasicAer
from qiskit import execute
###############################################################
# Set the backend name and coupling map.
###############################################################
coupling_map = [[0, 1], [0, 2], [1, 2], [3, 2], [3, 4], [4, 2]]
backend = BasicAer.get_backend("qasm_simulator")
###############################################################
# Make a quantum program for quantum teleportation.
###############################################################
q = QuantumRegister(3, "q")
c0 = ClassicalRegister(1, "c0")
c1 = ClassicalRegister(1, "c1")
c2 = ClassicalRegister(1, "c2")
qc = QuantumCircuit(q, c0, c1, c2, name="teleport")
# Prepare an initial state
qc.u(0.3, 0.2, 0.1, q[0])
# Prepare a Bell pair
qc.h(q[1])
qc.cx(q[1], q[2])
# Barrier following state preparation
qc.barrier(q)
# Measure in the Bell basis
qc.cx(q[0], q[1])
qc.h(q[0])
qc.measure(q[0], c0[0])
qc.measure(q[1], c1[0])
# Apply a correction
qc.barrier(q)
qc.z(q[2]).c_if(c0, 1)
qc.x(q[2]).c_if(c1, 1)
qc.measure(q[2], c2[0])
###############################################################
# Execute.
# Experiment does not support feedback, so we use the simulator
###############################################################
# First version: not mapped
initial_layout = {q[0]: 0, q[1]: 1, q[2]: 2}
job = execute(qc, backend=backend, coupling_map=None, shots=1024, initial_layout=initial_layout)
result = job.result()
print(result.get_counts(qc))
# Second version: mapped to 2x8 array coupling graph
job = execute(
qc, backend=backend, coupling_map=coupling_map, shots=1024, initial_layout=initial_layout
)
result = job.result()
print(result.get_counts(qc))
# Both versions should give the same distribution
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Quantum teleportation example.
Note: if you have only cloned the Qiskit repository but not
used `pip install`, the examples only work from the root directory.
"""
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit import BasicAer
from qiskit import execute
###############################################################
# Set the backend name and coupling map.
###############################################################
coupling_map = [[0, 1], [0, 2], [1, 2], [3, 2], [3, 4], [4, 2]]
backend = BasicAer.get_backend("qasm_simulator")
###############################################################
# Make a quantum program for quantum teleportation.
###############################################################
q = QuantumRegister(3, "q")
c0 = ClassicalRegister(1, "c0")
c1 = ClassicalRegister(1, "c1")
c2 = ClassicalRegister(1, "c2")
qc = QuantumCircuit(q, c0, c1, c2, name="teleport")
# Prepare an initial state
qc.u(0.3, 0.2, 0.1, q[0])
# Prepare a Bell pair
qc.h(q[1])
qc.cx(q[1], q[2])
# Barrier following state preparation
qc.barrier(q)
# Measure in the Bell basis
qc.cx(q[0], q[1])
qc.h(q[0])
qc.measure(q[0], c0[0])
qc.measure(q[1], c1[0])
# Apply a correction
qc.barrier(q)
qc.z(q[2]).c_if(c0, 1)
qc.x(q[2]).c_if(c1, 1)
qc.measure(q[2], c2[0])
###############################################################
# Execute.
# Experiment does not support feedback, so we use the simulator
###############################################################
# First version: not mapped
initial_layout = {q[0]: 0, q[1]: 1, q[2]: 2}
job = execute(qc, backend=backend, coupling_map=None, shots=1024, initial_layout=initial_layout)
result = job.result()
print(result.get_counts(qc))
# Second version: mapped to 2x8 array coupling graph
job = execute(
qc, backend=backend, coupling_map=coupling_map, shots=1024, initial_layout=initial_layout
)
result = job.result()
print(result.get_counts(qc))
# Both versions should give the same distribution
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Quantum teleportation example.
Note: if you have only cloned the Qiskit repository but not
used `pip install`, the examples only work from the root directory.
"""
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit import BasicAer
from qiskit import execute
###############################################################
# Set the backend name and coupling map.
###############################################################
coupling_map = [[0, 1], [0, 2], [1, 2], [3, 2], [3, 4], [4, 2]]
backend = BasicAer.get_backend("qasm_simulator")
###############################################################
# Make a quantum program for quantum teleportation.
###############################################################
q = QuantumRegister(3, "q")
c0 = ClassicalRegister(1, "c0")
c1 = ClassicalRegister(1, "c1")
c2 = ClassicalRegister(1, "c2")
qc = QuantumCircuit(q, c0, c1, c2, name="teleport")
# Prepare an initial state
qc.u(0.3, 0.2, 0.1, q[0])
# Prepare a Bell pair
qc.h(q[1])
qc.cx(q[1], q[2])
# Barrier following state preparation
qc.barrier(q)
# Measure in the Bell basis
qc.cx(q[0], q[1])
qc.h(q[0])
qc.measure(q[0], c0[0])
qc.measure(q[1], c1[0])
# Apply a correction
qc.barrier(q)
qc.z(q[2]).c_if(c0, 1)
qc.x(q[2]).c_if(c1, 1)
qc.measure(q[2], c2[0])
###############################################################
# Execute.
# Experiment does not support feedback, so we use the simulator
###############################################################
# First version: not mapped
initial_layout = {q[0]: 0, q[1]: 1, q[2]: 2}
job = execute(qc, backend=backend, coupling_map=None, shots=1024, initial_layout=initial_layout)
result = job.result()
print(result.get_counts(qc))
# Second version: mapped to 2x8 array coupling graph
job = execute(
qc, backend=backend, coupling_map=coupling_map, shots=1024, initial_layout=initial_layout
)
result = job.result()
print(result.get_counts(qc))
# Both versions should give the same distribution
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Quantum teleportation example.
Note: if you have only cloned the Qiskit repository but not
used `pip install`, the examples only work from the root directory.
"""
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit import BasicAer
from qiskit import execute
###############################################################
# Set the backend name and coupling map.
###############################################################
coupling_map = [[0, 1], [0, 2], [1, 2], [3, 2], [3, 4], [4, 2]]
backend = BasicAer.get_backend("qasm_simulator")
###############################################################
# Make a quantum program for quantum teleportation.
###############################################################
q = QuantumRegister(3, "q")
c0 = ClassicalRegister(1, "c0")
c1 = ClassicalRegister(1, "c1")
c2 = ClassicalRegister(1, "c2")
qc = QuantumCircuit(q, c0, c1, c2, name="teleport")
# Prepare an initial state
qc.u(0.3, 0.2, 0.1, q[0])
# Prepare a Bell pair
qc.h(q[1])
qc.cx(q[1], q[2])
# Barrier following state preparation
qc.barrier(q)
# Measure in the Bell basis
qc.cx(q[0], q[1])
qc.h(q[0])
qc.measure(q[0], c0[0])
qc.measure(q[1], c1[0])
# Apply a correction
qc.barrier(q)
qc.z(q[2]).c_if(c0, 1)
qc.x(q[2]).c_if(c1, 1)
qc.measure(q[2], c2[0])
###############################################################
# Execute.
# Experiment does not support feedback, so we use the simulator
###############################################################
# First version: not mapped
initial_layout = {q[0]: 0, q[1]: 1, q[2]: 2}
job = execute(qc, backend=backend, coupling_map=None, shots=1024, initial_layout=initial_layout)
result = job.result()
print(result.get_counts(qc))
# Second version: mapped to 2x8 array coupling graph
job = execute(
qc, backend=backend, coupling_map=coupling_map, shots=1024, initial_layout=initial_layout
)
result = job.result()
print(result.get_counts(qc))
# Both versions should give the same distribution
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Quantum teleportation example.
Note: if you have only cloned the Qiskit repository but not
used `pip install`, the examples only work from the root directory.
"""
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit import BasicAer
from qiskit import execute
###############################################################
# Set the backend name and coupling map.
###############################################################
coupling_map = [[0, 1], [0, 2], [1, 2], [3, 2], [3, 4], [4, 2]]
backend = BasicAer.get_backend("qasm_simulator")
###############################################################
# Make a quantum program for quantum teleportation.
###############################################################
q = QuantumRegister(3, "q")
c0 = ClassicalRegister(1, "c0")
c1 = ClassicalRegister(1, "c1")
c2 = ClassicalRegister(1, "c2")
qc = QuantumCircuit(q, c0, c1, c2, name="teleport")
# Prepare an initial state
qc.u(0.3, 0.2, 0.1, q[0])
# Prepare a Bell pair
qc.h(q[1])
qc.cx(q[1], q[2])
# Barrier following state preparation
qc.barrier(q)
# Measure in the Bell basis
qc.cx(q[0], q[1])
qc.h(q[0])
qc.measure(q[0], c0[0])
qc.measure(q[1], c1[0])
# Apply a correction
qc.barrier(q)
qc.z(q[2]).c_if(c0, 1)
qc.x(q[2]).c_if(c1, 1)
qc.measure(q[2], c2[0])
###############################################################
# Execute.
# Experiment does not support feedback, so we use the simulator
###############################################################
# First version: not mapped
initial_layout = {q[0]: 0, q[1]: 1, q[2]: 2}
job = execute(qc, backend=backend, coupling_map=None, shots=1024, initial_layout=initial_layout)
result = job.result()
print(result.get_counts(qc))
# Second version: mapped to 2x8 array coupling graph
job = execute(
qc, backend=backend, coupling_map=coupling_map, shots=1024, initial_layout=initial_layout
)
result = job.result()
print(result.get_counts(qc))
# Both versions should give the same distribution
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
import numpy as np
from qiskit import *
import matplotlib
qr = QuantumRegister(2)
#measurements from quantum bits = use classical register
cr = ClassicalRegister(2)
circuit = QuantumCircuit(qr, cr)
circuit.draw()
# adding quantum gates to create entanglement (Hadamart gate)
circuit.h(qr[0])
%matplotlib inline
circuit.draw(output='mpl')
#two qubit operation control X (logical if)
circuit.cx(qr[0], qr[1])
circuit.draw(output='mpl') #entanglement achieved
#measurement, storing measurements into computational register
circuit.measure(qr,cr)
circuit.draw(output='mpl')
#performance simulations
simulator = Aer.get_backend('qasm_simulator')
execute(circuit, backend = simulator)
result = execute(circuit, backend = simulator).result()
#plotting results
from qiskit.tools.visualization import plot_histogram
plot_histogram(result.get_counts(circuit))
#running circuit on quantum computer
IBMQ.load_account()
provider= IBMQ.get_provider('ibm-q')
qcomp = provider.get_backend('ibmq_manila')
job= execute(circuit, backend=qcomp)
from qiskit.tools import job_monitor
job_monitor(job)
result = job.result()
from qiskit.tools.visualization import plot_histogram
plot_histogram(result.get_counts(circuit), title='Performance metric on Quantum Computer')
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
import numpy as np
from qiskit import *
import matplotlib
qr = QuantumRegister(2)
#measurements from quantum bits = use classical register
cr = ClassicalRegister(2)
circuit = QuantumCircuit(qr, cr)
circuit.draw()
# adding quantum gates to create entanglement (Hadamart gate)
circuit.h(qr[0])
%matplotlib inline
circuit.draw(output='mpl')
#two qubit operation control X (logical if)
circuit.cx(qr[0], qr[1])
circuit.draw(output='mpl') #entanglement achieved
#measurement, storing measurements into computational register
circuit.measure(qr,cr)
circuit.draw(output='mpl')
#performance simulations
simulator = Aer.get_backend('qasm_simulator')
execute(circuit, backend = simulator)
result = execute(circuit, backend = simulator).result()
#plotting results
from qiskit.tools.visualization import plot_histogram
plot_histogram(result.get_counts(circuit))
#running circuit on quantum computer
IBMQ.load_account()
provider= IBMQ.get_provider('ibm-q')
qcomp = provider.get_backend('ibmq_manila')
job= execute(circuit, backend=qcomp)
from qiskit.tools import job_monitor
job_monitor(job)
result = job.result()
from qiskit.tools.visualization import plot_histogram
plot_histogram(result.get_counts(circuit), title='Performance metric on Quantum Computer')
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
import numpy as np
from qiskit import *
import matplotlib
qr = QuantumRegister(2)
#measurements from quantum bits = use classical register
cr = ClassicalRegister(2)
