The dataset viewer is not available for this dataset.
Error code: ConfigNamesError Exception: AttributeError Message: 'str' object has no attribute 'items' Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response config_names = get_dataset_config_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 165, in get_dataset_config_names dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1664, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1621, in dataset_module_factory return HubDatasetModuleFactoryWithoutScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1068, in get_module { File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1069, in <dictcomp> config_name: DatasetInfo.from_dict(dataset_info_dict) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/info.py", line 284, in from_dict return cls(**{k: v for k, v in dataset_info_dict.items() if k in field_names}) AttributeError: 'str' object has no attribute 'items'
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Overview
The scholarly knowledge domain encompasses ontologies that systematically represent the intricate structures, processes, and governance mechanisms inherent in scholarly research, academic publications, and the supporting infrastructure. This domain is pivotal in facilitating the organization, retrieval, and dissemination of academic knowledge, thereby enhancing the efficiency and transparency of scholarly communication. By providing a formalized framework for knowledge representation, it supports interoperability and integration across diverse research disciplines and platforms.
Ontologies
Ontology ID | Full Name | Classes | Properties | Individuals |
---|---|---|---|---|
CSO | Computer Science Ontology (CSO) | 0 | 0 | 0 |
OPMW | Open Provenance Model for Workflows (OPMW) | 59 | 87 | 2 |
OBOE | Extensible Observation Ontology (OBOE) | 478 | 30 | 0 |
SWO | Software Ontology (SWO) | 2746 | 165 | 443 |
SEPIO | Scientific Evidence and Provenance Information Ontology (SEPIO) | 129 | 117 | 21 |
LexInfo | LexInfo (LexInfo) | 334 | 189 | 276 |
EXPO | Ontology of Scientific Experiments (EXPO) | 347 | 78 | 0 |
SPDocument | SMART Protocols Ontology: Document Module (SP-Document) | 400 | 43 | 45 |
SPWorkflow | SMART Protocols Ontology: Workflow Module (SP-Workflow) | 419 | 17 | 5 |
NFDIcore | National Research Data Infrastructure Ontology (NFDIcore) | 302 | 102 | 0 |
TribAIn | Tribology and Artificial Intelligence Ontology (TribAIn) | 241 | 64 | 21 |
DCAT | Data Catalog Vocabulary (DCAT) | 10 | 39 | 0 |
EURIO | EUropean Research Information Ontology (EURIO) | 44 | 111 | 0 |
Metadata4Ing | Metadata for Intelligent Engineering (Metadata4Ing) | 48 | 100 | 47 |
FRAPO | Funding, Research Administration and Projects Ontology (FRAPO) | 97 | 125 | 25 |
FRBRoo | Functional Requirements for Bibliographic Records - object-oriented (FRBRoo) | 83 | 0 | 0 |
DUO | Data Use Ontology (DUO) | 45 | 1 | 0 |
DataCite | DataCite Ontology (DataCite) | 19 | 10 | 70 |
Framester | Framester Ontology (Framester) | 59 | 77 | 0 |
CiTO | Citation Typing Ontology (CiTO) | 10 | 101 | 0 |
VOAF | Vocabulary of a Friend (VOAF) | 3 | 21 | 1 |
AIISO | Academic Institution Internal Structure Ontology (AIISO) | 22 | 0 | 0 |
PreMOn | Pre-Modern Ontology (PreMOn) | 15 | 16 | 0 |
PPlan | Ontology for Provenance and Plans (P-Plan) | 11 | 14 | 0 |
WiLD | Workflows in Linked Data (WiLD) | 16 | 0 | 4 |
Dataset Files
Each ontology directory contains the following files:
<ontology_id>.<format>
- The original ontology fileterm_typings.json
- Dataset of term to type mappingstaxonomies.json
- Dataset of taxonomic relationsnon_taxonomic_relations.json
- Dataset of non-taxonomic relations<ontology_id>.rst
- Documentation describing the ontology
Usage
These datasets are intended for ontology learning research and applications. Here's how to use them with OntoLearner:
First of all, install the OntoLearner
library via PiP:
pip install ontolearner
How to load an ontology or LLM4OL Paradigm tasks datasets?
from ontolearner import LexInfo
ontology = LexInfo()
# Load an ontology.
ontology.load()
# Load (or extract) LLMs4OL Paradigm tasks datasets
data = ontology.extract()
How use the loaded dataset for LLM4OL Paradigm task settings?
# Import core modules from the OntoLearner library
from ontolearner import LexInfo, LearnerPipeline, train_test_split
# Load the LexInfo ontology, which contains concepts related to wines, their properties, and categories
ontology = LexInfo()
ontology.load() # Load entities, types, and structured term annotations from the ontology
data = ontology.extract()
# Split into train and test sets
train_data, test_data = train_test_split(data, test_size=0.2, random_state=42)
# Initialize a multi-component learning pipeline (retriever + LLM)
# This configuration enables a Retrieval-Augmented Generation (RAG) setup
pipeline = LearnerPipeline(
retriever_id='sentence-transformers/all-MiniLM-L6-v2', # Dense retriever model for nearest neighbor search
llm_id='Qwen/Qwen2.5-0.5B-Instruct', # Lightweight instruction-tuned LLM for reasoning
hf_token='...', # Hugging Face token for accessing gated models
batch_size=32, # Batch size for training/prediction if supported
top_k=5 # Number of top retrievals to include in RAG prompting
)
# Run the pipeline: training, prediction, and evaluation in one call
outputs = pipeline(
train_data=train_data,
test_data=test_data,
evaluate=True, # Compute metrics like precision, recall, and F1
task='term-typing' # Specifies the task
# Other options: "taxonomy-discovery" or "non-taxonomy-discovery"
)
# Print final evaluation metrics
print("Metrics:", outputs['metrics'])
# Print the total time taken for the full pipeline execution
print("Elapsed time:", outputs['elapsed_time'])
# Print all outputs (including predictions)
print(outputs)
For more detailed documentation, see the
Citation
If you find our work helpful, feel free to give us a cite.
@inproceedings{babaei2023llms4ol,
title={LLMs4OL: Large language models for ontology learning},
author={Babaei Giglou, Hamed and D’Souza, Jennifer and Auer, S{\"o}ren},
booktitle={International Semantic Web Conference},
pages={408--427},
year={2023},
organization={Springer}
}
- Downloads last month
- 94