Dataset Viewer
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      JSON parse error: Invalid value. in row 0
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 174, in _generate_tables
                  df = pandas_read_json(f)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 38, in pandas_read_json
                  return pd.read_json(path_or_buf, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 791, in read_json
                  json_reader = JsonReader(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 905, in __init__
                  self.data = self._preprocess_data(data)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 917, in _preprocess_data
                  data = data.read()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 813, in read_with_retries
                  out = read(*args, **kwargs)
                File "/usr/local/lib/python3.9/codecs.py", line 322, in decode
                  (result, consumed) = self._buffer_decode(data, self.errors, final)
              UnicodeDecodeError: 'utf-8' codec can't decode byte 0x88 in position 28: invalid start byte
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 3422, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2187, in _head
                  return next(iter(self.iter(batch_size=n)))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2391, in iter
                  for key, example in iterator:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1882, in __iter__
                  for key, pa_table in self._iter_arrow():
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1904, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 499, in _iter_arrow
                  for key, pa_table in iterator:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 346, in _iter_arrow
                  for key, pa_table in self.generate_tables_fn(**gen_kwags):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 177, in _generate_tables
                  raise e
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 151, in _generate_tables
                  pa_table = paj.read_json(
                File "pyarrow/_json.pyx", line 308, in pyarrow._json.read_json
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: JSON parse error: Invalid value. in row 0

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

CSS10 + LJSpeech Multilingual Dataset

A unified multilingual speech dataset combining CSS10 (10 languages) and LJSpeech (English) in a consistent LJSpeech format.

Dataset Description

This dataset merges:

  • CSS10: A collection of single-speaker speech datasets for 10 languages
  • LJSpeech: High-quality English speech dataset (Linda Johnson)

All audio files are provided in a consistent format suitable for TTS training.

Languages and Statistics

Language Code Files Hours Speaker ID
English en 13,100 ~24.0 LJSpeech
Spanish es 11,016 ~19.2 CSS10_es
Russian ru 9,599 ~16.9 CSS10_ru
French fr 8,649 ~15.2 CSS10_fr
German de 7,427 ~13.1 CSS10_de
Japanese ja 6,839 ~14.9 CSS10_ja
Dutch nl 6,145 ~10.8 CSS10_nl
Finnish fi 4,755 ~8.4 CSS10_fi
Hungarian hu 4,514 ~7.9 CSS10_hu
Chinese zh 2,971 ~6.5 CSS10_zh
Greek el 1,844 ~3.2 CSS10_el

Total: 76,859 utterances, ~140 hours, 11 speakers

File Structure

├── README.md                    # This file
├── metadata.csv                 # Standard LJSpeech format (id|text)
├── metadata_multispeaker.csv    # With speaker info (speaker|id|text)
├── dataset_stats.json          # Dataset statistics
├── speaker_info.json           # Speaker mapping and descriptions
├── audio_durations.csv         # Audio duration information
└── wavs.zip                    # All audio files (77,296 files)

Metadata Formats

1. Standard LJSpeech Format (metadata.csv)

id|text
de|Hanake hatte allen Körperschmuck...
en_LJ001-0001|Printing, in the only sense...

2. Multi-speaker Format (metadata_multispeaker.csv)

speaker|id|text
CSS10_de|de|Hanake hatte allen Körperschmuck...
LJSpeech|en_LJ001-0001|Printing, in the only sense...

Usage

Loading the Dataset

import pandas as pd
import zipfile
from pathlib import Path

# Extract audio files
with zipfile.ZipFile("wavs.zip", "r") as zip_ref:
    zip_ref.extractall(".")

# Load metadata
metadata = pd.read_csv("metadata.csv", sep="|", names=["id", "text"])

# Load multi-speaker metadata
metadata_ms = pd.read_csv("metadata_multispeaker.csv", 
                         sep="|", names=["speaker", "id", "text"])

For TTS Training (Piper)

# Single speaker training (filter by language)
python -m piper_train.preprocess \
    --input-dir . \
    --output-dir output \
    --dataset-format ljspeech \
    --sample-rate 22050

# Multi-speaker training
python -m piper_train.preprocess \
    --input-dir . \
    --output-dir output \
    --dataset-format multispeaker \
    --metadata-file metadata_multispeaker.csv \
    --sample-rate 22050

File Naming Convention

  • CSS10 files: {language_code}_{original_id}.wav (e.g., ja_BASIC5000_0001.wav)
  • LJSpeech files: en_{original_id}.wav (e.g., en_LJ001-0001.wav)

License

This dataset combines:

  • CSS10: CC BY-SA 4.0
  • LJSpeech: Public Domain

Please refer to the original datasets for detailed license information.

Citation

If you use this dataset, please cite both original sources:

@misc{css10,
  author = {Kyubyong Park and Thomas Mulc},
  title = {CSS10: A Collection of Single Speaker Speech Datasets for 10 Languages},
  year = {2019},
  publisher = {Interspeech},
}

@misc{ljspeech17,
  author = {Keith Ito and Linda Johnson},
  title = {The LJ Speech Dataset},
  howpublished = {\url{https://keithito.com/LJ-Speech-Dataset/}},
  year = {2017}
}

Acknowledgments

  • CSS10 dataset creators and contributors
  • Keith Ito for the LJSpeech dataset
  • The css10-ljspeech dataset for providing CSS10 in LJSpeech format
Downloads last month
141