circuit = QuantumCircuit(qr, cr)
circuit.draw()
# adding quantum gates to create entanglement (Hadamart gate)
circuit.h(qr[0])
%matplotlib inline
circuit.draw(output='mpl')
#two qubit operation control X (logical if)
circuit.cx(qr[0], qr[1])
circuit.draw(output='mpl') #entanglement achieved
#measurement, storing measurements into computational register
circuit.measure(qr,cr)
circuit.draw(output='mpl')
#performance simulations
simulator = Aer.get_backend('qasm_simulator')
execute(circuit, backend = simulator)
result = execute(circuit, backend = simulator).result()
#plotting results
from qiskit.tools.visualization import plot_histogram
plot_histogram(result.get_counts(circuit))
#running circuit on quantum computer
IBMQ.load_account()
provider= IBMQ.get_provider('ibm-q')
qcomp = provider.get_backend('ibmq_manila')
job= execute(circuit, backend=qcomp)
from qiskit.tools import job_monitor
job_monitor(job)
result = job.result()
from qiskit.tools.visualization import plot_histogram
plot_histogram(result.get_counts(circuit), title='Performance metric on Quantum Computer')
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
import numpy as np
from qiskit import *
import matplotlib
qr = QuantumRegister(2)
#measurements from quantum bits = use classical register
cr = ClassicalRegister(2)
circuit = QuantumCircuit(qr, cr)
circuit.draw()
# adding quantum gates to create entanglement (Hadamart gate)
circuit.h(qr[0])
%matplotlib inline
circuit.draw(output='mpl')
#two qubit operation control X (logical if)
circuit.cx(qr[0], qr[1])
circuit.draw(output='mpl') #entanglement achieved
#measurement, storing measurements into computational register
circuit.measure(qr,cr)
circuit.draw(output='mpl')
#performance simulations
simulator = Aer.get_backend('qasm_simulator')
execute(circuit, backend = simulator)
result = execute(circuit, backend = simulator).result()
#plotting results
from qiskit.tools.visualization import plot_histogram
plot_histogram(result.get_counts(circuit))
#running circuit on quantum computer
IBMQ.load_account()
provider= IBMQ.get_provider('ibm-q')
qcomp = provider.get_backend('ibmq_manila')
job= execute(circuit, backend=qcomp)
from qiskit.tools import job_monitor
job_monitor(job)
result = job.result()
from qiskit.tools.visualization import plot_histogram
plot_histogram(result.get_counts(circuit), title='Performance metric on Quantum Computer')
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
import numpy as np
from qiskit import *
import matplotlib
qr = QuantumRegister(2)
#measurements from quantum bits = use classical register
cr = ClassicalRegister(2)
circuit = QuantumCircuit(qr, cr)
circuit.draw()
# adding quantum gates to create entanglement (Hadamart gate)
circuit.h(qr[0])
%matplotlib inline
circuit.draw(output='mpl')
#two qubit operation control X (logical if)
circuit.cx(qr[0], qr[1])
circuit.draw(output='mpl') #entanglement achieved
#measurement, storing measurements into computational register
circuit.measure(qr,cr)
circuit.draw(output='mpl')
#performance simulations
simulator = Aer.get_backend('qasm_simulator')
execute(circuit, backend = simulator)
result = execute(circuit, backend = simulator).result()
#plotting results
from qiskit.tools.visualization import plot_histogram
plot_histogram(result.get_counts(circuit))
#running circuit on quantum computer
IBMQ.load_account()
provider= IBMQ.get_provider('ibm-q')
qcomp = provider.get_backend('ibmq_manila')
job= execute(circuit, backend=qcomp)
from qiskit.tools import job_monitor
job_monitor(job)
result = job.result()
from qiskit.tools.visualization import plot_histogram
plot_histogram(result.get_counts(circuit), title='Performance metric on Quantum Computer')
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import *
backend = BasicAer.get_backend('dm_simulator')
qc1 = QuantumCircuit(1)
options1 = {
'custom_densitymatrix': 'max_mixed'
}
run1 = execute(qc1,backend,**options1)
result1 = run1.result()
print('Density Matrix: \n',result1['results'][0]['data']['densitymatrix'])
qc2 = QuantumCircuit(2)
options2 = {
'custom_densitymatrix': 'binary_string',
'initial_densitymatrix': '01'
}
backend = BasicAer.get_backend('dm_simulator')
run2 = execute(qc2,backend,**options2)
result2 = run2.result()
print('Density Matrix: \n',result2['results'][0]['data']['densitymatrix'])
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import *
backend = BasicAer.get_backend('dm_simulator')
qc1 = QuantumCircuit(1)
options1 = {
'custom_densitymatrix': 'max_mixed'
}
run1 = execute(qc1,backend,**options1)
result1 = run1.result()
print('Density Matrix: \n',result1['results'][0]['data']['densitymatrix'])
qc2 = QuantumCircuit(2)
options2 = {
'custom_densitymatrix': 'binary_string',
'initial_densitymatrix': '01'
}
backend = BasicAer.get_backend('dm_simulator')
run2 = execute(qc2,backend,**options2)
result2 = run2.result()
print('Density Matrix: \n',result2['results'][0]['data']['densitymatrix'])
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import *
backend = BasicAer.get_backend('dm_simulator')
qc1 = QuantumCircuit(1)
options1 = {
'custom_densitymatrix': 'max_mixed'
}
run1 = execute(qc1,backend,**options1)
result1 = run1.result()
print('Density Matrix: \n',result1['results'][0]['data']['densitymatrix'])
qc2 = QuantumCircuit(2)
options2 = {
'custom_densitymatrix': 'binary_string',
'initial_densitymatrix': '01'
}
backend = BasicAer.get_backend('dm_simulator')
run2 = execute(qc2,backend,**options2)
result2 = run2.result()
print('Density Matrix: \n',result2['results'][0]['data']['densitymatrix'])
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import *
backend = BasicAer.get_backend('dm_simulator')
qc1 = QuantumCircuit(1)
options1 = {
'custom_densitymatrix': 'max_mixed'
}
run1 = execute(qc1,backend,**options1)
result1 = run1.result()
print('Density Matrix: \n',result1['results'][0]['data']['densitymatrix'])
qc2 = QuantumCircuit(2)
options2 = {
'custom_densitymatrix': 'binary_string',
'initial_densitymatrix': '01'
}
backend = BasicAer.get_backend('dm_simulator')
run2 = execute(qc2,backend,**options2)
result2 = run2.result()
print('Density Matrix: \n',result2['results'][0]['data']['densitymatrix'])
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import *
backend = BasicAer.get_backend('dm_simulator')
qc1 = QuantumCircuit(1)
options1 = {
'custom_densitymatrix': 'max_mixed'
}
run1 = execute(qc1,backend,**options1)
result1 = run1.result()
print('Density Matrix: \n',result1['results'][0]['data']['densitymatrix'])
qc2 = QuantumCircuit(2)
options2 = {
'custom_densitymatrix': 'binary_string',
'initial_densitymatrix': '01'
}
backend = BasicAer.get_backend('dm_simulator')
run2 = execute(qc2,backend,**options2)
result2 = run2.result()
print('Density Matrix: \n',result2['results'][0]['data']['densitymatrix'])
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import *
import numpy as np
%matplotlib inline
qc = QuantumCircuit(1,1)
qc.s(0)
qc.measure(0,0,basis='X')
backend = BasicAer.get_backend('dm_simulator')
run = execute(qc,backend)
result = run.result()
result['results'][0]['data']['densitymatrix']
qc1 = QuantumCircuit(1,1)
qc1.s(0)
qc1.measure(0,0, basis='N', add_param=np.array([1,2,3]))
backend = BasicAer.get_backend('dm_simulator')
run1 = execute(qc1,backend)
result1 = run1.result()
result1['results'][0]['data']['densitymatrix']
qc2 = QuantumCircuit(3,2)
qc2.measure(0,0,basis='Bell',add_param='01')
options2 = {
'plot': True
}
backend = BasicAer.get_backend('dm_simulator')
run2 = execute(qc2,backend,**options2)
result2 = run2.result()
result2['results'][0]['data']['bell_probabilities01']
qc3 = QuantumCircuit(3,3)
qc3.h(0)
qc3.cx(0,1)
qc3.cx(1,2)
qc3.measure(0,0,basis='Ensemble',add_param='X')
backend = BasicAer.get_backend('dm_simulator')
options3 = {
'plot': True
}
run3 = execute(qc3,backend,**options3)
result3 = run3.result()
result3['results'][0]['data']['ensemble_probability']
qc4 = QuantumCircuit(3,3)
qc4.h(0)
qc4.cx(0,1)
qc4.cx(1,2)
qc4.measure(0,0,basis='Expect',add_param='ZIZ')
backend = BasicAer.get_backend('dm_simulator')
run4 = execute(qc4,backend)
result4 = run4.result()
result4['results'][0]['data']['Pauli_string_expectation']
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import *
import numpy as np
%matplotlib inline
qc = QuantumCircuit(1,1)
qc.s(0)
qc.measure(0,0,basis='X')
backend = BasicAer.get_backend('dm_simulator')
run = execute(qc,backend)
result = run.result()
result['results'][0]['data']['densitymatrix']
qc1 = QuantumCircuit(1,1)
qc1.s(0)
qc1.measure(0,0, basis='N', add_param=np.array([1,2,3]))
backend = BasicAer.get_backend('dm_simulator')
run1 = execute(qc1,backend)
result1 = run1.result()
result1['results'][0]['data']['densitymatrix']
qc2 = QuantumCircuit(3,2)
qc2.measure(0,0,basis='Bell',add_param='01')
options2 = {
'plot': True
}
backend = BasicAer.get_backend('dm_simulator')
run2 = execute(qc2,backend,**options2)
result2 = run2.result()
result2['results'][0]['data']['bell_probabilities01']
qc3 = QuantumCircuit(3,3)
qc3.h(0)
qc3.cx(0,1)
qc3.cx(1,2)
qc3.measure(0,0,basis='Ensemble',add_param='X')
backend = BasicAer.get_backend('dm_simulator')
options3 = {
'plot': True
}
run3 = execute(qc3,backend,**options3)
result3 = run3.result()
result3['results'][0]['data']['ensemble_probability']
qc4 = QuantumCircuit(3,3)
qc4.h(0)
qc4.cx(0,1)
qc4.cx(1,2)
qc4.measure(0,0,basis='Expect',add_param='ZIZ')
backend = BasicAer.get_backend('dm_simulator')
run4 = execute(qc4,backend)
result4 = run4.result()
result4['results'][0]['data']['Pauli_string_expectation']
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import *
import numpy as np
%matplotlib inline
qc = QuantumCircuit(1,1)
qc.s(0)
qc.measure(0,0,basis='X')
backend = BasicAer.get_backend('dm_simulator')
run = execute(qc,backend)
result = run.result()
result['results'][0]['data']['densitymatrix']
qc1 = QuantumCircuit(1,1)
qc1.s(0)
qc1.measure(0,0, basis='N', add_param=np.array([1,2,3]))
backend = BasicAer.get_backend('dm_simulator')
run1 = execute(qc1,backend)
result1 = run1.result()
result1['results'][0]['data']['densitymatrix']
qc2 = QuantumCircuit(3,2)
qc2.measure(0,0,basis='Bell',add_param='01')
options2 = {
'plot': True
}
backend = BasicAer.get_backend('dm_simulator')
run2 = execute(qc2,backend,**options2)
result2 = run2.result()
result2['results'][0]['data']['bell_probabilities01']
qc3 = QuantumCircuit(3,3)
qc3.h(0)
qc3.cx(0,1)
qc3.cx(1,2)
qc3.measure(0,0,basis='Ensemble',add_param='X')
backend = BasicAer.get_backend('dm_simulator')
options3 = {
'plot': True
}
run3 = execute(qc3,backend,**options3)
result3 = run3.result()
result3['results'][0]['data']['ensemble_probability']
qc4 = QuantumCircuit(3,3)
qc4.h(0)
qc4.cx(0,1)
qc4.cx(1,2)
qc4.measure(0,0,basis='Expect',add_param='ZIZ')
backend = BasicAer.get_backend('dm_simulator')
run4 = execute(qc4,backend)
result4 = run4.result()
result4['results'][0]['data']['Pauli_string_expectation']
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import *
import numpy as np
%matplotlib inline
qc = QuantumCircuit(1,1)
qc.s(0)
qc.measure(0,0,basis='X')
backend = BasicAer.get_backend('dm_simulator')
run = execute(qc,backend)
result = run.result()
result['results'][0]['data']['densitymatrix']
qc1 = QuantumCircuit(1,1)
qc1.s(0)
qc1.measure(0,0, basis='N', add_param=np.array([1,2,3]))
backend = BasicAer.get_backend('dm_simulator')
run1 = execute(qc1,backend)
result1 = run1.result()
result1['results'][0]['data']['densitymatrix']
qc2 = QuantumCircuit(3,2)
qc2.measure(0,0,basis='Bell',add_param='01')
options2 = {
'plot': True
}
backend = BasicAer.get_backend('dm_simulator')
run2 = execute(qc2,backend,**options2)
result2 = run2.result()
result2['results'][0]['data']['bell_probabilities01']
qc3 = QuantumCircuit(3,3)
qc3.h(0)
qc3.cx(0,1)
qc3.cx(1,2)
qc3.measure(0,0,basis='Ensemble',add_param='X')
backend = BasicAer.get_backend('dm_simulator')
options3 = {
'plot': True
}
run3 = execute(qc3,backend,**options3)
result3 = run3.result()
result3['results'][0]['data']['ensemble_probability']
qc4 = QuantumCircuit(3,3)
qc4.h(0)
qc4.cx(0,1)
qc4.cx(1,2)
qc4.measure(0,0,basis='Expect',add_param='ZIZ')
backend = BasicAer.get_backend('dm_simulator')
run4 = execute(qc4,backend)
result4 = run4.result()
result4['results'][0]['data']['Pauli_string_expectation']
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import *
import numpy as np
%matplotlib inline
qc = QuantumCircuit(1,1)
qc.s(0)
qc.measure(0,0,basis='X')
backend = BasicAer.get_backend('dm_simulator')
run = execute(qc,backend)
result = run.result()
result['results'][0]['data']['densitymatrix']
qc1 = QuantumCircuit(1,1)
qc1.s(0)
