= 5\n h = paddle.to_tensor(h)\n m = paddle.to_tensor(m.weight)\n m *= h\nnet.apply(my_init)\nnet[0].weight[:2]\nnet[0].weight.set_value(net[0].weight.numpy() + 1)\nval = net[0].weight.numpy()\nval[0, 0] = 42\nnet[0].weight.set_value(val)\nnet[0].weight[0]\nlayer = CenteredLayer()\nlayer(paddle.to_tensor([1, 2, 3, 4, 5], dtype='float32'))":2,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport math\nimport numpy as np\nimport paddle\nfrom paddle import nn\ntrue_w, features, poly_features, labels = [paddle.to_tensor(x, dtype=\n paddle.float32) for x in [true_w, features, poly_features, labels]]\nfeatures[:2], poly_features[:2, :], labels[:2]\ndef train(train_features, test_features, train_labels, test_labels,\n num_epochs=400):\n loss = nn.MSELoss()\n input_shape = train_features.shape[-1]\n net = nn.Sequential(nn.Linear(input_shape, 1, bias_attr=False))\n batch_size = min(10, train_labels.shape[0])\n train_iter = d2l.load_array(((train_features, train_labels.reshape([-1,1]))), batch_size)\n test_iter = d2l.load_array((test_features, test_labels.reshape([-1,1])), batch_size, is_train=False)\n trainer = paddle.optimizer.SGD(parameters=net.parameters(), learning_rate=0.01)\n animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log', xlim=[1, num_epochs], ylim=[1e-3, 1e2], legend=['train', 'test'])\n for epoch in range(num_epochs):\n d2l.train_epoch_ch3(net, train_iter, loss, trainer)\n if epoch == 0 or (epoch + 1) % 20 == 0:\n animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss), evaluate_loss(net, test_iter, loss)))\ntrain(poly_features[:n_train, :2], poly_features[n_train:, :2],\n labels[:n_train], labels[n_train:])\ntrain(poly_features[:n_train, :], poly_features[n_train:, :],\n labels[:n_train], labels[n_train:], num_epochs=1500)":2,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nimport paddle.nn as nn\nnet = nn.Sequential(\n nn.Conv2D(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),\n nn.MaxPool2D(kernel_size=3, stride=2),\n nn.Conv2D(96, 256, kernel_size=5, padding=2), nn.ReLU(),\n nn.MaxPool2D(kernel_size=3, stride=2),\n nn.Conv2D(256, 384, kernel_size=3, padding=1), nn.ReLU(),\n nn.Conv2D(384, 384, kernel_size=3, padding=1), nn.ReLU(),\n nn.Conv2D(384, 256, kernel_size=3, padding=1), nn.ReLU(),\n nn.MaxPool2D(kernel_size=3, stride=2), nn.Flatten(),\n nn.Linear(6400, 4096), nn.ReLU(), nn.Dropout(p=0.5),\n nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5),\n nn.Linear(4096, 10))\nX = paddle.randn(shape=(1, 1, 224, 224))\nfor layer in net:\n X=layer(X)\n print(layer.__class__.__name__,'output shape:\t',X.shape)":6,"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nfrom paddle import nn\nfrom paddle.nn import functional as F\nx = paddle.arange(4)\npaddle.save(x, 'x-file')\nx2 = paddle.load('x-file')\ny = paddle.zeros([4])\npaddle.save([x,y], 'x-file')\nx2, y2 = paddle.load('x-file')\nmydict = {'x': x, 'y': y}\npaddle.save(mydict, 'mydict')\nmydict2 = paddle.load('mydict')\nclass MLP(nn.Layer):\n def __init__(self):\n super().__init__()\n self.hidden = nn.Linear(20, 256)\n self.output = nn.Linear(256, 10)\n def forward(self, x):\n return self.output(F.relu(self.hidden(x)))\nnet = MLP()\nX = paddle.randn(shape=[2, 20])\nY = net(X)\npaddle.save(net.state_dict(), 'mlp.pdparams')\nclone = MLP()\nclone.set_state_dict(paddle.load('mlp.pdparams'))\nclone.eval()":6,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport os\nimport paddle\ndef build_array_nmt(lines, vocab, num_steps):\n lines = [vocab[l] for l in lines]\n lines = [l + [vocab['']] for l in lines]\n array = paddle.to_tensor([truncate_pad(l, num_steps, vocab['']) for l in lines])\n valid_len = (array != vocab['']).astype(paddle.int32).sum(1)\n return array, valid_len\ntrain_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)\nfor X, X_valid_len, Y, Y_valid_len in train_iter:\n print('X:', X.astype(paddle.int32))\n print('Valid length of X:', X_valid_len)\n print('Y:', Y..astype(paddle.int32))\n print('Valid length of Y:', Y_valid_len)\n break":6,"%matplotlib inline\nimport warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport sys\nimport paddle\nfrom paddle.vision import transforms\nd2l.use_svg_display()\ntrans = transforms.ToTensor()\nmnist_train = paddle.vision.datasets.FashionMNIST(mode=\"train\", transform=trans)\nmnist_test = paddle.vision.datasets.FashionMNIST(mode=\"test\", transform=trans)\ndef show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):\n figsize = (num_cols * scale, num_rows * scale)\n _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)\n axes = axes.flatten()\n for i, (ax, img) in enumerate(zip(axes, imgs)):\n if paddle.is_tensor(img):\n ax.imshow(img.numpy())\n else:\n ax.imshow(img)\n ax.axes.get_xaxis().set_visible(False)\n ax.axes.get_yaxis().set_visible(False)\n if titles:\n ax.set_title(titles[i])\n return axes\nX, y = next(iter(paddle.io.DataLoader(mnist_train, batch_size=18)))\nshow_images(X.reshape([18, 28, 28]), 2, 9, titles=get_fashion_mnist_labels(y));\nbatch_size = 256\n return 4\ntrain_iter = paddle.io.DataLoader(dataset=mnist_train, batch_size=batch_size, shuffle=True, return_list=True, num_workers=get_dataloader_workers())\n trans = [transforms.ToTensor()]\n if resize:\n trans.insert(0, transforms.Resize(resize))\n trans = transforms.Compose(trans)\n mnist_train = paddle.vision.datasets.FashionMNIST(mode=\"train\", transform=trans)\n mnist_test = paddle.vision.datasets.FashionMNIST(mode=\"test\", transform=trans)\n return (paddle.io.DataLoader(dataset=mnist_train, batch_size=batch_size, shuffle=True, return_list=True, num_workers=get_dataloader_workers()),\n paddle.io.DataLoader(dataset=mnist_test, batch_size=batch_size, return_list=True, shuffle=True, num_workers=get_dataloader_workers()))":4,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nimport paddle.nn.functional as F\nfrom paddle import nn\nbatch_size, num_steps = 32, 35\ntrain_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)\ndef get_params(vocab_size, num_hiddens):\n num_inputs = num_outputs = vocab_size\n def normal(shape):\n return paddle.randn(shape=shape)*0.01\n def three():\n return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), paddle.zeros([num_hiddens]))\n W_xz, W_hz, b_z = three()\n W_xr, W_hr, b_r = three()\n W_xh, W_hh, b_h = three()\n W_hq = normal((num_hiddens, num_outputs))\n b_q = paddle.zeros([num_outputs])\n params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]\n for param in params:\n param.stop_gradient = False\n return params\ndef init_gru_state(batch_size, num_hiddens):\n return (paddle.zeros([batch_size, num_hiddens]), )\ndef gru(inputs, state, params):\n W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params\n H,*_ = state\n outputs = []\n for X in inputs:\n Z = F.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)\n R = F.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)\n H_tilda = paddle.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)\n H = Z * H + (1 - Z) * H_tilda\n Y = H @ W_hq + b_q\n outputs.append(Y)\n return paddle.concat(outputs, axis=0), (H,*_)\nvocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()\nnum_epochs, lr = 500, 1.0\nmodel = d2l.RNNModelScratch(len(vocab), num_hiddens, get_params, init_gru_state, gru)\nd2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)\nnum_inputs = vocab_size\ngru_layer = nn.GRU(num_inputs, num_hiddens, time_major=True)\nmodel = d2l.RNNModel(gru_layer, len(vocab))\nd2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)":6,"%matplotlib inline\nimport warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport math\nimport time\nimport numpy as np\nimport paddle\nn = 10000\na = paddle.ones([n])\nb = paddle.ones([n])\nc = paddle.zeros([n])\ntimer = Timer()\nfor i in range(n):\n c[i] = a[i] + b[i]\nx = np.arange(-7, 7, 0.01)\nparams = [(0, 1), (0, 2), (3, 1)]\nd2l.plot(x, [normal(x, mu, sigma) for mu, sigma in params], xlabel='x',\n ylabel='p(x)', figsize=(4.5, 2.5), legend=[f'mean {mu}, std {sigma}' for mu, sigma in params])":6,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nimport paddle.nn as nn\ndef conv_block(input_channels, num_channels):\n return nn.Sequential(\n nn.BatchNorm2D(input_channels), nn.ReLU(),\n nn.Conv2D(input_channels, num_channels, kernel_size=3, padding=1))\nclass DenseBlock(nn.Layer):\n def __init__(self, num_convs, input_channels, num_channels):\n super(DenseBlock, self).__init__()\n layer = []\n for i in range(num_convs):\n layer.append(conv_block(num_channels * i + input_channels, num_channels))\n self.net = nn.Sequential(*layer)\n def forward(self, X):\n for blk in self.net:\n Y = blk(X)\n X = paddle.concat(x=[X, Y], axis=1)\n return X\nblk = DenseBlock(2, 3, 10)\nX = paddle.randn([4, 3, 8, 8])\nY = blk(X)\nY.shape\ndef transition_block(input_channels, num_channels):\n return nn.Sequential(\n nn.BatchNorm2D(input_channels), nn.ReLU(),\n nn.Conv2D(input_channels, num_channels, kernel_size=1),\n nn.AvgPool2D(kernel_size=2, stride=2))\nb1 = nn.Sequential(\n nn.Conv2D(1, 64, kernel_size=7, stride=2, padding=3),\n nn.BatchNorm2D(64), nn.ReLU(),\n nn.MaxPool2D(kernel_size=3, stride=2, padding=1))\nnet = nn.Sequential(\n b1, *blks,\n nn.BatchNorm2D(num_channels), nn.ReLU(),\n nn.AdaptiveMaxPool2D((1, 1)),\n nn.Flatten(),\n nn.Linear(num_channels, 10))":2,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport random\nimport paddle\ntokens = d2l.tokenize(d2l.read_time_machine())\ncorpus = [token for line in tokens for token in line]\nvocab = d2l.Vocab(corpus)\nvocab.token_freqs[:10]\ndef seq_data_iter_random(corpus, batch_size, num_steps):\n corpus = corpus[random.randint(0, num_steps - 1):]\n num_subseqs = (len(corpus) - 1) // num_steps\n initial_indices = list(range(0, num_subseqs * num_steps, num_steps))\n random.shuffle(initial_indices)\n def data(pos):\n return corpus[pos: pos + num_steps]\n num_batches = num_subseqs // batch_size\n for i in range(0, batch_size * num_batches, batch_size):\n initial_indices_per_batch = initial_indices[i: i + batch_size]\n X = [data(j) for j in initial_indices_per_batch]\n Y = [data(j + 1) for j in initial_indices_per_batch]\n yield paddle.to_tensor(X), paddle.to_tensor(Y)\ndef seq_data_iter_sequential(corpus, batch_size, num_steps):\n offset = random.randint(0, num_steps)\n num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size\n Xs = paddle.to_tensor(corpus[offset: offset + num_tokens])\n Ys = paddle.to_tensor(corpus[offset + 1: offset + 1 + num_tokens])\n Xs, Ys = Xs.reshape((batch_size, -1)), Ys.reshape((batch_size, -1))\n num_batches = Xs.shape[1] // num_steps\n for i in range(0, num_steps * num_batches, num_steps):\n X = Xs[:, i: i + num_steps]\n Y = Ys[:, i: i + num_steps]\n yield X, Y":6,"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nfrom paddle import nn\nfrom paddle.nn import functional as F\nnet = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))\nX = paddle.rand([2, 20])\nnet(X)\nclass MLP(nn.Layer):\n def __init__(self):\n super().__init__()\n self.hidden = nn.Linear(20, 256)\n self.out = nn.Linear(256, 10)\n def forward(self, X):\n return self.out(F.relu(self.hidden(X)))\nclass MySequential(nn.Layer):\n def __init__(self, *layers):\n super(MySequential, self).__init__()\n if len(layers) > 0 and isinstance(layers[0], tuple):\n for name, layer in layers:\n self.add_sublayer(name, layer)\n else:\n for idx, layer in enumerate(layers):\n self.add_sublayer(str(idx), layer)\n def forward(self, X):\n for layer in self._sub_layers.values():\n X = layer(X)\n return X\nnet = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))\nnet(X)\nclass FixedHiddenMLP(nn.Layer):\n def __init__(self):\n super().__init__()\n self.rand_weight = paddle.rand([20, 20])\n self.linear = nn.Linear(20, 20)\n def forward(self, X):\n X = self.linear(X)\n X = F.relu(paddle.tensor.mm(X, self.rand_weight) + 1)\n X = self.linear(X)\n while X.abs().sum() > 1:\n X /= 2\n return X.sum()\nclass NestMLP(nn.Layer):\n def __init__(self):\n super().__init__()\n self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),\n nn.Linear(64, 32), nn.ReLU())\n self.linear = nn.Linear(32, 16)\n def forward(self, X):\n return self.linear(self.net(X))\nchimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())\nchimera(X)":2,"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nfrom paddle import nn\nnet = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))\nX = paddle.rand([2, 4])\nnet(X)\nnet.state_dict()['2.bias']\ndef block1():\n return nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 4), nn.ReLU())\ndef block2():\n net = nn.Sequential()\n for i in range(4):\n net.add_sublayer(f'block {i}', block1())\n return net\nrgnet = nn.Sequential(block2(), nn.Linear(4, 1))\nrgnet(X)\ndef init_normal(m):\n if type(m) == nn.Linear:\n paddle.nn.initializer.Normal(mean=0.0, std=0.01)\n paddle.zeros(m.bias)\nnet.apply(init_normal)\nnet[0].weight[0],net[0].state_dict()['bias']\ndef init_constant(m):\n if type(m) == nn.Linear:\n paddle.nn.initializer.Constant(value = 1)\n paddle.zeros(m.bias)\nnet.apply(init_constant)\nnet[0].weight[0],net[0].state_dict()['bias']\ndef xavier(m):\n if type(m) == nn.Linear:\n paddle.nn.initializer.XavierUniform(m.weight)\ndef init_42(m):\n if type(m) == nn.Linear:\n paddle.nn.initializer.Constant(42)\nnet[0].apply(xavier)\nnet[2].apply(init_42)\ndef my_init(m):\n if type(m) == nn.Linear:\n for name, param in m.named_parameters()][0])\n paddle.nn.initializer.XavierUniform(m.weight, -10, 10)\n h = paddle.abs(m.weight) >= 5\n h = paddle.to_tensor(h)\n m = paddle.to_tensor(m.weight)\n m *= h\nnet.apply(my_init)\nnet[0].weight[:2]\nnet[0].weight.set_value(net[0].weight.numpy() + 1)\nval = net[0].weight.numpy()\nval[0, 0] = 42\nnet[0].weight.set_value(val)\nnet[0].weight[0]\nlayer = CenteredLayer()\nlayer(paddle.to_tensor([1, 2, 3, 4, 5], dtype='float32'))\nnet = nn.Sequential(nn.Linear(8, 128), CenteredLayer())":4,"import collections\nimport re\nfrom d2l import paddle as d2l":4,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom paddle import nn\nnet = nn.Sequential(nn.Flatten(),\n nn.Linear(784, 256),\n nn.ReLU(),\n nn.Linear(256, 10))\nfor layer in net:\n if type(layer) == nn.Linear:\n weight_attr = paddle.framework.ParamAttr(initializer=paddle.nn.initializer.Normal(mean=0.0, std=0.01))\n layer.weight_attr = weight_attr\nbatch_size, lr, num_epochs = 256, 0.1, 10\nloss = nn.CrossEntropyLoss(reduction='none')\ntrainer = paddle.optimizer.SGD(parameters=net.parameters(), learning_rate=lr)\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)":6,"%matplotlib inline\nimport warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom paddle import nn\nn_train, n_test, num_inputs, batch_size = 20, 100, 200, 5\ntrue_w, true_b = paddle.ones((num_inputs, 1)) * 0.01, 0.05\ntrain_data = d2l.synthetic_data(true_w, true_b, n_train)\ntrain_iter = d2l.load_array(train_data, batch_size)\ntest_data = d2l.synthetic_data(true_w, true_b, n_test)\ntest_iter = d2l.load_array(test_data, batch_size, is_train=False)\ndef init_params():\n w = paddle.normal(0, 1, shape=(num_inputs, 1))\n w.stop_gradient = False\n b = paddle.zeros(shape=[1])\n b.stop_gradient = False\n return [w, b]\ndef l2_penalty(w):\n return paddle.sum(w.pow(2)) / 2\ndef train(lambd):\n w, b = init_params()\n net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss\n num_epochs, lr = 100, 0.003\n animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])\n for epoch in range(num_epochs):\n for X, y in train_iter():\n l = loss(net(X), y) + lambd * l2_penalty(w)\n l.sum().backward()\n d2l.sgd([w, b], lr, batch_size)\n if (epoch + 1) % 5 == 0:\n animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))\ndef train_concise(wd):\n weight_attr = paddle.framework.ParamAttr(initializer=paddle.nn.initializer.Normal(mean=0.0, std=1.0))\n bias_attr = paddle.framework.ParamAttr(initializer=paddle.nn.initializer.Normal(mean=0.0, std=1.0))\n net = nn.Sequential(nn.Linear(num_inputs, 1, weight_attr=weight_attr, bias_attr=bias_attr))\n loss = nn.MSELoss()\n num_epochs, lr = 100, 0.003\n trainer = paddle.optimizer.SGD(parameters=net[0].parameters(), learning_rate=lr, weight_decay=wd*1.0)\n animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])\n for epoch in range(num_epochs):\n for X, y in train_iter:\n l = loss(net(X), y)\n l.backward()\n trainer.step()\n trainer.clear_grad()\n if (epoch + 1) % 5 == 0:\n animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))":6,"x = paddle.arange(12)\nx.numel()\nX = paddle.reshape(x, (3, 4))\npaddle.zeros((2, 3, 4))\npaddle.ones((2, 3, 4))\npaddle.randn((3, 4),'float32')\npaddle.to_tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])\nx = paddle.to_tensor([1.0, 2, 4, 8])\ny = paddle.to_tensor([2, 2, 2, 2])\nx + y, x - y, x * y, x / y, x**y\npaddle.exp(x)\nX = paddle.arange(12, dtype='float32').reshape((3, 4))\nY = paddle.to_tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])\npaddle.concat((X, Y), axis=0), paddle.concat((X, Y), axis=1)\na = paddle.reshape(paddle.arange(3), (3, 1))\nb = paddle.reshape(paddle.arange(2), (1, 2))\nZ = paddle.zeros_like(Y)\nZ = X + Y\nA = X.numpy()\nB = paddle.to_tensor(A)\ntype(A), type(B)\na = paddle.to_tensor([3.5])\na, a.item(), float(a), int(a)":2,"import warningsfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom paddle import nn\ndef corr2d(X, K):\n h, w = K.shape\n Y = paddle.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))\n for i in range(Y.shape[0]):\n for j in range(Y.shape[1]):\n Y[i, j] = (X[i:i + h, j:j + w] * K).sum()\n return Y\nX = paddle.to_tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])\nK = paddle.to_tensor([[0.0, 1.0], [2.0, 3.0]])\ncorr2d(X, K)\nclass Conv2D(nn.Layer):\n def __init__(self, kernel_size):\n super().__init__()\n self.weight = paddle.ParamAttr(paddle.rand(kernel_size))\n self.bias = paddle.ParamAttr(paddle.zeros(1))\n def forward(self, x):\n return corr2d(x, self.weight) + self.bias\nX = paddle.ones((6, 8))\nX[:, 2:6] = 0\nK = paddle.to_tensor([[1.0, -1.0]])\nconv2d = nn.Conv2D(1, 1, kernel_size=(1, 2))\nX = X.reshape((1, 1, 6, 8))\nY = Y.reshape((1, 1, 6, 7))\nlr = 3e-2\nfor i in range(10):\n Y_hat = conv2d(X)\n l = (Y_hat - Y) ** 2\n conv2d.clear_gradients()\n l.sum().backward()\n with paddle.no_grad():\n conv2d.weight[:] -= lr * conv2d.weight.grad\nconv2d.weight.reshape((1, 2))":2,"%matplotlib inline\nimport warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom paddle import nn\nT = 1000\ntime = paddle.arange(1, T + 1, dtype=paddle.float32)\nx = paddle.sin(0.01 * time) + paddle.normal(0, 0.2, (T,))\nd2l.plot(time, [x], 'time', 'x', xlim=[1, 1000], figsize=(6, 3))\ntau = 4\nfeatures = paddle.zeros((T - tau, tau))\nfor i in range(tau):\n features[:, i] = x[i: T - tau + i]\nlabels = x[tau:].reshape((-1, 1))\nbatch_size, n_train = 16, 600\ntrain_iter = d2l.load_array((features[:n_train], labels[:n_train]), batch_size, is_train=True)\ndef init_weights(m):\n if type(m) == nn.Linear:\n nn.initializer.XavierUniform(m.weight)\ndef get_net():\n net = nn.Sequential(nn.Linear(4, 10),\n nn.ReLU(),\n nn.Linear(10, 1))\n net.apply(init_weights)\n return net\nloss = nn.MSELoss(reduction='none')\ndef train(net, train_iter, loss, epochs, lr):\n trainer = paddle.optimizer.Adam(learning_rate=lr, parameters=net.parameters())\n for epoch in range(epochs):\n for i,(X, y) in enumerate (train_iter()):\n trainer.clear_grad()\n l = loss(net(X), y)\n l.sum().backward()\n trainer.step()\nnet = get_net()\ntrain(net, train_iter, loss, 5, 0.01)\nmultistep_preds = paddle.zeros([T])\nmultistep_preds[: n_train + tau] = x[: n_train + tau]\nfor i in range(n_train + tau, T):\n multistep_preds[i] = net(multistep_preds[i - tau:i].reshape((1, -1)))\nd2l.plot([time, time[tau:], time[n_train + tau:]],\n [x.detach().numpy(), onestep_preds.detach().numpy(),\n multistep_preds[n_train + tau:].detach().numpy()], 'time',\n 'x', legend=['data', '1-step preds', 'multistep preds'],\n xlim=[1, 1000], figsize=(6, 3))\nmax_steps = 64\nfeatures = paddle.zeros((T - tau - max_steps + 1, tau + max_steps))\nfor i in range(tau):\n features[:, i] = x[i: i + T - tau - max_steps + 1]\nfor i in range(tau, tau + max_steps):\n features[:, i] = net(features[:, i - tau:i]).reshape([-1])\nsteps = (1, 4, 16, 64)\nd2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps],\n [features[:, tau + i - 1].detach().numpy() for i in steps], 'time', 'x',\n legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000],\n figsize=(6, 3))":2,"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nx = paddle.to_tensor([3.0])\ny = paddle.to_tensor([2.0])\nx + y, x * y, x / y, x**y\nx = paddle.arange(4)\nA = paddle.reshape(paddle.arange(20), (5, 4))\npaddle.transpose(A, perm=[1, 0])\nB = paddle.to_tensor([[1, 2, 3], [2, 0, 4], [3, 4, 5]])\nB == paddle.transpose(B, perm=[1, 0])\nX = paddle.reshape(paddle.arange(24), (2, 3, 4))\nA = paddle.reshape(paddle.arange(20, dtype=paddle.float32), (5, 4))\nB = A.clone()\nA, A + B\na = 2\nX = paddle.reshape(paddle.arange(24), (2, 3, 4))\na + X, (a * X).shape\nx = paddle.arange(4, dtype=paddle.float32)\nprint(x, x.sum())\nA.shape, A.sum()\nA.mean(), A.sum() / A.numel()\nA.mean(axis=0), A.sum(axis=0) / A.shape[0]\nsum_A = paddle.sum(A, axis=1, keepdim=True)\ny = paddle.ones(shape=[4], dtype='float32')\nx, y, paddle.dot(x, y)\npaddle.sum(x * y)\nA.shape, x.shape, paddle.mv(A, x)\nB = paddle.ones(shape=[4, 3], dtype='float32')\npaddle.mm(A, B)\nu = paddle.to_tensor([3.0, -4.0])\npaddle.norm(u)\npaddle.abs(u).sum()\npaddle.norm(paddle.ones(shape=[4, 9], dtype='float32'))":4,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nimport paddle.nn as nn\ndef conv_block(input_channels, num_channels):\n return nn.Sequential(\n nn.BatchNorm2D(input_channels), nn.ReLU(),\n nn.Conv2D(input_channels, num_channels, kernel_size=3, padding=1))\nclass DenseBlock(nn.Layer):\n def __init__(self, num_convs, input_channels, num_channels):\n super(DenseBlock, self).__init__()\n layer = []\n for i in range(num_convs):\n layer.append(conv_block(num_channels * i + input_channels, num_channels))\n self.net = nn.Sequential(*layer)\n def forward(self, X):\n for blk in self.net:\n Y = blk(X)\n X = paddle.concat(x=[X, Y], axis=1)\n return X\nblk = DenseBlock(2, 3, 10)\nX = paddle.randn([4, 3, 8, 8])\nY = blk(X)\nY.shape\ndef transition_block(input_channels, num_channels):\n return nn.Sequential(\n nn.BatchNorm2D(input_channels), nn.ReLU(),\n nn.Conv2D(input_channels, num_channels, kernel_size=1),\n nn.AvgPool2D(kernel_size=2, stride=2))\nblk = transition_block(23, 10)\nblk(Y).shape\nb1 = nn.Sequential(\n nn.Conv2D(1, 64, kernel_size=7, stride=2, padding=3),\n nn.BatchNorm2D(64), nn.ReLU(),\n nn.MaxPool2D(kernel_size=3, stride=2, padding=1))\nnum_channels, growth_rate = 64, 32\nnum_convs_in_dense_blocks = [4, 4, 4, 4]\nblks = []\nfor i, num_convs in enumerate(num_convs_in_dense_blocks):\n blks.append(DenseBlock(num_convs, num_channels, growth_rate))\n num_channels += num_convs * growth_rate\n if i != len(num_convs_in_dense_blocks) - 1:\n blks.append(transition_block(num_channels, num_channels // 2))\n num_channels = num_channels // 2\nnet = nn.Sequential(\n b1, *blks,\n nn.BatchNorm2D(num_channels), nn.ReLU(),\n nn.AdaptiveMaxPool2D((1, 1)),\n nn.Flatten(),\n nn.Linear(num_channels, 10))":4,"import warningsfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom paddle import nn\ndef corr2d(X, K):\n h, w = K.shape\n Y = paddle.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))\n for i in range(Y.shape[0]):\n for j in range(Y.shape[1]):\n Y[i, j] = (X[i:i + h, j:j + w] * K).sum()\n return Y\nX = paddle.to_tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])\nK = paddle.to_tensor([[0.0, 1.0], [2.0, 3.0]])\ncorr2d(X, K)\nclass Conv2D(nn.Layer):\n def __init__(self, kernel_size):\n super().__init__()\n self.weight = paddle.ParamAttr(paddle.rand(kernel_size))\n self.bias = paddle.ParamAttr(paddle.zeros(1))\n def forward(self, x):\n return corr2d(x, self.weight) + self.bias\nX = paddle.ones((6, 8))\nX[:, 2:6] = 0\nK = paddle.to_tensor([[1.0, -1.0]])\ncorr2d(X.t(), K)\nconv2d = nn.Conv2D(1, 1, kernel_size=(1, 2))\nX = X.reshape((1, 1, 6, 8))\nY = Y.reshape((1, 1, 6, 7))\nlr = 3e-2\nfor i in range(10):\n Y_hat = conv2d(X)\n l = (Y_hat - Y) ** 2\n conv2d.clear_gradients()\n l.sum().backward()\n with paddle.no_grad():\n conv2d.weight[:] -= lr * conv2d.weight.grad\nconv2d.weight.reshape((1, 2))":4,"%matplotlib inline\nimport numpy as np\nfrom matplotlib_inline import backend_inline\nfrom d2l import paddle as d2l\ndef f(x):\n return 3 * x ** 2 - 4 * x\ndef numerical_lim(f, x, h):\n return (f(x + h) - f(x)) / h\nh = 0.1\nfor i in range(5):\n print(f'h={h:.5f}, numerical limit={numerical_lim(f, 1, h):.5f}')\n h *= 0.1":6,"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nimport paddle.nn.functional as F\nfrom paddle import nn\nclass CenteredLayer(nn.Layer):\n def __init__(self):\n super().__init__()\n def forward(self, X):\n return X - X.mean()\nY = net(paddle.rand([4, 8]))\nY.mean()\nclass MyLinear(nn.Layer):\n def __init__(self, in_units, units):\n super().__init__()\n self.weight = paddle.create_parameter(shape=(in_units, units), dtype='float32')\n self.bias = paddle.create_parameter(shape=(units,), dtype='float32')\n def forward(self, X):\n linear = paddle.matmul(X, self.weight) + self.bias\n return F.relu(linear)\nlinear(paddle.randn([2, 5]))\nnet = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))\nnet(paddle.rand([2, 64]))":2,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\ndef corr2d_multi_in(X, K):\n return sum(d2l.corr2d(x, k) for x, k in zip(X, K))\nX = paddle.to_tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]], [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])\nK = paddle.to_tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])\ncorr2d_multi_in(X, K)\ndef corr2d_multi_in_out(X, K):\n return paddle.stack([corr2d_multi_in(X, k) for k in K], 0)\nK = paddle.stack((K, K + 1, K + 2), 0)\nK.shape\ndef corr2d_multi_in_out_1x1(X, K):\n c_i, h, w = X.shape\n c_o = K.shape[0]\n X = X.reshape((c_i, h * w))\n K = K.reshape((c_o, c_i))\n Y = paddle.matmul(K, X)\n return Y.reshape((c_o, h, w))\nX = paddle.normal(0, 1, (3, 3, 3))\nK = paddle.normal(0, 1, (2, 3, 1, 1))\nY1 = corr2d_multi_in_out_1x1(X, K)\nY2 = corr2d_multi_in_out(X, K)\nassert float(paddle.abs(Y1 - Y2).sum()) < 1e-6":6,"%matplotlib inline\nimport warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport random\nimport paddle\ndef synthetic_data(w, b, num_examples):\n X = paddle.normal(0, 1, (num_examples, len(w)))\n y = paddle.matmul(X, w) + b\n y += paddle.normal(0, 0.01, y.shape)\n return X, y.reshape((-1, 1))\ntrue_w = paddle.to_tensor([2, -3.4])\ntrue_b = 4.2\nfeatures, labels = synthetic_data(true_w, true_b, 1000)\nd2l.set_figsize()\nd2l.plt.scatter(features[:, 1].detach().numpy(), labels.detach().numpy(), 1);\ndef data_iter(batch_size, features, labels):\n num_examples = len(features)\n indices = list(range(num_examples))\n random.shuffle(indices)\n for i in range(0, num_examples, batch_size):\n batch_indices = paddle.to_tensor(indices[i: min(i + batch_size, num_examples)])\n yield features[batch_indices], labels[batch_indices]\nbatch_size = 10\nfor X, y in data_iter(batch_size, features, labels):\n break\nw = paddle.normal(0, 0.01, shape=(2,1))\nb = paddle.zeros(shape=[1])\nw.stop_gradient = False\nb.stop_gradient = False\ndef linreg(X, w, b):\n return paddle.matmul(X, w) + b\n with paddle.no_grad():\n for i, param in enumerate(params):\n param -= lr * params[i].grad / batch_size\n params[i].set_value(param)\n params[i].clear_gradient()\nlr = 0.03\nnum_epochs = 3\nnet = linreg\nloss = squared_loss\nfor epoch in range(num_epochs):\n for X, y in data_iter(batch_size, features, labels):\n l = loss(net(X, w, b), y)\n l.sum().backward()\n sgd([w, b], lr, batch_size)\n with paddle.no_grad():\n train_l = loss(net(features, w, b), labels)":4,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nimport paddle.nn as nn\ndef vgg_block(num_convs, in_channels, out_channels):\n layers = []\n for _ in range(num_convs):\n layers.append(nn.Conv2D(in_channels, out_channels, kernel_size=3, padding=1))\n layers.append(nn.ReLU())\n in_channels = out_channels\n layers.append(nn.MaxPool2D(kernel_size=2, stride=2))\n return nn.Sequential(*layers)\ndef vgg(conv_arch):\n conv_blks = []\n in_channels = 1\n for (num_convs, out_channels) in conv_arch:\n conv_blks.append(vgg_block(num_convs, in_channels, out_channels))\n in_channels = out_channels\n return nn.Sequential(*conv_blks, nn.Flatten(),\n nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(),\n nn.Dropout(0.5), nn.Linear(4096, 4096), nn.ReLU(),\n nn.Dropout(0.5), nn.Linear(4096, 10))\nnet = vgg(conv_arch)\nX = paddle.randn(shape=(1, 1, 224, 224))\nfor blk in net:\n X = blk(X)\n print(blk.__class__.__name__,'output shape:\t',X.shape)":4,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nimport paddle.nn as nn\ndef batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum, is_training=True):\n if not is_training:\n X_hat = (X - moving_mean) / (moving_var + eps) ** 0.5\n else:\n assert len(X.shape) in (2, 4)\n if len(X.shape) == 2:\n mean = paddle.mean(X)\n var = paddle.mean(((X - mean) ** 2))\n else:\n mean = paddle.mean(X, axis=(0, 2, 3), keepdim=True)\n var = paddle.mean(((X - mean) ** 2), axis=(0, 2, 3), keepdim=True)\n X_hat = (X - mean) / (var + eps) ** 0.5\n moving_mean = momentum * moving_mean + (1.0 - momentum) * mean\n moving_var = momentum * moving_var + (1.0 - momentum) * var\n Y = gamma * X_hat + beta\n return Y, moving_mean, moving_var\nclass BatchNorm(nn.Layer):\n def __init__(self, num_features, num_dims=4):\n super(BatchNorm, self).__init__()\n if num_dims == 2:\n shape = (1, num_features)\n else:\n shape = (1, num_features, 1, 1)\n self.gamma = self.create_parameter(\n attr=None,\n shape=shape,\n dtype='float32',\n is_bias=False,\n default_initializer=nn.initializer.Assign(paddle.ones(shape=shape, dtype='float32')))\n self.beta = self.create_parameter(\n attr=None,\n shape=shape,\n dtype='float32',\n is_bias=False,\n default_initializer=nn.initializer.Assign(paddle.zeros(shape=shape, dtype='float32')))\n self.moving_mean = paddle.zeros(shape=shape, dtype='float32')\n self.moving_var = paddle.zeros(shape=shape, dtype='float32')\n def forward(self, X):\n Y, self.moving_mean, self.moving_var = batch_norm(\n X, self.gamma, self.beta, self.moving_mean,\n self.moving_var, eps=1e-5, momentum=0.9, is_training=self.training)\n return Y\nnet = nn.Sequential(\n nn.Conv2D(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),\n nn.MaxPool2D(kernel_size=2, stride=2),\n nn.Conv2D(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),\n nn.MaxPool2D(kernel_size=2, stride=2),\n nn.Flatten(), nn.Linear(16 * 4 * 4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),\n nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),\n nn.Linear(84, 10))\nlr, num_epochs, batch_size = 1.0, 10, 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nd2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())\nparam = net.parameters()\nprint('gamma:', param[2].numpy().reshape(-1))\nprint('beta:', param[3].numpy().reshape(-1))\nnet = nn.Sequential(\n nn.Conv2D(1, 6, kernel_size=5), nn.BatchNorm2D(6, momentum=0.1), nn.Sigmoid(),\n nn.MaxPool2D(kernel_size=2, stride=2),\n nn.Conv2D(6, 16, kernel_size=5), nn.BatchNorm2D(16, momentum=0.1), nn.Sigmoid(),\n nn.MaxPool2D(kernel_size=2, stride=2),\n nn.Flatten(),\n nn.Linear(256, 120), nn.BatchNorm1D(120, momentum=0.1), nn.Sigmoid(),\n nn.Linear(120, 84), nn.BatchNorm1D(84, momentum=0.1), nn.Sigmoid(),\n nn.Linear(84, 10))":2,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom paddle import nn\nbatch_size = 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nnum_inputs, num_outputs, num_hiddens = 784, 10, 256\nW1 = paddle.randn([num_inputs, num_hiddens]) * 0.01\nW1.stop_gradient = False\nb1 = paddle.zeros([num_hiddens])\nb1.stop_gradient = False\nW2 = paddle.randn([num_hiddens, num_outputs]) * 0.01\nW2.stop_gradient = False\nb2 = paddle.zeros([num_outputs])\nb2.stop_gradient = False\nparams = [W1, b1, W2, b2]\ndef relu(X):\n a = paddle.zeros_like(X)\n return paddle.maximum(X, a)\nnum_epochs, lr = 10, 0.1\nupdater = paddle.optimizer.SGD(learning_rate=lr, parameters=params)\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)":2,"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport random\nimport paddle\nfrom paddle import nn\nwarnings.filterwarnings(\"ignore\", category=DeprecationWarning)\nfrom d2l import paddle as d2l\ndef dropout_layer(X, dropout):\n assert 0 <= dropout <= 1\n if dropout == 1:\n return paddle.zeros_like(X)\n if dropout == 0:\n return X\n mask = (paddle.to_tensor(paddle.uniform(X.shape)) > dropout).astype('float32')\n return mask * X / (1.0 - dropout)\nX= paddle.arange(16, dtype = paddle.float32).reshape((2, 8))\ndropout1, dropout2 = 0.2, 0.5\nclass Net(nn.Layer):\n def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2,\n is_training = True):\n super(Net, self).