qc1.measure(0,0, basis='N', add_param=np.array([1,2,3]))
backend = BasicAer.get_backend('dm_simulator')
run1 = execute(qc1,backend)
result1 = run1.result()
result1['results'][0]['data']['densitymatrix']
qc2 = QuantumCircuit(3,2)
qc2.measure(0,0,basis='Bell',add_param='01')
options2 = {
'plot': True
}
backend = BasicAer.get_backend('dm_simulator')
run2 = execute(qc2,backend,**options2)
result2 = run2.result()
result2['results'][0]['data']['bell_probabilities01']
qc3 = QuantumCircuit(3,3)
qc3.h(0)
qc3.cx(0,1)
qc3.cx(1,2)
qc3.measure(0,0,basis='Ensemble',add_param='X')
backend = BasicAer.get_backend('dm_simulator')
options3 = {
'plot': True
}
run3 = execute(qc3,backend,**options3)
result3 = run3.result()
result3['results'][0]['data']['ensemble_probability']
qc4 = QuantumCircuit(3,3)
qc4.h(0)
qc4.cx(0,1)
qc4.cx(1,2)
qc4.measure(0,0,basis='Expect',add_param='ZIZ')
backend = BasicAer.get_backend('dm_simulator')
run4 = execute(qc4,backend)
result4 = run4.result()
result4['results'][0]['data']['Pauli_string_expectation']
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import *
%matplotlib inline
import matplotlib.pyplot as plt
# The Circuit
q = QuantumRegister(3)
c = ClassicalRegister(3)
qc = QuantumCircuit(q,c)
qc.u1(3.6,0)
qc.cx(0,1)
qc.u1(2.6,2)
qc.cx(1,0)
qc.s(2)
qc.y(2)
qc.measure(q,c,basis='Ensemble',add_param='Z')
backend = BasicAer.get_backend('dm_simulator')
# Noise parameters
options = {}
options1 = {
"thermal_factor": 0.,
"decoherence_factor": .9,
"depolarization_factor": 0.99,
"bell_depolarization_factor": 0.99,
"decay_factor": 0.99,
"rotation_error": {'rx':[1., 0.], 'ry':[1., 0.], 'rz': [1., 0.]},
"tsp_model_error": [1., 0.],
"plot": False
}
# Execution with and without noise
run = execute(qc,backend,**options)
result = run.result()
run_error = execute(qc,backend,**options1)
result_error = run_error.result()
# Final state (probabilities)
prob = result['results'][0]['data']['ensemble_probability']
prob1 = result_error['results'][0]['data']['ensemble_probability']
import numpy as np
labels = prob1.keys()
without_noise = prob.values()
with_noise = prob1.values()
x = np.arange(len(labels)) # the label locations
width = 0.35 # the width of the bars
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, without_noise, width, label='Without Noise')
rects2 = ax.bar(x + width/2, with_noise, width, label='With Noise')
# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('Probability')
ax.set_title('Ensemble Probabilities with Noise')
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.legend()
plt.show()
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import *
%matplotlib inline
import matplotlib.pyplot as plt
# The Circuit
q = QuantumRegister(3)
c = ClassicalRegister(3)
qc = QuantumCircuit(q,c)
qc.u1(3.6,0)
qc.cx(0,1)
qc.u1(2.6,2)
qc.cx(1,0)
qc.s(2)
qc.y(2)
qc.measure(q,c,basis='Ensemble',add_param='Z')
backend = BasicAer.get_backend('dm_simulator')
# Noise parameters
options = {}
options1 = {
"thermal_factor": 0.,
"decoherence_factor": .9,
"depolarization_factor": 0.99,
"bell_depolarization_factor": 0.99,
"decay_factor": 0.99,
"rotation_error": {'rx':[1., 0.], 'ry':[1., 0.], 'rz': [1., 0.]},
"tsp_model_error": [1., 0.],
"plot": False
}
# Execution with and without noise
run = execute(qc,backend,**options)
result = run.result()
run_error = execute(qc,backend,**options1)
result_error = run_error.result()
# Final state (probabilities)
prob = result['results'][0]['data']['ensemble_probability']
prob1 = result_error['results'][0]['data']['ensemble_probability']
import numpy as np
labels = prob1.keys()
without_noise = prob.values()
with_noise = prob1.values()
x = np.arange(len(labels)) # the label locations
width = 0.35 # the width of the bars
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, without_noise, width, label='Without Noise')
rects2 = ax.bar(x + width/2, with_noise, width, label='With Noise')
# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('Probability')
ax.set_title('Ensemble Probabilities with Noise')
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.legend()
plt.show()
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import *
%matplotlib inline
import matplotlib.pyplot as plt
# The Circuit
q = QuantumRegister(3)
c = ClassicalRegister(3)
qc = QuantumCircuit(q,c)
qc.u1(3.6,0)
qc.cx(0,1)
qc.u1(2.6,2)
qc.cx(1,0)
qc.s(2)
qc.y(2)
qc.measure(q,c,basis='Ensemble',add_param='Z')
backend = BasicAer.get_backend('dm_simulator')
# Noise parameters
options = {}
options1 = {
"thermal_factor": 0.,
"decoherence_factor": .9,
"depolarization_factor": 0.99,
"bell_depolarization_factor": 0.99,
"decay_factor": 0.99,
"rotation_error": {'rx':[1., 0.], 'ry':[1., 0.], 'rz': [1., 0.]},
"tsp_model_error": [1., 0.],
"plot": False
}
# Execution with and without noise
run = execute(qc,backend,**options)
result = run.result()
run_error = execute(qc,backend,**options1)
result_error = run_error.result()
# Final state (probabilities)
prob = result['results'][0]['data']['ensemble_probability']
prob1 = result_error['results'][0]['data']['ensemble_probability']
import numpy as np
labels = prob1.keys()
without_noise = prob.values()
with_noise = prob1.values()
x = np.arange(len(labels)) # the label locations
width = 0.35 # the width of the bars
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, without_noise, width, label='Without Noise')
rects2 = ax.bar(x + width/2, with_noise, width, label='With Noise')
# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('Probability')
ax.set_title('Ensemble Probabilities with Noise')
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.legend()
plt.show()
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import *
%matplotlib inline
import matplotlib.pyplot as plt
# The Circuit
q = QuantumRegister(3)
c = ClassicalRegister(3)
qc = QuantumCircuit(q,c)
qc.u1(3.6,0)
qc.cx(0,1)
qc.u1(2.6,2)
qc.cx(1,0)
qc.s(2)
qc.y(2)
qc.measure(q,c,basis='Ensemble',add_param='Z')
backend = BasicAer.get_backend('dm_simulator')
# Noise parameters
options = {}
options1 = {
"thermal_factor": 0.,
"decoherence_factor": .9,
"depolarization_factor": 0.99,
"bell_depolarization_factor": 0.99,
"decay_factor": 0.99,
"rotation_error": {'rx':[1., 0.], 'ry':[1., 0.], 'rz': [1., 0.]},
"tsp_model_error": [1., 0.],
"plot": False
}
# Execution with and without noise
run = execute(qc,backend,**options)
result = run.result()
run_error = execute(qc,backend,**options1)
result_error = run_error.result()
# Final state (probabilities)
prob = result['results'][0]['data']['ensemble_probability']
prob1 = result_error['results'][0]['data']['ensemble_probability']
import numpy as np
labels = prob1.keys()
without_noise = prob.values()
with_noise = prob1.values()
x = np.arange(len(labels)) # the label locations
width = 0.35 # the width of the bars
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, without_noise, width, label='Without Noise')
rects2 = ax.bar(x + width/2, with_noise, width, label='With Noise')
# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('Probability')
ax.set_title('Ensemble Probabilities with Noise')
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.legend()
plt.show()
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import *
%matplotlib inline
import matplotlib.pyplot as plt
# The Circuit
q = QuantumRegister(3)
c = ClassicalRegister(3)
qc = QuantumCircuit(q,c)
qc.u1(3.6,0)
qc.cx(0,1)
qc.u1(2.6,2)
qc.cx(1,0)
qc.s(2)
qc.y(2)
qc.measure(q,c,basis='Ensemble',add_param='Z')
backend = BasicAer.get_backend('dm_simulator')
# Noise parameters
options = {}
options1 = {
"thermal_factor": 0.,
"decoherence_factor": .9,
"depolarization_factor": 0.99,
"bell_depolarization_factor": 0.99,
"decay_factor": 0.99,
"rotation_error": {'rx':[1., 0.], 'ry':[1., 0.], 'rz': [1., 0.]},
"tsp_model_error": [1., 0.],
"plot": False
}
# Execution with and without noise
run = execute(qc,backend,**options)
result = run.result()
run_error = execute(qc,backend,**options1)
result_error = run_error.result()
# Final state (probabilities)
prob = result['results'][0]['data']['ensemble_probability']
prob1 = result_error['results'][0]['data']['ensemble_probability']
import numpy as np
labels = prob1.keys()
without_noise = prob.values()
with_noise = prob1.values()
x = np.arange(len(labels)) # the label locations
width = 0.35 # the width of the bars
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, without_noise, width, label='Without Noise')
rects2 = ax.bar(x + width/2, with_noise, width, label='With Noise')
# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('Probability')
ax.set_title('Ensemble Probabilities with Noise')
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.legend()
plt.show()
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
import numpy as np
from qiskit_aqua import Operator, run_algorithm
from qiskit_aqua.input import EnergyInput
from qiskit_aqua.translators.ising import partition
from qiskit import Aer
from qiskit_aqua.algorithms.classical.cplex.cplex_ising import CPLEX_Ising
number_list = partition.read_numbers_from_file('sample.partition')
qubitOp, offset = partition.get_partition_qubitops(number_list)
algo_input = EnergyInput(qubitOp)
print(number_list)
if True:
np.random.seed(8123179)
number_list = partition.random_number_list(5, weight_range=25)
qubitOp, offset = partition.get_partition_qubitops(number_list)
algo_input.qubit_op = qubitOp
print(number_list)
to_be_tested_algos = ['ExactEigensolver', 'CPLEX.Ising', 'VQE']
print(to_be_tested_algos)
algorithm_cfg = {
'name': 'ExactEigensolver',
}
params = {
'problem': {'name': 'ising'},
'algorithm': algorithm_cfg
}
result = run_algorithm(params,algo_input)
x = partition.sample_most_likely(result['eigvecs'][0])
print('energy:', result['energy'])
print('partition objective:', result['energy'] + offset)
print('solution:', x)
print('solution objective:', partition.partition_value(x, number_list))
cplex_installed = True
try:
CPLEX_Ising.check_pluggable_valid()
except Exception as e:
cplex_installed = False
if cplex_installed:
algorithm_cfg = {
'name': 'CPLEX.Ising',
'display': 0
}
params = {
'problem': {'name': 'ising'},
'algorithm': algorithm_cfg
}
result = run_algorithm(params, algo_input)
x_dict = result['x_sol']
print('energy:', result['energy'])
print('time:', result['eval_time'])
print('partition objective:', result['energy'] + offset)
x = np.array([x_dict[i] for i in sorted(x_dict.keys())])
print('solution:', x)
print('solution objective:', partition.partition_value(x, number_list))
algorithm_cfg = {
'name': 'VQE',
'operator_mode': 'matrix'
}
optimizer_cfg = {
'name': 'L_BFGS_B',
'maxfun': 6000
}
var_form_cfg = {
'name': 'RYRZ',
'depth': 3,
'entanglement': 'linear'
}
params = {
'problem': {'name': 'ising'},
'algorithm': algorithm_cfg,
'optimizer': optimizer_cfg,
'variational_form': var_form_cfg
}
backend = Aer.get_backend('statevector_simulator')
result = run_algorithm(params, algo_input, backend=backend)
x = partition.sample_most_likely(result['eigvecs'][0])
print('energy:', result['energy'])
print('time:', result['eval_time'])
print('partition objective:', result['energy'] + offset)
print('solution:', x)
print('solution objective:', partition.partition_value(x, number_list))
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
import numpy as np
from qiskit_aqua import Operator, run_algorithm
from qiskit_aqua.input import EnergyInput
from qiskit_aqua.translators.ising import partition
from qiskit import Aer
from qiskit_aqua.algorithms.classical.cplex.cplex_ising import CPLEX_Ising
number_list = partition.read_numbers_from_file('sample.partition')
qubitOp, offset = partition.get_partition_qubitops(number_list)
algo_input = EnergyInput(qubitOp)
print(number_list)
if True:
np.random.seed(8123179)
number_list = partition.random_number_list(5, weight_range=25)
qubitOp, offset = partition.get_partition_qubitops(number_list)
algo_input.qubit_op = qubitOp
print(number_list)
to_be_tested_algos = ['ExactEigensolver', 'CPLEX.Ising', 'VQE']
print(to_be_tested_algos)
algorithm_cfg = {
'name': 'ExactEigensolver',
}
params = {
'problem': {'name': 'ising'},
'algorithm': algorithm_cfg
}
result = run_algorithm(params,algo_input)
x = partition.sample_most_likely(result['eigvecs'][0])
print('energy:', result['energy'])
print('partition objective:', result['energy'] + offset)
print('solution:', x)
print('solution objective:', partition.partition_value(x, number_list))
cplex_installed = True
try:
CPLEX_Ising.check_pluggable_valid()
except Exception as e:
cplex_installed = False
if cplex_installed:
algorithm_cfg = {
'name': 'CPLEX.Ising',
'display': 0
}
params = {