__init__()\n self.num_inputs = num_inputs\n self.training = is_training\n self.lin1 = nn.Linear(num_inputs, num_hiddens1)\n self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)\n self.lin3 = nn.Linear(num_hiddens2, num_outputs)\n self.relu = nn.ReLU()\n def forward(self, X):\n H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))\n if self.training == True:\n H1 = dropout_layer(H1, dropout1)\n H2 = self.relu(self.lin2(H1))\n if self.training == True:\n H2 = dropout_layer(H2, dropout2)\n out = self.lin3(H2)\n return out\nnet = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)\nnum_epochs, lr, batch_size = 10, 0.5, 256\nloss = nn.CrossEntropyLoss(reduction='none')\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\ntrainer = paddle.optimizer.SGD(learning_rate=lr, parameters=net.parameters())\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)\nweight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Normal(std=0.01))\nnet = nn.Sequential(nn.Flatten(),\n nn.Linear(784, 256, weight_attr=weight_attr),\n nn.ReLU(),\n nn.Dropout(dropout1),\n nn.Linear(256, 256, weight_attr=weight_attr),\n nn.ReLU(),\n nn.Dropout(dropout2),\n nn.Linear(256, 10, weight_attr=weight_attr))\ntrainer = paddle.optimizer.SGD(learning_rate=0.5, parameters=net.parameters())\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)":2,"%matplotlib inline\nimport warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nx = paddle.arange(-8.0, 8.0, 0.1, dtype='float32')\nx.stop_gradient = False\ny = paddle.nn.functional.relu(x)\nd2l.plot(x.detach().numpy(), y.detach().numpy(), 'x', 'relu(x)', figsize=(5, 2.5))\ny.backward(paddle.ones_like(x), retain_graph=True)\nd2l.plot(x.detach().numpy(), x.grad.numpy(), 'x', 'grad of relu', figsize=(5, 2.5))\ny = paddle.nn.functional.sigmoid(x)\nd2l.plot(x.detach().numpy(), y.detach().numpy(), 'x', 'sigmoid(x)', figsize=(5, 2.5))\nx.clear_gradient()\ny.backward(paddle.ones_like(x), retain_graph=True)\nd2l.plot(x.detach().numpy(), x.grad.numpy(), 'x', 'grad of sigmoid', figsize=(5, 2.5))\ny = paddle.tanh(x)\nd2l.plot(x.detach().numpy(), y.detach().numpy(), 'x', 'tanh(x)', figsize=(5, 2.5))\nx.clear_gradient()\ny.backward(paddle.ones_like(x), retain_graph=True)\nd2l.plot(x.detach().numpy(), x.grad.numpy(), 'x', 'grad of tanh', figsize=(5, 2.5))":6,"counts = paddle.distribution.Multinomial(10, paddle.to_tensor(fair_probs)).sample((500,1))\ncum_counts = counts.cumsum(axis=0)\ncum_counts = cum_counts.squeeze(axis=1)\nestimates = cum_counts / cum_counts.sum(axis=1, keepdim=True)\nd2l.set_figsize((6, 4.5))\nfor i in range(6):\n d2l.plt.plot(estimates[:, i],\n label=(\"P(die=\" + str(i + 1) + \")\"))\nd2l.plt.axhline(y=0.167, color='black', linestyle='dashed')\nd2l.plt.gca().set_xlabel('Groups of experiments')\nd2l.plt.gca().set_ylabel('Estimated probability')\nd2l.plt.legend()\nimport warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nhelp(paddle.ones)\npaddle.ones([4], dtype='float32')":6,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom IPython import display\nbatch_size = 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nnum_inputs = 784\nnum_outputs = 10\nW = paddle.normal(0, 0.01, shape=(num_inputs, num_outputs))\nb = paddle.zeros(shape=(num_outputs,))\nW.stop_gradient=False\nb.stop_gradient=False\nX = paddle.to_tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])\nX.sum(0, keepdim=True), X.sum(1, keepdim=True)\ndef softmax(X):\n X_exp = paddle.exp(X)\n partition = X_exp.sum(1, keepdim=True)\n return X_exp / partition\nX = paddle.normal(0, 1, (2, 5))\nX_prob = softmax(X)\nX_prob, X_prob.sum(1)\ndef net(X):\n return softmax(paddle.matmul(X.reshape((-1, W.shape[0])), W) + b)\ny = paddle.to_tensor([0, 2])\ny_hat = paddle.to_tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])\ny_hat[[0, 1], y]\ndef cross_entropy(y_hat, y):\n return - paddle.log(y_hat[[i for i in range(len(y_hat))], y.squeeze()])\ncross_entropy(y_hat, y)\ndef accuracy(y_hat, y):\n if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:\n if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:\n y_hat = y_hat.argmax(axis=1)\n if len(y_hat.shape) < len(y.shape):\n cmp = y_hat.astype(y.dtype) == y.squeeze()\n else:\n cmp = y_hat.astype(y.dtype) == y\n return float(cmp.astype(y.dtype).sum())\ndef evaluate_accuracy(net, data_iter):\n if isinstance(net, paddle.nn.Layer):\n net.eval()\n metric = Accumulator(2)\n with paddle.no_grad():\n for X, y in data_iter:\n metric.add(accuracy(net(X), y), y.numel())\n return metric[0] / metric[1]\ndef train_epoch_ch3(net, train_iter, loss, updater):\n if isinstance(net, paddle.nn.Layer):\n net.train()\n metric = Accumulator(3)\n for X, y in train_iter:\n y_hat = net(X)\n l = loss(y_hat, y)\n if isinstance(updater, paddle.optimizer.Optimizer):\n updater.clear_grad()\n l.mean().backward()\n updater.step()\n else:\n l.sum().backward()\n updater(X.shape[0])\n metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())\n return metric[0] / metric[2], metric[1] / metric[2]":4,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nimport paddle.nn as nn\nfrom paddle.nn import functional as F\nclass Residual(nn.Layer):\n def __init__(self, input_channels, num_channels, use_1x1conv=False,\n strides=1):\n super(Residual, self).__init__()\n self.conv1 = nn.Conv2D(input_channels, num_channels, kernel_size=3, padding=1, stride=strides)\n self.conv2 = nn.Conv2D(num_channels, num_channels, kernel_size=3, padding=1)\n if use_1x1conv:\n self.conv3 = nn.Conv2D(input_channels, num_channels, kernel_size=1, stride=strides)\n else:\n self.conv3 = None\n self.bn1 = nn.BatchNorm2D(num_channels)\n self.bn2 = nn.BatchNorm2D(num_channels)\n self.relu = nn.ReLU()\n def forward(self, X):\n Y = F.relu(self.bn1(self.conv1(X)))\n Y = self.bn2(self.conv2(Y))\n if self.conv3:\n X = self.conv3(X)\n Y += X\n return F.relu(Y)\nblk = Residual(3, 3)\nX = paddle.rand([4, 3, 6, 6])\nY = blk(X)\nY.shape\nblk = Residual(3, 6, use_1x1conv=True, strides=2)\nblk(X).shape\nb1 = nn.Sequential(nn.Conv2D(1, 64, kernel_size=7, stride=2, padding=3),\n nn.BatchNorm2D(64), nn.ReLU(),\n nn.MaxPool2D(kernel_size=3, stride=2, padding=1))\nnet = nn.Sequential(b1, b2, b3, b4, b5,\n nn.AdaptiveAvgPool2D((1, 1)),\n nn.Flatten(), nn.Linear(512, 10))\nX = paddle.rand(shape=(1, 1, 224, 224))\nfor layer in net:\n X = layer(X)\n print(layer.__class__.__name__,'output shape:\t', X.shape)":2,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport numpy as np\nimport paddle\ntrue_w = paddle.to_tensor([2, -3.4])\ntrue_b = 4.2\nfeatures, labels = d2l.synthetic_data(true_w, true_b, 1000)\ndef load_array(data_arrays, batch_size, is_train=True):\n dataset = paddle.io.TensorDataset(data_arrays)\n return paddle.io.DataLoader(dataset, batch_size=batch_size, shuffle=is_train, return_list=True)\nbatch_size = 10\ndata_iter = load_array((features, labels), batch_size)\nfrom paddle import nn\nnet = nn.Sequential(nn.Linear(2, 1))\nweight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Normal(0, 0.01))\nbias_attr = paddle.ParamAttr(initializer=None)\nnet = nn.Sequential(nn.Linear(2, 1, weight_attr=weight_attr, bias_attr=bias_attr))\nloss = nn.MSELoss()\ntrainer = paddle.optimizer.SGD(learning_rate=0.03, parameters=net.parameters())\nw = net[0].weight\nb = net[0].bias":4,"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport random\nimport paddle\nfrom paddle import nn\nwarnings.filterwarnings(\"ignore\", category=DeprecationWarning)\nfrom d2l import paddle as d2l\ndef dropout_layer(X, dropout):\n assert 0 <= dropout <= 1\n if dropout == 1:\n return paddle.zeros_like(X)\n if dropout == 0:\n return X\n mask = (paddle.to_tensor(paddle.uniform(X.shape)) > dropout).astype('float32')\n return mask * X / (1.0 - dropout)\nX= paddle.arange(16, dtype = paddle.float32).reshape((2, 8))\nnum_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256\ndropout1, dropout2 = 0.2, 0.5\nclass Net(nn.Layer):\n def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2,\n is_training = True):\n super(Net, self).__init__()\n self.num_inputs = num_inputs\n self.training = is_training\n self.lin1 = nn.Linear(num_inputs, num_hiddens1)\n self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)\n self.lin3 = nn.Linear(num_hiddens2, num_outputs)\n self.relu = nn.ReLU()\n def forward(self, X):\n H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))\n if self.training == True:\n H1 = dropout_layer(H1, dropout1)\n H2 = self.relu(self.lin2(H1))\n if self.training == True:\n H2 = dropout_layer(H2, dropout2)\n out = self.lin3(H2)\n return out\nnet = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)\nnum_epochs, lr, batch_size = 10, 0.5, 256\nloss = nn.CrossEntropyLoss(reduction='none')\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\ntrainer = paddle.optimizer.SGD(learning_rate=lr, parameters=net.parameters())\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)\nweight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Normal(std=0.01))\nnet = nn.Sequential(nn.Flatten(),\n nn.Linear(784, 256, weight_attr=weight_attr),\n nn.ReLU(),\n nn.Dropout(dropout1),\n nn.Linear(256, 256, weight_attr=weight_attr),\n nn.ReLU(),\n nn.Dropout(dropout2),\n nn.Linear(256, 10, weight_attr=weight_attr))\ntrainer = paddle.optimizer.SGD(learning_rate=0.5, parameters=net.parameters())\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)":4,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom paddle import nn, optimizer\nnet = nn.Sequential(\n nn.Conv2D(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),\n nn.AvgPool2D(kernel_size=2, stride=2),\n nn.Conv2D(6, 16, kernel_size=5), nn.Sigmoid(),\n nn.AvgPool2D(kernel_size=2, stride=2),\n nn.Flatten(),\n nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),\n nn.Linear(120, 84), nn.Sigmoid(),\n nn.Linear(84, 10))\nX = paddle.rand((1, 1, 28, 28), 'float32')\nfor layer in net:\n X = layer(X)\n print(layer.__class__.__name__, 'output shape: \t', X.shape)\ndef train_ch6(net, train_iter, test_iter, num_epochs, lr, device):\n def init_weights(m):\n if type(m) == nn.Linear or type(m) == nn.Conv2D:\n nn.initializer.XavierUniform(m.weight)\n net.apply(init_weights)\n net.to(device)\n optimizer = paddle.optimizer.SGD(learning_rate=lr, parameters=net.parameters())\n loss = nn.CrossEntropyLoss()\n animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], legend=['train loss', 'train acc', 'test acc'])\n timer, num_batches = d2l.Timer(), len(train_iter)\n for epoch in range(num_epochs):\n metric = d2l.Accumulator(3)\n net.train()\n for i, (X, y) in enumerate(train_iter):\n timer.start()\n optimizer.clear_grad()\n X, y = paddle.to_tensor(X, place=device), paddle.to_tensor(y, place=device)\n y_hat = net(X)\n l = loss(y_hat, y)\n l.backward()\n optimizer.step()\n with paddle.no_grad():\n metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])\n timer.stop()\n train_l = metric[0] / metric[2]\n train_acc = metric[1] / metric[2]\n if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:\n animator.add(epoch + (i + 1) / num_batches, (train_l, train_acc, None))\n test_acc = evaluate_accuracy_gpu(net, test_iter)\n animator.add(epoch + 1, (None, None, test_acc))":6,"%matplotlib inline\nimport warnings\nimport numpy as np\nimport pandas as pd\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nfrom paddle import nn\nwarnings.filterwarnings(\"ignore\", category=DeprecationWarning)\nfrom d2l import paddle as d2l\nn_train = train_data.shape[0]\ntrain_features = paddle.to_tensor(all_features[:n_train].values, dtype=paddle.float32)\ntest_features = paddle.to_tensor(all_features[n_train:].values, dtype=paddle.float32)\ntrain_labels = paddle.to_tensor(\n train_data.SalePrice.values.reshape(-1, 1), dtype=paddle.float32)\ndef log_rmse(net, features, labels):\n clipped_preds = paddle.clip(net(features), 1, float('inf'))\n rmse = paddle.sqrt(loss(paddle.log(clipped_preds), paddle.log(labels)))\n return rmse.item()\ndef train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size):\n train_ls, test_ls = [], []\n train_iter = d2l.load_array((train_features, train_labels), batch_size)\n optimizer = paddle.optimizer.Adam(learning_rate=learning_rate*1.0, parameters=net.parameters(), weight_decay=weight_decay*1.0)\n for epoch in range(num_epochs):\n for X, y in train_iter:\n l = loss(net(X), y)\n l.backward()\n optimizer.step()\n optimizer.clear_grad()\n train_ls.append(log_rmse(net, train_features, train_labels))\n if test_labels is not None:\n test_ls.append(log_rmse(net, test_features, test_labels))\n return train_ls, test_ls\ndef get_k_fold_data(k, i, X, y):\n assert k > 1\n fold_size = X.shape[0] // k\n X_train, y_train = None, None\n for j in range(k):\n idx = slice(j * fold_size, (j + 1) * fold_size)\n X_part, y_part = X[idx, :], y[idx]\n if j == i:\n X_valid, y_valid = X_part, y_part\n elif X_train is None:\n X_train, y_train = X_part, y_part\n else:\n X_train = paddle.concat([X_train, X_part], 0)\n y_train = paddle.concat([y_train, y_part], 0)\n return X_train, y_train, X_valid, y_valid":2,"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nfrom paddle import nn\nfrom paddle.nn import functional as F\nnet = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))\nX = paddle.rand([2, 20])\nnet(X)\nclass MLP(nn.Layer):\n def __init__(self):\n super().__init__()\n self.hidden = nn.Linear(20, 256)\n self.out = nn.Linear(256, 10)\n def forward(self, X):\n return self.out(F.relu(self.hidden(X)))\nclass MySequential(nn.Layer):\n def __init__(self, *layers):\n super(MySequential, self).__init__()\n if len(layers) > 0 and isinstance(layers[0], tuple):\n for name, layer in layers:\n self.add_sublayer(name, layer)\n else:\n for idx, layer in enumerate(layers):\n self.add_sublayer(str(idx), layer)\n def forward(self, X):\n for layer in self._sub_layers.values():\n X = layer(X)\n return X\nclass FixedHiddenMLP(nn.Layer):\n def __init__(self):\n super().__init__()\n self.rand_weight = paddle.rand([20, 20])\n self.linear = nn.Linear(20, 20)\n def forward(self, X):\n X = self.linear(X)\n X = F.relu(paddle.tensor.mm(X, self.rand_weight) + 1)\n X = self.linear(X)\n while X.abs().sum() > 1:\n X /= 2\n return X.sum()\nclass NestMLP(nn.Layer):\n def __init__(self):\n super().__init__()\n self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),\n nn.Linear(64, 32), nn.ReLU())\n self.linear = nn.Linear(32, 16)\n def forward(self, X):\n return self.linear(self.net(X))\nchimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())\nchimera(X)":2,"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nfrom paddle import nn\n\ndef comp_conv2d(conv2d, X):\n X = paddle.reshape(X, [1, 1] + X.shape)\n Y = conv2d(X)\n return Y.reshape(Y.shape[2:])\nconv2d = nn.Conv2D(in_channels=1, out_channels=1, kernel_size=3, padding=1)\nX = paddle.rand((8, 8))\ncomp_conv2d(conv2d, X).shape\nconv2d = nn.Conv2D(in_channels=1, out_channels=1, kernel_size=(5, 3), padding=(2, 1))\ncomp_conv2d(conv2d, X).shape\nconv2d = nn.Conv2D(1, 1, kernel_size=3, padding=1, stride=2)\ncomp_conv2d(conv2d, X).shape\nconv2d = nn.Conv2D(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))\ncomp_conv2d(conv2d, X).shape":6,"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nx = paddle.arange(4, dtype='float32')\nx = paddle.to_tensor(x, stop_gradient=False)\ny = 2 * paddle.dot(x, x)\nx.clear_gradient()\ny = paddle.sum(x)\ny.backward()\nx.grad\nx.clear_gradient()\ny = x * x\npaddle.sum(y).backward()\nx.grad\nx.clear_gradient()\ny = x * x\nu = y.detach()\nz = u * x\npaddle.sum(z).backward()\nx.grad == u\nx.clear_gradient()\npaddle.sum(y).backward()\nx.grad == 2 * x\ndef f(a):\n b = a * 2\n while paddle.norm(b) < 1000:\n b = b * 2\n if paddle.sum(b) > 0:\n c = b\n else:\n c = 100 * b\n return c\na = paddle.to_tensor(paddle.randn(shape=[1]), stop_gradient=False)\nd = f(a)\nd.backward()":4,"%matplotlib inline\nimport warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport random\nimport paddle\ndef synthetic_data(w, b, num_examples):\n X = paddle.normal(0, 1, (num_examples, len(w)))\n y = paddle.matmul(X, w) + b\n y += paddle.normal(0, 0.01, y.shape)\n return X, y.reshape((-1, 1))\ntrue_w = paddle.to_tensor([2, -3.4])\ntrue_b = 4.2\nfeatures, labels = synthetic_data(true_w, true_b, 1000)\nd2l.set_figsize()\nd2l.plt.scatter(features[:, 1].detach().numpy(), labels.detach().numpy(), 1);\ndef data_iter(batch_size, features, labels):\n num_examples = len(features)\n indices = list(range(num_examples))\n random.shuffle(indices)\n for i in range(0, num_examples, batch_size):\n batch_indices = paddle.to_tensor(indices[i: min(i + batch_size, num_examples)])\n yield features[batch_indices], labels[batch_indices]\nbatch_size = 10\nfor X, y in data_iter(batch_size, features, labels):\n break\nw = paddle.normal(0, 0.01, shape=(2,1))\nb = paddle.zeros(shape=[1])\nw.stop_gradient = False\nb.stop_gradient = False\ndef linreg(X, w, b):\n return paddle.matmul(X, w) + b\ndef squared_loss(y_hat, y):\n return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2\n with paddle.no_grad():\n for i, param in enumerate(params):\n param -= lr * params[i].grad / batch_size\n params[i].set_value(param)\n params[i].clear_gradient()\nlr = 0.03\nnum_epochs = 3\nnet = linreg\nloss = squared_loss\nfor epoch in range(num_epochs):\n for X, y in data_iter(batch_size, features, labels):\n l = loss(net(X, w, b), y)\n l.sum().backward()\n sgd([w, b], lr, batch_size)\n with paddle.no_grad():\n train_l = loss(net(features, w, b), labels)":2,"trainer = paddle.optimizer.SGD(learning_rate=0.5, parameters=net.parameters())\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)\n%matplotlib inline\nimport warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nx = paddle.arange(start=-8.0, end=8.0, step=0.1, dtype='float32')\nx.stop_gradient = False\ny = paddle.nn.functional.sigmoid(x)\ny.backward(paddle.ones_like(x))\nd2l.plot(x.detach().numpy(), [y.detach().numpy(), x.grad.numpy()],\n legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5))\nM = paddle.normal(0, 1, shape=(4,4))\nfor i in range(100):\n M = paddle.mm(M, paddle.normal(0, 1, shape=(4, 4)))":6,"%matplotlib inline\nimport warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport random\nimport numpy as np\nimport paddle\nfair_probs = [1.0 / 6] * 6\npaddle.distribution.Multinomial(1, paddle.to_tensor(fair_probs)).sample()\ncounts = paddle.distribution.Multinomial(1000, paddle.to_tensor(fair_probs)).sample()\ncounts / 1000\ncounts = paddle.distribution.Multinomial(1000, paddle.to_tensor(fair_probs)).sample()\ncounts / 1000":6,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom paddle import nn\nbatch_size = 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nnet = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))\ndef init_weights(m):\n if type(m) == nn.Linear:\n nn.initializer.Normal(m.weight, std=0.01)\nnet.apply(init_weights);\ntrainer = paddle.optimizer.SGD(learning_rate=0.1, parameters=net.parameters())":2,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nimport paddle.nn.functional as Function\nfrom paddle import nn\nbatch_size, num_steps = 32, 35\ntrain_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)\ndef get_lstm_params(vocab_size, num_hiddens):\n num_inputs = num_outputs = vocab_size\n def normal(shape):\n return paddle.randn(shape=shape)*0.01\n def three():\n return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), paddle.zeros([num_hiddens]))\n W_xi, W_hi, b_i = three()\n W_xf, W_hf, b_f = three()\n W_xo, W_ho, b_o = three()\n W_xc, W_hc, b_c = three()\n W_hq = normal((num_hiddens, num_outputs))\n b_q = paddle.zeros([num_outputs])\n params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q]\n for param in params:\n param.stop_gradient = False\n return params\ndef init_lstm_state(batch_size, num_hiddens):\n return (paddle.zeros([batch_size, num_hiddens]), paddle.zeros([batch_size, num_hiddens]))\ndef lstm(inputs, state, params):\n [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,\n W_hq, b_q] = params\n (H, C) = state\n outputs = []\n for X in inputs:\n I = Function.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)\n F = Function.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)\n O = Function.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)\n C_tilda = paddle.tanh((X @ W_xc) + (H @ W_hc) + b_c)\n C = F * C + I * C_tilda\n H = O * paddle.tanh(C)\n Y = (H @ W_hq) + b_q\n outputs.append(Y)\n return paddle.concat(outputs, axis=0), (H, C)\nvocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()\nnum_epochs, lr = 500, 1.0\nmodel = d2l.RNNModelScratch(len(vocab), num_hiddens, get_lstm_params, init_lstm_state, lstm)\nd2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)\nnum_inputs = vocab_size\nlstm_layer = nn.LSTM(num_inputs, num_hiddens, time_major=True)\nmodel = d2l.RNNModel(lstm_layer, len(vocab))\nd2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)":6,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nimport paddle.nn as nn\ndef vgg_block(num_convs, in_channels, out_channels):\n layers = []\n for _ in range(num_convs):\n layers.append(nn.Conv2D(in_channels, out_channels, kernel_size=3, padding=1))\n layers.append(nn.ReLU())\n in_channels = out_channels\n layers.append(nn.MaxPool2D(kernel_size=2, stride=2))\n return nn.Sequential(*layers)\ndef vgg(conv_arch):\n conv_blks = []\n in_channels = 1\n for (num_convs, out_channels) in conv_arch:\n conv_blks.append(vgg_block(num_convs, in_channels, out_channels))\n in_channels = out_channels\n return nn.Sequential(*conv_blks, nn.Flatten(),\n nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(),\n nn.Dropout(0.5), nn.Linear(4096, 4096), nn.ReLU(),\n nn.Dropout(0.5), nn.Linear(4096, 10))\nnet = vgg(conv_arch)\nX = paddle.randn(shape=(1, 1, 224, 224))\nfor blk in net:\n X = blk(X)\n print(blk.__class__.__name__,'output shape:\t',X.shape)\nratio = 4\nsmall_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]\nnet = vgg(small_conv_arch)":2,"%matplotlib inline\nimport warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom paddle import nn\nT = 1000\ntime = paddle.arange(1, T + 1, dtype=paddle.float32)\nx = paddle.sin(0.01 * time) + paddle.normal(0, 0.2, (T,))\nd2l.plot(time, [x], 'time', 'x', xlim=[1, 1000], figsize=(6, 3))\ntau = 4\nfeatures = paddle.zeros((T - tau, tau))\nfor i in range(tau):\n features[:, i] = x[i: T - tau + i]\nlabels = x[tau:].reshape((-1, 1))\nbatch_size, n_train = 16, 600\ntrain_iter = d2l.load_array((features[:n_train], labels[:n_train]), batch_size, is_train=True)\ndef init_weights(m):\n if type(m) == nn.Linear:\n nn.initializer.XavierUniform(m.weight)\ndef get_net():\n net = nn.Sequential(nn.Linear(4, 10),\n nn.ReLU(),\n nn.Linear(10, 1))\n net.apply(init_weights)\n return net\nloss = nn.MSELoss(reduction='none')\ndef train(net, train_iter, loss, epochs, lr):\n trainer = paddle.optimizer.Adam(learning_rate=lr, parameters=net.parameters())\n for epoch in range(epochs):\n for i,(X, y) in enumerate (train_iter()):\n trainer.clear_grad()\n l = loss(net(X), y)\n l.sum().backward()\n trainer.step()\nnet = get_net()\ntrain(net, train_iter, loss, 5, 0.01)\nonestep_preds = net(features)\nd2l.plot([time, time[tau:]],\n [x.detach().numpy(), onestep_preds.detach().numpy()], 'time',\n 'x', legend=['data', '1-step preds'], xlim=[1, 1000],\n figsize=(6, 3))\nmultistep_preds = paddle.zeros([T])\nmultistep_preds[: n_train + tau] = x[: n_train + tau]\nfor i in range(n_train + tau, T):\n multistep_preds[i] = net(multistep_preds[i - tau:i].reshape((1, -1)))\nd2l.plot([time, time[tau:], time[n_train + tau:]],\n [x.detach().numpy(), onestep_preds.detach().numpy(),\n multistep_preds[n_train + tau:].detach().numpy()], 'time',\n 'x', legend=['data', '1-step preds', 'multistep preds'],\n xlim=[1, 1000], figsize=(6, 3))\nmax_steps = 64\nfeatures = paddle.zeros((T - tau - max_steps + 1, tau + max_steps))\nfor i in range(tau):\n features[:, i] = x[i: i + T - tau - max_steps + 1]\nfor i in range(tau, tau + max_steps):\n features[:, i] = net(features[:, i - tau:i]).reshape([-1])\nsteps = (1, 4, 16, 64)\nd2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps],\n [features[:, tau + i - 1].detach().numpy() for i in steps], 'time', 'x',\n legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000],\n figsize=(6, 3))":4,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nimport paddle.nn as nn\nfrom paddle.nn import functional as F\nclass Residual(nn.Layer):\n def __init__(self, input_channels, num_channels, use_1x1conv=False,\n strides=1):\n super(Residual, self).__init__()\n self.conv1 = nn.Conv2D(input_channels, num_channels, kernel_size=3, padding=1, stride=strides)\n self.conv2 = nn.Conv2D(num_channels, num_channels, kernel_size=3, padding=1)\n if use_1x1conv:\n self.conv3 = nn.Conv2D(input_channels, num_channels, kernel_size=1, stride=strides)\n else:\n self.conv3 = None\n self.bn1 = nn.BatchNorm2D(num_channels)\n self.bn2 = nn.BatchNorm2D(num_channels)\n self.relu = nn.ReLU()\n def forward(self, X):\n Y = F.relu(self.bn1(self.conv1(X)))\n Y = self.bn2(self.conv2(Y))\n if self.conv3:\n X = self.conv3(X)\n Y += X\n return F.relu(Y)\nblk = Residual(3, 3)\nX = paddle.rand([4, 3, 6, 6])\nY = blk(X)\nY.shape\nblk = Residual(3, 6, use_1x1conv=True, strides=2)\nblk(X).shape\nb1 = nn.Sequential(nn.Conv2D(1, 64, kernel_size=7, stride=2, padding=3),\n nn.BatchNorm2D(64), nn.ReLU(),\n nn.MaxPool2D(kernel_size=3, stride=2, padding=1))\ndef resnet_block(input_channels, num_channels, num_residuals, first_block=False):\n blk = []\n for i in range(num_residuals):\n if i == 0 and not first_block:\n blk.append(Residual(input_channels, num_channels, use_1x1conv=True, strides=2))\n else:\n blk.append(Residual(num_channels, num_channels))\n return blk\nb2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))\nb3 = nn.Sequential(*resnet_block(64, 128, 2))\nb4 = nn.Sequential(*resnet_block(128, 256, 2))\nb5 = nn.Sequential(*resnet_block(256, 512, 2))\nnet = nn.Sequential(b1, b2, b3, b4, b5,\n nn.AdaptiveAvgPool2D((1, 1)),\n nn.Flatten(), nn.Linear(512, 10))\nX = paddle.rand(shape=(1, 1, 224, 224))\nfor layer in net:\n X = layer(X)\n print(layer.__class__.__name__,'output shape:\t', X.shape)":4,"x = paddle.arange(12)\nx.numel()\nX = paddle.reshape(x, (3, 4))\npaddle.zeros((2, 3, 4))\npaddle.ones((2, 3, 4))\npaddle.randn((3, 4),'float32')\npaddle.to_tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])\nx = paddle.to_tensor([1.0, 2, 4, 8])\ny = paddle.to_tensor([2, 2, 2, 2])\nx + y, x - y, x * y, x / y, x**y\npaddle.exp(x)\nX = paddle.arange(12, dtype='float32').reshape((3, 4))\nY = paddle.to_tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])\npaddle.concat((X, Y), axis=0), paddle.concat((X, Y), axis=1)\nX.sum()\na = paddle.reshape(paddle.arange(3), (3, 1))\nb = paddle.reshape(paddle.arange(2), (1, 2))\nX[1, 2] = 9\nX[0:2, :] = 12\nZ = paddle.zeros_like(Y)\nZ = X + Y\nbefore = id(X)\nX += Y\nid(X) == before\nA = X.numpy()\nB = paddle.to_tensor(A)\ntype(A), type(B)\na = paddle.to_tensor([3.5])\na, a.item(), float(a), int(a)":2,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport numpy as np\nimport paddle\ntrue_w = paddle.to_tensor([2, -3.4])\ntrue_b = 4.2\nfeatures, labels = d2l.synthetic_data(true_w, true_b, 1000)\ndef load_array(data_arrays, batch_size, is_train=True):\n dataset = paddle.io.TensorDataset(data_arrays)\n return paddle.io.DataLoader(dataset, batch_size=batch_size, shuffle=is_train, return_list=True)\nbatch_size = 10\ndata_iter = load_array((features, labels), batch_size)\nfrom paddle import nn\nnet = nn.Sequential(nn.Linear(2, 1))\nweight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Normal(0, 0.01))\nbias_attr = paddle.ParamAttr(initializer=None)\nnet = nn.Sequential(nn.Linear(2, 1, weight_attr=weight_attr, bias_attr=bias_attr))\ntrainer = paddle.optimizer.SGD(learning_rate=0.03, parameters=net.parameters())\nw = net[0].weight\nb = net[0].bias":2,"%matplotlib inline\nimport warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport sys\nimport paddle\nfrom paddle.vision import transforms\nd2l.use_svg_display()\ntrans = transforms.ToTensor()\nmnist_train = paddle.vision.datasets.FashionMNIST(mode=\"train\", transform=trans)\nmnist_test = paddle.vision.datasets.FashionMNIST(mode=\"test\", transform=trans)\nlen(mnist_train), len(mnist_test)\ndef show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):\n figsize = (num_cols * scale, num_rows * scale)\n _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)\n axes = axes.flatten()\n for i, (ax, img) in enumerate(zip(axes, imgs)):\n if paddle.is_tensor(img):\n ax.imshow(img.numpy())\n else:\n ax.imshow(img)\n ax.axes.get_xaxis().set_visible(False)\n ax.axes.get_yaxis().set_visible(False)\n if titles:\n ax.set_title(titles[i])\n return axes\nX, y = next(iter(paddle.io.DataLoader(mnist_train, batch_size=18)))\nshow_images(X.reshape([18, 28, 28]), 2, 9, titles=get_fashion_mnist_labels(y));\nbatch_size = 256\n return 4\ntrain_iter = paddle.io.DataLoader(dataset=mnist_train, batch_size=batch_size, shuffle=True, return_list=True, num_workers=get_dataloader_workers())\n trans = [transforms.ToTensor()]\n if resize:\n trans.insert(0, transforms.Resize(resize))\n trans = transforms.Compose(trans)\n mnist_train = paddle.vision.datasets.FashionMNIST(mode=\"train\", transform=trans)\n mnist_test = paddle.vision.datasets.FashionMNIST(mode=\"test\", transform=trans)\n return (paddle.io.DataLoader(dataset=mnist_train, batch_size=batch_size, shuffle=True, return_list=True, num_workers=get_dataloader_workers()),\n paddle.io.DataLoader(dataset=mnist_test, batch_size=batch_size, return_list=True, shuffle=True, num_workers=get_dataloader_workers()))":2,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom paddle import nn\ndef pool2d(X, pool_size, mode='max'):\n p_h, p_w = pool_size\n Y = paddle.