'problem': {'name': 'ising'},
'algorithm': algorithm_cfg
}
result = run_algorithm(params, algo_input)
x_dict = result['x_sol']
print('energy:', result['energy'])
print('time:', result['eval_time'])
print('partition objective:', result['energy'] + offset)
x = np.array([x_dict[i] for i in sorted(x_dict.keys())])
print('solution:', x)
print('solution objective:', partition.partition_value(x, number_list))
algorithm_cfg = {
'name': 'VQE',
'operator_mode': 'matrix'
}
optimizer_cfg = {
'name': 'L_BFGS_B',
'maxfun': 6000
}
var_form_cfg = {
'name': 'RYRZ',
'depth': 3,
'entanglement': 'linear'
}
params = {
'problem': {'name': 'ising'},
'algorithm': algorithm_cfg,
'optimizer': optimizer_cfg,
'variational_form': var_form_cfg
}
backend = Aer.get_backend('statevector_simulator')
result = run_algorithm(params, algo_input, backend=backend)
x = partition.sample_most_likely(result['eigvecs'][0])
print('energy:', result['energy'])
print('time:', result['eval_time'])
print('partition objective:', result['energy'] + offset)
print('solution:', x)
print('solution objective:', partition.partition_value(x, number_list))
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
import numpy as np
from qiskit_aqua import Operator, run_algorithm
from qiskit_aqua.input import EnergyInput
from qiskit_aqua.translators.ising import partition
from qiskit import Aer
from qiskit_aqua.algorithms.classical.cplex.cplex_ising import CPLEX_Ising
number_list = partition.read_numbers_from_file('sample.partition')
qubitOp, offset = partition.get_partition_qubitops(number_list)
algo_input = EnergyInput(qubitOp)
print(number_list)
if True:
np.random.seed(8123179)
number_list = partition.random_number_list(5, weight_range=25)
qubitOp, offset = partition.get_partition_qubitops(number_list)
algo_input.qubit_op = qubitOp
print(number_list)
to_be_tested_algos = ['ExactEigensolver', 'CPLEX.Ising', 'VQE']
print(to_be_tested_algos)
algorithm_cfg = {
'name': 'ExactEigensolver',
}
params = {
'problem': {'name': 'ising'},
'algorithm': algorithm_cfg
}
result = run_algorithm(params,algo_input)
x = partition.sample_most_likely(result['eigvecs'][0])
print('energy:', result['energy'])
print('partition objective:', result['energy'] + offset)
print('solution:', x)
print('solution objective:', partition.partition_value(x, number_list))
cplex_installed = True
try:
CPLEX_Ising.check_pluggable_valid()
except Exception as e:
cplex_installed = False
if cplex_installed:
algorithm_cfg = {
'name': 'CPLEX.Ising',
'display': 0
}
params = {
'problem': {'name': 'ising'},
'algorithm': algorithm_cfg
}
result = run_algorithm(params, algo_input)
x_dict = result['x_sol']
print('energy:', result['energy'])
print('time:', result['eval_time'])
print('partition objective:', result['energy'] + offset)
x = np.array([x_dict[i] for i in sorted(x_dict.keys())])
print('solution:', x)
print('solution objective:', partition.partition_value(x, number_list))
algorithm_cfg = {
'name': 'VQE',
'operator_mode': 'matrix'
}
optimizer_cfg = {
'name': 'L_BFGS_B',
'maxfun': 6000
}
var_form_cfg = {
'name': 'RYRZ',
'depth': 3,
'entanglement': 'linear'
}
params = {
'problem': {'name': 'ising'},
'algorithm': algorithm_cfg,
'optimizer': optimizer_cfg,
'variational_form': var_form_cfg
}
backend = Aer.get_backend('statevector_simulator')
result = run_algorithm(params, algo_input, backend=backend)
x = partition.sample_most_likely(result['eigvecs'][0])
print('energy:', result['energy'])
print('time:', result['eval_time'])
print('partition objective:', result['energy'] + offset)
print('solution:', x)
print('solution objective:', partition.partition_value(x, number_list))
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
import numpy as np
from qiskit_aqua import Operator, run_algorithm
from qiskit_aqua.input import EnergyInput
from qiskit_aqua.translators.ising import partition
from qiskit import Aer
from qiskit_aqua.algorithms.classical.cplex.cplex_ising import CPLEX_Ising
number_list = partition.read_numbers_from_file('sample.partition')
qubitOp, offset = partition.get_partition_qubitops(number_list)
algo_input = EnergyInput(qubitOp)
print(number_list)
if True:
np.random.seed(8123179)
number_list = partition.random_number_list(5, weight_range=25)
qubitOp, offset = partition.get_partition_qubitops(number_list)
algo_input.qubit_op = qubitOp
print(number_list)
to_be_tested_algos = ['ExactEigensolver', 'CPLEX.Ising', 'VQE']
print(to_be_tested_algos)
algorithm_cfg = {
'name': 'ExactEigensolver',
}
params = {
'problem': {'name': 'ising'},
'algorithm': algorithm_cfg
}
result = run_algorithm(params,algo_input)
x = partition.sample_most_likely(result['eigvecs'][0])
print('energy:', result['energy'])
print('partition objective:', result['energy'] + offset)
print('solution:', x)
print('solution objective:', partition.partition_value(x, number_list))
cplex_installed = True
try:
CPLEX_Ising.check_pluggable_valid()
except Exception as e:
cplex_installed = False
if cplex_installed:
algorithm_cfg = {
'name': 'CPLEX.Ising',
'display': 0
}
params = {
'problem': {'name': 'ising'},
'algorithm': algorithm_cfg
}
result = run_algorithm(params, algo_input)
x_dict = result['x_sol']
print('energy:', result['energy'])
print('time:', result['eval_time'])
print('partition objective:', result['energy'] + offset)
x = np.array([x_dict[i] for i in sorted(x_dict.keys())])
print('solution:', x)
print('solution objective:', partition.partition_value(x, number_list))
algorithm_cfg = {
'name': 'VQE',
'operator_mode': 'matrix'
}
optimizer_cfg = {
'name': 'L_BFGS_B',
'maxfun': 6000
}
var_form_cfg = {
'name': 'RYRZ',
'depth': 3,
'entanglement': 'linear'
}
params = {
'problem': {'name': 'ising'},
'algorithm': algorithm_cfg,
'optimizer': optimizer_cfg,
'variational_form': var_form_cfg
}
backend = Aer.get_backend('statevector_simulator')
result = run_algorithm(params, algo_input, backend=backend)
x = partition.sample_most_likely(result['eigvecs'][0])
print('energy:', result['energy'])
print('time:', result['eval_time'])
print('partition objective:', result['energy'] + offset)
print('solution:', x)
print('solution objective:', partition.partition_value(x, number_list))
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
import numpy as np
from qiskit_aqua import Operator, run_algorithm
from qiskit_aqua.input import EnergyInput
from qiskit_aqua.translators.ising import partition
from qiskit import Aer
from qiskit_aqua.algorithms.classical.cplex.cplex_ising import CPLEX_Ising
number_list = partition.read_numbers_from_file('sample.partition')
qubitOp, offset = partition.get_partition_qubitops(number_list)
algo_input = EnergyInput(qubitOp)
print(number_list)
if True:
np.random.seed(8123179)
number_list = partition.random_number_list(5, weight_range=25)
qubitOp, offset = partition.get_partition_qubitops(number_list)
algo_input.qubit_op = qubitOp
print(number_list)
to_be_tested_algos = ['ExactEigensolver', 'CPLEX.Ising', 'VQE']
print(to_be_tested_algos)
algorithm_cfg = {
'name': 'ExactEigensolver',
}
params = {
'problem': {'name': 'ising'},
'algorithm': algorithm_cfg
}
result = run_algorithm(params,algo_input)
x = partition.sample_most_likely(result['eigvecs'][0])
print('energy:', result['energy'])
print('partition objective:', result['energy'] + offset)
print('solution:', x)
print('solution objective:', partition.partition_value(x, number_list))
cplex_installed = True
try:
CPLEX_Ising.check_pluggable_valid()
except Exception as e:
cplex_installed = False
if cplex_installed:
algorithm_cfg = {
'name': 'CPLEX.Ising',
'display': 0
}
params = {
'problem': {'name': 'ising'},
'algorithm': algorithm_cfg
}
result = run_algorithm(params, algo_input)
x_dict = result['x_sol']
print('energy:', result['energy'])
print('time:', result['eval_time'])
print('partition objective:', result['energy'] + offset)
x = np.array([x_dict[i] for i in sorted(x_dict.keys())])
print('solution:', x)
print('solution objective:', partition.partition_value(x, number_list))
algorithm_cfg = {
'name': 'VQE',
'operator_mode': 'matrix'
}
optimizer_cfg = {
'name': 'L_BFGS_B',
'maxfun': 6000
}
var_form_cfg = {
'name': 'RYRZ',
'depth': 3,
'entanglement': 'linear'
}
params = {
'problem': {'name': 'ising'},
'algorithm': algorithm_cfg,
'optimizer': optimizer_cfg,
'variational_form': var_form_cfg
}
backend = Aer.get_backend('statevector_simulator')
result = run_algorithm(params, algo_input, backend=backend)
x = partition.sample_most_likely(result['eigvecs'][0])
print('energy:', result['energy'])
print('time:', result['eval_time'])
print('partition objective:', result['energy'] + offset)
print('solution:', x)
print('solution objective:', partition.partition_value(x, number_list))
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import QuantumCircuit
from qiskit.visualization import visualize_transition,circuit_drawer
from math import pi
qc=QuantumCircuit(2)
qc.h(0)
qc.cx(0,1)
qc.draw(output="mpl")
qc=QuantumCircuit(2)
qc.h(0)
qc.cx(0,1)
circuit_drawer(qc,output="mpl")
qc=QuantumCircuit(1)
qc.h(0)
qc.draw(output="mpl")
visualize_transition(qc)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import QuantumCircuit
from qiskit.visualization import visualize_transition,circuit_drawer
from math import pi
qc=QuantumCircuit(2)
qc.h(0)
qc.cx(0,1)
qc.draw(output="mpl")
qc=QuantumCircuit(2)
qc.h(0)
qc.cx(0,1)
circuit_drawer(qc,output="mpl")
qc=QuantumCircuit(1)
qc.h(0)
qc.draw(output="mpl")
visualize_transition(qc)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import QuantumCircuit
from qiskit.visualization import visualize_transition,circuit_drawer
from math import pi
qc=QuantumCircuit(2)
qc.h(0)
qc.cx(0,1)
qc.draw(output="mpl")
qc=QuantumCircuit(2)
qc.h(0)
qc.cx(0,1)
circuit_drawer(qc,output="mpl")
qc=QuantumCircuit(1)
qc.h(0)
qc.draw(output="mpl")
visualize_transition(qc)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import QuantumCircuit
from qiskit.visualization import visualize_transition,circuit_drawer
from math import pi
qc=QuantumCircuit(2)
qc.h(0)
qc.cx(0,1)
qc.draw(output="mpl")
qc=QuantumCircuit(2)
qc.h(0)
qc.cx(0,1)
circuit_drawer(qc,output="mpl")
qc=QuantumCircuit(1)
qc.h(0)
qc.draw(output="mpl")
visualize_transition(qc)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import QuantumCircuit
from qiskit.visualization import visualize_transition,circuit_drawer
from math import pi
qc=QuantumCircuit(2)
qc.h(0)
qc.cx(0,1)
qc.draw(output="mpl")
qc=QuantumCircuit(2)
qc.h(0)
qc.cx(0,1)
circuit_drawer(qc,output="mpl")
qc=QuantumCircuit(1)
qc.h(0)
qc.draw(output="mpl")
visualize_transition(qc)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Example showing how to draw a quantum circuit using Qiskit.
"""
from qiskit import QuantumCircuit
def build_bell_circuit():
"""Returns a circuit putting 2 qubits in the Bell state."""
qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
qc.measure([0, 1], [0, 1])
return qc
# Create the circuit
bell_circuit = build_bell_circuit()
# Use the internal .draw() to print the circuit
print(bell_circuit)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Example showing how to draw a quantum circuit using Qiskit.
"""
from qiskit import QuantumCircuit
def build_bell_circuit():
"""Returns a circuit putting 2 qubits in the Bell state."""
qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
qc.measure([0, 1], [0, 1])
return qc
# Create the circuit
bell_circuit = build_bell_circuit()
# Use the internal .draw() to print the circuit
print(bell_circuit)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Example showing how to draw a quantum circuit using Qiskit.
"""
from qiskit import QuantumCircuit
def build_bell_circuit():
"""Returns a circuit putting 2 qubits in the Bell state."""
qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
qc.measure([0, 1], [0, 1])
return qc
# Create the circuit
bell_circuit = build_bell_circuit()
# Use the internal .draw() to print the circuit
print(bell_circuit)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Example showing how to draw a quantum circuit using Qiskit.
"""
from qiskit import QuantumCircuit
def build_bell_circuit():
"""Returns a circuit putting 2 qubits in the Bell state."""
qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
qc.measure([0, 1], [0, 1])
return qc
# Create the circuit
bell_circuit = build_bell_circuit()
# Use the internal .draw() to print the circuit
print(bell_circuit)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Example showing how to draw a quantum circuit using Qiskit.
"""
from qiskit import QuantumCircuit
def build_bell_circuit():
"""Returns a circuit putting 2 qubits in the Bell state."""
qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
qc.measure([0, 1], [0, 1])
return qc
# Create the circuit
bell_circuit = build_bell_circuit()
# Use the internal .draw() to print the circuit
print(bell_circuit)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
from qiskit import QuantumCircuit
from qiskit.transpiler import PassManager
from qiskit.transpiler.passes import CommutationAnalysis, CommutativeCancellation
circuit = QuantumCircuit(5)
# Quantum Instantaneous Polynomial Time example
circuit.cx(0, 1)
circuit.cx(2, 1)
circuit.cx(4, 3)
circuit.cx(2, 3)
circuit.z(0)
circuit.z(4)
circuit.cx(0, 1)
circuit.cx(2, 1)
circuit.cx(4, 3)
circuit.cx(2, 3)
circuit.cx(3, 2)
print(circuit)
pm = PassManager()
pm.append([CommutationAnalysis(), CommutativeCancellation()])
new_circuit = pm.run(circuit)
print(new_circuit)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
from qiskit import QuantumCircuit
from qiskit.transpiler import PassManager
from qiskit.transpiler.passes import CommutationAnalysis, CommutativeCancellation
circuit = QuantumCircuit(5)
# Quantum Instantaneous Polynomial Time example
circuit.cx(0, 1)
circuit.cx(2, 1)
circuit.cx(4, 3)
circuit.cx(2, 3)
circuit.z(0)
circuit.z(4)
circuit.cx(0, 1)
circuit.cx(2, 1)
circuit.cx(4, 3)
circuit.cx(2, 3)
circuit.cx(3, 2)
print(circuit)
pm = PassManager()
pm.append([CommutationAnalysis(), CommutativeCancellation()])
new_circuit = pm.run(circuit)
print(new_circuit)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
from qiskit import QuantumCircuit
from qiskit.transpiler import PassManager
from qiskit.transpiler.passes import CommutationAnalysis, CommutativeCancellation
circuit = QuantumCircuit(5)
# Quantum Instantaneous Polynomial Time example
circuit.cx(0, 1)
circuit.cx(2, 1)
circuit.cx(4, 3)
circuit.cx(2, 3)
circuit.z(0)
circuit.z(4)
circuit.cx(0, 1)
circuit.cx(2, 1)
circuit.cx(4, 3)
circuit.cx(2, 3)
circuit.cx(3, 2)
print(circuit)
pm = PassManager()
pm.append([CommutationAnalysis(), CommutativeCancellation()])
new_circuit = pm.run(circuit)
print(new_circuit)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
from qiskit import QuantumCircuit
from qiskit.transpiler import PassManager
from qiskit.transpiler.passes import CommutationAnalysis, CommutativeCancellation
circuit = QuantumCircuit(5)
# Quantum Instantaneous Polynomial Time example
circuit.cx(0, 1)
circuit.cx(2, 1)
circuit.cx(4, 3)
circuit.cx(2, 3)
circuit.z(0)
circuit.z(4)
circuit.cx(0, 1)
circuit.cx(2, 1)
circuit.cx(4, 3)
circuit.cx(2, 3)
circuit.cx(3, 2)
print(circuit)
pm = PassManager()
pm.append([CommutationAnalysis(), CommutativeCancellation()])
new_circuit = pm.run(circuit)
print(new_circuit)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
from qiskit import QuantumCircuit
from qiskit.transpiler import PassManager
from qiskit.transpiler.passes import CommutationAnalysis, CommutativeCancellation
circuit = QuantumCircuit(5)
# Quantum Instantaneous Polynomial Time example
circuit.cx(0, 1)
circuit.cx(2, 1)
circuit.cx(4, 3)
circuit.cx(2, 3)
circuit.z(0)
circuit.z(4)
circuit.cx(0, 1)
circuit.cx(2, 1)
circuit.cx(4, 3)
circuit.cx(2, 3)
circuit.cx(3, 2)
print(circuit)
pm = PassManager()
pm.append([CommutationAnalysis(), CommutativeCancellation()])
new_circuit = pm.run(circuit)
print(new_circuit)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import QuantumRegister, ClassicalRegister
from qiskit import QuantumCircuit, execute
from qiskit import Aer
import numpy as np
import sys
N=int(sys.argv[1])
filename = sys.argv[2]
backend = Aer.get_backend('unitary_simulator')
def GHZ(n):
if n<=0:
return None
circ = QuantumCircuit(n)
# Put your code below
# ----------------------------
circ.h(0)
for x in range(1,n):
circ.cx(x-1,x)
# ----------------------------
return circ
circuit = GHZ(N)
job = execute(circuit, backend, shots=8192)
result = job.result()
array = result.get_unitary(circuit,3)
np.savetxt(filename, array, delimiter=",", fmt = "%0.3f")
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import QuantumRegister, ClassicalRegister
from qiskit import QuantumCircuit, execute
from qiskit import Aer
import numpy as np
import sys
N=int(sys.argv[1])
filename = sys.argv[2]
backend = Aer.get_backend('unitary_simulator')
def GHZ(n):
if n<=0:
return None
circ = QuantumCircuit(n)
# Put your code below
# ----------------------------
circ.h(0)
for x in range(1,n):
circ.cx(x-1,x)
# ----------------------------
return circ
circuit = GHZ(N)
job = execute(circuit, backend, shots=8192)
result = job.result()
array = result.get_unitary(circuit,3)
np.savetxt(filename, array, delimiter=",", fmt = "%0.3f")
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import QuantumRegister, ClassicalRegister
from qiskit import QuantumCircuit, execute
from qiskit import Aer
import numpy as np
import sys
N=int(sys.argv[1])
filename = sys.argv[2]
backend = Aer.get_backend('unitary_simulator')
def GHZ(n):
if n<=0:
return None
circ = QuantumCircuit(n)
# Put your code below
# ----------------------------
circ.h(0)
for x in range(1,n):
circ.cx(x-1,x)
# ----------------------------
return circ
circuit = GHZ(N)
job = execute(circuit, backend, shots=8192)
result = job.result()
array = result.get_unitary(circuit,3)
np.savetxt(filename, array, delimiter=",", fmt = "%0.3f")
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import QuantumRegister, ClassicalRegister
from qiskit import QuantumCircuit, execute
from qiskit import Aer
import numpy as np
import sys
N=int(sys.argv[1])
filename = sys.argv[2]
backend = Aer.get_backend('unitary_simulator')
def GHZ(n):
if n<=0:
return None
circ = QuantumCircuit(n)
# Put your code below
# ----------------------------
circ.h(0)
for x in range(1,n):
circ.cx(x-1,x)
# ----------------------------
return circ
circuit = GHZ(N)
job = execute(circuit, backend, shots=8192)
result = job.result()
array = result.get_unitary(circuit,3)
np.savetxt(filename, array, delimiter=",", fmt = "%0.3f")
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import QuantumRegister, ClassicalRegister
from qiskit import QuantumCircuit, execute
from qiskit import Aer
import numpy as np
import sys
N=int(sys.argv[1])
filename = sys.argv[2]
backend = Aer.get_backend('unitary_simulator')
def GHZ(n):
if n<=0:
return None
circ = QuantumCircuit(n)
# Put your code below
# ----------------------------
circ.h(0)
for x in range(1,n):
circ.cx(x-1,x)
# ----------------------------
return circ
circuit = GHZ(N)
job = execute(circuit, backend, shots=8192)
result = job.result()
array = result.get_unitary(circuit,3)
np.savetxt(filename, array, delimiter=",", fmt = "%0.3f")
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import IBMQ
from qiskit import BasicAer as Aer
from qiskit import ClassicalRegister, QuantumRegister, QuantumCircuit
from qiskit import execute
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Circle, Rectangle
import copy
from ipywidgets import widgets
from IPython.display import display, clear_output
try:
IBMQ.load_accounts()
except:
pass
class run_game():
# Implements a puzzle, which is defined by the given inputs.
def __init__(self,initialize, success_condition, allowed_gates, vi, qubit_names, eps=0.1, backend=Aer.get_backend('qasm_simulator'), shots=1024,mode='circle',verbose=False):
"""
initialize
List of gates applied to the initial 00 state to get the starting state of the puzzle.
Supported single qubit gates (applied to qubit '0' or '1') are 'x', 'y', 'z', 'h', 'ry(pi/4)'.
Supported two qubit gates are 'cz' and 'cx'. Specify only the target qubit.
success_condition
Values for pauli observables that must be obtained for the puzzle to declare success.
allowed_gates
For each qubit, specify which operations are allowed in this puzzle. 'both' should be used only for operations that don't need a qubit to be specified ('cz' and 'unbloch').
Gates are expressed as a dict with an int as value. If this is non-zero, it specifies the number of times the gate is must be used (no more or less) for the puzzle to be successfully solved. If the value is zero, the player can use the gate any number of times.
vi
Some visualization information as a three element list. These specify:
* which qubits are hidden (empty list if both shown).
* whether both circles shown for each qubit (use True for qubit puzzles and False for bit puzzles).
* whether the correlation circles (the four in the middle) are shown.
qubit_names
The two qubits are always called '0' and '1' from the programming side. But for the player, we can display different names.
eps=0.1
How close the expectation values need to be to the targets for success to be declared.
backend=Aer.get_backend('qasm_simulator')
Backend to be used by Qiskit to calculate expectation values (defaults to local simulator).
shots=1024
Number of shots used to to calculate expectation values.
mode='circle'
Either the standard 'Hello Quantum' visualization can be used (with mode='circle') or the alternative line based one (mode='line').
verbose=False
"""
def get_total_gate_list():
# Get a text block describing allowed gates.
total_gate_list = ""
for qubit in allowed_gates:
gate_list = ""
for gate in allowed_gates[qubit]:
if required_gates[qubit][gate] > 0 :
gate_list +=''+ gate+" (use "+str(required_gates[qubit][gate])+" time"+"s"*(required_gates[qubit][gate]>1)+")"
elif allowed_gates[qubit][gate]==0:
gate_list +=' '+gate +''
if gate_list!="":
if qubit=="both" :
gate_list = "\nAllowed symmetric operations:" + gate_list
else :
gate_list = "\nAllowed operations for " + qubit_names[qubit] + ":\n" + " "*10 + gate_list
total_gate_list += gate_list +"\n"
return total_gate_list
def get_success(required_gates):
# Determine whether the success conditions are satisfied, both for expectation values, and the number of gates to be used.
success = True
grid.get_rho()
if verbose:
print(grid.rho)
for pauli in success_condition:
success = success and (abs(success_condition[pauli] - grid.rho[pauli])<eps)
for qubit in required_gates:
for gate in required_gates[qubit]:
success = success and (required_gates[qubit][gate]==0)
return success
def get_command(gate,qubit
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
ates[qubit][gate]==0:
gate_list +=' '+gate +''
if gate_list!="":
if qubit=="both" :
gate_list = "\nAllowed symmetric operations:" + gate_list
else :
gate_list = "\nAllowed operations for " + qubit_names[qubit] + ":\n" + " "*10 + gate_list
total_gate_list += gate_list +"\n"
return total_gate_list
def get_success(required_gates):
# Determine whether the success conditions are satisfied, both for expectation values, and the number of gates to be used.
success = True
grid.get_rho()
if verbose:
print(grid.rho)
for pauli in success_condition:
success = success and (abs(success_condition[pauli] - grid.rho[pauli])<eps)
for qubit in required_gates:
for gate in required_gates[qubit]:
success = success and (required_gates[qubit][gate]==0)
return success
def get_command(gate,qubit):
# For a given gate and qubit, return the string describing the corresoinding Qiskit string.
if qubit=='both':
qubit = '1'
qubit_name = qubit_names[qubit]
for name in qubit_names.values():
if name!=qubit_name:
other_name = name
# then make the command (both for the grid, and for printing to screen)
if gate in ['x','y','z','h']:
real_command = 'grid.qc.'+gate+'(grid.qr['+qubit+'])'
clean_command = 'qc.'+gate+'('+qubit_name+')'
elif gate in ['ry(pi/4)','ry(-pi/4)']:
real_command = 'grid.qc.ry('+'-'*(gate=='ry(-pi/4)')+'np.pi/4,grid.qr['+qubit+'])'
clean_command = 'qc.ry('+'-'*(gate=='ry(-pi/4)')+'np.pi/4,'+qubit_name+')'
elif gate in ['cz','cx','swap']:
real_command = 'grid.qc.'+gate+'(grid.qr['+'0'*(qubit=='1')+'1'*(qubit=='0')+'],grid.qr['+qubit+'])'
clean_command = 'qc.'+gate+'('+other_name+','+qubit_name+')'
return [real_command,clean_command]
clear_output()
bloch = [None]
# set up initial state and figure
grid = pauli_grid(backend=backend,shots=shots,mode=mode)
for gate in initialize:
eval( get_command(gate[0],gate[1])[0] )
required_gates = copy.deepcopy(allowed_gates)
# determine which qubits to show in figure
if allowed_gates['0']=={} : # if no gates are allowed for qubit 0, we know to only show qubit 1
shown_qubit = 1
elif allowed_gates['1']=={} : # and vice versa
shown_qubit = 0
else :
shown_qubit = 2
# show figure
grid.update_grid(bloch=bloch[0],hidden=vi[0],qubit=vi[1],corr=vi[2],message=get_total_gate_list())
description = {'gate':['Choose gate'],'qubit':['Choose '+'qu'*vi[1]+'bit'],'action':['Make it happen!']}
all_allowed_gates_raw = []
for q in ['0','1','both']:
all_allowed_gates_raw += list(allowed_gates[q])
all_allowed_gates_raw = list(set(all_allowed_gates_raw))
all_allowed_gates = []
for g in ['bloch','unbloch']:
if g in all_allowed_gates_raw:
all_allowed_gates.append( g )
for g in ['x','y','z','h','cz','cx']:
if g in all_allowed_gates_raw:
all_allowed_gates.append( g )
for g in all_allowed_gates_raw:
if g not in all_allowed_gates:
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
figure
grid.update_grid(bloch=bloch[0],hidden=vi[0],qubit=vi[1],corr=vi[2],message=get_total_gate_list())
description = {'gate':['Choose gate'],'qubit':['Choose '+'qu'*vi[1]+'bit'],'action':['Make it happen!']}
all_allowed_gates_raw = []
for q in ['0','1','both']:
all_allowed_gates_raw += list(allowed_gates[q])
all_allowed_gates_raw = list(set(all_allowed_gates_raw))
all_allowed_gates = []
for g in ['bloch','unbloch']:
if g in all_allowed_gates_raw:
all_allowed_gates.append( g )
for g in ['x','y','z','h','cz','cx']:
if g in all_allowed_gates_raw:
all_allowed_gates.append( g )
for g in all_allowed_gates_raw:
if g not in all_allowed_gates:
all_allowed_gates.append( g )
gate = widgets.ToggleButtons(options=description['gate']+all_allowed_gates)
qubit = widgets.ToggleButtons(options=[''])
action = widgets.ToggleButtons(options=[''])
boxes = widgets.VBox([gate,qubit,action])
display(boxes)
if vi[1]:
print('\nYour quantum program so far\n')
self.program = []
def given_gate(a):
# Action to be taken when gate is chosen. This sets up the system to choose a qubit.
if gate.value:
if gate.value in allowed_gates['both']:
qubit.options = description['qubit'] + ["not required"]
qubit.value = "not required"
else:
allowed_qubits = []
for q in ['0','1']:
if (gate.value in allowed_gates[q]) or (gate.value in allowed_gates['both']):
allowed_qubits.append(q)
allowed_qubit_names = []
for q in allowed_qubits:
allowed_qubit_names += [qubit_names[q]]
qubit.options = description['qubit'] + allowed_qubit_names
def given_qubit(b):
# Action to be taken when qubit is chosen. This sets up the system to choose an action.
if qubit.value not in ['',description['qubit'][0],'Success!']:
action.options = description['action']+['Apply operation']
def given_action(c):
# Action to be taken when user confirms their choice of gate and qubit.
# This applied the command, updates the visualization and checks whether the puzzle is solved.
if action.value not in ['',description['action'][0]]:
# apply operation
if action.value=='Apply operation':
if qubit.value not in ['',description['qubit'][0],'Success!']:
# translate bit gates to qubit gates
if gate.value=='NOT':
q_gate = 'x'
elif gate.value=='CNOT':
q_gate = 'cx'
else:
q_gate = gate.value
if qubit.value=="not required":
q = qubit_names['1']
else:
q = qubit.value
q01 = '0'*(qubit.value==qubit_names['0']) + '1'*(qubit.value==qubit_names['1']) + 'both'*(qubit.value=="not required")
if q_gate in ['bloch','unbloch']:
if q_gate=='bloch':
bloch[0] = q01
else:
bloch[0] = None
else:
command = get_command(q_gate,q01)
eval(command[0])
if vi[1]:
print(command[1])
self.program.append( command[1] )
if required_gates[q01][gate.value]>0:
required_gates[q01][gate.value] -= 1
grid.update_grid(bloch=bloch[0],hidden=vi[0],qubit=vi[1],corr=vi[2],message=get_total_gate_list())
success = get_success(required_gates)
if success
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
qubit_names['1']
else:
q = qubit.value
q01 = '0'*(qubit.value==qubit_names['0']) + '1'*(qubit.value==qubit_names['1']) + 'both'*(qubit.value=="not required")
if q_gate in ['bloch','unbloch']:
if q_gate=='bloch':
bloch[0] = q01
else:
bloch[0] = None
else:
command = get_command(q_gate,q01)
eval(command[0])
if vi[1]:
print(command[1])
self.program.append( command[1] )
if required_gates[q01][gate.value]>0:
required_gates[q01][gate.value] -= 1
grid.update_grid(bloch=bloch[0],hidden=vi[0],qubit=vi[1],corr=vi[2],message=get_total_gate_list())
success = get_success(required_gates)
if success:
gate.options = ['Success!']
qubit.options = ['Success!']
action.options = ['Success!']
plt.close(grid.fig)
else:
gate.value = description['gate'][0]
qubit.options = ['']
action.options = ['']
gate.observe(given_gate)
qubit.observe(given_qubit)
action.observe(given_action)
class pauli_grid():
# Allows a quantum circuit to be created, modified and implemented, and visualizes the output in the style of 'Hello Quantum'.
def __init__(self,backend=Aer.get_backend('qasm_simulator'),shots=1024,mode='circle'):
"""
backend=Aer.get_backend('qasm_simulator')
Backend to be used by Qiskit to calculate expectation values (defaults to local simulator).
shots=1024
Number of shots used to to calculate expectation values.
mode='circle'
Either the standard 'Hello Quantum' visualization can be used (with mode='circle') or the alternative line based one (mode='line').