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))\n for i in range(Y.shape[0]):\n for j in range(Y.shape[1]):\n if mode == 'max':\n Y[i, j] = X[i: i + p_h, j: j + p_w].max()\n elif mode == 'avg':\n Y[i, j] = X[i: i + p_h, j: j + p_w].mean()\n return Y\nX = paddle.to_tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])\npool2d(X, (2, 2))\nX = paddle.arange(16, dtype=\"float32\").reshape((1, 1, 4, 4))\npool2d = nn.MaxPool2D(3, stride=3)\npool2d(X)\npool2d = nn.MaxPool2D(3, padding=1, stride=2)\npool2d(X)\npool2d = nn.MaxPool2D((2, 3), padding=(0, 1), stride=(2, 3))\npool2d(X)\nX = paddle.concat((X, X + 1), 1)\npool2d = paddle.nn.MaxPool2D(3, padding=1, stride=2)\npool2d(X)":6,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nX, W_xh = paddle.normal(0, 1, (3, 1)), paddle.normal(0, 1, (1, 4))\nH, W_hh = paddle.normal(0, 1, (3, 4)), paddle.normal(0, 1, (4, 4))\npaddle.matmul(X, W_xh) + paddle.matmul(H, W_hh)\npaddle.matmul(paddle.concat((X, H), 1), paddle.concat((W_xh, W_hh), 0))":6,"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nX, y = paddle.to_tensor(inputs.values), paddle.to_tensor(outputs.values)":6,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nimport paddle.nn as nn\ndef batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum, is_training=True):\n if not is_training:\n X_hat = (X - moving_mean) / (moving_var + eps) ** 0.5\n else:\n assert len(X.shape) in (2, 4)\n if len(X.shape) == 2:\n mean = paddle.mean(X)\n var = paddle.mean(((X - mean) ** 2))\n else:\n mean = paddle.mean(X, axis=(0, 2, 3), keepdim=True)\n var = paddle.mean(((X - mean) ** 2), axis=(0, 2, 3), keepdim=True)\n X_hat = (X - mean) / (var + eps) ** 0.5\n moving_mean = momentum * moving_mean + (1.0 - momentum) * mean\n moving_var = momentum * moving_var + (1.0 - momentum) * var\n Y = gamma * X_hat + beta\n return Y, moving_mean, moving_var\nclass BatchNorm(nn.Layer):\n def __init__(self, num_features, num_dims=4):\n super(BatchNorm, self).__init__()\n if num_dims == 2:\n shape = (1, num_features)\n else:\n shape = (1, num_features, 1, 1)\n self.gamma = self.create_parameter(\n attr=None,\n shape=shape,\n dtype='float32',\n is_bias=False,\n default_initializer=nn.initializer.Assign(paddle.ones(shape=shape, dtype='float32')))\n self.beta = self.create_parameter(\n attr=None,\n shape=shape,\n dtype='float32',\n is_bias=False,\n default_initializer=nn.initializer.Assign(paddle.zeros(shape=shape, dtype='float32')))\n self.moving_mean = paddle.zeros(shape=shape, dtype='float32')\n self.moving_var = paddle.zeros(shape=shape, dtype='float32')\n def forward(self, X):\n Y, self.moving_mean, self.moving_var = batch_norm(\n X, self.gamma, self.beta, self.moving_mean,\n self.moving_var, eps=1e-5, momentum=0.9, is_training=self.training)\n return Y\nnet = nn.Sequential(\n nn.Conv2D(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),\n nn.MaxPool2D(kernel_size=2, stride=2),\n nn.Conv2D(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),\n nn.MaxPool2D(kernel_size=2, stride=2),\n nn.Flatten(), nn.Linear(16 * 4 * 4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),\n nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),\n nn.Linear(84, 10))\nparam = net.parameters()\nprint('gamma:', param[2].numpy().reshape(-1))\nprint('beta:', param[3].numpy().reshape(-1))\nnet = nn.Sequential(\n nn.Conv2D(1, 6, kernel_size=5), nn.BatchNorm2D(6, momentum=0.1), nn.Sigmoid(),\n nn.MaxPool2D(kernel_size=2, stride=2),\n nn.Conv2D(6, 16, kernel_size=5), nn.BatchNorm2D(16, momentum=0.1), nn.Sigmoid(),\n nn.MaxPool2D(kernel_size=2, stride=2),\n nn.Flatten(),\n nn.Linear(256, 120), nn.BatchNorm1D(120, momentum=0.1), nn.Sigmoid(),\n nn.Linear(120, 84), nn.BatchNorm1D(84, momentum=0.1), nn.Sigmoid(),\n nn.Linear(84, 10))":4,"x = paddle.arange(12)\nX = paddle.reshape(x, (3, 4))\npaddle.zeros((2, 3, 4))\npaddle.ones((2, 3, 4))\npaddle.randn((3, 4),'float32')\npaddle.to_tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])\nx = paddle.to_tensor([1.0, 2, 4, 8])\ny = paddle.to_tensor([2, 2, 2, 2])\nx + y, x - y, x * y, x / y, x**y\npaddle.exp(x)\nX = paddle.arange(12, dtype='float32').reshape((3, 4))\nY = paddle.to_tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])\npaddle.concat((X, Y), axis=0), paddle.concat((X, Y), axis=1)\na = paddle.reshape(paddle.arange(3), (3, 1))\nb = paddle.reshape(paddle.arange(2), (1, 2))\nZ = paddle.zeros_like(Y)\nZ = X + Y\nA = X.numpy()\nB = paddle.to_tensor(A)\ntype(A), type(B)\na = paddle.to_tensor([3.5])\na, a.item(), float(a), int(a)":2,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nimport paddle.nn as nn\ndef nin_block(in_channels, out_channels, kernel_size, strides, padding):\n return nn.Sequential(\n nn.Conv2D(in_channels, out_channels, kernel_size, strides, padding),\n nn.ReLU(),\n nn.Conv2D(out_channels, out_channels, kernel_size=1),\n nn.ReLU(),\n nn.Conv2D(out_channels, out_channels, kernel_size=1),\n nn.ReLU())\nnet = nn.Sequential(\n nin_block(1, 96, kernel_size=11, strides=4, padding=0),\n nn.MaxPool2D(3, stride=2),\n nin_block(96, 256, kernel_size=5, strides=1, padding=2),\n nn.MaxPool2D(3, stride=2),\n nin_block(256, 384, kernel_size=3, strides=1, padding=1),\n nn.MaxPool2D(3, stride=2), nn.Dropout(0.5),\n nin_block(384, 10, kernel_size=3, strides=1, padding=1),\n nn.AdaptiveAvgPool2D((1, 1)),\n nn.Flatten())\nX = paddle.rand(shape=(1, 1, 224, 224))\nfor layer in net:\n X = layer(X)\n print(layer.__class__.__name__,'output shape:\t', X.shape)":6,"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nfrom paddle import nn\nfrom paddle.nn import functional as F\nnet = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))\nX = paddle.rand([2, 20])\nnet(X)\nclass MLP(nn.Layer):\n def __init__(self):\n super().__init__()\n self.hidden = nn.Linear(20, 256)\n self.out = nn.Linear(256, 10)\n def forward(self, X):\n return self.out(F.relu(self.hidden(X)))\nnet = MLP()\nnet(X)\nclass MySequential(nn.Layer):\n def __init__(self, *layers):\n super(MySequential, self).__init__()\n if len(layers) > 0 and isinstance(layers[0], tuple):\n for name, layer in layers:\n self.add_sublayer(name, layer)\n else:\n for idx, layer in enumerate(layers):\n self.add_sublayer(str(idx), layer)\n def forward(self, X):\n for layer in self._sub_layers.values():\n X = layer(X)\n return X\nnet = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))\nnet(X)\nclass FixedHiddenMLP(nn.Layer):\n def __init__(self):\n super().__init__()\n self.rand_weight = paddle.rand([20, 20])\n self.linear = nn.Linear(20, 20)\n def forward(self, X):\n X = self.linear(X)\n X = F.relu(paddle.tensor.mm(X, self.rand_weight) + 1)\n X = self.linear(X)\n while X.abs().sum() > 1:\n X /= 2\n return X.sum()\nnet = FixedHiddenMLP()\nnet(X)\nclass NestMLP(nn.Layer):\n def __init__(self):\n super().__init__()\n self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),\n nn.Linear(64, 32), nn.ReLU())\n self.linear = nn.Linear(32, 16)\n def forward(self, X):\n return self.linear(self.net(X))\nchimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())\nchimera(X)":2,"import paddle\nfrom paddle import nn\npaddle.device.set_device(\"cpu\"), paddle.CUDAPlace(0), paddle.CUDAPlace(1)\npaddle.device.cuda.device_count()\n if paddle.device.cuda.device_count() >= i + 1:\n return paddle.CUDAPlace(i)\n return paddle.CPUPlace()\ndef try_all_gpus():\n devices = [paddle.CUDAPlace(i) for i in range(paddle.device.cuda.device_count())]\n return devices if devices else paddle.CPUPlace()\ntry_gpu(),try_gpu(10),try_all_gpus()\nx = paddle.to_tensor([1, 2, 3])\nx.place\nX = paddle.to_tensor(paddle.ones(shape=[2, 3]), place=try_gpu())\nY = paddle.to_tensor(paddle.rand([2, 3]), place=try_gpu(1))\nZ = X.cuda(1)\nZ.cuda(1) is Z\nnet = nn.Sequential(nn.Linear(3, 1))\nnet=net.to(try_gpu())\nnet[0].weight.place":4,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom IPython import display\nbatch_size = 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nnum_inputs = 784\nnum_outputs = 10\nW = paddle.normal(0, 0.01, shape=(num_inputs, num_outputs))\nb = paddle.zeros(shape=(num_outputs,))\nW.stop_gradient=False\nb.stop_gradient=False\nX = paddle.to_tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])\nX.sum(0, keepdim=True), X.sum(1, keepdim=True)\ndef softmax(X):\n X_exp = paddle.exp(X)\n partition = X_exp.sum(1, keepdim=True)\n return X_exp / partition\nX = paddle.normal(0, 1, (2, 5))\nX_prob = softmax(X)\nX_prob, X_prob.sum(1)\ndef net(X):\n return softmax(paddle.matmul(X.reshape((-1, W.shape[0])), W) + b)\ny = paddle.to_tensor([0, 2])\ny_hat = paddle.to_tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])\ny_hat[[0, 1], y]\ndef cross_entropy(y_hat, y):\n return - paddle.log(y_hat[[i for i in range(len(y_hat))], y.squeeze()])\ncross_entropy(y_hat, y)\ndef accuracy(y_hat, y):\n if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:\n if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:\n y_hat = y_hat.argmax(axis=1)\n if len(y_hat.shape) < len(y.shape):\n cmp = y_hat.astype(y.dtype) == y.squeeze()\n else:\n cmp = y_hat.astype(y.dtype) == y\n return float(cmp.astype(y.dtype).sum())\ndef evaluate_accuracy(net, data_iter):\n if isinstance(net, paddle.nn.Layer):\n net.eval()\n metric = Accumulator(2)\n with paddle.no_grad():\n for X, y in data_iter:\n metric.add(accuracy(net(X), y), y.numel())\n return metric[0] / metric[1]\ndef train_epoch_ch3(net, train_iter, loss, updater):\n if isinstance(net, paddle.nn.Layer):\n net.train()\n metric = Accumulator(3)\n for X, y in train_iter:\n y_hat = net(X)\n l = loss(y_hat, y)\n if isinstance(updater, paddle.optimizer.Optimizer):\n updater.clear_grad()\n l.mean().backward()\n updater.step()\n else:\n l.sum().backward()\n updater(X.shape[0])\n metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())\n return metric[0] / metric[2], metric[1] / metric[2]\nlr = 0.1\ndef updater(batch_size):\n return d2l.sgd([W, b], lr, batch_size)\ndef predict_ch3(net, test_iter, n=6):\n for X, y in test_iter:\n break\n trues = d2l.get_fashion_mnist_labels(y)\n preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))\n titles = [true +'\\n' + pred for true, pred in zip(trues, preds)]\n d2l.show_images(X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])\npredict_ch3(net, test_iter)":2,"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nx = paddle.to_tensor([3.0])\ny = paddle.to_tensor([2.0])\nx + y, x * y, x / y, x**y\nx = paddle.arange(4)\nA = paddle.reshape(paddle.arange(20), (5, 4))\npaddle.transpose(A, perm=[1, 0])\nB = paddle.to_tensor([[1, 2, 3], [2, 0, 4], [3, 4, 5]])\nB == paddle.transpose(B, perm=[1, 0])\nX = paddle.reshape(paddle.arange(24), (2, 3, 4))\nA = paddle.reshape(paddle.arange(20, dtype=paddle.float32), (5, 4))\nB = A.clone()\nA, A + B\na = 2\nX = paddle.reshape(paddle.arange(24), (2, 3, 4))\na + X, (a * X).shape\nx = paddle.arange(4, dtype=paddle.float32)\nprint(x, x.sum())\nA.shape, A.sum()\nA_sum_axis0 = A.sum(axis=0)\nA_sum_axis1 = A.sum(axis=1)\nA.sum(axis=[0, 1])\nA.mean(), A.sum() / A.numel()\nA.mean(axis=0), A.sum(axis=0) / A.shape[0]\nsum_A = paddle.sum(A, axis=1, keepdim=True)\nA.cumsum(axis=0)\ny = paddle.ones(shape=[4], dtype='float32')\nx, y, paddle.dot(x, y)\npaddle.sum(x * y)\nA.shape, x.shape, paddle.mv(A, x)\nB = paddle.ones(shape=[4, 3], dtype='float32')\npaddle.mm(A, B)\nu = paddle.to_tensor([3.0, -4.0])\npaddle.norm(u)\npaddle.abs(u).sum()\npaddle.norm(paddle.ones(shape=[4, 9], dtype='float32'))":2,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nimport paddle.nn as nn\nimport paddle.nn.functional as F\nclass Inception(nn.Layer):\n def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):\n super(Inception, self).__init__(**kwargs)\n self.p1_1 = nn.Conv2D(in_channels, c1, kernel_size=1)\n self.p2_1 = nn.Conv2D(in_channels, c2[0], kernel_size=1)\n self.p2_2 = nn.Conv2D(c2[0], c2[1], kernel_size=3, padding=1)\n self.p3_1 = nn.Conv2D(in_channels, c3[0], kernel_size=1)\n self.p3_2 = nn.Conv2D(c3[0], c3[1], kernel_size=5, padding=2)\n self.p4_1 = nn.MaxPool2D(kernel_size=3, stride=1, padding=1)\n self.p4_2 = nn.Conv2D(in_channels, c4, kernel_size=1)\n def forward(self, x):\n p1 = F.relu(self.p1_1(x))\n p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))\n p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))\n p4 = F.relu(self.p4_2(self.p4_1(x)))\n return paddle.concat(x=[p1, p2, p3, p4], axis=1)\nb1 = nn.Sequential(nn.Conv2D(1, 64, kernel_size=7, stride=2, padding=3),\n nn.ReLU(),\n nn.MaxPool2D(kernel_size=3, stride=2,padding=1))\nb2 = nn.Sequential(nn.Conv2D(64, 64, kernel_size=1),\n nn.ReLU(),\n nn.Conv2D(64, 192, kernel_size=3, padding=1),\n nn.ReLU(),\n nn.MaxPool2D(kernel_size=3, stride=2, padding=1))\nb3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),\n Inception(256, 128, (128, 192), (32, 96), 64),\n nn.MaxPool2D(kernel_size=3, stride=2, padding=1))\nb4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),\n Inception(512, 160, (112, 224), (24, 64), 64),\n Inception(512, 128, (128, 256), (24, 64), 64),\n Inception(512, 112, (144, 288), (32, 64), 64),\n Inception(528, 256, (160, 320), (32, 128), 128),\n nn.MaxPool2D(kernel_size=3, stride=2, padding=1))\nb5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),\n Inception(832, 384, (192, 384), (48, 128), 128),\n nn.AdaptiveAvgPool2D((1, 1)),\n nn.Flatten())\nnet = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))\nX = paddle.rand(shape=(1, 1, 96, 96))\nfor layer in net:\n X = layer(X)\n print(layer.__class__.__name__,'output shape:\t', X.shape)":6,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom paddle import nn\nbatch_size = 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nnum_inputs, num_outputs, num_hiddens = 784, 10, 256\nW1 = paddle.randn([num_inputs, num_hiddens]) * 0.01\nW1.stop_gradient = False\nb1 = paddle.zeros([num_hiddens])\nb1.stop_gradient = False\nW2 = paddle.randn([num_hiddens, num_outputs]) * 0.01\nW2.stop_gradient = False\nb2 = paddle.zeros([num_outputs])\nb2.stop_gradient = False\nparams = [W1, b1, W2, b2]\ndef relu(X):\n a = paddle.zeros_like(X)\n return paddle.maximum(X, a)\ndef net(X):\n X = X.reshape((-1, num_inputs))\n H = relu(X@W1 + b1)\n return (H@W2 + b2)\nloss = nn.CrossEntropyLoss(reduction='none')\nnum_epochs, lr = 10, 0.1\nupdater = paddle.optimizer.SGD(learning_rate=lr, parameters=params)\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)":4,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport math\nimport numpy as np\nimport paddle\nfrom paddle import nn\ntrue_w, features, poly_features, labels = [paddle.to_tensor(x, dtype=\n paddle.float32) for x in [true_w, features, poly_features, labels]]\nfeatures[:2], poly_features[:2, :], labels[:2]\ndef evaluate_loss(net, data_iter, loss):\n metric = d2l.Accumulator(2)\n for X, y in data_iter:\n out = net(X)\n y = y.reshape(out.shape)\n l = loss(out, y)\n metric.add(l.sum(), l.numel())\n return metric[0] / metric[1]\ndef train(train_features, test_features, train_labels, test_labels,\n num_epochs=400):\n loss = nn.MSELoss()\n input_shape = train_features.shape[-1]\n net = nn.Sequential(nn.Linear(input_shape, 1, bias_attr=False))\n batch_size = min(10, train_labels.shape[0])\n train_iter = d2l.load_array(((train_features, train_labels.reshape([-1,1]))), batch_size)\n test_iter = d2l.load_array((test_features, test_labels.reshape([-1,1])), batch_size, is_train=False)\n trainer = paddle.optimizer.SGD(parameters=net.parameters(), learning_rate=0.01)\n animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log', xlim=[1, num_epochs], ylim=[1e-3, 1e2], legend=['train', 'test'])\n for epoch in range(num_epochs):\n d2l.train_epoch_ch3(net, train_iter, loss, trainer)\n if epoch == 0 or (epoch + 1) % 20 == 0:\n animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss), evaluate_loss(net, test_iter, loss)))\ntrain(poly_features[:n_train, :2], poly_features[n_train:, :2],\n labels[:n_train], labels[n_train:])\ntrain(poly_features[:n_train, :], poly_features[n_train:, :],\n labels[:n_train], labels[n_train:], num_epochs=1500)":4,"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nx = paddle.arange(4, dtype='float32')\nx = paddle.to_tensor(x, stop_gradient=False)\ny = 2 * paddle.dot(x, x)\ny.backward()\nx.grad\nx.grad == 4 * x\nx.clear_gradient()\ny = paddle.sum(x)\ny.backward()\nx.grad\nx.clear_gradient()\ny = x * x\npaddle.sum(y).backward()\nx.grad\nx.clear_gradient()\ny = x * x\nu = y.detach()\nz = u * x\npaddle.sum(z).backward()\nx.grad == u\nx.clear_gradient()\npaddle.sum(y).backward()\nx.grad == 2 * x\ndef f(a):\n b = a * 2\n while paddle.norm(b) < 1000:\n b = b * 2\n if paddle.sum(b) > 0:\n c = b\n else:\n c = 100 * b\n return c\na = paddle.to_tensor(paddle.randn(shape=[1]), stop_gradient=False)\nd = f(a)\nd.backward()\na.grad == d / a":2,"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom paddle import nn\nfrom paddle.nn import functional as F\nbatch_size, num_steps = 32, 35\ntrain_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)\nnum_hiddens = 256\nrnn_layer = nn.SimpleRNN(len(vocab), num_hiddens, time_major=True)\nstate = paddle.zeros(shape=[1, batch_size, num_hiddens])\nstate.shape\nX = paddle.rand(shape=[num_steps, batch_size, len(vocab)])\nY, state_new = rnn_layer(X, state)\nY.shape, state_new.shape\n def __init__(self, rnn_layer, vocab_size, **kwargs):\n super(RNNModel, self).__init__(**kwargs)\n self.rnn = rnn_layer\n self.vocab_size = vocab_size\n self.num_hiddens = self.rnn.hidden_size\n if self.rnn.num_directions==1:\n self.num_directions = 1\n self.linear = nn.Linear(self.num_hiddens, self.vocab_size)\n else:\n self.num_directions = 2\n self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)\n def forward(self, inputs, state):\n X = F.one_hot(inputs.T, self.vocab_size)\n Y, state = self.rnn(X, state)\n output = self.linear(Y.reshape((-1, Y.shape[-1])))\n return output, state\n def begin_state(self, batch_size=1):\n if not isinstance(self.rnn, nn.LSTM):\n return paddle.zeros(shape=[self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens])\n else:\n return (paddle.zeros(shape=[self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens]),\n paddle.zeros(shape=[self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens]))\ndevice = d2l.try_gpu()\nnet = RNNModel(rnn_layer, vocab_size=len(vocab))\nd2l.predict_ch8('time traveller', 10, net, vocab, device)\nnum_epochs, lr = 500, 1.0\nd2l.train_ch8(net, train_iter, vocab, lr, num_epochs, device)":6,"import collections\nimport re\nfrom d2l import paddle as d2l\ndef tokenize(lines, token='word'):\n if token == 'word':\n return [line.split() for line in lines]\n elif token == 'char':\n return [list(line) for line in lines]\n else:\n print('Error: Unknown word element type:' + token)\ntokens = tokenize(lines)\nfor i in range(11):\n print(tokens[i])\ndef load_corpus_time_machine(max_tokens=-1):\n lines = read_time_machine()\n tokens = tokenize(lines, 'char')\n vocab = Vocab(tokens)\n corpus = [vocab[token] for line in tokens for token in line]\n if max_tokens > 0:\n corpus = corpus[:max_tokens]\n return corpus, vocab\ncorpus, vocab = load_corpus_time_machine()\nlen(corpus), len(vocab)":2,"%matplotlib inline\nimport warnings\nimport numpy as np\nimport pandas as pd\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nfrom paddle import nn\nwarnings.filterwarnings(\"ignore\", category=DeprecationWarning)\nfrom d2l import paddle as d2l\nn_train = train_data.shape[0]\ntrain_features = paddle.to_tensor(all_features[:n_train].values, dtype=paddle.float32)\ntest_features = paddle.to_tensor(all_features[n_train:].values, dtype=paddle.float32)\ntrain_labels = paddle.to_tensor(\n train_data.SalePrice.values.reshape(-1, 1), dtype=paddle.float32)\nloss = nn.MSELoss()\nin_features = train_features.shape[1]\ndef get_net():\n net = nn.Sequential(nn.Linear(in_features,1))\n return net\ndef log_rmse(net, features, labels):\n clipped_preds = paddle.clip(net(features), 1, float('inf'))\n rmse = paddle.sqrt(loss(paddle.log(clipped_preds), paddle.log(labels)))\n return rmse.item()\ndef train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size):\n train_ls, test_ls = [], []\n train_iter = d2l.load_array((train_features, train_labels), batch_size)\n optimizer = paddle.optimizer.Adam(learning_rate=learning_rate*1.0, parameters=net.parameters(), weight_decay=weight_decay*1.0)\n for epoch in range(num_epochs):\n for X, y in train_iter:\n l = loss(net(X), y)\n l.backward()\n optimizer.step()\n optimizer.clear_grad()\n train_ls.append(log_rmse(net, train_features, train_labels))\n if test_labels is not None:\n test_ls.append(log_rmse(net, test_features, test_labels))\n return train_ls, test_ls\ndef get_k_fold_data(k, i, X, y):\n assert k > 1\n fold_size = X.shape[0] // k\n X_train, y_train = None, None\n for j in range(k):\n idx = slice(j * fold_size, (j + 1) * fold_size)\n X_part, y_part = X[idx, :], y[idx]\n if j == i:\n X_valid, y_valid = X_part, y_part\n elif X_train is None:\n X_train, y_train = X_part, y_part\n else:\n X_train = paddle.concat([X_train, X_part], 0)\n y_train = paddle.concat([y_train, y_part], 0)\n return X_train, y_train, X_valid, y_valid\ndef train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size):\n net = get_net()\n train_ls, _ = train(net, train_features, train_labels, None, None, num_epochs, lr, weight_decay, batch_size)\n d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch', ylabel='log rmse', xlim=[1, num_epochs], yscale='log')\n preds = net(test_features).detach().numpy()\n test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])\n submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)\n submission.to_csv('submission.csv', index=False)":4,"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nimport paddle.nn.functional as F\nfrom paddle import nn\nclass CenteredLayer(nn.Layer):\n def __init__(self):\n super().__init__()\n def forward(self, X):\n return X - X.mean()\nY = net(paddle.rand([4, 8]))\nY.mean()\nclass MyLinear(nn.Layer):\n def __init__(self, in_units, units):\n super().__init__()\n self.weight = paddle.create_parameter(shape=(in_units, units), dtype='float32')\n self.bias = paddle.create_parameter(shape=(units,), dtype='float32')\n def forward(self, X):\n linear = paddle.matmul(X, self.weight) + self.bias\n return F.relu(linear)\nlinear = MyLinear(5, 3)\nlinear.weight\nlinear(paddle.randn([2, 5]))\nnet = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))\nnet(paddle.rand([2, 64]))":4}}}}],"rows":[{"rowIdx":100,"cells":{"id":{"kind":"number","value":101,"string":"101"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"counts = multinomial.Multinomial(10, fair_probs).sample((500,))\ncum_counts = counts.cumsum(dim=0)\nestimates = cum_counts / cum_counts.sum(dim=1, keepdims=True)\nd2l.set_figsize((6, 4.5))\nfor i in range(6):\n d2l.plt.plot(estimates[:, i].numpy(), label=(\"P(die=\" + str(i + 1) + \")\"))\nd2l.plt.axhline(y=0.167, color='black', linestyle='dashed')\nd2l.plt.gca().set_xlabel('Groups of experiments')\nd2l.plt.gca().set_ylabel('Estimated probability')\nd2l.plt.legend();\nimport torch\na = dir(torch.distributions)\nhelp(torch.ones)\ntorch.ones(4)"},"mxnet":{"kind":"string","value":"counts = np.random.multinomial(10, fair_probs, size=500)\ncum_counts = counts.astype(np.float32).cumsum(axis=0)\nestimates = cum_counts / cum_counts.sum(axis=1, keepdims=True)\nd2l.set_figsize((6, 4.5))\nfor i in range(6):\n d2l.plt.plot(estimates[:, i].asnumpy(), label=(\"P(die=\" + str(i + 1) + \")\"))\nd2l.plt.axhline(y=0.167, color='black', linestyle='dashed')\nd2l.plt.gca().set_xlabel('Groups of experiments')\nd2l.plt.gca().set_ylabel('Estimated probability')\nd2l.plt.legend();\nfrom mxnet import np\na = dir(np.random)\nhelp(np.ones)\nnp.ones(4)"},"paddle":{"kind":"null"}}},{"rowIdx":101,"cells":{"id":{"kind":"number","value":102,"string":"102"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"%matplotlib inline\nimport math\nimport time\nimport numpy as np\nimport torch\nfrom d2l import torch as d2l\nn = 10000\na = torch.ones(n)\nb = torch.ones(n)\nc = torch.zeros(n)\ntimer = Timer()\nfor i in range(n):\n c[i] = a[i] + b[i]\nx = np.arange(-7, 7, 0.01)\nparams = [(0, 1), (0, 2), (3, 1)]\nd2l.plot(x, [normal(x, mu, sigma) for mu, sigma in params], xlabel='x', ylabel='p(x)', figsize=(4.5, 2.5), legend=[f'mean {mu}, std {sigma}' for mu, sigma in params])"},"mxnet":{"kind":"string","value":"%matplotlib inline\nimport math\nimport time\nfrom mxnet import np\nfrom d2l import mxnet as d2l\nn = 10000\na = np.ones(n)\nb = np.ones(n)\nc = np.zeros(n)\ntimer = Timer()\nfor i in range(n):\n c[i] = a[i] + b[i]\nx = np.arange(-7, 7, 0.01)\nparams = [(0, 1), (0, 2), (3, 1)]\nd2l.plot(x.asnumpy(), [normal(x, mu, sigma).asnumpy() for mu, sigma in params], xlabel='x', ylabel='p(x)', figsize=(4.5, 2.5), legend=[f'mean {mu}, std {sigma}' for mu, sigma in params])"},"paddle":{"kind":"null"}}},{"rowIdx":102,"cells":{"id":{"kind":"number","value":103,"string":"103"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"%matplotlib inline\nimport random\nimport torch\nfrom d2l import torch as d2l\ndef synthetic_data(w, b, num_examples):\n X = torch.normal(0, 1, (num_examples, len(w)))\n y = torch.matmul(X, w) + b\n y += torch.normal(0, 0.01, y.shape)\n return X, y.reshape((-1, 1))\ntrue_w = torch.tensor([2, -3.4])\ntrue_b = 4.2\nfeatures, labels = synthetic_data(true_w, true_b, 1000)\nd2l.set_figsize()\nd2l.plt.scatter(features[:, (1)].detach().numpy(), labels.detach().numpy(), 1);\ndef data_iter(batch_size, features, labels):\n num_examples = len(features)\n indices = list(range(num_examples))\n random.shuffle(indices)\n for i in range(0, num_examples, batch_size):\n batch_indices = torch.tensor(indices[i: min(i + batch_size, num_examples)])\n yield features[batch_indices], labels[batch_indices]\nw = torch.normal(0, 0.01, size=(2,1), requires_grad=True)\nb = torch.zeros(1, requires_grad=True)\ndef linreg(X, w, b):\n return torch.matmul(X, w) + b\ndef sgd(params, lr, batch_size):\n with torch.no_grad():\n for param in params:\n param -= lr * param.grad / batch_size\n param.grad.zero_()\nlr = 0.03\nnum_epochs = 3\nnet = linreg\nloss = squared_loss\nfor epoch in range(num_epochs):\n for X, y in data_iter(batch_size, features, labels):\n l = loss(net(X, w, b), y)\n l.sum().backward()\n sgd([w, b], lr, batch_size)\n with torch.no_grad():\n train_l = loss(net(features, w, b), labels)"},"mxnet":{"kind":"string","value":"%matplotlib inline\nimport random\nfrom mxnet import autograd, np, npx\nfrom d2l import mxnet as d2l\nnpx.set_np()\ndef synthetic_data(w, b, num_examples):\n X = np.random.normal(0, 1, (num_examples, len(w)))\n y = np.dot(X, w) + b\n y += np.random.normal(0, 0.01, y.shape)\n return X, y.reshape((-1, 1))\ntrue_w = np.array([2, -3.4])\ntrue_b = 4.2\nfeatures, labels = synthetic_data(true_w, true_b, 1000)\nd2l.set_figsize()\nd2l.plt.scatter(features[:, (1)].asnumpy(), labels.asnumpy(), 1);\ndef data_iter(batch_size, features, labels):\n num_examples = len(features)\n indices = list(range(num_examples))\n random.shuffle(indices)\n for i in range(0, num_examples, batch_size):\n batch_indices = np.array(indices[i: min(i + batch_size, num_examples)])\n yield features[batch_indices], labels[batch_indices]\nw = np.random.normal(0, 0.01, (2, 1))\nb = np.zeros(1)\nw.attach_grad()\nb.attach_grad()\ndef linreg(X, w, b):\n return np.dot(X, w) + b\ndef sgd(params, lr, batch_size):\n for param in params:\n param[:] = param - lr * param.grad / batch_size\nlr = 0.03\nnum_epochs = 3\nnet = linreg\nloss = squared_loss\nfor epoch in range(num_epochs):\n for X, y in data_iter(batch_size, features, labels):\n with autograd.record():\n l = loss(net(X, w, b), y)\n l.backward()\n sgd([w, b], lr, batch_size)\n train_l = loss(net(features, w, b), labels)"},"paddle":{"kind":"null"}}},{"rowIdx":103,"cells":{"id":{"kind":"number","value":104,"string":"104"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import numpy as np\nimport torch\nfrom torch.utils import data\nfrom d2l import torch as d2l\ntrue_w = torch.tensor([2, -3.4])\ntrue_b = 4.2\nfeatures, labels = d2l.synthetic_data(true_w, true_b, 1000)\ndef load_array(data_arrays, batch_size, is_train=True):\n dataset = data.TensorDataset(*data_arrays)\n return data.DataLoader(dataset, batch_size, shuffle=is_train)\nbatch_size = 10\ndata_iter = load_array((features, labels), batch_size)\nfrom torch import nn\nnet = nn.Sequential(nn.Linear(2, 1))\nnet[0].weight.data.normal_(0, 0.01)\nnet[0].bias.data.fill_(0)\nloss = nn.MSELoss()\ntrainer = torch.optim.SGD(net.parameters(), lr=0.03)\nw = net[0].weight.data\nb = net[0].bias.data"},"mxnet":{"kind":"string","value":"from mxnet import autograd, gluon, np, npx\nfrom d2l import mxnet as d2l\nnpx.set_np()\ntrue_w = np.array([2, -3.4])\ntrue_b = 4.2\nfeatures, labels = d2l.synthetic_data(true_w, true_b, 1000)\ndef load_array(data_arrays, batch_size, is_train=True):\n dataset = gluon.data.ArrayDataset(*data_arrays)\n return gluon.data.DataLoader(dataset, batch_size, shuffle=is_train)\nbatch_size = 10\ndata_iter = load_array((features, labels), batch_size)\nfrom mxnet.gluon import nn\nnet = nn.Sequential()\nnet.add(nn.Dense(1))\nfrom mxnet import init\nnet.initialize(init.Normal(sigma=0.01))\nloss = gluon.loss.L2Loss()\nfrom mxnet import gluon\ntrainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.03})\nw = net[0].weight.data()\nb = net[0].bias.data()"},"paddle":{"kind":"null"}}},{"rowIdx":104,"cells":{"id":{"kind":"number","value":105,"string":"105"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"%matplotlib inline\nimport torch\nimport torchvision\nfrom torch.utils import data\nfrom torchvision import transforms\nfrom d2l import torch as d2l\nd2l.use_svg_display()\ntrans = transforms.ToTensor()\nmnist_train = torchvision.datasets.FashionMNIST(\n root=\"../data\", train=True, transform=trans, download=True)\nmnist_test = torchvision.datasets.FashionMNIST(\n root=\"../data\", train=False, transform=trans, download=True)\ndef show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):\n figsize = (num_cols * scale, num_rows * scale)\n _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)\n axes = axes.flatten()\n for i, (ax, img) in enumerate(zip(axes, imgs)):\n if torch.is_tensor(img):\n ax.imshow(img.numpy())\n else:\n ax.imshow(img)\n ax.axes.get_xaxis().set_visible(False)\n ax.axes.get_yaxis().set_visible(False)\n if titles:\n ax.set_title(titles[i])\n return axes\nX, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))\nshow_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y));\nbatch_size = 256\n return 4\ntrain_iter = data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers())\ndef load_data_fashion_mnist(batch_size, resize=None):\n trans = [transforms.ToTensor()]\n if resize:\n trans.insert(0, transforms.Resize(resize))\n trans = transforms.Compose(trans)\n mnist_train = torchvision.datasets.FashionMNIST(root=\"../data\", train=True, transform=trans, download=True)\n mnist_test = torchvision.datasets.FashionMNIST(root=\"../data\", train=False, transform=trans, download=True)\n return (data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers()),\n data.DataLoader(mnist_test, batch_size, shuffle=False, num_workers=get_dataloader_workers()))"},"mxnet":{"kind":"string","value":"%matplotlib inline\nimport sys\nfrom mxnet import gluon\nfrom d2l import mxnet as d2l\nd2l.use_svg_display()\nmnist_train = gluon.data.vision.FashionMNIST(train=True)\nmnist_test = gluon.data.vision.FashionMNIST(train=False)\ndef show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):\n figsize = (num_cols * scale, num_rows * scale)\n _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)\n axes = axes.flatten()\n for i, (ax, img) in enumerate(zip(axes, imgs)):\n ax.imshow(img.asnumpy())\n ax.axes.get_xaxis().set_visible(False)\n ax.axes.get_yaxis().set_visible(False)\n if titles:\n ax.set_title(titles[i])\n return axes\nX, y = mnist_train[:18]\nshow_images(X.squeeze(axis=-1), 2, 9, titles=get_fashion_mnist_labels(y));\nbatch_size = 256\n return 0 if sys.platform.startswith('win') else 4\ntransformer = gluon.data.vision.transforms.ToTensor()\ntrain_iter = gluon.data.DataLoader(mnist_train.transform_first(transformer), batch_size, shuffle=True, num_workers=get_dataloader_workers())\ndef load_data_fashion_mnist(batch_size, resize=None):\n dataset = gluon.data.vision\n trans = [dataset.transforms.ToTensor()]\n if resize:\n trans.insert(0, dataset.transforms.Resize(resize))\n trans = dataset.transforms.Compose(trans)\n mnist_train = dataset.FashionMNIST(train=True).transform_first(trans)\n mnist_test = dataset.FashionMNIST(train=False).transform_first(trans)\n return (gluon.data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers()),\n gluon.data.DataLoader(mnist_test, batch_size, shuffle=False, num_workers=get_dataloader_workers()))"},"paddle":{"kind":"null"}}},{"rowIdx":105,"cells":{"id":{"kind":"number","value":106,"string":"106"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom IPython import display\nfrom d2l import torch as d2l\nbatch_size = 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nnum_inputs = 784\nnum_outputs = 10\nW = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)\nb = torch.zeros(num_outputs, requires_grad=True)\nX = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])\nX.sum(0, keepdim=True), X.sum(1, keepdim=True)\ndef softmax(X):\n X_exp = torch.exp(X)\n partition = X_exp.sum(1, keepdim=True)\n return X_exp / partition\nX = torch.normal(0, 1, (2, 5))\nX_prob = softmax(X)\nX_prob, X_prob.sum(1)\ndef net(X):\n return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)\ny = torch.tensor([0, 2])\ny_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])\ny_hat[[0, 1], y]\ndef cross_entropy(y_hat, y):\n return - torch.log(y_hat[range(len(y_hat)), y])\ncross_entropy(y_hat, y)\ndef accuracy(y_hat, y):\n if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:\n y_hat = y_hat.argmax(axis=1)\n cmp = y_hat.type(y.dtype) == y\n return float(cmp.type(y.dtype).sum())\ndef evaluate_accuracy(net, data_iter):\n if isinstance(net, torch.nn.Module):\n net.eval()\n metric = Accumulator(2)\n with torch.no_grad():\n for X, y in data_iter:\n metric.add(accuracy(net(X), y), y.numel())\n return metric[0] / metric[1]\ndef train_epoch_ch3(net, train_iter, loss, updater):\n if isinstance(net, torch.nn.Module):\n net.train()\n metric = Accumulator(3)\n for X, y in train_iter:\n y_hat = net(X)\n l = loss(y_hat, y)\n if isinstance(updater, torch.optim.Optimizer):\n updater.zero_grad()\n l.mean().backward()\n updater.step()\n else:\n l.sum().backward()\n updater(X.shape[0])\n metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())\n return metric[0] / metric[2], metric[1] / metric[2]"},"mxnet":{"kind":"string","value":"from IPython import display\nfrom mxnet import autograd, gluon, np, npx\nfrom d2l import mxnet as d2l\nnpx.set_np()\nbatch_size = 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nnum_inputs = 784\nnum_outputs = 10\nW = np.random.normal(0, 0.01, (num_inputs, num_outputs))\nb = np.zeros(num_outputs)\nW.attach_grad()\nb.attach_grad()\nX = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])\nX.sum(0, keepdims=True), X.sum(1, keepdims=True)\ndef softmax(X):\n X_exp = np.exp(X)\n partition = X_exp.sum(1, keepdims=True)\n return X_exp / partition\nX = np.random.normal(0, 1, (2, 5))\nX_prob = softmax(X)\nX_prob, X_prob.sum(1)\ndef net(X):\n return softmax(np.dot(X.reshape((-1, W.shape[0])), W) + b)\ny = np.array([0, 2])\ny_hat = np.array([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])\ny_hat[[0, 1], y]\ndef cross_entropy(y_hat, y):\n return - np.log(y_hat[range(len(y_hat)), y])\ncross_entropy(y_hat, y)\ndef accuracy(y_hat, y):\n if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:\n y_hat = y_hat.argmax(axis=1)\n cmp = y_hat.astype(y.dtype) == y\n return float(cmp.astype(y.dtype).sum())\ndef evaluate_accuracy(net, data_iter):\n metric = Accumulator(2)\n for X, y in data_iter:\n metric.add(accuracy(net(X), y), d2l.size(y))\n return metric[0] / metric[1]\ndef train_epoch_ch3(net, train_iter, loss, updater):\n metric = Accumulator(3)\n if isinstance(updater, gluon.Trainer):\n updater = updater.step\n for X, y in train_iter:\n with autograd.record():\n y_hat = net(X)\n l = loss(y_hat, y)\n l.backward()\n updater(X.shape[0])\n metric.add(float(l.sum()), accuracy(y_hat, y), y.size)\n return metric[0] / metric[2], metric[1] / metric[2]"},"paddle":{"kind":"null"}}},{"rowIdx":106,"cells":{"id":{"kind":"number","value":107,"string":"107"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\nbatch_size = 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nnet = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))\ndef init_weights(m):\n if type(m) == nn.Linear:\n nn.init.normal_(m.weight, std=0.01)\nnet.apply(init_weights);\nloss = nn.CrossEntropyLoss(reduction='none')\ntrainer = torch.optim.SGD(net.parameters(), lr=0.1)"},"mxnet":{"kind":"string","value":"from mxnet import gluon, init, npx\nfrom mxnet.gluon import nn\nfrom d2l import mxnet as d2l\nnpx.set_np()\nbatch_size = 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nnet = nn.Sequential()\nnet.add(nn.Dense(10))\nnet.initialize(init.Normal(sigma=0.01))\nloss = gluon.loss.SoftmaxCrossEntropyLoss()\ntrainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.1})"},"paddle":{"kind":"null"}}},{"rowIdx":107,"cells":{"id":{"kind":"number","value":108,"string":"108"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"%matplotlib inline\nimport torch\nfrom d2l import torch as d2l\nx = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)\ny = torch.relu(x)\nd2l.plot(x.detach(), y.detach(), 'x', 'relu(x)', figsize=(5, 2.5))\ny.backward(torch.ones_like(x), retain_graph=True)\nd2l.plot(x.detach(), x.grad, 'x', 'grad of relu', figsize=(5, 2.5))\ny = torch.sigmoid(x)\nd2l.plot(x.detach(), y.detach(), 'x', 'sigmoid(x)', figsize=(5, 2.5))\nx.grad.data.zero_()\ny.backward(torch.ones_like(x),retain_graph=True)\nd2l.plot(x.detach(), x.grad, 'x', 'grad of sigmoid', figsize=(5, 2.5))\ny = torch.tanh(x)\nd2l.plot(x.detach(), y.detach(), 'x', 'tanh(x)', figsize=(5, 2.5))\nx.grad.data.zero_()\ny.backward(torch.ones_like(x),retain_graph=True)\nd2l.plot(x.detach(), x.grad, 'x', 'grad of tanh', figsize=(5, 2.5))"},"mxnet":{"kind":"string","value":"%matplotlib inline\nfrom mxnet import autograd, np, npx\nfrom d2l import mxnet as d2l\nnpx.set_np()\nx = np.arange(-8.0, 8.0, 0.1)\nx.attach_grad()\nwith autograd.record():\n y = npx.relu(x)\nd2l.plot(x, y, 'x', 'relu(x)', figsize=(5, 2.5))\ny.backward()\nd2l.plot(x, x.grad, 'x', 'grad of relu', figsize=(5, 2.5))\nwith autograd.record():\n y = npx.sigmoid(x)\nd2l.plot(x, y, 'x', 'sigmoid(x)', figsize=(5, 2.5))\ny.backward()\nd2l.plot(x, x.grad, 'x', 'grad of sigmoid', figsize=(5, 2.5))\nwith autograd.record():\n y = np.tanh(x)\nd2l.plot(x, y, 'x', 'tanh(x)', figsize=(5, 2.5))\ny.backward()\nd2l.plot(x, x.grad, 'x', 'grad of tanh', figsize=(5, 2.5))"},"paddle":{"kind":"null"}}},{"rowIdx":108,"cells":{"id":{"kind":"number","value":109,"string":"109"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\nbatch_size = 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nnum_inputs, num_outputs, num_hiddens = 784, 10, 256\nW1 = nn.Parameter(torch.randn(\n num_inputs, num_hiddens, requires_grad=True) * 0.01)\nb1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))\nW2 = nn.Parameter(torch.randn(\n num_hiddens, num_outputs, requires_grad=True) * 0.01)\nb2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))\nparams = [W1, b1, W2, b2]\ndef relu(X):\n a = torch.zeros_like(X)\n return torch.max(X, a)\ndef net(X):\n X = X.reshape((-1, num_inputs))\n H = relu(X@W1 + b1)\n return (H@W2 + b2)\nloss = nn.CrossEntropyLoss(reduction='none')\nnum_epochs, lr = 10, 0.1\nupdater = torch.optim.SGD(params, lr=lr)\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)"},"mxnet":{"kind":"string","value":"from mxnet import gluon, np, npx\nfrom d2l import mxnet as d2l\nnpx.set_np()\nbatch_size = 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nnum_inputs, num_outputs, num_hiddens = 784, 10, 256\nW1 = np.random.normal(scale=0.01, size=(num_inputs, num_hiddens))\nb1 = np.zeros(num_hiddens)\nW2 = np.random.normal(scale=0.01, size=(num_hiddens, num_outputs))\nb2 = np.zeros(num_outputs)\nparams = [W1, b1, W2, b2]\nfor param in params:\n param.attach_grad()\ndef relu(X):\n return np.maximum(X, 0)\ndef net(X):\n X = X.reshape((-1, num_inputs))\n H = relu(np.dot(X, W1) + b1)\n return np.dot(H, W2) + b2\nloss = gluon.loss.SoftmaxCrossEntropyLoss()\nnum_epochs, lr = 10, 0.1\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, lambda batch_size: d2l.sgd(params, lr, batch_size))"},"paddle":{"kind":"null"}}},{"rowIdx":109,"cells":{"id":{"kind":"number","value":110,"string":"110"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\nnet = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 10))\ndef init_weights(m):\n if type(m) == nn.Linear:\n nn.init.normal_(m.weight, std=0.01)\nnet.apply(init_weights);\nbatch_size, lr, num_epochs = 256, 0.1, 10\nloss = nn.CrossEntropyLoss(reduction='none')\ntrainer = torch.optim.SGD(net.parameters(), lr=lr)\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)"},"mxnet":{"kind":"string","value":"from mxnet import gluon, init, npx\nfrom mxnet.gluon import nn\nfrom d2l import mxnet as d2l\nnpx.set_np()\nnet = nn.Sequential()\nnet.add(nn.Dense(256, activation='relu'), nn.Dense(10))\nnet.initialize(init.Normal(sigma=0.01))\nbatch_size, lr, num_epochs = 256, 0.1, 10\nloss = gluon.loss.SoftmaxCrossEntropyLoss()\ntrainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)"},"paddle":{"kind":"null"}}},{"rowIdx":110,"cells":{"id":{"kind":"number","value":111,"string":"111"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import math\nimport numpy as np\nimport torch\nfrom torch import nn\nfrom d2l import torch as d2l\ntrue_w, features, poly_features, labels = [torch.tensor(x, dtype=torch.float32) for x in [true_w, features, poly_features, labels]]\nfeatures[:2], poly_features[:2, :], labels[:2]\ndef evaluate_loss(net, data_iter, loss):\n metric = d2l.Accumulator(2)\n for X, y in data_iter:\n out = net(X)\n y = y.reshape(out.shape)\n l = loss(out, y)\n metric.add(l.sum(), l.numel())\n return metric[0] / metric[1]\ndef train(train_features, test_features, train_labels, test_labels, num_epochs=400):\n loss = nn.MSELoss(reduction='none')\n input_shape = train_features.shape[-1]\n net = nn.Sequential(nn.Linear(input_shape, 1, bias=False))\n batch_size = min(10, train_labels.shape[0])\n train_iter = d2l.load_array((train_features, train_labels.reshape(-1,1)), batch_size)\n test_iter = d2l.load_array((test_features, test_labels.reshape(-1,1)), batch_size, is_train=False)\n trainer = torch.optim.SGD(net.parameters(), lr=0.01)\n animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log', xlim=[1, num_epochs], ylim=[1e-3, 1e2], legend=['train', 'test'])\n for epoch in range(num_epochs):\n d2l.train_epoch_ch3(net, train_iter, loss, trainer)\n if epoch == 0 or (epoch + 1) % 20 == 0:\n animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss), evaluate_loss(net, test_iter, loss)))"},"mxnet":{"kind":"string","value":"import math\nfrom mxnet import gluon, np, npx\nfrom mxnet.gluon import nn\nfrom d2l import mxnet as d2l\nnpx.set_np()\nfeatures[:2], poly_features[:2, :], labels[:2]\ndef evaluate_loss(net, data_iter, loss):\n metric = d2l.Accumulator(2)\n for X, y in data_iter:\n l = loss(net(X), y)\n metric.add(l.sum(), d2l.size(l))\n return metric[0] / metric[1]\ndef train(train_features, test_features, train_labels, test_labels, num_epochs=400):\n loss = gluon.loss.L2Loss()\n net = nn.Sequential()\n net.add(nn.Dense(1, use_bias=False))\n net.initialize()\n batch_size = min(10, train_labels.shape[0])\n train_iter = d2l.load_array((train_features, train_labels), batch_size)\n test_iter = d2l.load_array((test_features, test_labels), batch_size, is_train=False)\n trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.01})\n animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log', xlim=[1, num_epochs], ylim=[1e-3, 1e2], legend=['train', 'test'])\n for epoch in range(num_epochs):\n d2l.train_epoch_ch3(net, train_iter, loss, trainer)\n if epoch == 0 or (epoch + 1) % 20 == 0:\n animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss), evaluate_loss(net, test_iter, loss)))"},"paddle":{"kind":"null"}}},{"rowIdx":111,"cells":{"id":{"kind":"number","value":112,"string":"112"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"%matplotlib inline\nimport torch\nfrom torch import nn\nfrom d2l import torch as d2l\nn_train, n_test, num_inputs, batch_size = 20, 100, 200, 5\ntrue_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05\ntrain_data = d2l.synthetic_data(true_w, true_b, n_train)\ntrain_iter = d2l.load_array(train_data, batch_size)\ntest_data = d2l.synthetic_data(true_w, true_b, n_test)\ntest_iter = d2l.load_array(test_data, batch_size, is_train=False)\ndef init_params():\n w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True)\n b = torch.zeros(1, requires_grad=True)\n return [w, b]\ndef l2_penalty(w):\n return torch.sum(w.pow(2)) / 2\ndef train(lambd):\n w, b = init_params()\n net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss\n num_epochs, lr = 100, 0.003\n animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])\n for epoch in range(num_epochs):\n for X, y in train_iter:\n l = loss(net(X), y) + lambd * l2_penalty(w)\n l.sum().backward()\n d2l.sgd([w, b], lr, batch_size)\n if (epoch + 1) % 5 == 0:\n animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))\ndef train_concise(wd):\n net = nn.Sequential(nn.Linear(num_inputs, 1))\n for param in net.parameters():\n param.data.normal_()\n loss = nn.MSELoss(reduction='none')\n num_epochs, lr = 100, 0.003\n trainer = torch.optim.SGD([{\"params\":net[0].weight,'weight_decay': wd}, {\"params\":net[0].bias}], lr=lr)\n animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])\n for epoch in range(num_epochs):\n for X, y in train_iter:\n trainer.zero_grad()\n l = loss(net(X), y)\n l.mean().backward()\n trainer.step()\n if (epoch + 1) % 5 == 0:\n animator.add(epoch + 1,\n (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))"},"mxnet":{"kind":"string","value":"%matplotlib inline\nfrom mxnet import autograd, gluon, init, np, npx\nfrom mxnet.gluon import nn\nfrom d2l import mxnet as d2l\nnpx.set_np()\nn_train, n_test, num_inputs, batch_size = 20, 100, 200, 5\ntrue_w, true_b = np.ones((num_inputs, 1)) * 0.01, 0.05\ntrain_data = d2l.synthetic_data(true_w, true_b, n_train)\ntrain_iter = d2l.load_array(train_data, batch_size)\ntest_data = d2l.synthetic_data(true_w, true_b, n_test)\ntest_iter = d2l.load_array(test_data, batch_size, is_train=False)\ndef init_params():\n w = np.random.normal(scale=1, size=(num_inputs, 1))\n b = np.zeros(1)\n w.attach_grad()\n b.attach_grad()\n return [w, b]\ndef l2_penalty(w):\n return (w**2).sum() / 2\ndef train(lambd):\n w, b = init_params()\n net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss\n num_epochs, lr = 100, 0.003\n animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])\n for epoch in range(num_epochs):\n for X, y in train_iter:\n with autograd.record():\n l = loss(net(X), y) + lambd * l2_penalty(w)\n l.backward()\n d2l.sgd([w, b], lr, batch_size)\n if (epoch + 1) % 5 == 0:\n animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))\ndef train_concise(wd):\n net = nn.Sequential()\n net.add(nn.Dense(1))\n net.initialize(init.Normal(sigma=1))\n loss = gluon.loss.L2Loss()\n num_epochs, lr = 100, 0.003\n trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr, 'wd': wd})\n net.collect_params('.*bias').setattr('wd_mult', 0)\n animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])\n for epoch in range(num_epochs):\n for X, y in train_iter:\n with autograd.record():\n l = loss(net(X), y)\n l.backward()\n trainer.step(batch_size)\n if (epoch + 1) % 5 == 0:\n animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))"},"paddle":{"kind":"null"}}},{"rowIdx":112,"cells":{"id":{"kind":"number","value":113,"string":"113"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\ndef dropout_layer(X, dropout):\n assert 0 <= dropout <= 1\n if dropout == 1:\n return torch.zeros_like(X)\n if dropout == 0:\n return X\n mask = (torch.rand(X.shape) > dropout).float()\n return mask * X / (1.0 - dropout)\nX= torch.arange(16, dtype = torch.float32).reshape((2, 8))\nnum_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256\ndropout1, dropout2 = 0.2, 0.5\nclass Net(nn.Module):\n def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2, is_training = True):\n super(Net, self).__init__()\n self.num_inputs = num_inputs\n self.training = is_training\n self.lin1 = nn.Linear(num_inputs, num_hiddens1)\n self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)\n self.lin3 = nn.Linear(num_hiddens2, num_outputs)\n self.relu = nn.ReLU()\n def forward(self, X):\n H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))\n if self.training == True:\n H1 = dropout_layer(H1, dropout1)\n H2 = self.relu(self.lin2(H1))\n if self.training == True:\n H2 = dropout_layer(H2, dropout2)\n out = self.lin3(H2)\n return out\nnet = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)\nnum_epochs, lr, batch_size = 10, 0.5, 256\nloss = nn.CrossEntropyLoss(reduction='none')\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\ntrainer = torch.optim.SGD(net.parameters(), lr=lr)\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)\nnet = nn.Sequential(nn.Flatten(),\n nn.Linear(784, 256),\n nn.ReLU(),\n nn.Dropout(dropout1),\n nn.Linear(256, 256),\n nn.ReLU(),\n nn.Dropout(dropout2),\n nn.Linear(256, 10))\ndef init_weights(m):\n if type(m) == nn.Linear:\n nn.init.normal_(m.weight, std=0.01)\nnet.apply(init_weights);\ntrainer = torch.optim.SGD(net.parameters(), lr=lr)\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)"},"mxnet":{"kind":"string","value":"from mxnet import autograd, gluon, init, np, npx\nfrom mxnet.gluon import nn\nfrom d2l import mxnet as d2l\nnpx.set_np()\ndef dropout_layer(X, dropout):\n assert 0 <= dropout <= 1\n if dropout == 1:\n return np.zeros_like(X)\n if dropout == 0:\n return X\n mask = np.random.uniform(0, 1, X.shape) > dropout\n return mask.astype(np.float32) * X / (1.0 - dropout)\nX = np.arange(16).reshape(2, 8)\nnum_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256\nW1 = np.random.normal(scale=0.01, size=(num_inputs, num_hiddens1))\nb1 = np.zeros(num_hiddens1)\nW2 = np.random.normal(scale=0.01, size=(num_hiddens1, num_hiddens2))\nb2 = np.zeros(num_hiddens2)\nW3 = np.random.normal(scale=0.01, size=(num_hiddens2, num_outputs))\nb3 = np.zeros(num_outputs)\nparams = [W1, b1, W2, b2, W3, b3]\nfor param in params:\n param.attach_grad()\ndropout1, dropout2 = 0.2, 0.5\ndef net(X):\n X = X.reshape(-1, num_inputs)\n H1 = npx.relu(np.dot(X, W1) + b1)\n if autograd.is_training():\n H1 = dropout_layer(H1, dropout1)\n H2 = npx.relu(np.dot(H1, W2) + b2)\n if autograd.is_training():\n H2 = dropout_layer(H2, dropout2)\n return np.dot(H2, W3) + b3\nnum_epochs, lr, batch_size = 10, 0.5, 256\nloss = gluon.loss.SoftmaxCrossEntropyLoss()\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, lambda batch_size: d2l.sgd(params, lr, batch_size))\nnet = nn.Sequential()\nnet.add(nn.Dense(256, activation=\"relu\"),\n nn.Dropout(dropout1),\n nn.Dense(256, activation=\"relu\"),\n nn.Dropout(dropout2),\n nn.Dense(10))\nnet.initialize(init.Normal(sigma=0.01))\ntrainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)"},"paddle":{"kind":"null"}}},{"rowIdx":113,"cells":{"id":{"kind":"number","value":114,"string":"114"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"trainer = torch.optim.SGD(net.parameters(), lr=lr)\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)\n%matplotlib inline\nimport torch\nfrom d2l import torch as d2l\nx = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)\ny = torch.sigmoid(x)\ny.backward(torch.ones_like(x))\nd2l.plot(x.detach().numpy(), [y.detach().numpy(), x.grad.numpy()], legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5))\nM = torch.normal(0, 1, size=(4,4))\nfor i in range(100):\n M = torch.mm(M,torch.normal(0, 1, size=(4, 4)))"},"mxnet":{"kind":"string","value":"trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)\n%matplotlib inline\nfrom mxnet import autograd, np, npx\nfrom d2l import mxnet as d2l\nnpx.set_np()\nx = np.arange(-8.0, 8.0, 0.1)\nx.attach_grad()\nwith autograd.record():\n y = npx.sigmoid(x)\ny.backward()\nd2l.plot(x, [y, x.grad], legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5))\nM = np.random.normal(size=(4, 4))\nfor i in range(100):\n M = np.dot(M, np.random.normal(size=(4, 4)))"},"paddle":{"kind":"null"}}},{"rowIdx":114,"cells":{"id":{"kind":"number","value":115,"string":"115"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"%matplotlib inline\nimport numpy as np\nimport pandas as pd\nimport torch\nfrom torch import nn\nfrom d2l import torch as d2l\nn_train = train_data.shape[0]\ntrain_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32)\ntest_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32)\ntrain_labels = torch.tensor(train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32)\nloss = nn.MSELoss()\nin_features = train_features.shape[1]\ndef get_net():\n net = nn.Sequential(nn.Linear(in_features,1))\n return net\ndef log_rmse(net, features, labels):\n clipped_preds = torch.clamp(net(features), 1, float('inf'))\n rmse = torch.sqrt(loss(torch.log(clipped_preds), torch.log(labels)))\n return rmse.item()\ndef train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size):\n train_ls, test_ls = [], []\n train_iter = d2l.load_array((train_features, train_labels), batch_size)\n optimizer = torch.optim.Adam(net.parameters(), lr = learning_rate, weight_decay = weight_decay)\n for epoch in range(num_epochs):\n for X, y in train_iter:\n optimizer.zero_grad()\n l = loss(net(X), y)\n l.backward()\n optimizer.step()\n train_ls.append(log_rmse(net, train_features, train_labels))\n if test_labels is not None:\n test_ls.append(log_rmse(net, test_features, test_labels))\n return train_ls, test_ls\ndef get_k_fold_data(k, i, X, y):\n assert k > 1\n fold_size = X.shape[0] // k\n X_train, y_train = None, None\n for j in range(k):\n idx = slice(j * fold_size, (j + 1) * fold_size)\n X_part, y_part = X[idx, :], y[idx]\n if j == i:\n X_valid, y_valid = X_part, y_part\n elif X_train is None:\n X_train, y_train = X_part, y_part\n else:\n X_train = torch.cat([X_train, X_part], 0)\n y_train = torch.cat([y_train, y_part], 0)\n return X_train, y_train, X_valid, y_valid\ndef train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size):\n net = get_net()\n train_ls, _ = train(net, train_features, train_labels, None, None, num_epochs, lr, weight_decay, batch_size)\n d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch', ylabel='log rmse', xlim=[1, num_epochs], yscale='log')\n preds = net(test_features).detach().numpy()\n test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])\n submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)\n submission.to_csv('submission.csv', index=False)"},"mxnet":{"kind":"string","value":"%matplotlib inline\nimport pandas as pd\nfrom mxnet import autograd, gluon, init, np, npx\nfrom mxnet.gluon import nn\nfrom d2l import mxnet as d2l\nnpx.set_np()\nn_train = train_data.shape[0]\ntrain_features = np.array(all_features[:n_train].values, dtype=np.float32)\ntest_features = np.array(all_features[n_train:].values, dtype=np.float32)\ntrain_labels = np.array(train_data.SalePrice.values.reshape(-1, 1), dtype=np.float32)\nloss = gluon.loss.L2Loss()\ndef get_net():\n net = nn.Sequential()\n net.add(nn.Dense(1))\n net.initialize()\n return net\ndef log_rmse(net, features, labels):\n clipped_preds = np.clip(net(features), 1, float('inf'))\n return np.sqrt(2 * loss(np.log(clipped_preds), np.log(labels)).mean())\ndef train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size):\n train_ls, test_ls = [], []\n train_iter = d2l.load_array((train_features, train_labels), batch_size)\n trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': learning_rate, 'wd': weight_decay})\n for epoch in range(num_epochs):\n for X, y in train_iter:\n with autograd.record():\n l = loss(net(X), y)\n l.backward()\n trainer.step(batch_size)\n train_ls.append(log_rmse(net, train_features, train_labels))\n if test_labels is not None:\n test_ls.append(log_rmse(net, test_features, test_labels))\n return train_ls, test_ls\ndef get_k_fold_data(k, i, X, y):\n assert k > 1\n fold_size = X.shape[0] // k\n X_train, y_train = None, None\n for j in range(k):\n idx = slice(j * fold_size, (j + 1) * fold_size)\n X_part, y_part = X[idx, :], y[idx]\n if j == i:\n X_valid, y_valid = X_part, y_part\n elif X_train is None:\n X_train, y_train = X_part, y_part\n else:\n X_train = np.concatenate([X_train, X_part], 0)\n y_train = np.concatenate([y_train, y_part], 0)\n return X_train, y_train, X_valid, y_valid\ndef train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size):\n net = get_net()\n train_ls, _ = train(net, train_features, train_labels, None, None, num_epochs, lr, weight_decay, batch_size)\n d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch', ylabel='log rmse', xlim=[1, num_epochs], yscale='log')\n preds = net(test_features).asnumpy()\n test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])\n submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)\n submission.to_csv('submission.csv', index=False)"},"paddle":{"kind":"null"}}},{"rowIdx":115,"cells":{"id":{"kind":"number","value":116,"string":"116"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom torch.nn import functional as F\nnet = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))\nX = torch.rand(2, 20)\nnet(X)\nclass MLP(nn.Module):\n def __init__(self):\n super().__init__()\n self.hidden = nn.Linear(20, 256)\n self.out = nn.Linear(256, 10)\n def forward(self, X):\n return self.out(F.relu(self.hidden(X)))\nnet = MLP()\nnet(X)\nclass MySequential(nn.Module):\n def __init__(self, *args):\n super().__init__()\n for idx, module in enumerate(args):\n self._modules[str(idx)] = module\n def forward(self, X):\n for block in self._modules.values():\n X = block(X)\n return X\nnet = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))\nnet(X)\nclass FixedHiddenMLP(nn.Module):\n def __init__(self):\n super().__init__()\n self.rand_weight = torch.rand((20, 20), requires_grad=False)\n self.linear = nn.Linear(20, 20)\n def forward(self, X):\n X = self.linear(X)\n X = F.relu(torch.mm(X, self.rand_weight) + 1)\n X = self.linear(X)\n while X.abs().sum() > 1:\n X /= 2\n return X.sum()\nnet = FixedHiddenMLP()\nnet(X)\nclass NestMLP(nn.Module):\n def __init__(self):\n super().__init__()\n self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU())\n self.linear = nn.Linear(32, 16)\n def forward(self, X):\n return self.linear(self.net(X))\nchimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())\nchimera(X)"},"mxnet":{"kind":"string","value":"from mxnet import np, npx\nfrom mxnet.gluon import nn\nnpx.set_np()\nnet = nn.Sequential()\nnet.add(nn.Dense(256, activation='relu'))\nnet.add(nn.Dense(10))\nnet.initialize()\nX = np.random.uniform(size=(2, 20))\nnet(X)\nclass MLP(nn.Block):\n def __init__(self, **kwargs):\n super().__init__(**kwargs)\n self.hidden = nn.Dense(256, activation='relu')\n self.out = nn.Dense(10)\n def forward(self, X):\n return self.out(self.hidden(X))\nnet = MLP()\nnet.initialize()\nnet(X)\nclass MySequential(nn.Block):\n def add(self, block):\n\n self._children[block.name] = block\n def forward(self, X):\n for block in self._children.values():\n X = block(X)\n return X\nnet = MySequential()\nnet.add(nn.Dense(256, activation='relu'))\nnet.add(nn.Dense(10))\nnet.initialize()\nnet(X)\nclass FixedHiddenMLP(nn.Block):\n def __init__(self, **kwargs):\n super().__init__(**kwargs)\n self.rand_weight = self.params.get_constant('rand_weight', np.random.uniform(size=(20, 20)))\n self.dense = nn.Dense(20, activation='relu')\n def forward(self, X):\n X = self.dense(X)\n X = npx.relu(np.dot(X, self.rand_weight.data()) + 1)\n X = self.dense(X)\n while np.abs(X).sum() > 1:\n X /= 2\n return X.sum()\nnet = FixedHiddenMLP()\nnet.initialize()\nnet(X)\nclass NestMLP(nn.Block):\n def __init__(self, **kwargs):\n super().__init__(**kwargs)\n self.net = nn.Sequential()\n self.net.add(nn.Dense(64, activation='relu'), nn.Dense(32, activation='relu'))\n self.dense = nn.Dense(16, activation='relu')\n def forward(self, X):\n return self.dense(self.net(X))\nchimera = nn.Sequential()\nchimera.add(NestMLP(), nn.Dense(20), FixedHiddenMLP())\nchimera.initialize()\nchimera(X)"},"paddle":{"kind":"null"}}},{"rowIdx":116,"cells":{"id":{"kind":"number","value":117,"string":"117"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nnet = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))\nX = torch.rand(size=(2, 4))\nnet(X)\nnet.state_dict()['2.bias'].data\ndef block1():\n return nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 4), nn.ReLU())\ndef block2():\n net = nn.Sequential()\n for i in range(4):\n net.add_module(f'block {i}', block1())\n return net\nrgnet = nn.Sequential(block2(), nn.Linear(4, 1))\nrgnet(X)\ndef init_normal(m):\n if type(m) == nn.Linear:\n nn.init.normal_(m.weight, mean=0, std=0.01)\n nn.init.zeros_(m.bias)\nnet.apply(init_normal)\nnet[0].weight.data[0], net[0].bias.data[0]\ndef init_constant(m):\n if type(m) == nn.Linear:\n nn.init.constant_(m.weight, 1)\n nn.init.zeros_(m.bias)\nnet.apply(init_constant)\nnet[0].weight.data[0], net[0].bias.data[0]\ndef init_xavier(m):\n if type(m) == nn.Linear:\n nn.init.xavier_uniform_(m.weight)\ndef init_42(m):\n if type(m) == nn.Linear:\n nn.init.constant_(m.weight, 42)\nnet[0].apply(init_xavier)\nnet[2].apply(init_42)\ndef my_init(m):\n if type(m) == nn.Linear:\n nn.init.uniform_(m.weight, -10, 10)\n m.weight.data *= m.weight.data.abs() >= 5\nnet.apply(my_init)\nnet[0].weight[:2]\nnet[0].weight.data[:] += 1\nnet[0].weight.data[0, 0] = 42\nnet[0].weight.data[0]\nlayer = CenteredLayer()\nlayer(torch.FloatTensor([1, 2, 3, 4, 5]))\nnet = nn.Sequential(nn.Linear(8, 128), CenteredLayer())"},"mxnet":{"kind":"string","value":"from mxnet import init, np, npx\nfrom mxnet.gluon import nn\nnpx.set_np()\nnet = nn.Sequential()\nnet.add(nn.Dense(8, activation='relu'))\nnet.add(nn.Dense(1))\nnet.initialize()\nX = np.random.uniform(size=(2, 4))\nnet(X)\nnet.collect_params()['dense1_bias'].data()\ndef block1():\n net = nn.Sequential()\n net.add(nn.Dense(32, activation='relu'))\n net.add(nn.Dense(16, activation='relu'))\n return net\ndef block2():\n net = nn.Sequential()\n for _ in range(4):\n net.add(block1())\n return net\nrgnet = nn.Sequential()\nrgnet.add(block2())\nrgnet.add(nn.Dense(10))\nrgnet.initialize()\nrgnet(X)\nnet.initialize(init=init.Normal(sigma=0.01), force_reinit=True)\nnet[0].weight.data()[0]\nnet.initialize(init=init.Constant(1), force_reinit=True)\nnet[0].weight.data()[0]\nnet[0].weight.initialize(init=init.Xavier(), force_reinit=True)\nnet[1].initialize(init=init.Constant(42), force_reinit=True)\nclass MyInit(init.Initializer):\n def _init_weight(self, name, data):\n data[:] = np.random.uniform(-10, 10, data.shape)\n data *= np.abs(data) >= 5\nnet.initialize(MyInit(), force_reinit=True)\nnet[0].weight.data()[:2]\nnet[0].weight.data()[:] += 1\nnet[0].weight.data()[0, 0] = 42\nnet[0].weight.data()[0]\nlayer = CenteredLayer()\nlayer(np.array([1, 2, 3, 4, 5]))\nnet = nn.Sequential()\nnet.add(nn.Dense(128), CenteredLayer())\nnet.initialize()"},"paddle":{"kind":"null"}}},{"rowIdx":117,"cells":{"id":{"kind":"number","value":118,"string":"118"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nimport torch.nn.functional as F\nfrom torch import nn\nclass CenteredLayer(nn.Module):\n def __init__(self):\n super().__init__()\n def forward(self, X):\n return X - X.mean()\nY = net(torch.rand(4, 8))\nY.mean()\nclass MyLinear(nn.Module):\n def __init__(self, in_units, units):\n super().__init__()\n self.weight = nn.Parameter(torch.randn(in_units, units))\n self.bias = nn.Parameter(torch.randn(units,))\n def forward(self, X):\n linear = torch.matmul(X, self.weight.data) + self.bias.data\n return F.relu(linear)\nlinear = MyLinear(5, 3)\nlinear.weight\nlinear(torch.rand(2, 5))\nnet = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))\nnet(torch.rand(2, 64))"},"mxnet":{"kind":"string","value":"from mxnet import np, npx\nfrom mxnet.gluon import nn\nnpx.set_np()\nclass CenteredLayer(nn.Block):\n def __init__(self, **kwargs):\n super().