"""
self.backend = backend
self.shots = shots
self.box = {'ZI':(-1, 2),'XI':(-2, 3),'IZ':( 1, 2),'IX':( 2, 3),'ZZ':( 0, 3),'ZX':( 1, 4),'XZ':(-1, 4),'XX':( 0, 5)}
self.rho = {}
for pauli in self.box:
self.rho[pauli] = 0.0
for pauli in ['ZI','IZ','ZZ']:
self.rho[pauli] = 1.0
self.qr = QuantumRegister(2)
self.cr = ClassicalRegister(2)
self.qc = QuantumCircuit(self.qr, self.cr)
self.mode = mode
# colors are background, qubit circles and correlation circles, respectively
if self.mode=='line':
self.colors = [(1.6/255,72/255,138/255),(132/255,177/255,236/255),(33/255,114/255,216/255)]
else:
self.colors = [(1.6/255,72/255,138/255),(132/255,177/255,236/255),(33/255,114/255,216/255)]
self.fig = plt.figure(figsize=(5,5),facecolor=self.colors[0])
self.ax = self.fig.add_subplot(111)
plt.axis('off')
self.bottom = self.ax.text(-3,1,"",size=9,va='top',color='w')
self.lines = {}
for pauli in self.box:
w = plt.plot( [self.box[pauli][0],self.box[pauli][0]], [self.box[pauli][1],self.box[pauli][1]], color=(1.0
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
/255,236/255),(33/255,114/255,216/255)]
else:
self.colors = [(1.6/255,72/255,138/255),(132/255,177/255,236/255),(33/255,114/255,216/255)]
self.fig = plt.figure(figsize=(5,5),facecolor=self.colors[0])
self.ax = self.fig.add_subplot(111)
plt.axis('off')
self.bottom = self.ax.text(-3,1,"",size=9,va='top',color='w')
self.lines = {}
for pauli in self.box:
w = plt.plot( [self.box[pauli][0],self.box[pauli][0]], [self.box[pauli][1],self.box[pauli][1]], color=(1.0,1.0,1.0), lw=0 )
b = plt.plot( [self.box[pauli][0],self.box[pauli][0]], [self.box[pauli][1],self.box[pauli][1]], color=(0.0,0.0,0.0), lw=0 )
c = {}
c['w'] = self.ax.add_patch( Circle(self.box[pauli], 0.0, color=(0,0,0), zorder=10) )
c['b'] = self.ax.add_patch( Circle(self.box[pauli], 0.0, color=(1,1,1), zorder=10) )
self.lines[pauli] = {'w':w,'b':b,'c':c}
def get_rho(self):
# Runs the circuit specified by self.qc and determines the expectation values for 'ZI', 'IZ', 'ZZ', 'XI', 'IX', 'XX', 'ZX' and 'XZ'.
bases = ['ZZ','ZX','XZ','XX']
results = {}
for basis in bases:
temp_qc = copy.deepcopy(self.qc)
for j in range(2):
if basis[j]=='X':
temp_qc.h(self.qr[j])
temp_qc.barrier(self.qr)
temp_qc.measure(self.qr,self.cr)
job = execute(temp_qc, backend=self.backend, shots=self.shots)
results[basis] = job.result().get_counts()
for string in results[basis]:
results[basis][string] = results[basis][string]/self.shots
prob = {}
# prob of expectation value -1 for single qubit observables
for j in range(2):
for p in ['X','Z']:
pauli = {}
for pp in 'IXZ':
pauli[pp] = (j==1)*pp + p + (j==0)*pp
prob[pauli['I']] = 0
for basis in [pauli['X'],pauli['Z']]:
for string in results[basis]:
if string[(j+1)%2]=='1':
prob[pauli['I']] += results[basis][string]/2
# prob of expectation value -1 for two qubit observables
for basis in ['ZZ','ZX','XZ','XX']:
prob[basis] = 0
for string in results[basis]:
if string[0]!=string[1]:
prob[basis] += results[basis][string]
for pauli in prob:
self.rho[pauli] = 1-2*prob[pauli]
def update_grid(self,rho=None,labels=False,bloch=None,hidden=[],qubit=True,corr=True,message=""):
"""
rho = None
Dictionary of expectation values for 'ZI', 'IZ', 'ZZ', 'XI', 'IX', 'XX', 'ZX' and 'XZ'. If supplied, this will be visualized instead of the results of running self.qc.
labels = None
Dictionary of strings for 'ZI', 'IZ', 'ZZ', 'XI', 'IX', 'XX', 'ZX' and 'XZ' that are printed in the corresponding boxes.
bloch = None
If a qubit name is supplied, and if mode='line',
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
['I']] += results[basis][string]/2
# prob of expectation value -1 for two qubit observables
for basis in ['ZZ','ZX','XZ','XX']:
prob[basis] = 0
for string in results[basis]:
if string[0]!=string[1]:
prob[basis] += results[basis][string]
for pauli in prob:
self.rho[pauli] = 1-2*prob[pauli]
def update_grid(self,rho=None,labels=False,bloch=None,hidden=[],qubit=True,corr=True,message=""):
"""
rho = None
Dictionary of expectation values for 'ZI', 'IZ', 'ZZ', 'XI', 'IX', 'XX', 'ZX' and 'XZ'. If supplied, this will be visualized instead of the results of running self.qc.
labels = None
Dictionary of strings for 'ZI', 'IZ', 'ZZ', 'XI', 'IX', 'XX', 'ZX' and 'XZ' that are printed in the corresponding boxes.
bloch = None
If a qubit name is supplied, and if mode='line', Bloch circles are displayed for this qubit
hidden = []
Which qubits have their circles hidden (empty list if both shown).
qubit = True
Whether both circles shown for each qubit (use True for qubit puzzles and False for bit puzzles).
corr = True
Whether the correlation circles (the four in the middle) are shown.
message
A string of text that is displayed below the grid.
"""
def see_if_unhidden(pauli):
# For a given Pauli, see whether its circle should be shown.
unhidden = True
# first: does it act non-trivially on a qubit in `hidden`
for j in hidden:
unhidden = unhidden and (pauli[j]=='I')
# second: does it contain something other than 'I' or 'Z' when only bits are shown
if qubit==False:
for j in range(2):
unhidden = unhidden and (pauli[j] in ['I','Z'])
# third: is it a correlation pauli when these are not allowed
if corr==False:
unhidden = unhidden and ((pauli[0]=='I') or (pauli[1]=='I'))
return unhidden
def add_line(line,pauli_pos,pauli):
"""
For mode='line', add in the line.
line = the type of line to be drawn (X, Z or the other one)
pauli = the box where the line is to be drawn
expect = the expectation value that determines its length
"""
unhidden = see_if_unhidden(pauli)
coord = None
p = (1-self.rho[pauli])/2 # prob of 1 output
# in the following, white lines goes from a to b, and black from b to c
if unhidden:
if line=='Z':
a = ( self.box[pauli_pos][0], self.box[pauli_pos][1]+l/2 )
c = ( self.box[pauli_pos][0], self.box[pauli_pos][1]-l/2 )
b = ( (1-p)*a[0] + p*c[0], (1-p)*a[1] + p*c[1] )
lw = 8
coord = (b[1] - (a[1]+c[1])/2)*1.2 + (a[1]+c[1])/2
elif line=='X':
a = ( self.box[pauli_pos][0]+l/2, self.box[pauli_pos][1] )
c = ( self.box[pauli_pos][0]-l/2, self.box[pauli_pos][1] )
b = ( (1-p)*a[0] + p*c[0], (1-p)*a[1] + p*c[1] )
lw = 9
coord = (b[0] - (a[0]+c[0])/2)*1.1 + (a[0]+c[0])/2
else:
a = ( self.box[pauli_pos][0]+l/(2*np.sqrt(2)), self.box[pauli_pos][1]+l/(2*np.sqrt(2)) )
c = ( self.box[pauli_pos][0]-l/(2*np
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
] )
lw = 8
coord = (b[1] - (a[1]+c[1])/2)*1.2 + (a[1]+c[1])/2
elif line=='X':
a = ( self.box[pauli_pos][0]+l/2, self.box[pauli_pos][1] )
c = ( self.box[pauli_pos][0]-l/2, self.box[pauli_pos][1] )
b = ( (1-p)*a[0] + p*c[0], (1-p)*a[1] + p*c[1] )
lw = 9
coord = (b[0] - (a[0]+c[0])/2)*1.1 + (a[0]+c[0])/2
else:
a = ( self.box[pauli_pos][0]+l/(2*np.sqrt(2)), self.box[pauli_pos][1]+l/(2*np.sqrt(2)) )
c = ( self.box[pauli_pos][0]-l/(2*np.sqrt(2)), self.box[pauli_pos][1]-l/(2*np.sqrt(2)) )
b = ( (1-p)*a[0] + p*c[0], (1-p)*a[1] + p*c[1] )
lw = 9
self.lines[pauli]['w'].pop(0).remove()
self.lines[pauli]['b'].pop(0).remove()
self.lines[pauli]['w'] = plt.plot( [a[0],b[0]], [a[1],b[1]], color=(1.0,1.0,1.0), lw=lw )
self.lines[pauli]['b'] = plt.plot( [b[0],c[0]], [b[1],c[1]], color=(0.0,0.0,0.0), lw=lw )
return coord
l = 0.9 # line length
r = 0.6 # circle radius
L = 0.98*np.sqrt(2) # box height and width
if rho==None:
self.get_rho()
# draw boxes
for pauli in self.box:
if 'I' in pauli:
color = self.colors[1]
else:
color = self.colors[2]
self.ax.add_patch( Rectangle( (self.box[pauli][0],self.box[pauli][1]-1), L, L, angle=45, color=color) )
# draw circles
for pauli in self.box:
unhidden = see_if_unhidden(pauli)
if unhidden:
if self.mode=='line':
self.ax.add_patch( Circle(self.box[pauli], r, color=(0.5,0.5,0.5)) )
else:
prob = (1-self.rho[pauli])/2
self.ax.add_patch( Circle(self.box[pauli], r, color=(prob,prob,prob)) )
# update bars if required
if self.mode=='line':
if bloch in ['0','1']:
for other in 'IXZ':
px = other*(bloch=='1') + 'X' + other*(bloch=='0')
pz = other*(bloch=='1') + 'Z' + other*(bloch=='0')
z_coord = add_line('Z',pz,pz)
x_coord = add_line('X',pz,px)
for j in self.lines[pz]['c']:
self.lines[pz]['c'][j].center = (x_coord,z_coord)
self.lines[pz]['c'][j].radius = (j=='w')*0.05 + (j=='b')*0.04
px = 'I'*(bloch=='0') + 'X' + 'I'*(bloch=='1')
pz = 'I'*(bloch=='0') + 'Z' + 'I'*(bloch=='1')
add_line('Z',pz,pz)
add_line('X',px,px)
else:
for pauli in self.box:
for j in self.lines[pauli]['c']:
self.lines[pauli]['c'][j].radius = 0.0
if pauli in
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
1') + 'X' + other*(bloch=='0')
pz = other*(bloch=='1') + 'Z' + other*(bloch=='0')
z_coord = add_line('Z',pz,pz)
x_coord = add_line('X',pz,px)
for j in self.lines[pz]['c']:
self.lines[pz]['c'][j].center = (x_coord,z_coord)
self.lines[pz]['c'][j].radius = (j=='w')*0.05 + (j=='b')*0.04
px = 'I'*(bloch=='0') + 'X' + 'I'*(bloch=='1')
pz = 'I'*(bloch=='0') + 'Z' + 'I'*(bloch=='1')
add_line('Z',pz,pz)
add_line('X',px,px)
else:
for pauli in self.box:
for j in self.lines[pauli]['c']:
self.lines[pauli]['c'][j].radius = 0.0
if pauli in ['ZI','IZ','ZZ']:
add_line('Z',pauli,pauli)
if pauli in ['XI','IX','XX']:
add_line('X',pauli,pauli)
if pauli in ['XZ','ZX']:
add_line('ZX',pauli,pauli)
self.bottom.set_text(message)
if labels:
for pauli in box:
plt.text(self.box[pauli][0]-0.05,self.box[pauli][1]-0.85, pauli)
self.ax.set_xlim([-3,3])
self.ax.set_ylim([0,6])
self.fig.canvas.draw()
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import IBMQ
from qiskit import BasicAer as Aer
from qiskit import ClassicalRegister, QuantumRegister, QuantumCircuit
from qiskit import execute
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Circle, Rectangle
import copy
from ipywidgets import widgets
from IPython.display import display, clear_output
try:
IBMQ.load_accounts()
except:
pass
class run_game():
# Implements a puzzle, which is defined by the given inputs.
def __init__(self,initialize, success_condition, allowed_gates, vi, qubit_names, eps=0.1, backend=Aer.get_backend('qasm_simulator'), shots=1024,mode='circle',verbose=False):
"""
initialize
List of gates applied to the initial 00 state to get the starting state of the puzzle.
Supported single qubit gates (applied to qubit '0' or '1') are 'x', 'y', 'z', 'h', 'ry(pi/4)'.
Supported two qubit gates are 'cz' and 'cx'. Specify only the target qubit.
success_condition
Values for pauli observables that must be obtained for the puzzle to declare success.
allowed_gates
For each qubit, specify which operations are allowed in this puzzle. 'both' should be used only for operations that don't need a qubit to be specified ('cz' and 'unbloch').
Gates are expressed as a dict with an int as value. If this is non-zero, it specifies the number of times the gate is must be used (no more or less) for the puzzle to be successfully solved. If the value is zero, the player can use the gate any number of times.
vi
Some visualization information as a three element list. These specify:
* which qubits are hidden (empty list if both shown).
* whether both circles shown for each qubit (use True for qubit puzzles and False for bit puzzles).