__init__(**kwargs)\n def forward(self, X):\n return X - X.mean()\nY = net(np.random.uniform(size=(4, 8)))\nY.mean()\nclass MyDense(nn.Block):\n def __init__(self, units, in_units, **kwargs):\n super().__init__(**kwargs)\n self.weight = self.params.get('weight', shape=(in_units, units))\n self.bias = self.params.get('bias', shape=(units,))\n def forward(self, x):\n linear = np.dot(x, self.weight.data(ctx=x.ctx)) + self.bias.data(\n ctx=x.ctx)\n return npx.relu(linear)\ndense = MyDense(units=3, in_units=5)\ndense.params\ndense.initialize()\ndense(np.random.uniform(size=(2, 5)))\nnet = nn.Sequential()\nnet.add(MyDense(8, in_units=64), MyDense(1, in_units=8))\nnet.initialize()\nnet(np.random.uniform(size=(2, 64)))"},"paddle":{"kind":"null"}}},{"rowIdx":118,"cells":{"id":{"kind":"number","value":119,"string":"119"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom torch.nn import functional as F\nx = torch.arange(4)\ntorch.save(x, 'x-file')\nx2 = torch.load('x-file')\ny = torch.zeros(4)\ntorch.save([x, y],'x-files')\nx2, y2 = torch.load('x-files')\nmydict = {'x': x, 'y': y}\ntorch.save(mydict, 'mydict')\nmydict2 = torch.load('mydict')\nclass MLP(nn.Module):\n def __init__(self):\n super().__init__()\n self.hidden = nn.Linear(20, 256)\n self.output = nn.Linear(256, 10)\n def forward(self, x):\n return self.output(F.relu(self.hidden(x)))\nnet = MLP()\nX = torch.randn(size=(2, 20))\nY = net(X)\ntorch.save(net.state_dict(), 'mlp.params')\nclone = MLP()\nclone.load_state_dict(torch.load('mlp.params'))\nclone.eval()"},"mxnet":{"kind":"string","value":"from mxnet import np, npx\nfrom mxnet.gluon import nn\nnpx.set_np()\nx = np.arange(4)\nnpx.save('x-file', x)\nx2 = npx.load('x-file')\ny = np.zeros(4)\nnpx.save('x-files', [x, y])\nx2, y2 = npx.load('x-files')\nmydict = {'x': x, 'y': y}\nnpx.save('mydict', mydict)\nmydict2 = npx.load('mydict')\nclass MLP(nn.Block):\n def __init__(self, **kwargs):\n super(MLP, self).__init__(**kwargs)\n self.hidden = nn.Dense(256, activation='relu')\n self.output = nn.Dense(10)\n def forward(self, x):\n return self.output(self.hidden(x))\nnet = MLP()\nnet.initialize()\nX = np.random.uniform(size=(2, 20))\nY = net(X)\nnet.save_parameters('mlp.params')\nclone = MLP()\nclone.load_parameters('mlp.params')"},"paddle":{"kind":"null"}}},{"rowIdx":119,"cells":{"id":{"kind":"number","value":120,"string":"120"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\ntorch.device('cpu'), torch.device('cuda'), torch.device('cuda:1')\ntorch.cuda.device_count()\ndef try_gpu(i=0):\n if torch.cuda.device_count() >= i + 1:\n return devices = [torch.device(f'cuda:{i}')\n return torch.device('cpu')\ndef try_all_gpus(): devices = [torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())]\n return devices if devices else [torch.device('cpu')]\ntry_gpu(), try_gpu(10), try_all_gpus()\nx = torch.tensor([1, 2, 3])\nx.device\nX = torch.ones(2, 3, device=try_gpu())\nY = torch.rand(2, 3, device=try_gpu(1))\nZ = X.cuda(1)\nZ.cuda(1) is Z\nnet = nn.Sequential(nn.Linear(3, 1))\nnet = net.to(device=try_gpu())\nnet[0].weight.data.device"},"mxnet":{"kind":"string","value":"from mxnet import np, npx\nfrom mxnet.gluon import nn\nnpx.set_np()\nnpx.cpu(), npx.gpu(), npx.gpu(1)\nnpx.num_gpus()\ndef try_gpu(i=0):\n return npx.gpu(i) if npx.num_gpus() >= i + 1 else npx.cpu()\n def try_all_gpus():\ndevices = [npx.gpu(i) for i in range(npx.num_gpus())]\n return devices if devices else [npx.cpu()]\ntry_gpu(), try_gpu(10), try_all_gpus()\nx = np.array([1, 2, 3])\nx.ctx\nX = np.ones((2, 3), ctx=try_gpu())\nY = np.random.uniform(size=(2, 3), ctx=try_gpu(1))\nZ = X.copyto(try_gpu(1))\nZ.as_in_ctx(try_gpu(1)) is Z\nnet = nn.Sequential()\nnet.add(nn.Dense(1))\nnet.initialize(ctx=try_gpu())\nnet[0].weight.data().ctx"},"paddle":{"kind":"null"}}},{"rowIdx":120,"cells":{"id":{"kind":"number","value":121,"string":"121"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\ndef corr2d(X, K):\n h, w = K.shape\n Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))\n for i in range(Y.shape[0]):\n for j in range(Y.shape[1]):\n Y[i, j] = (X[i:i + h, j:j + w] * K).sum()\n return Y\nX = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])\nK = torch.tensor([[0.0, 1.0], [2.0, 3.0]])\ncorr2d(X, K)\nclass Conv2D(nn.Module):\n def __init__(self, kernel_size):\n super().__init__()\n self.weight = nn.Parameter(torch.rand(kernel_size))\n self.bias = nn.Parameter(torch.zeros(1))\n def forward(self, x):\n return corr2d(x, self.weight) + self.bias\nX = torch.ones((6, 8))\nX[:, 2:6] = 0\nK = torch.tensor([[1.0, -1.0]])\ncorr2d(X.t(), K)\nconv2d = nn.Conv2d(1,1, kernel_size=(1, 2), bias=False)\nX = X.reshape((1, 1, 6, 8))\nY = Y.reshape((1, 1, 6, 7))\nlr = 3e-2\nfor i in range(10):\n Y_hat = conv2d(X)\n l = (Y_hat - Y) ** 2\n conv2d.zero_grad()\n l.sum().backward()\n conv2d.weight.data[:] -= lr * conv2d.weight.grad\nconv2d.weight.data.reshape((1, 2))"},"mxnet":{"kind":"string","value":"from mxnet import autograd, np, npx from mxnet.gluon import nn\nfrom d2l import mxnet as d2l\nnpx.set_np()\ndef corr2d(X, K):\n h, w = K.shape\n Y = np.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))\n for i in range(Y.shape[0]):\n for j in range(Y.shape[1]):\n Y[i, j] = (X[i:i + h, j:j + w] * K).sum()\n return Y\nX = np.array([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])\nK = np.array([[0.0, 1.0], [2.0, 3.0]])\ncorr2d(X, K)\nclass Conv2D(nn.Block):\n def __init__(self, kernel_size, **kwargs):\n super().__init__(**kwargs)\n self.weight = self.params.get('weight', shape=kernel_size)\n self.bias = self.params.get('bias', shape=(1,))\n def forward(self, x):\n return corr2d(x, self.weight.data()) + self.bias.data()\nX = np.ones((6, 8))\nX[:, 2:6] = 0\nK = np.array([[1.0, -1.0]])\ncorr2d(d2l.transpose(X), K)\nconv2d = nn.Conv2D(1, kernel_size=(1, 2), use_bias=False)\nconv2d.initialize()\n\nX = X.reshape(1, 1, 6, 8)\nY = Y.reshape(1, 1, 6, 7)\nlr = 3e-2\nfor i in range(10):\n with autograd.record():\n Y_hat = conv2d(X)\n l = (Y_hat - Y) ** 2\n l.backward()\n conv2d.weight.data()[:] -= lr * conv2d.weight.grad()\nconv2d.weight.data().reshape((1, 2))"},"paddle":{"kind":"null"}}},{"rowIdx":121,"cells":{"id":{"kind":"number","value":122,"string":"122"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\n\ndef comp_conv2d(conv2d, X):\n X = X.reshape((1, 1) + X.shape)\n Y = conv2d(X)\n return Y.reshape(Y.shape[2:])\nconv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1)\nX = torch.rand(size=(8, 8))\ncomp_conv2d(conv2d, X).shape\nconv2d = nn.Conv2d(1, 1, kernel_size=(5, 3), padding=(2, 1))\ncomp_conv2d(conv2d, X).shape\nconv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)\ncomp_conv2d(conv2d, X).shape\nconv2d = nn.Conv2d(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))\ncomp_conv2d(conv2d, X).shape"},"mxnet":{"kind":"string","value":"from mxnet import np, npx\nfrom mxnet.gluon import nn\nnpx.set_np()\ndef comp_conv2d(conv2d, X):\n conv2d.initialize()\n X = X.reshape((1, 1) + X.shape)\n Y = conv2d(X)\n return Y.reshape(Y.shape[2:])\nconv2d = nn.Conv2D(1, kernel_size=3, padding=1)\nX = np.random.uniform(size=(8, 8))\ncomp_conv2d(conv2d, X).shape\nconv2d = nn.Conv2D(1, kernel_size=(5, 3), padding=(2, 1))\ncomp_conv2d(conv2d, X).shape\nconv2d = nn.Conv2D(1, kernel_size=3, padding=1, strides=2)\ncomp_conv2d(conv2d, X).shape\nconv2d = nn.Conv2D(1, kernel_size=(3, 5), padding=(0, 1), strides=(3, 4))\ncomp_conv2d(conv2d, X).shape"},"paddle":{"kind":"null"}}},{"rowIdx":122,"cells":{"id":{"kind":"number","value":123,"string":"123"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom d2l import torch as d2l\ndef corr2d_multi_in(X, K):\n return sum(d2l.corr2d(x, k) for x, k in zip(X, K))\nX = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]], [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])\nK = torch.tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])\ncorr2d_multi_in(X, K)\ndef corr2d_multi_in_out(X, K):\n return torch.stack([corr2d_multi_in(X, k) for k in K], 0)\nK = torch.stack((K, K + 1, K + 2), 0)\nK.shape\ndef corr2d_multi_in_out_1x1(X, K):\n c_i, h, w = X.shape\n c_o = K.shape[0]\n X = X.reshape((c_i, h * w))\n K = K.reshape((c_o, c_i))\n Y = torch.matmul(K, X)\n return Y.reshape((c_o, h, w))\nX = torch.normal(0, 1, (3, 3, 3))\nK = torch.normal(0, 1, (2, 3, 1, 1))\nY1 = corr2d_multi_in_out_1x1(X, K)\nY2 = corr2d_multi_in_out(X, K)\nassert float(torch.abs(Y1 - Y2).sum()) < 1e-6"},"mxnet":{"kind":"string","value":"from mxnet import np, npx\nfrom d2l import mxnet as d2l\nnpx.set_np()\ndef corr2d_multi_in(X, K):\n return sum(d2l.corr2d(x, k) for x, k in zip(X, K))\nX = np.array([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]], [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])\nK = np.array([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])\ncorr2d_multi_in(X, K)\ndef corr2d_multi_in_out(X, K):\n return np.stack([corr2d_multi_in(X, k) for k in K], 0)\nK = np.stack((K, K + 1, K + 2), 0)\nK.shape\ndef corr2d_multi_in_out_1x1(X, K):\n c_i, h, w = X.shape\n c_o = K.shape[0]\n X = X.reshape((c_i, h * w))\n K = K.reshape((c_o, c_i))\n Y = np.dot(K, X)\n return Y.reshape((c_o, h, w))\nX = np.random.normal(0, 1, (3, 3, 3))\nK = np.random.normal(0, 1, (2, 3, 1, 1))\nY1 = corr2d_multi_in_out_1x1(X, K)\nY2 = corr2d_multi_in_out(X, K)\nassert float(np.abs(Y1 - Y2).sum()) < 1e-6"},"paddle":{"kind":"null"}}},{"rowIdx":123,"cells":{"id":{"kind":"number","value":124,"string":"124"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\ndef pool2d(X, pool_size, mode='max'):\n p_h, p_w = pool_size\n Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))\n for i in range(Y.shape[0]):\n for j in range(Y.shape[1]):\n if mode == 'max':\n Y[i, j] = X[i: i + p_h, j: j + p_w].max()\n elif mode == 'avg':\n Y[i, j] = X[i: i + p_h, j: j + p_w].mean()\n return Y\nX = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])\npool2d(X, (2, 2))\nX = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))\npool2d = nn.MaxPool2d(3)\npool2d(X)\npool2d = nn.MaxPool2d(3, padding=1, stride=2)\npool2d(X)\npool2d = nn.MaxPool2d((2, 3), stride=(2, 3), padding=(0, 1))\npool2d(X)\nX = torch.cat((X, X + 1), 1)\npool2d = nn.MaxPool2d(3, padding=1, stride=2)\npool2d(X)"},"mxnet":{"kind":"string","value":"from mxnet import np, npx\nfrom mxnet.gluon import nn\nfrom d2l import mxnet as d2l\nnpx.set_np()\ndef pool2d(X, pool_size, mode='max'):\n p_h, p_w = pool_size\n Y = np.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))\n for i in range(Y.shape[0]):\n for j in range(Y.shape[1]):\n if mode == 'max':\n Y[i, j] = X[i: i + p_h, j: j + p_w].max()\n elif mode == 'avg':\n Y[i, j] = X[i: i + p_h, j: j + p_w].mean()\n return Y\nX = np.array([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])\npool2d(X, (2, 2))\nX = np.arange(16, dtype=np.float32).reshape((1, 1, 4, 4))\npool2d = nn.MaxPool2D(3)\npool2d(X)\npool2d = nn.MaxPool2D(3, padding=1, strides=2)\npool2d(X)\npool2d = nn.MaxPool2D((2, 3), padding=(0, 1), strides=(2, 3))\npool2d(X)\nX = np.concatenate((X, X + 1), 1)\npool2d = nn.MaxPool2D(3, padding=1, strides=2)\npool2d(X)"},"paddle":{"kind":"null"}}},{"rowIdx":124,"cells":{"id":{"kind":"number","value":125,"string":"125"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\nnet = nn.Sequential(\n nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),\n nn.AvgPool2d(kernel_size=2, stride=2),\n nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),\n nn.AvgPool2d(kernel_size=2, stride=2),\n nn.Flatten(),\n nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),\n nn.Linear(120, 84), nn.Sigmoid(),\n nn.Linear(84, 10))\nX = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)\nfor layer in net:\n X = layer(X)\n print(layer.__class__.__name__,'output shape: \t',X.shape)\ndef train_ch6(net, train_iter, test_iter, num_epochs, lr, device):\n def init_weights(m):\n if type(m) == nn.Linear or type(m) == nn.Conv2d:\n nn.init.xavier_uniform_(m.weight)\n net.apply(init_weights)\n net.to(device)\n optimizer = torch.optim.SGD(net.parameters(), lr=lr)\n loss = nn.CrossEntropyLoss()\n animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], legend=['train loss', 'train acc', 'test acc'])\n timer, num_batches = d2l.Timer(), len(train_iter)\n for epoch in range(num_epochs):\n metric = d2l.Accumulator(3)\n net.train()\n for i, (X, y) in enumerate(train_iter):\n timer.start()\n optimizer.zero_grad()\n X, y = X.to(device), y.to(device)\n y_hat = net(X)\n l = loss(y_hat, y)\n l.backward()\n optimizer.step()\n with torch.no_grad():\n metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])\n timer.stop()\n train_l = metric[0] / metric[2]\n train_acc = metric[1] / metric[2]\n if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:\n animator.add(epoch + (i + 1) / num_batches, (train_l, train_acc, None))\n test_acc = evaluate_accuracy_gpu(net, test_iter)\n animator.add(epoch + 1, (None, None, test_acc))"},"mxnet":{"kind":"string","value":"from mxnet import autograd, gluon, init, np, npx\nfrom mxnet.gluon import nn\nfrom d2l import mxnet as d2l\nnpx.set_np()\nnet = nn.Sequential()\nnet.add(nn.Conv2D(channels=6, kernel_size=5, padding=2, activation='sigmoid'),\n nn.AvgPool2D(pool_size=2, strides=2),\n nn.Conv2D(channels=16, kernel_size=5, activation='sigmoid'),\n nn.AvgPool2D(pool_size=2, strides=2),\n nn.Dense(120, activation='sigmoid'),\n nn.Dense(84, activation='sigmoid'),\n nn.Dense(10))\nX = np.random.uniform(size=(1, 1, 28, 28))\nnet.initialize()\nfor layer in net:\n X = layer(X)\n print(layer.name, 'output shape:\t', X.shape)\ndef train_ch6(net, train_iter, test_iter, num_epochs, lr, device):\n net.initialize(force_reinit=True, ctx=device, init=init.Xavier())\n loss = gluon.loss.SoftmaxCrossEntropyLoss()\n trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})\n animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], legend=['train loss', 'train acc', 'test acc'])\n timer, num_batches = d2l.Timer(), len(train_iter)\n for epoch in range(num_epochs):\n metric = d2l.Accumulator(3)\n for i, (X, y) in enumerate(train_iter):\n timer.start()\n X, y = X.as_in_ctx(device), y.as_in_ctx(device)\n with autograd.record():\n y_hat = net(X)\n l = loss(y_hat, y)\n l.backward()\n trainer.step(X.shape[0])\n metric.add(l.sum(), d2l.accuracy(y_hat, y), X.shape[0])\n timer.stop()\n train_l = metric[0] / metric[2]\n train_acc = metric[1] / metric[2]\n if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:\n animator.add(epoch + (i + 1) / num_batches, (train_l, train_acc, None))\n test_acc = evaluate_accuracy_gpu(net, test_iter)\n animator.add(epoch + 1, (None, None, test_acc))"},"paddle":{"kind":"null"}}},{"rowIdx":125,"cells":{"id":{"kind":"number","value":126,"string":"126"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\nnet = nn.Sequential(\n nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),\n nn.MaxPool2d(kernel_size=3, stride=2),\n nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),\n nn.MaxPool2d(kernel_size=3, stride=2),\n nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),\n nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),\n nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),\n nn.MaxPool2d(kernel_size=3, stride=2),\n nn.Flatten(),\n nn.Linear(6400, 4096), nn.ReLU(),\n nn.Dropout(p=0.5),\n nn.Linear(4096, 4096), nn.ReLU(),\n nn.Dropout(p=0.5),\n nn.Linear(4096, 10))\nX = torch.randn(1, 1, 224, 224)\nfor layer in net:\n X=layer(X)\n print(layer.__class__.__name__,'output shape:\t',X.shape)"},"mxnet":{"kind":"string","value":"from mxnet import np, npx\nfrom mxnet.gluon import nn\nfrom d2l import mxnet as d2l\nnpx.set_np()\nnet = nn.Sequential()\nnet.add(\n nn.Conv2D(96, kernel_size=11, strides=4, activation='relu'),\n nn.MaxPool2D(pool_size=3, strides=2),\n nn.Conv2D(256, kernel_size=5, padding=2, activation='relu'),\n nn.MaxPool2D(pool_size=3, strides=2),\n nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),\n nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),\n nn.Conv2D(256, kernel_size=3, padding=1, activation='relu'),\n nn.MaxPool2D(pool_size=3, strides=2),\n nn.Dense(4096, activation='relu'), nn.Dropout(0.5),\n nn.Dense(4096, activation='relu'), nn.Dropout(0.5),\n nn.Dense(10))\nX = np.random.uniform(size=(1, 1, 224, 224))\nnet.initialize()\nfor layer in net:\n X = layer(X)\n print(layer.name, 'output shape:\t', X.shape)"},"paddle":{"kind":"null"}}},{"rowIdx":126,"cells":{"id":{"kind":"number","value":127,"string":"127"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\ndef vgg_block(num_convs, in_channels, out_channels):\n layers = []\n for _ in range(num_convs):\n layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))\n layers.append(nn.ReLU())\n in_channels = out_channels\n layers.append(nn.MaxPool2d(kernel_size=2,stride=2))\n return nn.Sequential(*layers)\ndef vgg(conv_arch):\n conv_blks = []\n in_channels = 1\n for (num_convs, out_channels) in conv_arch:\n conv_blks.append(vgg_block(num_convs, in_channels, out_channels))\n in_channels = out_channels\n return nn.Sequential(\n *conv_blks, nn.Flatten(),\n nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),\n nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),\n nn.Linear(4096, 10))\nnet = vgg(conv_arch)\nX = torch.randn(size=(1, 1, 224, 224))\nfor blk in net:\n X = blk(X)\n print(blk.__class__.__name__,'output shape:\t',X.shape)"},"mxnet":{"kind":"string","value":"from mxnet import np, npx\nfrom mxnet.gluon import nn\nfrom d2l import mxnet as d2l\nnpx.set_np()\ndef vgg_block(num_convs, num_channels):\n blk = nn.Sequential()\n for _ in range(num_convs):\n blk.add(nn.Conv2D(num_channels, kernel_size=3, padding=1, activation='relu'))\n blk.add(nn.MaxPool2D(pool_size=2, strides=2))\n return blk\ndef vgg(conv_arch):\n net = nn.Sequential()\n for (num_convs, num_channels) in conv_arch:\n net.add(vgg_block(num_convs, num_channels))\n net.add(nn.Dense(4096, activation='relu'), nn.Dropout(0.5),\n nn.Dense(4096, activation='relu'), nn.Dropout(0.5),\n nn.Dense(10))\n return net\nnet = vgg(conv_arch)\nnet.initialize()\nX = np.random.uniform(size=(1, 1, 224, 224))\nfor blk in net:\n X = blk(X)\n print(blk.name, 'output shape:\t', X.shape)"},"paddle":{"kind":"null"}}},{"rowIdx":127,"cells":{"id":{"kind":"number","value":128,"string":"128"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\ndef nin_block(in_channels, out_channels, kernel_size, strides, padding):\n return nn.Sequential(\n nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),\n nn.ReLU(),\n nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),\n nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())\nnet = nn.Sequential(\n nin_block(1, 96, kernel_size=11, strides=4, padding=0),\n nn.MaxPool2d(3, stride=2),\n nin_block(96, 256, kernel_size=5, strides=1, padding=2),\n nn.MaxPool2d(3, stride=2),\n nin_block(256, 384, kernel_size=3, strides=1, padding=1),\n nn.MaxPool2d(3, stride=2),\n nn.Dropout(0.5),\n nin_block(384, 10, kernel_size=3, strides=1, padding=1),\n nn.AdaptiveAvgPool2d((1, 1)),\n nn.Flatten())\nX = torch.rand(size=(1, 1, 224, 224))\nfor layer in net:\n X = layer(X)\n print(layer.__class__.__name__,'output shape:\t', X.shape)"},"mxnet":{"kind":"string","value":"from mxnet import np, npx\nfrom mxnet.gluon import nn\nfrom d2l import mxnet as d2l\nnpx.set_np()\ndef nin_block(num_channels, kernel_size, strides, padding):\n blk = nn.Sequential()\n blk.add(nn.Conv2D(num_channels, kernel_size, strides, padding, activation='relu'),\n nn.Conv2D(num_channels, kernel_size=1, activation='relu'),\n nn.Conv2D(num_channels, kernel_size=1, activation='relu'))\n return blk\nnet = nn.Sequential()\nnet.add(nin_block(96, kernel_size=11, strides=4, padding=0),\n nn.MaxPool2D(pool_size=3, strides=2),\n nin_block(256, kernel_size=5, strides=1, padding=2),\n nn.MaxPool2D(pool_size=3, strides=2),\n nin_block(384, kernel_size=3, strides=1, padding=1),\n nn.MaxPool2D(pool_size=3, strides=2),\n nn.Dropout(0.5),\n nin_block(10, kernel_size=3, strides=1, padding=1),\n nn.GlobalAvgPool2D(),\n nn.Flatten())\nX = np.random.uniform(size=(1, 1, 224, 224))\nnet.initialize()\nfor layer in net:\n X = layer(X)\n print(layer.name, 'output shape:\t', X.shape)"},"paddle":{"kind":"null"}}},{"rowIdx":128,"cells":{"id":{"kind":"number","value":129,"string":"129"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom torch.nn import functional as F\nfrom d2l import torch as d2l\nclass Inception(nn.Module):\n def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):\n super(Inception, self).__init__(**kwargs)\n self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)\n self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)\n self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)\n self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)\n self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)\n self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)\n self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)\n def forward(self, x):\n p1 = F.relu(self.p1_1(x))\n p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))\n p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))\n p4 = F.relu(self.p4_2(self.p4_1(x)))\n return torch.cat((p1, p2, p3, p4), dim=1)\nb1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),\n nn.ReLU(),\n nn.MaxPool2d(kernel_size=3, stride=2, padding=1))\nb2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),\n nn.ReLU(),\n nn.Conv2d(64, 192, kernel_size=3, padding=1),\n nn.ReLU(),\n nn.MaxPool2d(kernel_size=3, stride=2, padding=1))\nb3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),\n Inception(256, 128, (128, 192), (32, 96), 64),\n nn.MaxPool2d(kernel_size=3, stride=2, padding=1))\nb4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),\n Inception(512, 160, (112, 224), (24, 64), 64),\n Inception(512, 128, (128, 256), (24, 64), 64),\n Inception(512, 112, (144, 288), (32, 64), 64),\n Inception(528, 256, (160, 320), (32, 128), 128),\n nn.MaxPool2d(kernel_size=3, stride=2, padding=1))\nb5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),\n Inception(832, 384, (192, 384), (48, 128), 128),\n nn.AdaptiveAvgPool2d((1,1)),\n nn.Flatten())\nnet = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))\nX = torch.rand(size=(1, 1, 96, 96))\nfor layer in net:\n X = layer(X)\n print(layer.__class__.__name__,'output shape:\t', X.shape)"},"mxnet":{"kind":"string","value":"from mxnet import np, npx\nfrom mxnet.gluon import nn\nfrom d2l import mxnet as d2l\nnpx.set_np()\nclass Inception(nn.Block):\n def __init__(self, c1, c2, c3, c4, **kwargs):\n super(Inception, self).__init__(**kwargs)\n self.p1_1 = nn.Conv2D(c1, kernel_size=1, activation='relu')\n self.p2_1 = nn.Conv2D(c2[0], kernel_size=1, activation='relu')\n self.p2_2 = nn.Conv2D(c2[1], kernel_size=3, padding=1, activation='relu')\n self.p3_1 = nn.Conv2D(c3[0], kernel_size=1, activation='relu')\n self.p3_2 = nn.Conv2D(c3[1], kernel_size=5, padding=2, activation='relu')\n self.p4_1 = nn.MaxPool2D(pool_size=3, strides=1, padding=1)\n self.p4_2 = nn.Conv2D(c4, kernel_size=1, activation='relu')\n def forward(self, x):\n p1 = self.p1_1(x)\n p2 = self.p2_2(self.p2_1(x))\n p3 = self.p3_2(self.p3_1(x))\n p4 = self.p4_2(self.p4_1(x))\n return np.concatenate((p1, p2, p3, p4), axis=1)\nb1 = nn.Sequential()\nb1.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3, activation='relu'),\n nn.MaxPool2D(pool_size=3, strides=2, padding=1))\nb2 = nn.Sequential()\nb2.add(nn.Conv2D(64, kernel_size=1, activation='relu'),\n nn.Conv2D(192, kernel_size=3, padding=1, activation='relu'),\n nn.MaxPool2D(pool_size=3, strides=2, padding=1))\nb3 = nn.Sequential()\nb3.add(Inception(64, (96, 128), (16, 32), 32),\n Inception(128, (128, 192), (32, 96), 64),\n nn.MaxPool2D(pool_size=3, strides=2, padding=1))\nb4 = nn.Sequential()\nb4.add(Inception(192, (96, 208), (16, 48), 64),\n Inception(160, (112, 224), (24, 64), 64),\n Inception(128, (128, 256), (24, 64), 64),\n Inception(112, (144, 288), (32, 64), 64),\n Inception(256, (160, 320), (32, 128), 128),\n nn.MaxPool2D(pool_size=3, strides=2, padding=1))\nb5 = nn.Sequential()\nb5.add(Inception(256, (160, 320), (32, 128), 128),\n Inception(384, (192, 384), (48, 128), 128),\n nn.GlobalAvgPool2D())\nnet = nn.Sequential()\nnet.add(b1, b2, b3, b4, b5, nn.Dense(10))\nX = np.random.uniform(size=(1, 1, 96, 96))\nnet.initialize()\nfor layer in net:\n X = layer(X)\n print(layer.__class__.__name__,'output shape:\t', X.shape)"},"paddle":{"kind":"null"}}},{"rowIdx":129,"cells":{"id":{"kind":"number","value":130,"string":"130"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\ndef batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):\n if not torch.is_grad_enabled():\n X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)\n else:\n assert len(X.shape) in (2, 4)\n if len(X.shape) == 2:\n mean = X.mean(dim=0)\n var = ((X - mean) ** 2).mean(dim=0)\n else:\n mean = X.mean(dim=(0, 2, 3), keepdim=True)\n var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)\n X_hat = (X - mean) / torch.sqrt(var + eps)\n moving_mean = momentum * moving_mean + (1.0 - momentum) * mean\n moving_var = momentum * moving_var + (1.0 - momentum) * var\n Y = gamma * X_hat + beta\n return Y, moving_mean.data, moving_var.data\nclass BatchNorm(nn.Module):\n def __init__(self, num_features, num_dims):\n super().__init__()\n if num_dims == 2:\n shape = (1, num_features)\n else:\n shape = (1, num_features, 1, 1)\n self.gamma = nn.Parameter(torch.ones(shape))\n self.beta = nn.Parameter(torch.zeros(shape))\n self.moving_mean = torch.zeros(shape)\n self.moving_var = torch.ones(shape)\n def forward(self, X):\n if self.moving_mean.device != X.device:\n self.moving_mean = self.moving_mean.to(X.device)\n self.moving_var = self.moving_var.to(X.device)\n Y, self.moving_mean, self.moving_var = batch_norm(\n X, self.gamma, self.beta, self.moving_mean,\n self.moving_var, eps=1e-5, momentum=0.9)\n return Y\nnet = nn.Sequential(\n nn.Conv2d(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),\n nn.AvgPool2d(kernel_size=2, stride=2),\n nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),\n nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),\n nn.Linear(16*4*4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),\n nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),\n nn.Linear(84, 10))\nnet[1].gamma.reshape((-1,)), net[1].beta.reshape((-1,))\nnet = nn.Sequential(\n nn.Conv2d(1, 6, kernel_size=5), nn.BatchNorm2d(6), nn.Sigmoid(),\n nn.AvgPool2d(kernel_size=2, stride=2),\n nn.Conv2d(6, 16, kernel_size=5), nn.BatchNorm2d(16), nn.Sigmoid(),\n nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),\n nn.Linear(256, 120), nn.BatchNorm1d(120), nn.Sigmoid(),\n nn.Linear(120, 84), nn.BatchNorm1d(84), nn.Sigmoid(),\n nn.Linear(84, 10))"},"mxnet":{"kind":"string","value":"from mxnet import autograd, init, np, npx\nfrom mxnet.gluon import nn\nfrom d2l import mxnet as d2l\nnpx.set_np()\ndef batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):\n if not autograd.is_training():\n X_hat = (X - moving_mean) / np.sqrt(moving_var + eps)\n else:\n assert len(X.shape) in (2, 4)\n if len(X.shape) == 2:\n mean = X.mean(axis=0)\n var = ((X - mean) ** 2).mean(axis=0)\n else:\n mean = X.mean(axis=(0, 2, 3), keepdims=True)\n var = ((X - mean) ** 2).mean(axis=(0, 2, 3), keepdims=True)\n X_hat = (X - mean) / np.sqrt(var + eps)\n moving_mean = momentum * moving_mean + (1.0 - momentum) * mean\n moving_var = momentum * moving_var + (1.0 - momentum) * var\n Y = gamma * X_hat + beta\n return Y, moving_mean, moving_var\nclass BatchNorm(nn.Block):\n def __init__(self, num_features, num_dims, **kwargs):\n super().__init__(**kwargs)\n if num_dims == 2:\n shape = (1, num_features)\n else:\n shape = (1, num_features, 1, 1)\n self.gamma = self.params.get('gamma', shape=shape, init=init.One())\n self.beta = self.params.get('beta', shape=shape, init=init.Zero())\n self.moving_mean = np.zeros(shape)\n self.moving_var = np.ones(shape)\n def forward(self, X):\n if self.moving_mean.ctx != X.ctx:\n self.moving_mean = self.moving_mean.copyto(X.ctx)\n self.moving_var = self.moving_var.copyto(X.ctx)\n Y, self.moving_mean, self.moving_var = batch_norm(\n X, self.gamma.data(), self.beta.data(), self.moving_mean,\n self.moving_var, eps=1e-12, momentum=0.9)\n return Y\nnet = nn.Sequential()\nnet.add(nn.Conv2D(6, kernel_size=5),\n BatchNorm(6, num_dims=4),\n nn.Activation('sigmoid'),\n nn.AvgPool2D(pool_size=2, strides=2),\n nn.Conv2D(16, kernel_size=5),\n BatchNorm(16, num_dims=4),\n nn.Activation('sigmoid'),\n nn.AvgPool2D(pool_size=2, strides=2),\n nn.Dense(120),\n BatchNorm(120, num_dims=2),\n nn.Activation('sigmoid'),\n nn.Dense(84),\n BatchNorm(84, num_dims=2),\n nn.Activation('sigmoid'),\n nn.Dense(10))\nnet[1].gamma.data().reshape(-1,), net[1].beta.data().reshape(-1,)\nnet = nn.Sequential()\nnet.add(nn.Conv2D(6, kernel_size=5),\n nn.BatchNorm(),\n nn.Activation('sigmoid'),\n nn.AvgPool2D(pool_size=2, strides=2),\n nn.Conv2D(16, kernel_size=5),\n nn.BatchNorm(),\n nn.Activation('sigmoid'),\n nn.AvgPool2D(pool_size=2, strides=2),\n nn.Dense(120),\n nn.BatchNorm(),\n nn.Activation('sigmoid'),\n nn.Dense(84),\n nn.BatchNorm(),\n nn.Activation('sigmoid'),\n nn.Dense(10))"},"paddle":{"kind":"null"}}},{"rowIdx":130,"cells":{"id":{"kind":"number","value":131,"string":"131"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom torch.nn import functional as F\nfrom d2l import torch as d2l\nclass Residual(nn.Module):\n def __init__(self, input_channels, num_channels, use_1x1conv=False, strides=1):\n super().__init__()\n self.conv1 = nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1, stride=strides)\n self.conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1)\n if use_1x1conv:\n self.conv3 = nn.Conv2d(input_channels, num_channels, kernel_size=1, stride=strides)\n else:\n self.conv3 = None\n self.bn1 = nn.BatchNorm2d(num_channels)\n self.bn2 = nn.BatchNorm2d(num_channels)\n def forward(self, X):\n Y = F.relu(self.bn1(self.conv1(X)))\n Y = self.bn2(self.conv2(Y))\n if self.conv3:\n X = self.conv3(X)\n Y += X\n return F.relu(Y)\nblk = Residual(3,3)\nX = torch.rand(4, 3, 6, 6)\nY = blk(X)\nY.shape\nblk = Residual(3,6, use_1x1conv=True, strides=2)\nblk(X).shape\nb1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),\n nn.BatchNorm2d(64), nn.ReLU(),\n nn.MaxPool2d(kernel_size=3, stride=2, padding=1))\ndef resnet_block(input_channels, num_channels, num_residuals, first_block=False):\n blk = []\n for i in range(num_residuals):\n if i == 0 and not first_block:\n blk.append(Residual(input_channels, num_channels, use_1x1conv=True, strides=2))\n else:\n blk.append(Residual(num_channels, num_channels))\n return blk\nb2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))\nb3 = nn.Sequential(*resnet_block(64, 128, 2))\nb4 = nn.Sequential(*resnet_block(128, 256, 2))\nb5 = nn.Sequential(*resnet_block(256, 512, 2))\nnet = nn.Sequential(b1, b2, b3, b4, b5,\n nn.AdaptiveAvgPool2d((1,1)),\n nn.Flatten(), nn.Linear(512, 10))\nX = torch.rand(size=(1, 1, 224, 224))\nfor layer in net:\n X = layer(X)\n print(layer.__class__.__name__,'output shape:\t', X.shape)"},"mxnet":{"kind":"string","value":"from mxnet import np, npx\nfrom mxnet.gluon import nn\nfrom d2l import mxnet as d2l\nnpx.set_np()\nclass Residual(nn.Block):\n def __init__(self, num_channels, use_1x1conv=False, strides=1, **kwargs):\n super().__init__(**kwargs)\n self.conv1 = nn.Conv2D(num_channels, kernel_size=3, padding=1, strides=strides)\n self.conv2 = nn.Conv2D(num_channels, kernel_size=3, padding=1)\n if use_1x1conv:\n self.conv3 = nn.Conv2D(num_channels, kernel_size=1, strides=strides)\n else:\n self.conv3 = None\n self.bn1 = nn.BatchNorm()\n self.bn2 = nn.BatchNorm()\n def forward(self, X):\n Y = npx.relu(self.bn1(self.conv1(X)))\n Y = self.bn2(self.conv2(Y))\n if self.conv3:\n X = self.conv3(X)\n return npx.relu(Y + X)\nblk = Residual(3)\nblk.initialize()\nX = np.random.uniform(size=(4, 3, 6, 6))\nblk(X).shape\nblk = Residual(6, use_1x1conv=True, strides=2)\nblk.initialize()\nblk(X).shape\nnet = nn.Sequential()\nnet.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3),\n nn.BatchNorm(), nn.Activation('relu'),\n nn.MaxPool2D(pool_size=3, strides=2, padding=1))\ndef resnet_block(num_channels, num_residuals, first_block=False):\n blk = nn.Sequential()\n for i in range(num_residuals):\n if i == 0 and not first_block:\n blk.add(Residual(num_channels, use_1x1conv=True, strides=2))\n else:\n blk.add(Residual(num_channels))\n return blk\nnet.add(resnet_block(64, 2, first_block=True),\n resnet_block(128, 2),\n resnet_block(256, 2),\n resnet_block(512, 2))\nnet.add(nn.GlobalAvgPool2D(), nn.Dense(10))\nX = np.random.uniform(size=(1, 1, 224, 224))\nnet.initialize()\nfor layer in net:\n X = layer(X)\n print(layer.__class__.__name__,'output shape:\t', X.shape)"},"paddle":{"kind":"null"}}},{"rowIdx":131,"cells":{"id":{"kind":"number","value":132,"string":"132"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\ndef conv_block(input_channels, num_channels):\n return nn.Sequential(\n nn.BatchNorm2d(input_channels), nn.ReLU(),\n nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1))\nclass DenseBlock(nn.Module):\n def __init__(self, num_convs, input_channels, num_channels):\n super(DenseBlock, self).__init__()\n layer = []\n for i in range(num_convs):\n layer.append(conv_block(num_channels * i + input_channels, num_channels))\n self.net = nn.Sequential(*layer)\n def forward(self, X):\n for blk in self.net:\n Y = blk(X)\n X = torch.cat((X, Y), dim=1)\n return X\nblk = DenseBlock(2, 3, 10)\nX = torch.randn(4, 3, 8, 8)\nY = blk(X)\nY.shape\ndef transition_block(input_channels, num_channels):\n return nn.Sequential(\n nn.BatchNorm2d(input_channels), nn.ReLU(),\n nn.Conv2d(input_channels, num_channels, kernel_size=1),\n nn.AvgPool2d(kernel_size=2, stride=2))\nblk = transition_block(23, 10)\nblk(Y).shape\nb1 = nn.Sequential(\n nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),\n nn.BatchNorm2d(64), nn.ReLU(),\n nn.MaxPool2d(kernel_size=3, stride=2, padding=1))\nnum_channels, growth_rate = 64, 32\nnum_convs_in_dense_blocks = [4, 4, 4, 4]\nblks = []\nfor i, num_convs in enumerate(num_convs_in_dense_blocks):\n blks.append(DenseBlock(num_convs, num_channels, growth_rate))\n num_channels += num_convs * growth_rate\n if i != len(num_convs_in_dense_blocks) - 1:\n blks.append(transition_block(num_channels, num_channels // 2))\n num_channels = num_channels // 2\nnet = nn.Sequential(\n b1, *blks,\n nn.BatchNorm2d(num_channels), nn.ReLU(),\n nn.AdaptiveAvgPool2d((1, 1)),\n nn.Flatten(),\n nn.Linear(num_channels, 10))"},"mxnet":{"kind":"string","value":"from mxnet import np, npx\nfrom mxnet.gluon import nn\nfrom d2l import mxnet as d2l\nnpx.set_np()\ndef conv_block(num_channels):\n blk = nn.Sequential()\n blk.add(nn.BatchNorm(),\n nn.Activation('relu'),\n nn.Conv2D(num_channels, kernel_size=3, padding=1))\n return blk\nclass DenseBlock(nn.Block):\n def __init__(self, num_convs, num_channels, **kwargs):\n super().__init__(**kwargs)\n self.net = nn.Sequential()\n for _ in range(num_convs):\n self.net.add(conv_block(num_channels))\n def forward(self, X):\n for blk in self.net:\n Y = blk(X)\n X = np.concatenate((X, Y), axis=1)\n return X\nblk = DenseBlock(2, 10)\nblk.initialize()\nX = np.random.uniform(size=(4, 3, 8, 8))\nY = blk(X)\nY.shape\ndef transition_block(num_channels):\n blk = nn.Sequential()\n blk.add(nn.BatchNorm(), nn.Activation('relu'),\n nn.Conv2D(num_channels, kernel_size=1),\n nn.AvgPool2D(pool_size=2, strides=2))\n return blk\nblk = transition_block(10)\nblk.initialize()\nblk(Y).shape\nnet = nn.Sequential()\nnet.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3),\n nn.BatchNorm(), nn.Activation('relu'),\n nn.MaxPool2D(pool_size=3, strides=2, padding=1))\nnum_channels, growth_rate = 64, 32\nnum_convs_in_dense_blocks = [4, 4, 4, 4]\nfor i, num_convs in enumerate(num_convs_in_dense_blocks):\n net.add(DenseBlock(num_convs, growth_rate))\n num_channels += num_convs * growth_rate\n if i != len(num_convs_in_dense_blocks) - 1:\n num_channels //= 2\n net.add(transition_block(num_channels))\nnet.add(nn.BatchNorm(),\n nn.Activation('relu'),\n nn.GlobalAvgPool2D(),\n nn.Dense(10))"},"paddle":{"kind":"null"}}},{"rowIdx":132,"cells":{"id":{"kind":"number","value":133,"string":"133"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"%matplotlib inline\nimport torch\nfrom torch import nn\nfrom d2l import torch as d2l\nT = 1000\ntime = torch.arange(1, T + 1, dtype=torch.float32)\nx = torch.sin(0.01 * time) + torch.normal(0, 0.2, (T,))\nd2l.plot(time, [x], 'time', 'x', xlim=[1, 1000], figsize=(6, 3))\ntau = 4\nfeatures = torch.zeros((T - tau, tau))\nfor i in range(tau):\n features[:, i] = x[i: T - tau + i]\nlabels = x[tau:].reshape((-1, 1))\nbatch_size, n_train = 16, 600\ntrain_iter = d2l.load_array((features[:n_train], labels[:n_train]), batch_size, is_train=True)\ndef init_weights(m):\n if type(m) == nn.Linear:\n nn.init.xavier_uniform_(m.weight)\ndef get_net():\n net = nn.Sequential(nn.Linear(4, 10),\n nn.ReLU(),\n nn.Linear(10, 1))\n net.apply(init_weights)\n return net\nloss = nn.MSELoss(reduction='none')\ndef train(net, train_iter, loss, epochs, lr):\n trainer = torch.optim.Adam(net.parameters(), lr)\n for epoch in range(epochs):\n for X, y in train_iter:\n trainer.zero_grad()\n l = loss(net(X), y)\n l.sum().backward()\n trainer.step()\nnet = get_net()\ntrain(net, train_iter, loss, 5, 0.01)\nonestep_preds = net(features)\nd2l.plot([time, time[tau:]],\n [x.detach().numpy(), onestep_preds.detach().numpy()], 'time',\n 'x', legend=['data', '1-step preds'], xlim=[1, 1000],\n figsize=(6, 3))\nmultistep_preds = torch.zeros(T)\nmultistep_preds[: n_train + tau] = x[: n_train + tau]\nfor i in range(n_train + tau, T):\n multistep_preds[i] = net(multistep_preds[i - tau:i].reshape((1, -1)))\nd2l.plot([time, time[tau:], time[n_train + tau:]],\n [x.detach().numpy(), onestep_preds.detach().numpy(),\n multistep_preds[n_train + tau:].detach().numpy()], 'time',\n 'x', legend=['data', '1-step preds', 'multistep preds'],\n xlim=[1, 1000], figsize=(6, 3))\nmax_steps = 64\nfeatures = torch.zeros((T - tau - max_steps + 1, tau + max_steps))\nfor i in range(tau):\n features[:, i] = x[i: i + T - tau - max_steps + 1]\nfor i in range(tau, tau + max_steps):\n features[:, i] = net(features[:, i - tau:i]).reshape(-1)\nsteps = (1, 4, 16, 64)\nd2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps],\n [features[:, tau + i - 1].detach().numpy() for i in steps], 'time', 'x',\n legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000],\n figsize=(6, 3))"},"mxnet":{"kind":"string","value":"%matplotlib inline\nfrom mxnet import autograd, gluon, init, np, npx\nfrom mxnet.gluon import nn\nfrom d2l import mxnet as d2l\nnpx.set_np()\nT = 1000\ntime = np.arange(1, T + 1, dtype=np.float32)\nx = np.sin(0.01 * time) + np.random.normal(0, 0.2, (T,))\nd2l.plot(time, [x], 'time', 'x', xlim=[1, 1000], figsize=(6, 3))\ntau = 4\nfeatures = np.zeros((T - tau, tau))\nfor i in range(tau):\n features[:, i] = x[i: T - tau + i]\nlabels = x[tau:].reshape((-1, 1))\nbatch_size, n_train = 16, 600\ntrain_iter = d2l.load_array((features[:n_train], labels[:n_train]), batch_size, is_train=True)\ndef get_net():\n net = nn.Sequential()\n net.add(nn.Dense(10, activation='relu'),\n nn.Dense(1))\n net.initialize(init.Xavier())\n return net\nloss = gluon.loss.L2Loss()\ndef train(net, train_iter, loss, epochs, lr):\n trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': lr})\n for epoch in range(epochs):\n for X, y in train_iter:\n with autograd.record():\n l = loss(net(X), y)\n l.backward()\n trainer.step(batch_size)\nnet = get_net()\ntrain(net, train_iter, loss, 5, 0.01)\nonestep_preds = net(features)\nd2l.plot([time, time[tau:]],\n [x.asnumpy(), onestep_preds.asnumpy()], 'time',\n 'x', legend=['data', '1-step preds'], xlim=[1, 1000],\n figsize=(6, 3))\nmultistep_preds = np.zeros(T)\nmultistep_preds[: n_train + tau] = x[: n_train + tau]\nfor i in range(n_train + tau, T):\n multistep_preds[i] = net(multistep_preds[i - tau:i].reshape((1, -1)))\nd2l.plot([time, time[tau:], time[n_train + tau:]],\n [x.asnumpy(), onestep_preds.asnumpy(),\n multistep_preds[n_train + tau:].asnumpy()], 'time',\n 'x', legend=['data', '1-step preds', 'multistep preds'],\n xlim=[1, 1000], figsize=(6, 3))\nmax_steps = 64\nfeatures = np.zeros((T - tau - max_steps + 1, tau + max_steps))\nfor i in range(tau):\n features[:, i] = x[i: i + T - tau - max_steps + 1]\nfor i in range(tau, tau + max_steps):\n features[:, i] = net(features[:, i - tau:i]).reshape(-1)\nsteps = (1, 4, 16, 64)\nd2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps],\n [features[:, tau + i - 1].asnumpy() for i in steps], 'time', 'x',\n legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000],\n figsize=(6, 3))"},"paddle":{"kind":"null"}}},{"rowIdx":133,"cells":{"id":{"kind":"number","value":134,"string":"134"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import collections\nimport re\nfrom d2l import torch as d2l"},"mxnet":{"kind":"string","value":"import collections\nimport re\nfrom d2l import mxnet as d2l"},"paddle":{"kind":"null"}}},{"rowIdx":134,"cells":{"id":{"kind":"number","value":135,"string":"135"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import random\nimport torch\nfrom d2l import torch as d2l\ntokens = d2l.tokenize(d2l.read_time_machine())\ncorpus = [token for line in tokens for token in line]\nvocab = d2l.Vocab(corpus)\nvocab.token_freqs[:10]\ndef seq_data_iter_random(corpus, batch_size, num_steps):\n corpus = corpus[random.randint(0, num_steps - 1):]\n num_subseqs = (len(corpus) - 1) // num_steps\n initial_indices = list(range(0, num_subseqs * num_steps, num_steps))\n random.shuffle(initial_indices)\n def data(pos):\n return corpus[pos: pos + num_steps]\n num_batches = num_subseqs // batch_size\n for i in range(0, batch_size * num_batches, batch_size):\n initial_indices_per_batch = initial_indices[i: i + batch_size]\n X = [data(j) for j in initial_indices_per_batch]\n Y = [data(j + 1) for j in initial_indices_per_batch]\n yield torch.tensor(X), torch.tensor(Y)\ndef seq_data_iter_sequential(corpus, batch_size, num_steps):\n offset = random.randint(0, num_steps)\n num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size\n Xs = torch.tensor(corpus[offset: offset + num_tokens])\n Ys = torch.tensor(corpus[offset + 1: offset + 1 + num_tokens])\n Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1)\n num_batches = Xs.shape[1] // num_steps\n for i in range(0, num_steps * num_batches, num_steps):\n X = Xs[:, i: i + num_steps]\n Y = Ys[:, i: i + num_steps]\n yield X, Y"},"mxnet":{"kind":"string","value":"import random\nfrom mxnet import np, npx\nfrom d2l import mxnet as d2l\nnpx.set_np()\ntokens = d2l.tokenize(d2l.read_time_machine())\ncorpus = [token for line in tokens for token in line]\nvocab = d2l.Vocab(corpus)\nvocab.token_freqs[:10]\ndef seq_data_iter_random(corpus, batch_size, num_steps):\n corpus = corpus[random.randint(0, num_steps - 1):]\n num_subseqs = (len(corpus) - 1) // num_steps\n initial_indices = list(range(0, num_subseqs * num_steps, num_steps))\n random.shuffle(initial_indices)\n def data(pos):\n return corpus[pos: pos + num_steps]\n num_batches = num_subseqs // batch_size\n for i in range(0, batch_size * num_batches, batch_size):\n initial_indices_per_batch = initial_indices[i: i + batch_size]\n X = [data(j) for j in initial_indices_per_batch]\n Y = [data(j + 1) for j in initial_indices_per_batch]\n yield np.array(X), np.array(Y)\ndef seq_data_iter_sequential(corpus, batch_size, num_steps):\n offset = random.randint(0, num_steps)\n num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size\n Xs = np.array(corpus[offset: offset + num_tokens])\n Ys = np.array(corpus[offset + 1: offset + 1 + num_tokens])\n Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1)\n num_batches = Xs.shape[1] // num_steps\n for i in range(0, num_steps * num_batches, num_steps):\n X = Xs[:, i: i + num_steps]\n Y = Ys[:, i: i + num_steps]\n yield X, Y"},"paddle":{"kind":"null"}}},{"rowIdx":135,"cells":{"id":{"kind":"number","value":136,"string":"136"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom d2l import torch as d2l\nX, W_xh = torch.normal(0, 1, (3, 1)), torch.normal(0, 1, (1, 4))\nH, W_hh = torch.normal(0, 1, (3, 4)), torch.normal(0, 1, (4, 4))\ntorch.matmul(X, W_xh) + torch.matmul(H, W_hh)\ntorch.matmul(torch.cat((X, H), 1), torch.cat((W_xh, W_hh), 0))"},"mxnet":{"kind":"string","value":"from mxnet import np, npx\nfrom d2l import mxnet as d2l\nnpx.set_np()\nX, W_xh = np.random.normal(0, 1, (3, 1)), np.random.normal(0, 1, (1, 4))\nH, W_hh = np.random.normal(0, 1, (3, 4)), np.random.normal(0, 1, (4, 4))\nnp.dot(X, W_xh) + np.dot(H, W_hh)\nnp.dot(np.concatenate((X, H), 1), np.concatenate((W_xh, W_hh), 0))"},"paddle":{"kind":"null"}}},{"rowIdx":136,"cells":{"id":{"kind":"number","value":137,"string":"137"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"%matplotlib inline\nimport math\nimport torch\nfrom torch import nn\nfrom torch.nn import functional as F\nfrom d2l import torch as d2l\nbatch_size, num_steps = 32, 35\ntrain_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)\nF.one_hot(torch.tensor([0, 2]), len(vocab))\nX = torch.arange(10).reshape((2, 5))\nF.one_hot(X.T, 28).shape\ndef get_params(vocab_size, num_hiddens, device):\n num_inputs = num_outputs = vocab_size\n def normal(shape):\n return torch.randn(size=shape, device=device) * 0.01\n W_xh = normal((num_inputs, num_hiddens))\n W_hh = normal((num_hiddens, num_hiddens))\n b_h = torch.zeros(num_hiddens, device=device)\n W_hq = normal((num_hiddens, num_outputs))\n b_q = torch.zeros(num_outputs, device=device)\n params = [W_xh, W_hh, b_h, W_hq, b_q]\n for param in params:\n param.requires_grad_(True)\n return params\ndef init_rnn_state(batch_size, num_hiddens, device):\n return (torch.zeros((batch_size, num_hiddens), device=device), )\ndef rnn(inputs, state, params):\n W_xh, W_hh, b_h, W_hq, b_q = params\n H, = state\n outputs = []\n for X in inputs:\n H = torch.tanh(torch.mm(X, W_xh) + torch.mm(H, W_hh) + b_h)\n Y = torch.mm(H, W_hq) + b_q\n outputs.append(Y)\n return torch.cat(outputs, dim=0), (H,)\nclass RNNModelScratch:\n def __init__(self, vocab_size, num_hiddens, device, get_params, init_state, forward_fn):\n self.vocab_size, self.num_hiddens = vocab_size, num_hiddens\n self.params = get_params(vocab_size, num_hiddens, device)\n self.init_state, self.forward_fn = init_state, forward_fn\n def __call__(self, X, state):\n X = F.one_hot(X.T, self.vocab_size).type(torch.float32)\n return self.forward_fn(X, state, self.params)\n def begin_state(self, batch_size, device):\n return self.init_state(batch_size, self.num_hiddens, device)\nnum_hiddens = 512\nnet = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params, init_rnn_state, rnn)\nstate = net.begin_state(X.shape[0], d2l.try_gpu())\nY, new_state = net(X.to(d2l.try_gpu()), state)\nY.shape, len(new_state), new_state[0].shape\ndef predict_ch8(prefix, num_preds, net, vocab, device):\n state = net.begin_state(batch_size=1, device=device)\n outputs = [vocab[prefix[0]]]\n get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape((1, 1))\n for y in prefix[1:]:\n _, state = net(get_input(), state)\n outputs.append(vocab[y])\n for _ in range(num_preds):\n y, state = net(get_input(), state)\n outputs.append(int(y.argmax(dim=1).reshape(1)))\n return ''.join([vocab.idx_to_token[i] for i in outputs])\ndef grad_clipping(net, theta):\n if isinstance(net, nn.Module):\n params = [p for p in net.parameters() if p.requires_grad]\n else:\n params = net.params\n norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))\n if norm > theta:\n for param in params:\n param.grad[:] *= theta / norm\ndef train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):\n state, timer = None, d2l.Timer()\n metric = d2l.Accumulator(2)\n for X, Y in train_iter:\n if state is None or use_random_iter:\n state = net.begin_state(batch_size=X.shape[0], device=device)\n else:\n if isinstance(net, nn.Module) and not isinstance(state, tuple):\n state.detach_()\n else:\n for s in state:\n s.detach_()\n y = Y.T.reshape(-1)\n X, y = X.to(device), y.to(device)\n y_hat, state = net(X, state)\n l = loss(y_hat, y.long()).mean()\n if isinstance(updater, torch.optim.Optimizer):\n updater.zero_grad()\n l.backward()\n grad_clipping(net, 1)\n updater.step()\n else:\n l.backward()\n grad_clipping(net, 1)\n updater(batch_size=1)\n metric.add(l * y.numel(), y.numel())\n return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()\ndef train_ch8(net, train_iter, vocab, lr, num_epochs, device, use_random_iter=False):\n loss = nn.CrossEntropyLoss()\n animator = d2l.Animator(xlabel='epoch', ylabel='perplexity', legend=['train'], xlim=[10, num_epochs])\n if isinstance(net, nn.Module):\n updater = torch.optim.SGD(net.parameters(), lr)\n else:\n updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)\n predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)\n for epoch in range(num_epochs):\n ppl, speed = train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter)\n if (epoch + 1) % 10 == 0:\n animator.add(epoch + 1, [ppl])"},"mxnet":{"kind":"string","value":"%matplotlib inline\nimport math\nfrom mxnet import autograd, gluon, np, npx\nfrom d2l import mxnet as d2l\nnpx.set_np()\nbatch_size, num_steps = 32, 35\ntrain_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)\nnpx.one_hot(np.array([0, 2]), len(vocab))\nX = np.arange(10).reshape((2, 5))\nnpx.one_hot(X.T, 28).shape\ndef get_params(vocab_size, num_hiddens, device):\n num_inputs = num_outputs = vocab_size\n def normal(shape):\n return np.random.normal(scale=0.01, size=shape, ctx=device)\n W_xh = normal((num_inputs, num_hiddens))\n W_hh = normal((num_hiddens, num_hiddens))\n b_h = np.zeros(num_hiddens, ctx=device)\n W_hq = normal((num_hiddens, num_outputs))\n b_q = np.zeros(num_outputs, ctx=device)\n params = [W_xh, W_hh, b_h, W_hq, b_q]\n for param in params:\n param.attach_grad()\n return params\ndef init_rnn_state(batch_size, num_hiddens, device):\n return (np.zeros((batch_size, num_hiddens), ctx=device), )\ndef rnn(inputs, state, params):\n W_xh, W_hh, b_h, W_hq, b_q = params\n H, = state\n outputs = []\n for X in inputs:\n H = np.tanh(np.dot(X, W_xh) + np.dot(H, W_hh) + b_h)\n Y = np.dot(H, W_hq) + b_q\n outputs.append(Y)\n return np.concatenate(outputs, axis=0), (H,)\nclass RNNModelScratch:\n def __init__(self, vocab_size, num_hiddens, device, get_params, init_state, forward_fn):\n self.vocab_size, self.num_hiddens = vocab_size, num_hiddens\n self.params = get_params(vocab_size, num_hiddens, device)\n self.init_state, self.forward_fn = init_state, forward_fn\n def __call__(self, X, state):\n X = npx.one_hot(X.T, self.vocab_size)\n return self.forward_fn(X, state, self.params)\n def begin_state(self, batch_size, ctx):\n return self.init_state(batch_size, self.num_hiddens, ctx)\nnum_hiddens = 512\nnet = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params, init_rnn_state, rnn)\nstate = net.begin_state(X.shape[0], d2l.try_gpu())\nY, new_state = net(X.as_in_context(d2l.try_gpu()), state)\nY.shape, len(new_state), new_state[0].shape\ndef predict_ch8(prefix, num_preds, net, vocab, device):\n state = net.begin_state(batch_size=1, ctx=device)\n outputs = [vocab[prefix[0]]]\n get_input = lambda: np.array([outputs[-1]], ctx=device).reshape((1, 1))\n for y in prefix[1:]:\n _, state = net(get_input(), state)\n outputs.append(vocab[y])\n for _ in range(num_preds):\n y, state = net(get_input(), state)\n outputs.append(int(y.argmax(axis=1).reshape(1)))\n return ''.join([vocab.idx_to_token[i] for i in outputs])\ndef grad_clipping(net, theta):\n if isinstance(net, gluon.Block):\n params = [p.data() for p in net.collect_params().values()]\n else:\n params = net.params\n norm = math.sqrt(sum((p.grad ** 2).sum() for p in params))\n if norm > theta:\n for param in params:\n param.grad[:] *= theta / norm\ndef train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):\n state, timer = None, d2l.Timer()\n metric = d2l.Accumulator(2)\n for X, Y in train_iter:\n if state is None or use_random_iter:\n state = net.begin_state(batch_size=X.shape[0], ctx=device)\n else:\n for s in state:\n s.detach()\n y = Y.T.reshape(-1)\n X, y = X.as_in_ctx(device), y.as_in_ctx(device)\n with autograd.record():\n y_hat, state = net(X, state)\n l = loss(y_hat, y).mean()\n l.backward()\n grad_clipping(net, 1)\n updater(batch_size=1)\n metric.add(l * d2l.size(y), d2l.size(y))\n return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()\ndef train_ch8(net, train_iter, vocab, lr, num_epochs, device, use_random_iter=False):\n loss = gluon.loss.SoftmaxCrossEntropyLoss()\n animator = d2l.Animator(xlabel='epoch', ylabel='perplexity', legend=['train'], xlim=[10, num_epochs])\n if isinstance(net, gluon.Block):\n net.initialize(ctx=device, force_reinit=True, init=init.Normal(0.01))\n trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})\n updater = lambda batch_size: trainer.step(batch_size)\n else:\n updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)\n predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)\n for epoch in range(num_epochs):\n ppl, speed = train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter)\n if (epoch + 1) % 10 == 0:\n animator.add(epoch + 1, [ppl])"},"paddle":{"kind":"null"}}},{"rowIdx":137,"cells":{"id":{"kind":"number","value":138,"string":"138"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom torch.nn import functional as F\nfrom d2l import torch as d2l\nbatch_size, num_steps = 32, 35\ntrain_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)\nnum_hiddens = 256\nrnn_layer = nn.RNN(len(vocab), num_hiddens)\nstate = torch.zeros((1, batch_size, num_hiddens))\nstate.shape\nX = torch.rand(size=(num_steps, batch_size, len(vocab)))\nY, state_new = rnn_layer(X, state)\nY.shape, state_new.shape\nclass RNNModel(nn.Module):\n def __init__(self, rnn_layer, vocab_size, **kwargs):\n super(RNNModel, self).__init__(**kwargs)\n self.rnn = rnn_layer\n self.vocab_size = vocab_size\n self.num_hiddens = self.rnn.hidden_size\n if not self.rnn.bidirectional:\n self.num_directions = 1\n self.linear = nn.Linear(self.num_hiddens, self.vocab_size)\n else:\n self.num_directions = 2\n self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)\n def forward(self, inputs, state):\n X = F.one_hot(inputs.T.long(), self.vocab_size)\n X = X.to(torch.float32)\n Y, state = self.rnn(X, state)\n output = self.linear(Y.reshape((-1, Y.shape[-1])))\n return output, state\n def begin_state(self, device, batch_size=1):\n if not isinstance(self.rnn, nn.LSTM):\n return torch.zeros((self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device)\n else:\n return (torch.zeros((self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device),\n torch.zeros((self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device))\ndevice = d2l.try_gpu()\nnet = RNNModel(rnn_layer, vocab_size=len(vocab))\nnet = net.to(device)\nd2l.predict_ch8('time traveller', 10, net, vocab, device)"},"mxnet":{"kind":"string","value":"from mxnet import np, npx\nfrom mxnet.gluon import nn, rnn\nfrom d2l import mxnet as d2l\nnpx.set_np()\nbatch_size, num_steps = 32, 35\ntrain_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)\nnum_hiddens = 256\nrnn_layer = rnn.RNN(num_hiddens)\nrnn_layer.initialize()\nstate = rnn_layer.begin_state(batch_size=batch_size)\nlen(state), state[0].shape\nX = np.random.uniform(size=(num_steps, batch_size, len(vocab)))\nY, state_new = rnn_layer(X, state)\nY.shape, len(state_new), state_new[0].shape\nclass RNNModel(nn.Block):\n def __init__(self, rnn_layer, vocab_size, **kwargs):\n super(RNNModel, self).__init__(**kwargs)\n self.rnn = rnn_layer\n self.vocab_size = vocab_size\n self.dense = nn.Dense(vocab_size)\n def forward(self, inputs, state):\n X = npx.one_hot(inputs.T, self.vocab_size)\n Y, state = self.rnn(X, state)\n output = self.dense(Y.reshape(-1, Y.shape[-1]))\n return output, state\n def begin_state(self, *args, **kwargs):\n return self.rnn.begin_state(*args, **kwargs)\ndevice = d2l.try_gpu()\nnet = RNNModel(rnn_layer, len(vocab))\nnet.initialize(force_reinit=True, ctx=device)\nd2l.predict_ch8('time traveller', 10, net, vocab, device)"},"paddle":{"kind":"null"}}},{"rowIdx":138,"cells":{"id":{"kind":"number","value":139,"string":"139"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\nbatch_size, num_steps = 32, 35\ntrain_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)\ndef get_params(vocab_size, num_hiddens, device):\n num_inputs = num_outputs = vocab_size\n def normal(shape):\n return torch.randn(size=shape, device=device)*0.01\n def three():\n return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), torch.zeros(num_hiddens, device=device))\n W_xz, W_hz, b_z = three()\n W_xr, W_hr, b_r = three()\n W_xh, W_hh, b_h = three()\n W_hq = normal((num_hiddens, num_outputs))\n b_q = torch.zeros(num_outputs, device=device)\n params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]\n for param in params:\n param.requires_grad_(True)\n return params\ndef init_gru_state(batch_size, num_hiddens, device):\n return (torch.zeros((batch_size, num_hiddens), device=device), )\ndef gru(inputs, state, params):\n W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params\n H, = state\n outputs = []\n for X in inputs:\n Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)\n R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)\n H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)\n H = Z * H + (1 - Z) * H_tilda\n Y = H @ W_hq + b_q\n outputs.append(Y)\n return torch.cat(outputs, dim=0), (H,)\nnum_inputs = vocab_size\ngru_layer = nn.GRU(num_inputs, num_hiddens)\nmodel = d2l.RNNModel(gru_layer, len(vocab))\nmodel = model.to(device)\nd2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)"},"mxnet":{"kind":"string","value":"from mxnet import np, npx\nfrom mxnet.gluon import rnn\nfrom d2l import mxnet as d2l\nnpx.set_np()\nbatch_size, num_steps = 32, 35\ntrain_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)\ndef get_params(vocab_size, num_hiddens, device):\n num_inputs = num_outputs = vocab_size\n def normal(shape):\n return np.random.normal(scale=0.01, size=shape, ctx=device)\n def three():\n return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), np.zeros(num_hiddens, ctx=device))\n W_xz, W_hz, b_z = three()\n W_xr, W_hr, b_r = three()\n W_xh, W_hh, b_h = three()\n W_hq = normal((num_hiddens, num_outputs))\n b_q = np.zeros(num_outputs, ctx=device)\n params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]\n for param in params:\n param.attach_grad()\n return params\ndef init_gru_state(batch_size, num_hiddens, device):\n return (np.zeros(shape=(batch_size, num_hiddens), ctx=device), )\ndef gru(inputs, state, params):\n W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params\n H, = state\n outputs = []\n for X in inputs:\n Z = npx.sigmoid(np.dot(X, W_xz) + np.dot(H, W_hz) + b_z)\n R = npx.sigmoid(np.dot(X, W_xr) + np.dot(H, W_hr) + b_r)\n H_tilda = np.tanh(np.dot(X, W_xh) + np.dot(R * H, W_hh) + b_h)\n H = Z * H + (1 - Z) * H_tilda\n Y = np.dot(H, W_hq) + b_q\n outputs.append(Y)\n return np.concatenate(outputs, axis=0), (H,)\ngru_layer = rnn.GRU(num_hiddens)\nmodel = d2l.RNNModel(gru_layer, len(vocab))\nd2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)"},"paddle":{"kind":"null"}}},{"rowIdx":139,"cells":{"id":{"kind":"number","value":140,"string":"140"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\nbatch_size, num_steps = 32, 35\ntrain_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)\ndef get_lstm_params(vocab_size, num_hiddens, device):\n num_inputs = num_outputs = vocab_size\n def normal(shape):\n return torch.randn(size=shape, device=device)*0.01\n def three():\n return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), torch.zeros(num_hiddens, device=device))\n W_xi, W_hi, b_i = three()\n W_xf, W_hf, b_f = three()\n W_xo, W_ho, b_o = three()\n W_xc, W_hc, b_c = three()\n W_hq = normal((num_hiddens, num_outputs))\n b_q = torch.zeros(num_outputs, device=device)\n params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q]\n for param in params:\n param.requires_grad_(True)\n return params\ndef init_lstm_state(batch_size, num_hiddens, device):\n return (torch.zeros((batch_size, num_hiddens), device=device), torch.zeros((batch_size, num_hiddens), device=device))\ndef lstm(inputs, state, params):\n [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,\n W_hq, b_q] = params\n (H, C) = state\n outputs = []\n for X in inputs:\n I = torch.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)\n F = torch.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)\n O = torch.