* whether the correlation circles (the four in the middle) are shown.
qubit_names
The two qubits are always called '0' and '1' from the programming side. But for the player, we can display different names.
eps=0.1
How close the expectation values need to be to the targets for success to be declared.
backend=Aer.get_backend('qasm_simulator')
Backend to be used by Qiskit to calculate expectation values (defaults to local simulator).
shots=1024
Number of shots used to to calculate expectation values.
mode='circle'
Either the standard 'Hello Quantum' visualization can be used (with mode='circle') or the alternative line based one (mode='line').
verbose=False
"""
def get_total_gate_list():
# Get a text block describing allowed gates.
total_gate_list = ""
for qubit in allowed_gates:
gate_list = ""
for gate in allowed_gates[qubit]:
if required_gates[qubit][gate] > 0 :
gate_list +=''+ gate+" (use "+str(required_gates[qubit][gate])+" time"+"s"*(required_gates[qubit][gate]>1)+")"
elif allowed_gates[qubit][gate]==0:
gate_list +=' '+gate +''
if gate_list!="":
if qubit=="both" :
gate_list = "\nAllowed symmetric operations:" + gate_list
else :
gate_list = "\nAllowed operations for " + qubit_names[qubit] + ":\n" + " "*10 + gate_list
total_gate_list += gate_list +"\n"
return total_gate_list
def get_success(required_gates):
# Determine whether the success conditions are satisfied, both for expectation values, and the number of gates to be used.
success = True
grid.get_rho()
if verbose:
print(grid.rho)
for pauli in success_condition:
success = success and (abs(success_condition[pauli] - grid.rho[pauli])<eps)
for qubit in required_gates:
for gate in required_gates[qubit]:
success = success and (required_gates[qubit][gate]==0)
return success
def get_command(gate,qubit
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
ates[qubit][gate]==0:
gate_list +=' '+gate +''
if gate_list!="":
if qubit=="both" :
gate_list = "\nAllowed symmetric operations:" + gate_list
else :
gate_list = "\nAllowed operations for " + qubit_names[qubit] + ":\n" + " "*10 + gate_list
total_gate_list += gate_list +"\n"
return total_gate_list
def get_success(required_gates):
# Determine whether the success conditions are satisfied, both for expectation values, and the number of gates to be used.
success = True
grid.get_rho()
if verbose:
print(grid.rho)
for pauli in success_condition:
success = success and (abs(success_condition[pauli] - grid.rho[pauli])<eps)
for qubit in required_gates:
for gate in required_gates[qubit]:
success = success and (required_gates[qubit][gate]==0)
return success
def get_command(gate,qubit):
# For a given gate and qubit, return the string describing the corresoinding Qiskit string.
if qubit=='both':
qubit = '1'
qubit_name = qubit_names[qubit]
for name in qubit_names.values():
if name!=qubit_name:
other_name = name
# then make the command (both for the grid, and for printing to screen)
if gate in ['x','y','z','h']:
real_command = 'grid.qc.'+gate+'(grid.qr['+qubit+'])'
clean_command = 'qc.'+gate+'('+qubit_name+')'
elif gate in ['ry(pi/4)','ry(-pi/4)']:
real_command = 'grid.qc.ry('+'-'*(gate=='ry(-pi/4)')+'np.pi/4,grid.qr['+qubit+'])'
clean_command = 'qc.ry('+'-'*(gate=='ry(-pi/4)')+'np.pi/4,'+qubit_name+')'
elif gate in ['cz','cx','swap']:
real_command = 'grid.qc.'+gate+'(grid.qr['+'0'*(qubit=='1')+'1'*(qubit=='0')+'],grid.qr['+qubit+'])'
clean_command = 'qc.'+gate+'('+other_name+','+qubit_name+')'
return [real_command,clean_command]
clear_output()
bloch = [None]
# set up initial state and figure
grid = pauli_grid(backend=backend,shots=shots,mode=mode)
for gate in initialize:
eval( get_command(gate[0],gate[1])[0] )
required_gates = copy.deepcopy(allowed_gates)
# determine which qubits to show in figure
if allowed_gates['0']=={} : # if no gates are allowed for qubit 0, we know to only show qubit 1
shown_qubit = 1
elif allowed_gates['1']=={} : # and vice versa
shown_qubit = 0
else :
shown_qubit = 2
# show figure
grid.update_grid(bloch=bloch[0],hidden=vi[0],qubit=vi[1],corr=vi[2],message=get_total_gate_list())
description = {'gate':['Choose gate'],'qubit':['Choose '+'qu'*vi[1]+'bit'],'action':['Make it happen!']}
all_allowed_gates_raw = []
for q in ['0','1','both']:
all_allowed_gates_raw += list(allowed_gates[q])
all_allowed_gates_raw = list(set(all_allowed_gates_raw))
all_allowed_gates = []
for g in ['bloch','unbloch']:
if g in all_allowed_gates_raw:
all_allowed_gates.append( g )
for g in ['x','y','z','h','cz','cx']:
if g in all_allowed_gates_raw:
all_allowed_gates.append( g )
for g in all_allowed_gates_raw:
if g not in all_allowed_gates:
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
figure
grid.update_grid(bloch=bloch[0],hidden=vi[0],qubit=vi[1],corr=vi[2],message=get_total_gate_list())
description = {'gate':['Choose gate'],'qubit':['Choose '+'qu'*vi[1]+'bit'],'action':['Make it happen!']}
all_allowed_gates_raw = []
for q in ['0','1','both']:
all_allowed_gates_raw += list(allowed_gates[q])
all_allowed_gates_raw = list(set(all_allowed_gates_raw))
all_allowed_gates = []
for g in ['bloch','unbloch']:
if g in all_allowed_gates_raw:
all_allowed_gates.append( g )
for g in ['x','y','z','h','cz','cx']:
if g in all_allowed_gates_raw:
all_allowed_gates.append( g )
for g in all_allowed_gates_raw:
if g not in all_allowed_gates:
all_allowed_gates.append( g )
gate = widgets.ToggleButtons(options=description['gate']+all_allowed_gates)
qubit = widgets.ToggleButtons(options=[''])
action = widgets.ToggleButtons(options=[''])
boxes = widgets.VBox([gate,qubit,action])
display(boxes)
if vi[1]:
print('\nYour quantum program so far\n')
self.program = []
def given_gate(a):
# Action to be taken when gate is chosen. This sets up the system to choose a qubit.
if gate.value:
if gate.value in allowed_gates['both']:
qubit.options = description['qubit'] + ["not required"]
qubit.value = "not required"
else:
allowed_qubits = []
for q in ['0','1']:
if (gate.value in allowed_gates[q]) or (gate.value in allowed_gates['both']):
allowed_qubits.append(q)
allowed_qubit_names = []
for q in allowed_qubits:
allowed_qubit_names += [qubit_names[q]]
qubit.options = description['qubit'] + allowed_qubit_names
def given_qubit(b):
# Action to be taken when qubit is chosen. This sets up the system to choose an action.
if qubit.value not in ['',description['qubit'][0],'Success!']:
action.options = description['action']+['Apply operation']
def given_action(c):
# Action to be taken when user confirms their choice of gate and qubit.
# This applied the command, updates the visualization and checks whether the puzzle is solved.
if action.value not in ['',description['action'][0]]:
# apply operation
if action.value=='Apply operation':
if qubit.value not in ['',description['qubit'][0],'Success!']:
# translate bit gates to qubit gates
if gate.value=='NOT':
q_gate = 'x'
elif gate.value=='CNOT':
q_gate = 'cx'
else:
q_gate = gate.value
if qubit.value=="not required":
q = qubit_names['1']
else:
q = qubit.value
q01 = '0'*(qubit.value==qubit_names['0']) + '1'*(qubit.value==qubit_names['1']) + 'both'*(qubit.value=="not required")
if q_gate in ['bloch','unbloch']:
if q_gate=='bloch':
bloch[0] = q01
else:
bloch[0] = None
else:
command = get_command(q_gate,q01)
eval(command[0])
if vi[1]:
print(command[1])
self.program.append( command[1] )
if required_gates[q01][gate.value]>0:
required_gates[q01][gate.value] -= 1
grid.update_grid(bloch=bloch[0],hidden=vi[0],qubit=vi[1],corr=vi[2],message=get_total_gate_list())
success = get_success(required_gates)
if success
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
qubit_names['1']
else:
q = qubit.value
q01 = '0'*(qubit.value==qubit_names['0']) + '1'*(qubit.value==qubit_names['1']) + 'both'*(qubit.value=="not required")
if q_gate in ['bloch','unbloch']:
if q_gate=='bloch':
bloch[0] = q01
else:
bloch[0] = None
else:
command = get_command(q_gate,q01)
eval(command[0])
if vi[1]:
print(command[1])
self.program.append( command[1] )
if required_gates[q01][gate.value]>0:
required_gates[q01][gate.value] -= 1
grid.update_grid(bloch=bloch[0],hidden=vi[0],qubit=vi[1],corr=vi[2],message=get_total_gate_list())
success = get_success(required_gates)
if success:
gate.options = ['Success!']
qubit.options = ['Success!']
action.options = ['Success!']
plt.close(grid.fig)
else:
gate.value = description['gate'][0]
qubit.options = ['']
action.options = ['']
gate.observe(given_gate)
qubit.observe(given_qubit)
action.observe(given_action)
class pauli_grid():
# Allows a quantum circuit to be created, modified and implemented, and visualizes the output in the style of 'Hello Quantum'.
def __init__(self,backend=Aer.get_backend('qasm_simulator'),shots=1024,mode='circle'):
"""
backend=Aer.get_backend('qasm_simulator')
Backend to be used by Qiskit to calculate expectation values (defaults to local simulator).
shots=1024
Number of shots used to to calculate expectation values.
mode='circle'
Either the standard 'Hello Quantum' visualization can be used (with mode='circle') or the alternative line based one (mode='line').
"""
self.backend = backend
self.shots = shots
self.box = {'ZI':(-1, 2),'XI':(-2, 3),'IZ':( 1, 2),'IX':( 2, 3),'ZZ':( 0, 3),'ZX':( 1, 4),'XZ':(-1, 4),'XX':( 0, 5)}
self.rho = {}
for pauli in self.box:
self.rho[pauli] = 0.0
for pauli in ['ZI','IZ','ZZ']:
self.rho[pauli] = 1.0
self.qr = QuantumRegister(2)
self.cr = ClassicalRegister(2)
self.qc = QuantumCircuit(self.qr, self.cr)
self.mode = mode
# colors are background, qubit circles and correlation circles, respectively
if self.mode=='line':
self.colors = [(1.6/255,72/255,138/255),(132/255,177/255,236/255),(33/255,114/255,216/255)]
else:
self.colors = [(1.6/255,72/255,138/255),(132/255,177/255,236/255),(33/255,114/255,216/255)]
self.fig = plt.figure(figsize=(5,5),facecolor=self.colors[0])
self.ax = self.fig.add_subplot(111)
plt.axis('off')
self.bottom = self.ax.text(-3,1,"",size=9,va='top',color='w')
self.lines = {}
for pauli in self.box:
w = plt.plot( [self.box[pauli][0],self.box[pauli][0]], [self.box[pauli][1],self.box[pauli][1]], color=(1.0
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
/255,236/255),(33/255,114/255,216/255)]
else:
self.colors = [(1.6/255,72/255,138/255),(132/255,177/255,236/255),(33/255,114/255,216/255)]
self.fig = plt.figure(figsize=(5,5),facecolor=self.colors[0])
self.ax = self.fig.add_subplot(111)
plt.axis('off')
self.bottom = self.ax.text(-3,1,"",size=9,va='top',color='w')
self.lines = {}
for pauli in self.box:
w = plt.plot( [self.box[pauli][0],self.box[pauli][0]], [self.box[pauli][1],self.box[pauli][1]], color=(1.0,1.0,1.0), lw=0 )
b = plt.plot( [self.box[pauli][0],self.box[pauli][0]], [self.box[pauli][1],self.box[pauli][1]], color=(0.0,0.0,0.0), lw=0 )
c = {}
c['w'] = self.ax.add_patch( Circle(self.box[pauli], 0.0, color=(0,0,0), zorder=10) )
c['b'] = self.ax.add_patch( Circle(self.box[pauli], 0.0, color=(1,1,1), zorder=10) )
self.lines[pauli] = {'w':w,'b':b,'c':c}
def get_rho(self):
# Runs the circuit specified by self.qc and determines the expectation values for 'ZI', 'IZ', 'ZZ', 'XI', 'IX', 'XX', 'ZX' and 'XZ'.
bases = ['ZZ','ZX','XZ','XX']
results = {}
for basis in bases:
temp_qc = copy.deepcopy(self.qc)
for j in range(2):
if basis[j]=='X':
temp_qc.h(self.qr[j])
temp_qc.barrier(self.qr)
temp_qc.measure(self.qr,self.cr)
job = execute(temp_qc, backend=self.backend, shots=self.shots)
results[basis] = job.result().get_counts()
for string in results[basis]:
results[basis][string] = results[basis][string]/self.shots
prob = {}
# prob of expectation value -1 for single qubit observables
for j in range(2):
for p in ['X','Z']:
pauli = {}
for pp in 'IXZ':
pauli[pp] = (j==1)*pp + p + (j==0)*pp
prob[pauli['I']] = 0
for basis in [pauli['X'],pauli['Z']]:
for string in results[basis]:
if string[(j+1)%2]=='1':
prob[pauli['I']] += results[basis][string]/2
# prob of expectation value -1 for two qubit observables
for basis in ['ZZ','ZX','XZ','XX']:
prob[basis] = 0
for string in results[basis]:
if string[0]!=string[1]:
prob[basis] += results[basis][string]
for pauli in prob:
self.rho[pauli] = 1-2*prob[pauli]
def update_grid(self,rho=None,labels=False,bloch=None,hidden=[],qubit=True,corr=True,message=""):
"""
rho = None
Dictionary of expectation values for 'ZI', 'IZ', 'ZZ', 'XI', 'IX', 'XX', 'ZX' and 'XZ'. If supplied, this will be visualized instead of the results of running self.qc.
labels = None
Dictionary of strings for 'ZI', 'IZ', 'ZZ', 'XI', 'IX', 'XX', 'ZX' and 'XZ' that are printed in the corresponding boxes.
bloch = None
If a qubit name is supplied, and if mode='line',
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
['I']] += results[basis][string]/2
# prob of expectation value -1 for two qubit observables
for basis in ['ZZ','ZX','XZ','XX']:
prob[basis] = 0
for string in results[basis]:
if string[0]!=string[1]:
prob[basis] += results[basis][string]
for pauli in prob:
self.rho[pauli] = 1-2*prob[pauli]
def update_grid(self,rho=None,labels=False,bloch=None,hidden=[],qubit=True,corr=True,message=""):
"""
rho = None
Dictionary of expectation values for 'ZI', 'IZ', 'ZZ', 'XI', 'IX', 'XX', 'ZX' and 'XZ'. If supplied, this will be visualized instead of the results of running self.qc.
labels = None
Dictionary of strings for 'ZI', 'IZ', 'ZZ', 'XI', 'IX', 'XX', 'ZX' and 'XZ' that are printed in the corresponding boxes.
bloch = None
If a qubit name is supplied, and if mode='line', Bloch circles are displayed for this qubit
hidden = []
Which qubits have their circles hidden (empty list if both shown).
qubit = True
Whether both circles shown for each qubit (use True for qubit puzzles and False for bit puzzles).
corr = True
Whether the correlation circles (the four in the middle) are shown.
message
A string of text that is displayed below the grid.