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)\n C_tilda = torch.tanh((X @ W_xc) + (H @ W_hc) + b_c)\n C = F * C + I * C_tilda\n H = O * torch.tanh(C)\n Y = (H @ W_hq) + b_q\n outputs.append(Y)\n return torch.cat(outputs, dim=0), (H, C)\nnum_inputs = vocab_size\nlstm_layer = nn.LSTM(num_inputs, num_hiddens)\nmodel = d2l.RNNModel(lstm_layer, len(vocab))\nmodel = model.to(device)\nd2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)"},"mxnet":{"kind":"string","value":"from mxnet import np, npx\nfrom mxnet.gluon import rnn\nfrom d2l import mxnet as d2l\nnpx.set_np()\nbatch_size, num_steps = 32, 35\ntrain_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)\ndef get_lstm_params(vocab_size, num_hiddens, device):\n num_inputs = num_outputs = vocab_size\n def normal(shape):\n return np.random.normal(scale=0.01, size=shape, ctx=device)\n def three():\n return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), np.zeros(num_hiddens, ctx=device))\n W_xi, W_hi, b_i = three()\n W_xf, W_hf, b_f = three()\n W_xo, W_ho, b_o = three()\n W_xc, W_hc, b_c = three()\n W_hq = normal((num_hiddens, num_outputs))\n b_q = np.zeros(num_outputs, ctx=device)\n params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q]\n for param in params:\n param.attach_grad()\n return params\ndef init_lstm_state(batch_size, num_hiddens, device):\n return (np.zeros((batch_size, num_hiddens), ctx=device), np.zeros((batch_size, num_hiddens), ctx=device))\ndef lstm(inputs, state, params):\n [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,\n W_hq, b_q] = params\n (H, C) = state\n outputs = []\n for X in inputs:\n I = npx.sigmoid(np.dot(X, W_xi) + np.dot(H, W_hi) + b_i)\n F = npx.sigmoid(np.dot(X, W_xf) + np.dot(H, W_hf) + b_f)\n O = npx.sigmoid(np.dot(X, W_xo) + np.dot(H, W_ho) + b_o)\n C_tilda = np.tanh(np.dot(X, W_xc) + np.dot(H, W_hc) + b_c)\n C = F * C + I * C_tilda\n H = O * np.tanh(C)\n Y = np.dot(H, W_hq) + b_q\n outputs.append(Y)\n return np.concatenate(outputs, axis=0), (H, C)\nlstm_layer = rnn.LSTM(num_hiddens)\nmodel = d2l.RNNModel(lstm_layer, len(vocab))\nd2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)"},"paddle":{"kind":"null"}}},{"rowIdx":140,"cells":{"id":{"kind":"number","value":141,"string":"141"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import os\nimport torch\nfrom d2l import torch as d2l\ndef build_array_nmt(lines, vocab, num_steps):\n lines = [vocab[l] for l in lines]\n lines = [l + [vocab['']] for l in lines]\n array = torch.tensor([truncate_pad(l, num_steps, vocab['']) for l in lines])\n valid_len = (array != vocab['']).type(torch.int32).sum(1)\n return array, valid_len\ntrain_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)\nfor X, X_valid_len, Y, Y_valid_len in train_iter:\n print('X:', X.type(torch.int32))\n print('Valid length of X:', X_valid_len)\n print('Y:', Y.type(torch.int32))\n print('Valid length of Y:', Y_valid_len)\n break"},"mxnet":{"kind":"string","value":"import os\nfrom mxnet import np, npx\nfrom d2l import mxnet as d2l\nnpx.set_np()\ndef build_array_nmt(lines, vocab, num_steps):\n lines = [vocab[l] for l in lines]\n lines = [l + [vocab['']] for l in lines]\n array = np.array([truncate_pad(l, num_steps, vocab['']) for l in lines])\n valid_len = (array != vocab['']).astype(np.int32).sum(1)\n return array, valid_len\ntrain_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)\nfor X, X_valid_len, Y, Y_valid_len in train_iter:\n print('X:', X.astype(np.int32))\n print('Valid length of X:', X_valid_len)\n print('Y:', Y.astype(np.int32))\n print('Valid length of Y:', Y_valid_len)\n break"},"paddle":{"kind":"null"}}},{"rowIdx":141,"cells":{"id":{"kind":"number","value":142,"string":"142"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"x = torch.arange(12)\nX = x.reshape(3, 4)\ntorch.zeros((2, 3, 4))\ntorch.ones((2, 3, 4))\ntorch.randn(3, 4)\ntorch.tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])\nx = torch.tensor([1.0, 2, 4, 8])\ny = torch.tensor([2, 2, 2, 2])\nx + y, x - y, x * y, x / y, x ** y\ntorch.exp(x)\nX = torch.arange(12, dtype=torch.float32).reshape((3,4))\nY = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])\ntorch.cat((X, Y), dim=0), torch.cat((X, Y), dim=1)\na = torch.arange(3).reshape((3, 1))\nb = torch.arange(2).reshape((1, 2))\nZ = torch.zeros_like(Y)\nZ[:] = X + Y\nA = X.numpy()\nB = torch.tensor(A)\na = torch.tensor([3.5])\nprint(a, a.item(), float(a), int(a))"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"x = paddle.arange(12)\nX = paddle.reshape(x, (3, 4))\npaddle.zeros((2, 3, 4))\npaddle.ones((2, 3, 4))\npaddle.randn((3, 4),'float32')\npaddle.to_tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])\nx = paddle.to_tensor([1.0, 2, 4, 8])\ny = paddle.to_tensor([2, 2, 2, 2])\nx + y, x - y, x * y, x / y, x**y\npaddle.exp(x)\nX = paddle.arange(12, dtype='float32').reshape((3, 4))\nY = paddle.to_tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])\npaddle.concat((X, Y), axis=0), paddle.concat((X, Y), axis=1)\na = paddle.reshape(paddle.arange(3), (3, 1))\nb = paddle.reshape(paddle.arange(2), (1, 2))\nZ = paddle.zeros_like(Y)\nZ = X + Y\nA = X.numpy()\nB = paddle.to_tensor(A)\ntype(A), type(B)\na = paddle.to_tensor([3.5])\na, a.item(), float(a), int(a)"}}},{"rowIdx":142,"cells":{"id":{"kind":"number","value":143,"string":"143"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nX, y = torch.tensor(inputs.values), torch.tensor(outputs.values)"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nX, y = paddle.to_tensor(inputs.values), paddle.to_tensor(outputs.values)"}}},{"rowIdx":143,"cells":{"id":{"kind":"number","value":144,"string":"144"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nx = torch.tensor(3.0)\ny = torch.tensor(2.0)\nprint(x + y, x * y, x / y, x**y)\nx = torch.arange(4)\nA = torch.arange(20).reshape(5, 4)\nA.T\nB = torch.tensor([[1, 2, 3], [2, 0, 4], [3, 4, 5]])\nB == B.T\nX = torch.arange(24).reshape(2, 3, 4)\nA = torch.arange(20, dtype=torch.float32).reshape(5, 4)\nB = A.clone()\nprint(A, A + B)\na = 2\nX = torch.arange(24).reshape(2, 3, 4)\nprint(a + X, (a * X).shape)\nx = torch.arange(4, dtype=torch.float32)\nprint(x, x.sum())\na = A.sum()\nA.mean()\nA.sum() / A.numel()\nA.mean(axis=0)\nA.sum(axis=0) / A.shape[0]\nsum_A = A.sum(axis=1, keepdims=True)\ny = torch.ones(4, dtype = torch.float32)\nprint(torch.dot(x, y))\ntorch.sum(x * y)\nA.shape, x.shape, torch.mv(A, x)\nB = torch.ones(4, 3)\ntorch.mm(A, B)\nu = torch.tensor([3.0, -4.0])\ntorch.norm(u)\ntorch.abs(u).sum()\ntorch.norm(torch.ones((4, 9)))"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nx = paddle.to_tensor([3.0])\ny = paddle.to_tensor([2.0])\nx + y, x * y, x / y, x**y\nx = paddle.arange(4)\nA = paddle.reshape(paddle.arange(20), (5, 4))\npaddle.transpose(A, perm=[1, 0])\nB = paddle.to_tensor([[1, 2, 3], [2, 0, 4], [3, 4, 5]])\nB == paddle.transpose(B, perm=[1, 0])\nX = paddle.reshape(paddle.arange(24), (2, 3, 4))\nA = paddle.reshape(paddle.arange(20, dtype=paddle.float32), (5, 4))\nB = A.clone()\nA, A + B\na = 2\nX = paddle.reshape(paddle.arange(24), (2, 3, 4))\na + X, (a * X).shape\nx = paddle.arange(4, dtype=paddle.float32)\nprint(x, x.sum())\nA.shape, A.sum()\nA.mean(), A.sum() / A.numel()\nA.mean(axis=0), A.sum(axis=0) / A.shape[0]\nsum_A = paddle.sum(A, axis=1, keepdim=True)\ny = paddle.ones(shape=[4], dtype='float32')\nx, y, paddle.dot(x, y)\npaddle.sum(x * y)\nA.shape, x.shape, paddle.mv(A, x)\nB = paddle.ones(shape=[4, 3], dtype='float32')\npaddle.mm(A, B)\nu = paddle.to_tensor([3.0, -4.0])\npaddle.norm(u)\npaddle.abs(u).sum()\npaddle.norm(paddle.ones(shape=[4, 9], dtype='float32'))"}}},{"rowIdx":144,"cells":{"id":{"kind":"number","value":145,"string":"145"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"%matplotlib inline\nimport numpy as np\nfrom matplotlib_inline import backend_inline\nfrom d2l import torch as d2l\ndef f(x):\n return 3 * x ** 2 - 4 * x\ndef numerical_lim(f, x, h):\n return (f(x + h) - f(x)) / h\nh = 0.1\nfor i in range(5):\n print(f'h={h:.5f}, numerical limit={numerical_lim(f, 1, h):.5f}')\n h *= 0.1"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"%matplotlib inline\nimport numpy as np\nfrom matplotlib_inline import backend_inline\nfrom d2l import paddle as d2l\ndef f(x):\n return 3 * x ** 2 - 4 * x\ndef numerical_lim(f, x, h):\n return (f(x + h) - f(x)) / h\nh = 0.1\nfor i in range(5):\n print(f'h={h:.5f}, numerical limit={numerical_lim(f, 1, h):.5f}')\n h *= 0.1"}}},{"rowIdx":145,"cells":{"id":{"kind":"number","value":146,"string":"146"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nx = torch.arange(4.0)\nx.requires_grad_(True)\nx.grad\ny = 2 * torch.dot(x, x)\nx.grad.zero_()\ny = x.sum()\ny.backward()\nx.grad\nx.grad.zero_()\ny = x * x\ny.sum().backward()\nx.grad\nx.grad.zero_()\ny = x * x\nu = y.detach()\nz = u * x\nz.sum().backward()\nx.grad == u\nx.grad.zero_()\ny.sum().backward()\nx.grad == 2 * x\ndef f(a):\n b = a * 2\n while b.norm() < 1000:\n b = b * 2\n if b.sum() > 0:\n c = b\n else:\n c = 100 * b\n return c\na = torch.randn(size=(), requires_grad=True)\nd = f(a)\nd.backward()"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nx = paddle.arange(4, dtype='float32')\nx = paddle.to_tensor(x, stop_gradient=False)\ny = 2 * paddle.dot(x, x)\nx.clear_gradient()\ny = paddle.sum(x)\ny.backward()\nx.grad\nx.clear_gradient()\ny = x * x\npaddle.sum(y).backward()\nx.grad\nx.clear_gradient()\ny = x * x\nu = y.detach()\nz = u * x\npaddle.sum(z).backward()\nx.grad == u\nx.clear_gradient()\npaddle.sum(y).backward()\nx.grad == 2 * x\ndef f(a):\n b = a * 2\n while paddle.norm(b) < 1000:\n b = b * 2\n if paddle.sum(b) > 0:\n c = b\n else:\n c = 100 * b\n return c\na = paddle.to_tensor(paddle.randn(shape=[1]), stop_gradient=False)\nd = f(a)\nd.backward()"}}},{"rowIdx":146,"cells":{"id":{"kind":"number","value":147,"string":"147"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"%matplotlib inline\nimport torch\nfrom torch.distributions import multinomial\nfrom d2l import torch as d2l\nfair_probs = torch.ones([6]) / 6\nmultinomial.Multinomial(1, fair_probs).sample()\nmultinomial.Multinomial(10, fair_probs).sample()\ncounts = multinomial.Multinomial(1000, fair_probs).sample()"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"%matplotlib inline\nimport warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport random\nimport numpy as np\nimport paddle\nfair_probs = [1.0 / 6] * 6\npaddle.distribution.Multinomial(1, paddle.to_tensor(fair_probs)).sample()\ncounts = paddle.distribution.Multinomial(1000, paddle.to_tensor(fair_probs)).sample()\ncounts / 1000\ncounts = paddle.distribution.Multinomial(1000, paddle.to_tensor(fair_probs)).sample()\ncounts / 1000"}}},{"rowIdx":147,"cells":{"id":{"kind":"number","value":148,"string":"148"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"counts = multinomial.Multinomial(10, fair_probs).sample((500,))\ncum_counts = counts.cumsum(dim=0)\nestimates = cum_counts / cum_counts.sum(dim=1, keepdims=True)\nd2l.set_figsize((6, 4.5))\nfor i in range(6):\n d2l.plt.plot(estimates[:, i].numpy(), label=(\"P(die=\" + str(i + 1) + \")\"))\nd2l.plt.axhline(y=0.167, color='black', linestyle='dashed')\nd2l.plt.gca().set_xlabel('Groups of experiments')\nd2l.plt.gca().set_ylabel('Estimated probability')\nd2l.plt.legend();\nimport torch\na = dir(torch.distributions)\nhelp(torch.ones)\ntorch.ones(4)"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"counts = paddle.distribution.Multinomial(10, paddle.to_tensor(fair_probs)).sample((500,1))\ncum_counts = counts.cumsum(axis=0)\ncum_counts = cum_counts.squeeze(axis=1)\nestimates = cum_counts / cum_counts.sum(axis=1, keepdim=True)\nd2l.set_figsize((6, 4.5))\nfor i in range(6):\n d2l.plt.plot(estimates[:, i],\n label=(\"P(die=\" + str(i + 1) + \")\"))\nd2l.plt.axhline(y=0.167, color='black', linestyle='dashed')\nd2l.plt.gca().set_xlabel('Groups of experiments')\nd2l.plt.gca().set_ylabel('Estimated probability')\nd2l.plt.legend()\nimport warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nhelp(paddle.ones)\npaddle.ones([4], dtype='float32')"}}},{"rowIdx":148,"cells":{"id":{"kind":"number","value":149,"string":"149"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"%matplotlib inline\nimport math\nimport time\nimport numpy as np\nimport torch\nfrom d2l import torch as d2l\nn = 10000\na = torch.ones(n)\nb = torch.ones(n)\nc = torch.zeros(n)\ntimer = Timer()\nfor i in range(n):\n c[i] = a[i] + b[i]\nx = np.arange(-7, 7, 0.01)\nparams = [(0, 1), (0, 2), (3, 1)]\nd2l.plot(x, [normal(x, mu, sigma) for mu, sigma in params], xlabel='x', ylabel='p(x)', figsize=(4.5, 2.5), legend=[f'mean {mu}, std {sigma}' for mu, sigma in params])"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"%matplotlib inline\nimport warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport math\nimport time\nimport numpy as np\nimport paddle\nn = 10000\na = paddle.ones([n])\nb = paddle.ones([n])\nc = paddle.zeros([n])\ntimer = Timer()\nfor i in range(n):\n c[i] = a[i] + b[i]\nx = np.arange(-7, 7, 0.01)\nparams = [(0, 1), (0, 2), (3, 1)]\nd2l.plot(x, [normal(x, mu, sigma) for mu, sigma in params], xlabel='x',\n ylabel='p(x)', figsize=(4.5, 2.5), legend=[f'mean {mu}, std {sigma}' for mu, sigma in params])"}}},{"rowIdx":149,"cells":{"id":{"kind":"number","value":150,"string":"150"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"%matplotlib inline\nimport random\nimport torch\nfrom d2l import torch as d2l\ndef synthetic_data(w, b, num_examples):\n X = torch.normal(0, 1, (num_examples, len(w)))\n y = torch.matmul(X, w) + b\n y += torch.normal(0, 0.01, y.shape)\n return X, y.reshape((-1, 1))\ntrue_w = torch.tensor([2, -3.4])\ntrue_b = 4.2\nfeatures, labels = synthetic_data(true_w, true_b, 1000)\nd2l.set_figsize()\nd2l.plt.scatter(features[:, (1)].detach().numpy(), labels.detach().numpy(), 1);\ndef data_iter(batch_size, features, labels):\n num_examples = len(features)\n indices = list(range(num_examples))\n random.shuffle(indices)\n for i in range(0, num_examples, batch_size):\n batch_indices = torch.tensor(indices[i: min(i + batch_size, num_examples)])\n yield features[batch_indices], labels[batch_indices]\nbatch_size = 10\nfor X, y in data_iter(batch_size, features, labels):\n print(X, '\n', y)\n break\nw = torch.normal(0, 0.01, size=(2,1), requires_grad=True)\nb = torch.zeros(1, requires_grad=True)\ndef linreg(X, w, b):\n return torch.matmul(X, w) + b\ndef sgd(params, lr, batch_size):\n with torch.no_grad():\n for param in params:\n param -= lr * param.grad / batch_size\n param.grad.zero_()\nlr = 0.03\nnum_epochs = 3\nnet = linreg\nloss = squared_loss\nfor epoch in range(num_epochs):\n for X, y in data_iter(batch_size, features, labels):\n l = loss(net(X, w, b), y)\n l.sum().backward()\n sgd([w, b], lr, batch_size)\n with torch.no_grad():\n train_l = loss(net(features, w, b), labels)"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"%matplotlib inline\nimport warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport random\nimport paddle\ndef synthetic_data(w, b, num_examples):\n X = paddle.normal(0, 1, (num_examples, len(w)))\n y = paddle.matmul(X, w) + b\n y += paddle.normal(0, 0.01, y.shape)\n return X, y.reshape((-1, 1))\ntrue_w = paddle.to_tensor([2, -3.4])\ntrue_b = 4.2\nfeatures, labels = synthetic_data(true_w, true_b, 1000)\nd2l.set_figsize()\nd2l.plt.scatter(features[:, 1].detach().numpy(), labels.detach().numpy(), 1);\ndef data_iter(batch_size, features, labels):\n num_examples = len(features)\n indices = list(range(num_examples))\n random.shuffle(indices)\n for i in range(0, num_examples, batch_size):\n batch_indices = paddle.to_tensor(indices[i: min(i + batch_size, num_examples)])\n yield features[batch_indices], labels[batch_indices]\nbatch_size = 10\nfor X, y in data_iter(batch_size, features, labels):\n break\nw = paddle.normal(0, 0.01, shape=(2,1))\nb = paddle.zeros(shape=[1])\nw.stop_gradient = False\nb.stop_gradient = False\ndef linreg(X, w, b):\n return paddle.matmul(X, w) + b\n with paddle.no_grad():\n for i, param in enumerate(params):\n param -= lr * params[i].grad / batch_size\n params[i].set_value(param)\n params[i].clear_gradient()\nlr = 0.03\nnum_epochs = 3\nnet = linreg\nloss = squared_loss\nfor epoch in range(num_epochs):\n for X, y in data_iter(batch_size, features, labels):\n l = loss(net(X, w, b), y)\n l.sum().backward()\n sgd([w, b], lr, batch_size)\n with paddle.no_grad():\n train_l = loss(net(features, w, b), labels)"}}},{"rowIdx":150,"cells":{"id":{"kind":"number","value":151,"string":"151"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import numpy as np\nimport torch\nfrom torch.utils import data\nfrom d2l import torch as d2l\ntrue_w = torch.tensor([2, -3.4])\ntrue_b = 4.2\nfeatures, labels = d2l.synthetic_data(true_w, true_b, 1000)\ndef load_array(data_arrays, batch_size, is_train=True):\n dataset = data.TensorDataset(*data_arrays)\n return data.DataLoader(dataset, batch_size, shuffle=is_train)\nbatch_size = 10\ndata_iter = load_array((features, labels), batch_size)\nfrom torch import nn\nnet = nn.Sequential(nn.Linear(2, 1))\nnet[0].weight.data.normal_(0, 0.01)\nnet[0].bias.data.fill_(0)\ntrainer = torch.optim.SGD(net.parameters(), lr=0.03)\nw = net[0].weight.data\nb = net[0].bias.data"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport numpy as np\nimport paddle\ntrue_w = paddle.to_tensor([2, -3.4])\ntrue_b = 4.2\nfeatures, labels = d2l.synthetic_data(true_w, true_b, 1000)\ndef load_array(data_arrays, batch_size, is_train=True):\n dataset = paddle.io.TensorDataset(data_arrays)\n return paddle.io.DataLoader(dataset, batch_size=batch_size, shuffle=is_train, return_list=True)\nbatch_size = 10\ndata_iter = load_array((features, labels), batch_size)\nfrom paddle import nn\nnet = nn.Sequential(nn.Linear(2, 1))\nweight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Normal(0, 0.01))\nbias_attr = paddle.ParamAttr(initializer=None)\nnet = nn.Sequential(nn.Linear(2, 1, weight_attr=weight_attr, bias_attr=bias_attr))\ntrainer = paddle.optimizer.SGD(learning_rate=0.03, parameters=net.parameters())\nw = net[0].weight\nb = net[0].bias"}}},{"rowIdx":151,"cells":{"id":{"kind":"number","value":152,"string":"152"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"%matplotlib inline\nimport torch\nimport torchvision\nfrom torch.utils import data\nfrom torchvision import transforms\nfrom d2l import torch as d2l\nd2l.use_svg_display()\ntrans = transforms.ToTensor()\nmnist_train = torchvision.datasets.FashionMNIST(\n root=\"../data\", train=True, transform=trans, download=True)\nmnist_test = torchvision.datasets.FashionMNIST(\n root=\"../data\", train=False, transform=trans, download=True)\ndef show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):\n figsize = (num_cols * scale, num_rows * scale)\n _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)\n axes = axes.flatten()\n for i, (ax, img) in enumerate(zip(axes, imgs)):\n if torch.is_tensor(img):\n ax.imshow(img.numpy())\n else:\n ax.imshow(img)\n ax.axes.get_xaxis().set_visible(False)\n ax.axes.get_yaxis().set_visible(False)\n if titles:\n ax.set_title(titles[i])\n return axes\nX, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))\nshow_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y));\nbatch_size = 256\n return 4\ntrain_iter = data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers())\ndef load_data_fashion_mnist(batch_size, resize=None):\n trans = [transforms.ToTensor()]\n if resize:\n trans.insert(0, transforms.Resize(resize))\n trans = transforms.Compose(trans)\n mnist_train = torchvision.datasets.FashionMNIST(root=\"../data\", train=True, transform=trans, download=True)\n mnist_test = torchvision.datasets.FashionMNIST(root=\"../data\", train=False, transform=trans, download=True)\n return (data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers()),\n data.DataLoader(mnist_test, batch_size, shuffle=False, num_workers=get_dataloader_workers()))"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"%matplotlib inline\nimport warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport sys\nimport paddle\nfrom paddle.vision import transforms\nd2l.use_svg_display()\ntrans = transforms.ToTensor()\nmnist_train = paddle.vision.datasets.FashionMNIST(mode=\"train\", transform=trans)\nmnist_test = paddle.vision.datasets.FashionMNIST(mode=\"test\", transform=trans)\ndef show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):\n figsize = (num_cols * scale, num_rows * scale)\n _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)\n axes = axes.flatten()\n for i, (ax, img) in enumerate(zip(axes, imgs)):\n if paddle.is_tensor(img):\n ax.imshow(img.numpy())\n else:\n ax.imshow(img)\n ax.axes.get_xaxis().set_visible(False)\n ax.axes.get_yaxis().set_visible(False)\n if titles:\n ax.set_title(titles[i])\n return axes\nX, y = next(iter(paddle.io.DataLoader(mnist_train, batch_size=18)))\nshow_images(X.reshape([18, 28, 28]), 2, 9, titles=get_fashion_mnist_labels(y));\nbatch_size = 256\n return 4\ntrain_iter = paddle.io.DataLoader(dataset=mnist_train, batch_size=batch_size, shuffle=True, return_list=True, num_workers=get_dataloader_workers())\n trans = [transforms.ToTensor()]\n if resize:\n trans.insert(0, transforms.Resize(resize))\n trans = transforms.Compose(trans)\n mnist_train = paddle.vision.datasets.FashionMNIST(mode=\"train\", transform=trans)\n mnist_test = paddle.vision.datasets.FashionMNIST(mode=\"test\", transform=trans)\n return (paddle.io.DataLoader(dataset=mnist_train, batch_size=batch_size, shuffle=True, return_list=True, num_workers=get_dataloader_workers()),\n paddle.io.DataLoader(dataset=mnist_test, batch_size=batch_size, return_list=True, shuffle=True, num_workers=get_dataloader_workers()))"}}},{"rowIdx":152,"cells":{"id":{"kind":"number","value":153,"string":"153"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom IPython import display\nfrom d2l import torch as d2l\nbatch_size = 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nnum_inputs = 784\nnum_outputs = 10\nW = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)\nb = torch.zeros(num_outputs, requires_grad=True)\nX = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])\nX.sum(0, keepdim=True), X.sum(1, keepdim=True)\ndef softmax(X):\n X_exp = torch.exp(X)\n partition = X_exp.sum(1, keepdim=True)\n return X_exp / partition\nX = torch.normal(0, 1, (2, 5))\nX_prob = softmax(X)\nX_prob, X_prob.sum(1)\ndef net(X):\n return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)\ny = torch.tensor([0, 2])\ny_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])\ny_hat[[0, 1], y]\ndef cross_entropy(y_hat, y):\n return - torch.log(y_hat[range(len(y_hat)), y])\ncross_entropy(y_hat, y)\ndef accuracy(y_hat, y):\n if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:\n y_hat = y_hat.argmax(axis=1)\n cmp = y_hat.type(y.dtype) == y\n return float(cmp.type(y.dtype).sum())\ndef evaluate_accuracy(net, data_iter):\n if isinstance(net, torch.nn.Module):\n net.eval()\n metric = Accumulator(2)\n with torch.no_grad():\n for X, y in data_iter:\n metric.add(accuracy(net(X), y), y.numel())\n return metric[0] / metric[1]\ndef train_epoch_ch3(net, train_iter, loss, updater):\n if isinstance(net, torch.nn.Module):\n net.train()\n metric = Accumulator(3)\n for X, y in train_iter:\n y_hat = net(X)\n l = loss(y_hat, y)\n if isinstance(updater, torch.optim.Optimizer):\n updater.zero_grad()\n l.mean().backward()\n updater.step()\n else:\n l.sum().backward()\n updater(X.shape[0])\n metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())\n return metric[0] / metric[2], metric[1] / metric[2]"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom IPython import display\nbatch_size = 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nnum_inputs = 784\nnum_outputs = 10\nW = paddle.normal(0, 0.01, shape=(num_inputs, num_outputs))\nb = paddle.zeros(shape=(num_outputs,))\nW.stop_gradient=False\nb.stop_gradient=False\nX = paddle.to_tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])\nX.sum(0, keepdim=True), X.sum(1, keepdim=True)\ndef softmax(X):\n X_exp = paddle.exp(X)\n partition = X_exp.sum(1, keepdim=True)\n return X_exp / partition\nX = paddle.normal(0, 1, (2, 5))\nX_prob = softmax(X)\nX_prob, X_prob.sum(1)\ndef net(X):\n return softmax(paddle.matmul(X.reshape((-1, W.shape[0])), W) + b)\ny = paddle.to_tensor([0, 2])\ny_hat = paddle.to_tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])\ny_hat[[0, 1], y]\ndef cross_entropy(y_hat, y):\n return - paddle.log(y_hat[[i for i in range(len(y_hat))], y.squeeze()])\ncross_entropy(y_hat, y)\ndef accuracy(y_hat, y):\n if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:\n if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:\n y_hat = y_hat.argmax(axis=1)\n if len(y_hat.shape) < len(y.shape):\n cmp = y_hat.astype(y.dtype) == y.squeeze()\n else:\n cmp = y_hat.astype(y.dtype) == y\n return float(cmp.astype(y.dtype).sum())\ndef evaluate_accuracy(net, data_iter):\n if isinstance(net, paddle.nn.Layer):\n net.eval()\n metric = Accumulator(2)\n with paddle.no_grad():\n for X, y in data_iter:\n metric.add(accuracy(net(X), y), y.numel())\n return metric[0] / metric[1]\ndef train_epoch_ch3(net, train_iter, loss, updater):\n if isinstance(net, paddle.nn.Layer):\n net.train()\n metric = Accumulator(3)\n for X, y in train_iter:\n y_hat = net(X)\n l = loss(y_hat, y)\n if isinstance(updater, paddle.optimizer.Optimizer):\n updater.clear_grad()\n l.mean().backward()\n updater.step()\n else:\n l.sum().backward()\n updater(X.shape[0])\n metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())\n return metric[0] / metric[2], metric[1] / metric[2]"}}},{"rowIdx":153,"cells":{"id":{"kind":"number","value":154,"string":"154"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\nbatch_size = 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nnet = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))\ndef init_weights(m):\n if type(m) == nn.Linear:\n nn.init.normal_(m.weight, std=0.01)\nnet.apply(init_weights);\ntrainer = torch.optim.SGD(net.parameters(), lr=0.1)"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom paddle import nn\nbatch_size = 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nnet = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))\ndef init_weights(m):\n if type(m) == nn.Linear:\n nn.initializer.Normal(m.weight, std=0.01)\nnet.apply(init_weights);\ntrainer = paddle.optimizer.SGD(learning_rate=0.1, parameters=net.parameters())"}}},{"rowIdx":154,"cells":{"id":{"kind":"number","value":155,"string":"155"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"%matplotlib inline\nimport torch\nfrom d2l import torch as d2l\nx = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)\ny = torch.relu(x)\nd2l.plot(x.detach(), y.detach(), 'x', 'relu(x)', figsize=(5, 2.5))\ny.backward(torch.ones_like(x), retain_graph=True)\nd2l.plot(x.detach(), x.grad, 'x', 'grad of relu', figsize=(5, 2.5))\ny = torch.sigmoid(x)\nd2l.plot(x.detach(), y.detach(), 'x', 'sigmoid(x)', figsize=(5, 2.5))\nx.grad.data.zero_()\ny.backward(torch.ones_like(x),retain_graph=True)\nd2l.plot(x.detach(), x.grad, 'x', 'grad of sigmoid', figsize=(5, 2.5))\ny = torch.tanh(x)\nd2l.plot(x.detach(), y.detach(), 'x', 'tanh(x)', figsize=(5, 2.5))\nx.grad.data.zero_()\ny.backward(torch.ones_like(x),retain_graph=True)\nd2l.plot(x.detach(), x.grad, 'x', 'grad of tanh', figsize=(5, 2.5))"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"%matplotlib inline\nimport warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nx = paddle.arange(-8.0, 8.0, 0.1, dtype='float32')\nx.stop_gradient = False\ny = paddle.nn.functional.relu(x)\nd2l.plot(x.detach().numpy(), y.detach().numpy(), 'x', 'relu(x)', figsize=(5, 2.5))\ny.backward(paddle.ones_like(x), retain_graph=True)\nd2l.plot(x.detach().numpy(), x.grad.numpy(), 'x', 'grad of relu', figsize=(5, 2.5))\ny = paddle.nn.functional.sigmoid(x)\nd2l.plot(x.detach().numpy(), y.detach().numpy(), 'x', 'sigmoid(x)', figsize=(5, 2.5))\nx.clear_gradient()\ny.backward(paddle.ones_like(x), retain_graph=True)\nd2l.plot(x.detach().numpy(), x.grad.numpy(), 'x', 'grad of sigmoid', figsize=(5, 2.5))\ny = paddle.tanh(x)\nd2l.plot(x.detach().numpy(), y.detach().numpy(), 'x', 'tanh(x)', figsize=(5, 2.5))\nx.clear_gradient()\ny.backward(paddle.ones_like(x), retain_graph=True)\nd2l.plot(x.detach().numpy(), x.grad.numpy(), 'x', 'grad of tanh', figsize=(5, 2.5))"}}},{"rowIdx":155,"cells":{"id":{"kind":"number","value":156,"string":"156"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\nbatch_size = 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nnum_inputs, num_outputs, num_hiddens = 784, 10, 256\nW1 = nn.Parameter(torch.randn(\n num_inputs, num_hiddens, requires_grad=True) * 0.01)\nb1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))\nW2 = nn.Parameter(torch.randn(\n num_hiddens, num_outputs, requires_grad=True) * 0.01)\nb2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))\nparams = [W1, b1, W2, b2]\ndef relu(X):\n a = torch.zeros_like(X)\n return torch.max(X, a)\nnum_epochs, lr = 10, 0.1\nupdater = torch.optim.SGD(params, lr=lr)\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom paddle import nn\nbatch_size = 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nnum_inputs, num_outputs, num_hiddens = 784, 10, 256\nW1 = paddle.randn([num_inputs, num_hiddens]) * 0.01\nW1.stop_gradient = False\nb1 = paddle.zeros([num_hiddens])\nb1.stop_gradient = False\nW2 = paddle.randn([num_hiddens, num_outputs]) * 0.01\nW2.stop_gradient = False\nb2 = paddle.zeros([num_outputs])\nb2.stop_gradient = False\nparams = [W1, b1, W2, b2]\ndef relu(X):\n a = paddle.zeros_like(X)\n return paddle.maximum(X, a)\nnum_epochs, lr = 10, 0.1\nupdater = paddle.optimizer.SGD(learning_rate=lr, parameters=params)\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)"}}},{"rowIdx":156,"cells":{"id":{"kind":"number","value":157,"string":"157"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\nnet = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 10))\ndef init_weights(m):\n if type(m) == nn.Linear:\n nn.init.normal_(m.weight, std=0.01)\nnet.apply(init_weights);\nbatch_size, lr, num_epochs = 256, 0.1, 10\nloss = nn.CrossEntropyLoss(reduction='none')\ntrainer = torch.optim.SGD(net.parameters(), lr=lr)\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom paddle import nn\nnet = nn.Sequential(nn.Flatten(),\n nn.Linear(784, 256),\n nn.ReLU(),\n nn.Linear(256, 10))\nfor layer in net:\n if type(layer) == nn.Linear:\n weight_attr = paddle.framework.ParamAttr(initializer=paddle.nn.initializer.Normal(mean=0.0, std=0.01))\n layer.weight_attr = weight_attr\nbatch_size, lr, num_epochs = 256, 0.1, 10\nloss = nn.CrossEntropyLoss(reduction='none')\ntrainer = paddle.optimizer.SGD(parameters=net.parameters(), learning_rate=lr)\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)"}}},{"rowIdx":157,"cells":{"id":{"kind":"number","value":158,"string":"158"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import math\nimport numpy as np\nimport torch\nfrom torch import nn\nfrom d2l import torch as d2l\ntrue_w, features, poly_features, labels = [torch.tensor(x, dtype=torch.float32) for x in [true_w, features, poly_features, labels]]\nfeatures[:2], poly_features[:2, :], labels[:2]\ndef train(train_features, test_features, train_labels, test_labels, num_epochs=400):\n loss = nn.MSELoss(reduction='none')\n input_shape = train_features.shape[-1]\n net = nn.Sequential(nn.Linear(input_shape, 1, bias=False))\n batch_size = min(10, train_labels.shape[0])\n train_iter = d2l.load_array((train_features, train_labels.reshape(-1,1)), batch_size)\n test_iter = d2l.load_array((test_features, test_labels.reshape(-1,1)), batch_size, is_train=False)\n trainer = torch.optim.SGD(net.parameters(), lr=0.01)\n animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log', xlim=[1, num_epochs], ylim=[1e-3, 1e2], legend=['train', 'test'])\n for epoch in range(num_epochs):\n d2l.train_epoch_ch3(net, train_iter, loss, trainer)\n if epoch == 0 or (epoch + 1) % 20 == 0:\n animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss), evaluate_loss(net, test_iter, loss)))\ntrain(poly_features[:n_train, :2], poly_features[n_train:, :2], labels[:n_train], labels[n_train:])\ntrain(poly_features[:n_train, :], poly_features[n_train:, :], labels[:n_train], labels[n_train:], num_epochs=1500)"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport math\nimport numpy as np\nimport paddle\nfrom paddle import nn\ntrue_w, features, poly_features, labels = [paddle.to_tensor(x, dtype=\n paddle.float32) for x in [true_w, features, poly_features, labels]]\nfeatures[:2], poly_features[:2, :], labels[:2]\ndef train(train_features, test_features, train_labels, test_labels,\n num_epochs=400):\n loss = nn.MSELoss()\n input_shape = train_features.shape[-1]\n net = nn.Sequential(nn.Linear(input_shape, 1, bias_attr=False))\n batch_size = min(10, train_labels.shape[0])\n train_iter = d2l.load_array(((train_features, train_labels.reshape([-1,1]))), batch_size)\n test_iter = d2l.load_array((test_features, test_labels.reshape([-1,1])), batch_size, is_train=False)\n trainer = paddle.optimizer.SGD(parameters=net.parameters(), learning_rate=0.01)\n animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log', xlim=[1, num_epochs], ylim=[1e-3, 1e2], legend=['train', 'test'])\n for epoch in range(num_epochs):\n d2l.train_epoch_ch3(net, train_iter, loss, trainer)\n if epoch == 0 or (epoch + 1) % 20 == 0:\n animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss), evaluate_loss(net, test_iter, loss)))\ntrain(poly_features[:n_train, :2], poly_features[n_train:, :2],\n labels[:n_train], labels[n_train:])\ntrain(poly_features[:n_train, :], poly_features[n_train:, :],\n labels[:n_train], labels[n_train:], num_epochs=1500)"}}},{"rowIdx":158,"cells":{"id":{"kind":"number","value":159,"string":"159"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"%matplotlib inline\nimport torch\nfrom torch import nn\nfrom d2l import torch as d2l\nn_train, n_test, num_inputs, batch_size = 20, 100, 200, 5\ntrue_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05\ntrain_data = d2l.synthetic_data(true_w, true_b, n_train)\ntrain_iter = d2l.load_array(train_data, batch_size)\ntest_data = d2l.synthetic_data(true_w, true_b, n_test)\ntest_iter = d2l.load_array(test_data, batch_size, is_train=False)\ndef init_params():\n w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True)\n b = torch.zeros(1, requires_grad=True)\n return [w, b]\ndef l2_penalty(w):\n return torch.sum(w.pow(2)) / 2\ndef train(lambd):\n w, b = init_params()\n net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss\n num_epochs, lr = 100, 0.003\n animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])\n for epoch in range(num_epochs):\n for X, y in train_iter:\n l = loss(net(X), y) + lambd * l2_penalty(w)\n l.sum().backward()\n d2l.sgd([w, b], lr, batch_size)\n if (epoch + 1) % 5 == 0:\n animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))\ndef train_concise(wd):\n net = nn.Sequential(nn.Linear(num_inputs, 1))\n for param in net.parameters():\n param.data.normal_()\n loss = nn.MSELoss(reduction='none')\n num_epochs, lr = 100, 0.003\n trainer = torch.optim.SGD([{\"params\":net[0].weight,'weight_decay': wd}, {\"params\":net[0].bias}], lr=lr)\n animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])\n for epoch in range(num_epochs):\n for X, y in train_iter:\n trainer.zero_grad()\n l = loss(net(X), y)\n l.mean().backward()\n trainer.step()\n if (epoch + 1) % 5 == 0:\n animator.add(epoch + 1,\n (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"%matplotlib inline\nimport warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom paddle import nn\nn_train, n_test, num_inputs, batch_size = 20, 100, 200, 5\ntrue_w, true_b = paddle.ones((num_inputs, 1)) * 0.01, 0.05\ntrain_data = d2l.synthetic_data(true_w, true_b, n_train)\ntrain_iter = d2l.load_array(train_data, batch_size)\ntest_data = d2l.synthetic_data(true_w, true_b, n_test)\ntest_iter = d2l.load_array(test_data, batch_size, is_train=False)\ndef init_params():\n w = paddle.normal(0, 1, shape=(num_inputs, 1))\n w.stop_gradient = False\n b = paddle.zeros(shape=[1])\n b.stop_gradient = False\n return [w, b]\ndef l2_penalty(w):\n return paddle.sum(w.pow(2)) / 2\ndef train(lambd):\n w, b = init_params()\n net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss\n num_epochs, lr = 100, 0.003\n animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])\n for epoch in range(num_epochs):\n for X, y in train_iter():\n l = loss(net(X), y) + lambd * l2_penalty(w)\n l.sum().backward()\n d2l.sgd([w, b], lr, batch_size)\n if (epoch + 1) % 5 == 0:\n animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))\ndef train_concise(wd):\n weight_attr = paddle.framework.ParamAttr(initializer=paddle.nn.initializer.Normal(mean=0.0, std=1.0))\n bias_attr = paddle.framework.ParamAttr(initializer=paddle.nn.initializer.Normal(mean=0.0, std=1.0))\n net = nn.Sequential(nn.Linear(num_inputs, 1, weight_attr=weight_attr, bias_attr=bias_attr))\n loss = nn.MSELoss()\n num_epochs, lr = 100, 0.003\n trainer = paddle.optimizer.SGD(parameters=net[0].parameters(), learning_rate=lr, weight_decay=wd*1.0)\n animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])\n for epoch in range(num_epochs):\n for X, y in train_iter:\n l = loss(net(X), y)\n l.backward()\n trainer.step()\n trainer.clear_grad()\n if (epoch + 1) % 5 == 0:\n animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))"}}},{"rowIdx":159,"cells":{"id":{"kind":"number","value":160,"string":"160"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\ndef dropout_layer(X, dropout):\n assert 0 <= dropout <= 1\n if dropout == 1:\n return torch.zeros_like(X)\n if dropout == 0:\n return X\n mask = (torch.rand(X.shape) > dropout).float()\n return mask * X / (1.0 - dropout)\nX= torch.arange(16, dtype = torch.float32).reshape((2, 8))\ndropout1, dropout2 = 0.2, 0.5\nclass Net(nn.Module):\n def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2, is_training = True):\n super(Net, self).