"""
def see_if_unhidden(pauli):
# For a given Pauli, see whether its circle should be shown.
unhidden = True
# first: does it act non-trivially on a qubit in `hidden`
for j in hidden:
unhidden = unhidden and (pauli[j]=='I')
# second: does it contain something other than 'I' or 'Z' when only bits are shown
if qubit==False:
for j in range(2):
unhidden = unhidden and (pauli[j] in ['I','Z'])
# third: is it a correlation pauli when these are not allowed
if corr==False:
unhidden = unhidden and ((pauli[0]=='I') or (pauli[1]=='I'))
return unhidden
def add_line(line,pauli_pos,pauli):
"""
For mode='line', add in the line.
line = the type of line to be drawn (X, Z or the other one)
pauli = the box where the line is to be drawn
expect = the expectation value that determines its length
"""
unhidden = see_if_unhidden(pauli)
coord = None
p = (1-self.rho[pauli])/2 # prob of 1 output
# in the following, white lines goes from a to b, and black from b to c
if unhidden:
if line=='Z':
a = ( self.box[pauli_pos][0], self.box[pauli_pos][1]+l/2 )
c = ( self.box[pauli_pos][0], self.box[pauli_pos][1]-l/2 )
b = ( (1-p)*a[0] + p*c[0], (1-p)*a[1] + p*c[1] )
lw = 8
coord = (b[1] - (a[1]+c[1])/2)*1.2 + (a[1]+c[1])/2
elif line=='X':
a = ( self.box[pauli_pos][0]+l/2, self.box[pauli_pos][1] )
c = ( self.box[pauli_pos][0]-l/2, self.box[pauli_pos][1] )
b = ( (1-p)*a[0] + p*c[0], (1-p)*a[1] + p*c[1] )
lw = 9
coord = (b[0] - (a[0]+c[0])/2)*1.1 + (a[0]+c[0])/2
else:
a = ( self.box[pauli_pos][0]+l/(2*np.sqrt(2)), self.box[pauli_pos][1]+l/(2*np.sqrt(2)) )
c = ( self.box[pauli_pos][0]-l/(2*np
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
] )
lw = 8
coord = (b[1] - (a[1]+c[1])/2)*1.2 + (a[1]+c[1])/2
elif line=='X':
a = ( self.box[pauli_pos][0]+l/2, self.box[pauli_pos][1] )
c = ( self.box[pauli_pos][0]-l/2, self.box[pauli_pos][1] )
b = ( (1-p)*a[0] + p*c[0], (1-p)*a[1] + p*c[1] )
lw = 9
coord = (b[0] - (a[0]+c[0])/2)*1.1 + (a[0]+c[0])/2
else:
a = ( self.box[pauli_pos][0]+l/(2*np.sqrt(2)), self.box[pauli_pos][1]+l/(2*np.sqrt(2)) )
c = ( self.box[pauli_pos][0]-l/(2*np.sqrt(2)), self.box[pauli_pos][1]-l/(2*np.sqrt(2)) )
b = ( (1-p)*a[0] + p*c[0], (1-p)*a[1] + p*c[1] )
lw = 9
self.lines[pauli]['w'].pop(0).remove()
self.lines[pauli]['b'].pop(0).remove()
self.lines[pauli]['w'] = plt.plot( [a[0],b[0]], [a[1],b[1]], color=(1.0,1.0,1.0), lw=lw )
self.lines[pauli]['b'] = plt.plot( [b[0],c[0]], [b[1],c[1]], color=(0.0,0.0,0.0), lw=lw )
return coord
l = 0.9 # line length
r = 0.6 # circle radius
L = 0.98*np.sqrt(2) # box height and width
if rho==None:
self.get_rho()
# draw boxes
for pauli in self.box:
if 'I' in pauli:
color = self.colors[1]
else:
color = self.colors[2]
self.ax.add_patch( Rectangle( (self.box[pauli][0],self.box[pauli][1]-1), L, L, angle=45, color=color) )
# draw circles
for pauli in self.box:
unhidden = see_if_unhidden(pauli)
if unhidden:
if self.mode=='line':
self.ax.add_patch( Circle(self.box[pauli], r, color=(0.5,0.5,0.5)) )
else:
prob = (1-self.rho[pauli])/2
self.ax.add_patch( Circle(self.box[pauli], r, color=(prob,prob,prob)) )
# update bars if required
if self.mode=='line':
if bloch in ['0','1']:
for other in 'IXZ':
px = other*(bloch=='1') + 'X' + other*(bloch=='0')
pz = other*(bloch=='1') + 'Z' + other*(bloch=='0')
z_coord = add_line('Z',pz,pz)
x_coord = add_line('X',pz,px)
for j in self.lines[pz]['c']:
self.lines[pz]['c'][j].center = (x_coord,z_coord)
self.lines[pz]['c'][j].radius = (j=='w')*0.05 + (j=='b')*0.04
px = 'I'*(bloch=='0') + 'X' + 'I'*(bloch=='1')
pz = 'I'*(bloch=='0') + 'Z' + 'I'*(bloch=='1')
add_line('Z',pz,pz)
add_line('X',px,px)
else:
for pauli in self.box:
for j in self.lines[pauli]['c']:
self.lines[pauli]['c'][j].radius = 0.0
if pauli in
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
1') + 'X' + other*(bloch=='0')
pz = other*(bloch=='1') + 'Z' + other*(bloch=='0')
z_coord = add_line('Z',pz,pz)
x_coord = add_line('X',pz,px)
for j in self.lines[pz]['c']:
self.lines[pz]['c'][j].center = (x_coord,z_coord)
self.lines[pz]['c'][j].radius = (j=='w')*0.05 + (j=='b')*0.04
px = 'I'*(bloch=='0') + 'X' + 'I'*(bloch=='1')
pz = 'I'*(bloch=='0') + 'Z' + 'I'*(bloch=='1')
add_line('Z',pz,pz)
add_line('X',px,px)
else:
for pauli in self.box:
for j in self.lines[pauli]['c']:
self.lines[pauli]['c'][j].radius = 0.0
if pauli in ['ZI','IZ','ZZ']:
add_line('Z',pauli,pauli)
if pauli in ['XI','IX','XX']:
add_line('X',pauli,pauli)
if pauli in ['XZ','ZX']:
add_line('ZX',pauli,pauli)
self.bottom.set_text(message)
if labels:
for pauli in box:
plt.text(self.box[pauli][0]-0.05,self.box[pauli][1]-0.85, pauli)
self.ax.set_xlim([-3,3])
self.ax.set_ylim([0,6])
self.fig.canvas.draw()
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
from qiskit import IBMQ
from qiskit import BasicAer as Aer
from qiskit import ClassicalRegister, QuantumRegister, QuantumCircuit
from qiskit import execute
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Circle, Rectangle
import copy
from ipywidgets import widgets
from IPython.display import display, clear_output
try:
IBMQ.load_accounts()
except:
pass
class run_game():
# Implements a puzzle, which is defined by the given inputs.
def __init__(self,initialize, success_condition, allowed_gates, vi, qubit_names, eps=0.1, backend=Aer.get_backend('qasm_simulator'), shots=1024,mode='circle',verbose=False):
"""
initialize
List of gates applied to the initial 00 state to get the starting state of the puzzle.
Supported single qubit gates (applied to qubit '0' or '1') are 'x', 'y', 'z', 'h', 'ry(pi/4)'.
Supported two qubit gates are 'cz' and 'cx'. Specify only the target qubit.
success_condition
Values for pauli observables that must be obtained for the puzzle to declare success.
allowed_gates
For each qubit, specify which operations are allowed in this puzzle. 'both' should be used only for operations that don't need a qubit to be specified ('cz' and 'unbloch').
Gates are expressed as a dict with an int as value. If this is non-zero, it specifies the number of times the gate is must be used (no more or less) for the puzzle to be successfully solved. If the value is zero, the player can use the gate any number of times.
vi
Some visualization information as a three element list. These specify:
* which qubits are hidden (empty list if both shown).
* whether both circles shown for each qubit (use True for qubit puzzles and False for bit puzzles).
* whether the correlation circles (the four in the middle) are shown.
qubit_names
The two qubits are always called '0' and '1' from the programming side. But for the player, we can display different names.
eps=0.1
How close the expectation values need to be to the targets for success to be declared.
backend=Aer.get_backend('qasm_simulator')
Backend to be used by Qiskit to calculate expectation values (defaults to local simulator).
shots=1024
Number of shots used to to calculate expectation values.
mode='circle'
Either the standard 'Hello Quantum' visualization can be used (with mode='circle') or the alternative line based one (mode='line').
verbose=False
"""
def get_total_gate_list():
# Get a text block describing allowed gates.
total_gate_list = ""
for qubit in allowed_gates:
gate_list = ""
for gate in allowed_gates[qubit]:
if required_gates[qubit][gate] > 0 :
gate_list +=''+ gate+" (use "+str(required_gates[qubit][gate])+" time"+"s"*(required_gates[qubit][gate]>1)+")"
elif allowed_gates[qubit][gate]==0:
gate_list +=' '+gate +''
if gate_list!="":
if qubit=="both" :
gate_list = "\nAllowed symmetric operations:" + gate_list
else :
gate_list = "\nAllowed operations for " + qubit_names[qubit] + ":\n" + " "*10 + gate_list
total_gate_list += gate_list +"\n"
return total_gate_list
def get_success(required_gates):
# Determine whether the success conditions are satisfied, both for expectation values, and the number of gates to be used.
success = True
grid.get_rho()
if verbose:
print(grid.rho)
for pauli in success_condition:
success = success and (abs(success_condition[pauli] - grid.rho[pauli])<eps)
for qubit in required_gates:
for gate in required_gates[qubit]:
success = success and (required_gates[qubit][gate]==0)
return success
def get_command(gate,qubit
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
ates[qubit][gate]==0:
gate_list +=' '+gate +''
if gate_list!="":
if qubit=="both" :
gate_list = "\nAllowed symmetric operations:" + gate_list
else :
gate_list = "\nAllowed operations for " + qubit_names[qubit] + ":\n" + " "*10 + gate_list
total_gate_list += gate_list +"\n"
return total_gate_list
def get_success(required_gates):
# Determine whether the success conditions are satisfied, both for expectation values, and the number of gates to be used.
success = True
grid.get_rho()
if verbose:
print(grid.rho)
for pauli in success_condition:
success = success and (abs(success_condition[pauli] - grid.rho[pauli])<eps)
for qubit in required_gates:
for gate in required_gates[qubit]:
success = success and (required_gates[qubit][gate]==0)
return success
def get_command(gate,qubit):
# For a given gate and qubit, return the string describing the corresoinding Qiskit string.
if qubit=='both':
qubit = '1'
qubit_name = qubit_names[qubit]
for name in qubit_names.values():
if name!=qubit_name:
other_name = name
# then make the command (both for the grid, and for printing to screen)
if gate in ['x','y','z','h']:
real_command = 'grid.qc.'+gate+'(grid.qr['+qubit+'])'
clean_command = 'qc.'+gate+'('+qubit_name+')'
elif gate in ['ry(pi/4)','ry(-pi/4)']:
real_command = 'grid.qc.ry('+'-'*(gate=='ry(-pi/4)')+'np.pi/4,grid.qr['+qubit+'])'
clean_command = 'qc.ry('+'-'*(gate=='ry(-pi/4)')+'np.pi/4,'+qubit_name+')'
elif gate in ['cz','cx','swap']:
real_command = 'grid.qc.'+gate+'(grid.qr['+'0'*(qubit=='1')+'1'*(qubit=='0')+'],grid.qr['+qubit+'])'
clean_command = 'qc.'+gate+'('+other_name+','+qubit_name+')'
return [real_command,clean_command]
clear_output()
bloch = [None]
# set up initial state and figure
grid = pauli_grid(backend=backend,shots=shots,mode=mode)
for gate in initialize:
eval( get_command(gate[0],gate[1])[0] )
required_gates = copy.deepcopy(allowed_gates)
# determine which qubits to show in figure
if allowed_gates['0']=={} : # if no gates are allowed for qubit 0, we know to only show qubit 1
shown_qubit = 1
elif allowed_gates['1']=={} : # and vice versa
shown_qubit = 0
else :
shown_qubit = 2
# show figure
grid.update_grid(bloch=bloch[0],hidden=vi[0],qubit=vi[1],corr=vi[2],message=get_total_gate_list())
description = {'gate':['Choose gate'],'qubit':['Choose '+'qu'*vi[1]+'bit'],'action':['Make it happen!']}
all_allowed_gates_raw = []
for q in ['0','1','both']:
all_allowed_gates_raw += list(allowed_gates[q])
all_allowed_gates_raw = list(set(all_allowed_gates_raw))
all_allowed_gates = []
for g in ['bloch','unbloch']:
if g in all_allowed_gates_raw:
all_allowed_gates.append( g )
for g in ['x','y','z','h','cz','cx']:
if g in all_allowed_gates_raw:
all_allowed_gates.append( g )
for g in all_allowed_gates_raw:
if g not in all_allowed_gates:
|
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- -