__init__()\n self.num_inputs = num_inputs\n self.training = is_training\n self.lin1 = nn.Linear(num_inputs, num_hiddens1)\n self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)\n self.lin3 = nn.Linear(num_hiddens2, num_outputs)\n self.relu = nn.ReLU()\n def forward(self, X):\n H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))\n if self.training == True:\n H1 = dropout_layer(H1, dropout1)\n H2 = self.relu(self.lin2(H1))\n if self.training == True:\n H2 = dropout_layer(H2, dropout2)\n out = self.lin3(H2)\n return out\nnet = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)\nnum_epochs, lr, batch_size = 10, 0.5, 256\nloss = nn.CrossEntropyLoss(reduction='none')\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\ntrainer = torch.optim.SGD(net.parameters(), lr=lr)\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)\nnet = nn.Sequential(nn.Flatten(),\n nn.Linear(784, 256),\n nn.ReLU(),\n nn.Dropout(dropout1),\n nn.Linear(256, 256),\n nn.ReLU(),\n nn.Dropout(dropout2),\n nn.Linear(256, 10))\ndef init_weights(m):\n if type(m) == nn.Linear:\n nn.init.normal_(m.weight, std=0.01)\nnet.apply(init_weights);\ntrainer = torch.optim.SGD(net.parameters(), lr=lr)\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport random\nimport paddle\nfrom paddle import nn\nwarnings.filterwarnings(\"ignore\", category=DeprecationWarning)\nfrom d2l import paddle as d2l\ndef dropout_layer(X, dropout):\n assert 0 <= dropout <= 1\n if dropout == 1:\n return paddle.zeros_like(X)\n if dropout == 0:\n return X\n mask = (paddle.to_tensor(paddle.uniform(X.shape)) > dropout).astype('float32')\n return mask * X / (1.0 - dropout)\nX= paddle.arange(16, dtype = paddle.float32).reshape((2, 8))\ndropout1, dropout2 = 0.2, 0.5\nclass Net(nn.Layer):\n def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2,\n is_training = True):\n super(Net, self).__init__()\n self.num_inputs = num_inputs\n self.training = is_training\n self.lin1 = nn.Linear(num_inputs, num_hiddens1)\n self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)\n self.lin3 = nn.Linear(num_hiddens2, num_outputs)\n self.relu = nn.ReLU()\n def forward(self, X):\n H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))\n if self.training == True:\n H1 = dropout_layer(H1, dropout1)\n H2 = self.relu(self.lin2(H1))\n if self.training == True:\n H2 = dropout_layer(H2, dropout2)\n out = self.lin3(H2)\n return out\nnet = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)\nnum_epochs, lr, batch_size = 10, 0.5, 256\nloss = nn.CrossEntropyLoss(reduction='none')\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\ntrainer = paddle.optimizer.SGD(learning_rate=lr, parameters=net.parameters())\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)\nweight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Normal(std=0.01))\nnet = nn.Sequential(nn.Flatten(),\n nn.Linear(784, 256, weight_attr=weight_attr),\n nn.ReLU(),\n nn.Dropout(dropout1),\n nn.Linear(256, 256, weight_attr=weight_attr),\n nn.ReLU(),\n nn.Dropout(dropout2),\n nn.Linear(256, 10, weight_attr=weight_attr))\ntrainer = paddle.optimizer.SGD(learning_rate=0.5, parameters=net.parameters())\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)"}}},{"rowIdx":160,"cells":{"id":{"kind":"number","value":161,"string":"161"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"trainer = torch.optim.SGD(net.parameters(), lr=lr)\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)\n%matplotlib inline\nimport torch\nfrom d2l import torch as d2l\nx = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)\ny = torch.sigmoid(x)\ny.backward(torch.ones_like(x))\nd2l.plot(x.detach().numpy(), [y.detach().numpy(), x.grad.numpy()], legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5))\nM = torch.normal(0, 1, size=(4,4))\nfor i in range(100):\n M = torch.mm(M,torch.normal(0, 1, size=(4, 4)))"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"trainer = paddle.optimizer.SGD(learning_rate=0.5, parameters=net.parameters())\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)\n%matplotlib inline\nimport warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nx = paddle.arange(start=-8.0, end=8.0, step=0.1, dtype='float32')\nx.stop_gradient = False\ny = paddle.nn.functional.sigmoid(x)\ny.backward(paddle.ones_like(x))\nd2l.plot(x.detach().numpy(), [y.detach().numpy(), x.grad.numpy()],\n legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5))\nM = paddle.normal(0, 1, shape=(4,4))\nfor i in range(100):\n M = paddle.mm(M, paddle.normal(0, 1, shape=(4, 4)))"}}},{"rowIdx":161,"cells":{"id":{"kind":"number","value":162,"string":"162"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"%matplotlib inline\nimport numpy as np\nimport pandas as pd\nimport torch\nfrom torch import nn\nfrom d2l import torch as d2l\nn_train = train_data.shape[0]\ntrain_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32)\ntest_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32)\ntrain_labels = torch.tensor(train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32)\ndef log_rmse(net, features, labels):\n clipped_preds = torch.clamp(net(features), 1, float('inf'))\n rmse = torch.sqrt(loss(torch.log(clipped_preds), torch.log(labels)))\n return rmse.item()\ndef train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size):\n train_ls, test_ls = [], []\n train_iter = d2l.load_array((train_features, train_labels), batch_size)\n optimizer = torch.optim.Adam(net.parameters(), lr = learning_rate, weight_decay = weight_decay)\n for epoch in range(num_epochs):\n for X, y in train_iter:\n optimizer.zero_grad()\n l = loss(net(X), y)\n l.backward()\n optimizer.step()\n train_ls.append(log_rmse(net, train_features, train_labels))\n if test_labels is not None:\n test_ls.append(log_rmse(net, test_features, test_labels))\n return train_ls, test_ls\ndef get_k_fold_data(k, i, X, y):\n assert k > 1\n fold_size = X.shape[0] // k\n X_train, y_train = None, None\n for j in range(k):\n idx = slice(j * fold_size, (j + 1) * fold_size)\n X_part, y_part = X[idx, :], y[idx]\n if j == i:\n X_valid, y_valid = X_part, y_part\n elif X_train is None:\n X_train, y_train = X_part, y_part\n else:\n X_train = torch.cat([X_train, X_part], 0)\n y_train = torch.cat([y_train, y_part], 0)\n return X_train, y_train, X_valid, y_valid"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"%matplotlib inline\nimport warnings\nimport numpy as np\nimport pandas as pd\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nfrom paddle import nn\nwarnings.filterwarnings(\"ignore\", category=DeprecationWarning)\nfrom d2l import paddle as d2l\nn_train = train_data.shape[0]\ntrain_features = paddle.to_tensor(all_features[:n_train].values, dtype=paddle.float32)\ntest_features = paddle.to_tensor(all_features[n_train:].values, dtype=paddle.float32)\ntrain_labels = paddle.to_tensor(\n train_data.SalePrice.values.reshape(-1, 1), dtype=paddle.float32)\ndef log_rmse(net, features, labels):\n clipped_preds = paddle.clip(net(features), 1, float('inf'))\n rmse = paddle.sqrt(loss(paddle.log(clipped_preds), paddle.log(labels)))\n return rmse.item()\ndef train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size):\n train_ls, test_ls = [], []\n train_iter = d2l.load_array((train_features, train_labels), batch_size)\n optimizer = paddle.optimizer.Adam(learning_rate=learning_rate*1.0, parameters=net.parameters(), weight_decay=weight_decay*1.0)\n for epoch in range(num_epochs):\n for X, y in train_iter:\n l = loss(net(X), y)\n l.backward()\n optimizer.step()\n optimizer.clear_grad()\n train_ls.append(log_rmse(net, train_features, train_labels))\n if test_labels is not None:\n test_ls.append(log_rmse(net, test_features, test_labels))\n return train_ls, test_ls\ndef get_k_fold_data(k, i, X, y):\n assert k > 1\n fold_size = X.shape[0] // k\n X_train, y_train = None, None\n for j in range(k):\n idx = slice(j * fold_size, (j + 1) * fold_size)\n X_part, y_part = X[idx, :], y[idx]\n if j == i:\n X_valid, y_valid = X_part, y_part\n elif X_train is None:\n X_train, y_train = X_part, y_part\n else:\n X_train = paddle.concat([X_train, X_part], 0)\n y_train = paddle.concat([y_train, y_part], 0)\n return X_train, y_train, X_valid, y_valid"}}},{"rowIdx":162,"cells":{"id":{"kind":"number","value":163,"string":"163"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom torch.nn import functional as F\nnet = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))\nX = torch.rand(2, 20)\nnet(X)\nclass MLP(nn.Module):\n def __init__(self):\n super().__init__()\n self.hidden = nn.Linear(20, 256)\n self.out = nn.Linear(256, 10)\n def forward(self, X):\n return self.out(F.relu(self.hidden(X)))\nclass MySequential(nn.Module):\n def __init__(self, *args):\n super().__init__()\n for idx, module in enumerate(args):\n self._modules[str(idx)] = module\n def forward(self, X):\n for block in self._modules.values():\n X = block(X)\n return X\nclass FixedHiddenMLP(nn.Module):\n def __init__(self):\n super().__init__()\n self.rand_weight = torch.rand((20, 20), requires_grad=False)\n self.linear = nn.Linear(20, 20)\n def forward(self, X):\n X = self.linear(X)\n X = F.relu(torch.mm(X, self.rand_weight) + 1)\n X = self.linear(X)\n while X.abs().sum() > 1:\n X /= 2\n return X.sum()\nclass NestMLP(nn.Module):\n def __init__(self):\n super().__init__()\n self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU())\n self.linear = nn.Linear(32, 16)\n def forward(self, X):\n return self.linear(self.net(X))\nchimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())\nchimera(X)"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nfrom paddle import nn\nfrom paddle.nn import functional as F\nnet = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))\nX = paddle.rand([2, 20])\nnet(X)\nclass MLP(nn.Layer):\n def __init__(self):\n super().__init__()\n self.hidden = nn.Linear(20, 256)\n self.out = nn.Linear(256, 10)\n def forward(self, X):\n return self.out(F.relu(self.hidden(X)))\nclass MySequential(nn.Layer):\n def __init__(self, *layers):\n super(MySequential, self).__init__()\n if len(layers) > 0 and isinstance(layers[0], tuple):\n for name, layer in layers:\n self.add_sublayer(name, layer)\n else:\n for idx, layer in enumerate(layers):\n self.add_sublayer(str(idx), layer)\n def forward(self, X):\n for layer in self._sub_layers.values():\n X = layer(X)\n return X\nclass FixedHiddenMLP(nn.Layer):\n def __init__(self):\n super().__init__()\n self.rand_weight = paddle.rand([20, 20])\n self.linear = nn.Linear(20, 20)\n def forward(self, X):\n X = self.linear(X)\n X = F.relu(paddle.tensor.mm(X, self.rand_weight) + 1)\n X = self.linear(X)\n while X.abs().sum() > 1:\n X /= 2\n return X.sum()\nclass NestMLP(nn.Layer):\n def __init__(self):\n super().__init__()\n self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),\n nn.Linear(64, 32), nn.ReLU())\n self.linear = nn.Linear(32, 16)\n def forward(self, X):\n return self.linear(self.net(X))\nchimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())\nchimera(X)"}}},{"rowIdx":163,"cells":{"id":{"kind":"number","value":164,"string":"164"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nnet = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))\nX = torch.rand(size=(2, 4))\nnet(X)\nnet.state_dict()['2.bias'].data\ndef block1():\n return nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 4), nn.ReLU())\ndef block2():\n net = nn.Sequential()\n for i in range(4):\n net.add_module(f'block {i}', block1())\n return net\nrgnet = nn.Sequential(block2(), nn.Linear(4, 1))\nrgnet(X)\ndef init_normal(m):\n if type(m) == nn.Linear:\n nn.init.normal_(m.weight, mean=0, std=0.01)\n nn.init.zeros_(m.bias)\nnet.apply(init_normal)\nnet[0].weight.data[0], net[0].bias.data[0]\ndef init_constant(m):\n if type(m) == nn.Linear:\n nn.init.constant_(m.weight, 1)\n nn.init.zeros_(m.bias)\nnet.apply(init_constant)\nnet[0].weight.data[0], net[0].bias.data[0]\ndef init_xavier(m):\n if type(m) == nn.Linear:\n nn.init.xavier_uniform_(m.weight)\ndef init_42(m):\n if type(m) == nn.Linear:\n nn.init.constant_(m.weight, 42)\nnet[0].apply(init_xavier)\nnet[2].apply(init_42)\ndef my_init(m):\n if type(m) == nn.Linear:\n nn.init.uniform_(m.weight, -10, 10)\n m.weight.data *= m.weight.data.abs() >= 5\nnet.apply(my_init)\nnet[0].weight[:2]\nnet[0].weight.data[:] += 1\nnet[0].weight.data[0, 0] = 42\nnet[0].weight.data[0]\nlayer = CenteredLayer()\nlayer(torch.FloatTensor([1, 2, 3, 4, 5]))"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nfrom paddle import nn\nnet = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))\nX = paddle.rand([2, 4])\nnet(X)\nnet.state_dict()['2.bias']\ndef block1():\n return nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 4), nn.ReLU())\ndef block2():\n net = nn.Sequential()\n for i in range(4):\n net.add_sublayer(f'block {i}', block1())\n return net\nrgnet = nn.Sequential(block2(), nn.Linear(4, 1))\nrgnet(X)\ndef init_normal(m):\n if type(m) == nn.Linear:\n paddle.nn.initializer.Normal(mean=0.0, std=0.01)\n paddle.zeros(m.bias)\nnet.apply(init_normal)\nnet[0].weight[0],net[0].state_dict()['bias']\ndef init_constant(m):\n if type(m) == nn.Linear:\n paddle.nn.initializer.Constant(value = 1)\n paddle.zeros(m.bias)\nnet.apply(init_constant)\nnet[0].weight[0],net[0].state_dict()['bias']\ndef xavier(m):\n if type(m) == nn.Linear:\n paddle.nn.initializer.XavierUniform(m.weight)\ndef init_42(m):\n if type(m) == nn.Linear:\n paddle.nn.initializer.Constant(42)\nnet[0].apply(xavier)\nnet[2].apply(init_42)\ndef my_init(m):\n if type(m) == nn.Linear:\n for name, param in m.named_parameters()][0])\n paddle.nn.initializer.XavierUniform(m.weight, -10, 10)\n h = paddle.abs(m.weight) >= 5\n h = paddle.to_tensor(h)\n m = paddle.to_tensor(m.weight)\n m *= h\nnet.apply(my_init)\nnet[0].weight[:2]\nnet[0].weight.set_value(net[0].weight.numpy() + 1)\nval = net[0].weight.numpy()\nval[0, 0] = 42\nnet[0].weight.set_value(val)\nnet[0].weight[0]\nlayer = CenteredLayer()\nlayer(paddle.to_tensor([1, 2, 3, 4, 5], dtype='float32'))"}}},{"rowIdx":164,"cells":{"id":{"kind":"number","value":165,"string":"165"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nimport torch.nn.functional as F\nfrom torch import nn\nclass CenteredLayer(nn.Module):\n def __init__(self):\n super().__init__()\n def forward(self, X):\n return X - X.mean()\nY = net(torch.rand(4, 8))\nY.mean()\nclass MyLinear(nn.Module):\n def __init__(self, in_units, units):\n super().__init__()\n self.weight = nn.Parameter(torch.randn(in_units, units))\n self.bias = nn.Parameter(torch.randn(units,))\n def forward(self, X):\n linear = torch.matmul(X, self.weight.data) + self.bias.data\n return F.relu(linear)\nlinear(torch.rand(2, 5))\nnet = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))\nnet(torch.rand(2, 64))"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nimport paddle.nn.functional as F\nfrom paddle import nn\nclass CenteredLayer(nn.Layer):\n def __init__(self):\n super().__init__()\n def forward(self, X):\n return X - X.mean()\nY = net(paddle.rand([4, 8]))\nY.mean()\nclass MyLinear(nn.Layer):\n def __init__(self, in_units, units):\n super().__init__()\n self.weight = paddle.create_parameter(shape=(in_units, units), dtype='float32')\n self.bias = paddle.create_parameter(shape=(units,), dtype='float32')\n def forward(self, X):\n linear = paddle.matmul(X, self.weight) + self.bias\n return F.relu(linear)\nlinear(paddle.randn([2, 5]))\nnet = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))\nnet(paddle.rand([2, 64]))"}}},{"rowIdx":165,"cells":{"id":{"kind":"number","value":166,"string":"166"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom torch.nn import functional as F\nx = torch.arange(4)\ntorch.save(x, 'x-file')\nx2 = torch.load('x-file')\ny = torch.zeros(4)\ntorch.save([x, y],'x-files')\nx2, y2 = torch.load('x-files')\nmydict = {'x': x, 'y': y}\ntorch.save(mydict, 'mydict')\nmydict2 = torch.load('mydict')\nclass MLP(nn.Module):\n def __init__(self):\n super().__init__()\n self.hidden = nn.Linear(20, 256)\n self.output = nn.Linear(256, 10)\n def forward(self, x):\n return self.output(F.relu(self.hidden(x)))\nnet = MLP()\nX = torch.randn(size=(2, 20))\nY = net(X)\ntorch.save(net.state_dict(), 'mlp.params')\nclone = MLP()\nclone.load_state_dict(torch.load('mlp.params'))\nclone.eval()"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nfrom paddle import nn\nfrom paddle.nn import functional as F\nx = paddle.arange(4)\npaddle.save(x, 'x-file')\nx2 = paddle.load('x-file')\ny = paddle.zeros([4])\npaddle.save([x,y], 'x-file')\nx2, y2 = paddle.load('x-file')\nmydict = {'x': x, 'y': y}\npaddle.save(mydict, 'mydict')\nmydict2 = paddle.load('mydict')\nclass MLP(nn.Layer):\n def __init__(self):\n super().__init__()\n self.hidden = nn.Linear(20, 256)\n self.output = nn.Linear(256, 10)\n def forward(self, x):\n return self.output(F.relu(self.hidden(x)))\nnet = MLP()\nX = paddle.randn(shape=[2, 20])\nY = net(X)\npaddle.save(net.state_dict(), 'mlp.pdparams')\nclone = MLP()\nclone.set_state_dict(paddle.load('mlp.pdparams'))\nclone.eval()"}}},{"rowIdx":166,"cells":{"id":{"kind":"number","value":167,"string":"167"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\ntorch.device('cpu'), torch.device('cuda'), torch.device('cuda:1')\ntorch.cuda.device_count()\ndef try_gpu(i=0):\n if torch.cuda.device_count() >= i + 1:\n return devices = [torch.device(f'cuda:{i}')\n return torch.device('cpu')\ndef try_all_gpus(): devices = [torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())]\n return devices if devices else [torch.device('cpu')]\ntry_gpu(), try_gpu(10), try_all_gpus()\nx = torch.tensor([1, 2, 3])\nx.device\nX = torch.ones(2, 3, device=try_gpu())\nY = torch.rand(2, 3, device=try_gpu(1))\nnet = nn.Sequential(nn.Linear(3, 1))\nnet = net.to(device=try_gpu())\nnet[0].weight.data.device"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import paddle\nfrom paddle import nn\npaddle.device.set_device(\"cpu\"), paddle.CUDAPlace(0), paddle.CUDAPlace(1)\npaddle.device.cuda.device_count()\n if paddle.device.cuda.device_count() >= i + 1:\n return paddle.CUDAPlace(i)\n return paddle.CPUPlace()\ndef try_all_gpus():\n devices = [paddle.CUDAPlace(i) for i in range(paddle.device.cuda.device_count())]\n return devices if devices else paddle.CPUPlace()\ntry_gpu(),try_gpu(10),try_all_gpus()\nx = paddle.to_tensor([1, 2, 3])\nx.place\nX = paddle.to_tensor(paddle.ones(shape=[2, 3]), place=try_gpu())\nY = paddle.to_tensor(paddle.rand([2, 3]), place=try_gpu(1))\nnet = nn.Sequential(nn.Linear(3, 1))\nnet=net.to(try_gpu())\nnet[0].weight.place"}}},{"rowIdx":167,"cells":{"id":{"kind":"number","value":168,"string":"168"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\ndef corr2d(X, K):\n h, w = K.shape\n Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))\n for i in range(Y.shape[0]):\n for j in range(Y.shape[1]):\n Y[i, j] = (X[i:i + h, j:j + w] * K).sum()\n return Y\nX = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])\nK = torch.tensor([[0.0, 1.0], [2.0, 3.0]])\ncorr2d(X, K)\nclass Conv2D(nn.Module):\n def __init__(self, kernel_size):\n super().__init__()\n self.weight = nn.Parameter(torch.rand(kernel_size))\n self.bias = nn.Parameter(torch.zeros(1))\n def forward(self, x):\n return corr2d(x, self.weight) + self.bias\nX = torch.ones((6, 8))\nX[:, 2:6] = 0\nK = torch.tensor([[1.0, -1.0]])\nconv2d = nn.Conv2d(1,1, kernel_size=(1, 2), bias=False)\nX = X.reshape((1, 1, 6, 8))\nY = Y.reshape((1, 1, 6, 7))\nlr = 3e-2\nfor i in range(10):\n Y_hat = conv2d(X)\n l = (Y_hat - Y) ** 2\n conv2d.zero_grad()\n l.sum().backward()\n conv2d.weight.data[:] -= lr * conv2d.weight.grad\nconv2d.weight.data.reshape((1, 2))"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warningsfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom paddle import nn\ndef corr2d(X, K):\n h, w = K.shape\n Y = paddle.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))\n for i in range(Y.shape[0]):\n for j in range(Y.shape[1]):\n Y[i, j] = (X[i:i + h, j:j + w] * K).sum()\n return Y\nX = paddle.to_tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])\nK = paddle.to_tensor([[0.0, 1.0], [2.0, 3.0]])\ncorr2d(X, K)\nclass Conv2D(nn.Layer):\n def __init__(self, kernel_size):\n super().__init__()\n self.weight = paddle.ParamAttr(paddle.rand(kernel_size))\n self.bias = paddle.ParamAttr(paddle.zeros(1))\n def forward(self, x):\n return corr2d(x, self.weight) + self.bias\nX = paddle.ones((6, 8))\nX[:, 2:6] = 0\nK = paddle.to_tensor([[1.0, -1.0]])\nconv2d = nn.Conv2D(1, 1, kernel_size=(1, 2))\nX = X.reshape((1, 1, 6, 8))\nY = Y.reshape((1, 1, 6, 7))\nlr = 3e-2\nfor i in range(10):\n Y_hat = conv2d(X)\n l = (Y_hat - Y) ** 2\n conv2d.clear_gradients()\n l.sum().backward()\n with paddle.no_grad():\n conv2d.weight[:] -= lr * conv2d.weight.grad\nconv2d.weight.reshape((1, 2))"}}},{"rowIdx":168,"cells":{"id":{"kind":"number","value":169,"string":"169"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\n\ndef comp_conv2d(conv2d, X):\n X = X.reshape((1, 1) + X.shape)\n Y = conv2d(X)\n return Y.reshape(Y.shape[2:])\nconv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1)\nX = torch.rand(size=(8, 8))\ncomp_conv2d(conv2d, X).shape\nconv2d = nn.Conv2d(1, 1, kernel_size=(5, 3), padding=(2, 1))\ncomp_conv2d(conv2d, X).shape\nconv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)\ncomp_conv2d(conv2d, X).shape\nconv2d = nn.Conv2d(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))\ncomp_conv2d(conv2d, X).shape"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nwarnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")\nimport paddle\nfrom paddle import nn\n\ndef comp_conv2d(conv2d, X):\n X = paddle.reshape(X, [1, 1] + X.shape)\n Y = conv2d(X)\n return Y.reshape(Y.shape[2:])\nconv2d = nn.Conv2D(in_channels=1, out_channels=1, kernel_size=3, padding=1)\nX = paddle.rand((8, 8))\ncomp_conv2d(conv2d, X).shape\nconv2d = nn.Conv2D(in_channels=1, out_channels=1, kernel_size=(5, 3), padding=(2, 1))\ncomp_conv2d(conv2d, X).shape\nconv2d = nn.Conv2D(1, 1, kernel_size=3, padding=1, stride=2)\ncomp_conv2d(conv2d, X).shape\nconv2d = nn.Conv2D(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))\ncomp_conv2d(conv2d, X).shape"}}},{"rowIdx":169,"cells":{"id":{"kind":"number","value":170,"string":"170"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom d2l import torch as d2l\ndef corr2d_multi_in(X, K):\n return sum(d2l.corr2d(x, k) for x, k in zip(X, K))\nX = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]], [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])\nK = torch.tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])\ncorr2d_multi_in(X, K)\ndef corr2d_multi_in_out(X, K):\n return torch.stack([corr2d_multi_in(X, k) for k in K], 0)\nK = torch.stack((K, K + 1, K + 2), 0)\nK.shape\ndef corr2d_multi_in_out_1x1(X, K):\n c_i, h, w = X.shape\n c_o = K.shape[0]\n X = X.reshape((c_i, h * w))\n K = K.reshape((c_o, c_i))\n Y = torch.matmul(K, X)\n return Y.reshape((c_o, h, w))\nX = torch.normal(0, 1, (3, 3, 3))\nK = torch.normal(0, 1, (2, 3, 1, 1))\nY1 = corr2d_multi_in_out_1x1(X, K)\nY2 = corr2d_multi_in_out(X, K)\nassert float(torch.abs(Y1 - Y2).sum()) < 1e-6"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\ndef corr2d_multi_in(X, K):\n return sum(d2l.corr2d(x, k) for x, k in zip(X, K))\nX = paddle.to_tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]], [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])\nK = paddle.to_tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])\ncorr2d_multi_in(X, K)\ndef corr2d_multi_in_out(X, K):\n return paddle.stack([corr2d_multi_in(X, k) for k in K], 0)\nK = paddle.stack((K, K + 1, K + 2), 0)\nK.shape\ndef corr2d_multi_in_out_1x1(X, K):\n c_i, h, w = X.shape\n c_o = K.shape[0]\n X = X.reshape((c_i, h * w))\n K = K.reshape((c_o, c_i))\n Y = paddle.matmul(K, X)\n return Y.reshape((c_o, h, w))\nX = paddle.normal(0, 1, (3, 3, 3))\nK = paddle.normal(0, 1, (2, 3, 1, 1))\nY1 = corr2d_multi_in_out_1x1(X, K)\nY2 = corr2d_multi_in_out(X, K)\nassert float(paddle.abs(Y1 - Y2).sum()) < 1e-6"}}},{"rowIdx":170,"cells":{"id":{"kind":"number","value":171,"string":"171"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\ndef pool2d(X, pool_size, mode='max'):\n p_h, p_w = pool_size\n Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))\n for i in range(Y.shape[0]):\n for j in range(Y.shape[1]):\n if mode == 'max':\n Y[i, j] = X[i: i + p_h, j: j + p_w].max()\n elif mode == 'avg':\n Y[i, j] = X[i: i + p_h, j: j + p_w].mean()\n return Y\nX = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])\npool2d(X, (2, 2))\nX = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))\npool2d = nn.MaxPool2d(3)\npool2d(X)\npool2d = nn.MaxPool2d(3, padding=1, stride=2)\npool2d(X)\npool2d = nn.MaxPool2d((2, 3), stride=(2, 3), padding=(0, 1))\npool2d(X)\nX = torch.cat((X, X + 1), 1)\npool2d = nn.MaxPool2d(3, padding=1, stride=2)\npool2d(X)"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom paddle import nn\ndef pool2d(X, pool_size, mode='max'):\n p_h, p_w = pool_size\n Y = paddle.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))\n for i in range(Y.shape[0]):\n for j in range(Y.shape[1]):\n if mode == 'max':\n Y[i, j] = X[i: i + p_h, j: j + p_w].max()\n elif mode == 'avg':\n Y[i, j] = X[i: i + p_h, j: j + p_w].mean()\n return Y\nX = paddle.to_tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])\npool2d(X, (2, 2))\nX = paddle.arange(16, dtype=\"float32\").reshape((1, 1, 4, 4))\npool2d = nn.MaxPool2D(3, stride=3)\npool2d(X)\npool2d = nn.MaxPool2D(3, padding=1, stride=2)\npool2d(X)\npool2d = nn.MaxPool2D((2, 3), padding=(0, 1), stride=(2, 3))\npool2d(X)\nX = paddle.concat((X, X + 1), 1)\npool2d = paddle.nn.MaxPool2D(3, padding=1, stride=2)\npool2d(X)"}}},{"rowIdx":171,"cells":{"id":{"kind":"number","value":172,"string":"172"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\nnet = nn.Sequential(\n nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),\n nn.AvgPool2d(kernel_size=2, stride=2),\n nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),\n nn.AvgPool2d(kernel_size=2, stride=2),\n nn.Flatten(),\n nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),\n nn.Linear(120, 84), nn.Sigmoid(),\n nn.Linear(84, 10))\nX = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)\nfor layer in net:\n X = layer(X)\n print(layer.__class__.__name__,'output shape: \t',X.shape)\ndef train_ch6(net, train_iter, test_iter, num_epochs, lr, device):\n def init_weights(m):\n if type(m) == nn.Linear or type(m) == nn.Conv2d:\n nn.init.xavier_uniform_(m.weight)\n net.apply(init_weights)\n net.to(device)\n optimizer = torch.optim.SGD(net.parameters(), lr=lr)\n loss = nn.CrossEntropyLoss()\n animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], legend=['train loss', 'train acc', 'test acc'])\n timer, num_batches = d2l.Timer(), len(train_iter)\n for epoch in range(num_epochs):\n metric = d2l.Accumulator(3)\n net.train()\n for i, (X, y) in enumerate(train_iter):\n timer.start()\n optimizer.zero_grad()\n X, y = X.to(device), y.to(device)\n y_hat = net(X)\n l = loss(y_hat, y)\n l.backward()\n optimizer.step()\n with torch.no_grad():\n metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])\n timer.stop()\n train_l = metric[0] / metric[2]\n train_acc = metric[1] / metric[2]\n if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:\n animator.add(epoch + (i + 1) / num_batches, (train_l, train_acc, None))\n test_acc = evaluate_accuracy_gpu(net, test_iter)\n animator.add(epoch + 1, (None, None, test_acc))"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom paddle import nn, optimizer\nnet = nn.Sequential(\n nn.Conv2D(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),\n nn.AvgPool2D(kernel_size=2, stride=2),\n nn.Conv2D(6, 16, kernel_size=5), nn.Sigmoid(),\n nn.AvgPool2D(kernel_size=2, stride=2),\n nn.Flatten(),\n nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),\n nn.Linear(120, 84), nn.Sigmoid(),\n nn.Linear(84, 10))\nX = paddle.rand((1, 1, 28, 28), 'float32')\nfor layer in net:\n X = layer(X)\n print(layer.__class__.__name__, 'output shape: \t', X.shape)\ndef train_ch6(net, train_iter, test_iter, num_epochs, lr, device):\n def init_weights(m):\n if type(m) == nn.Linear or type(m) == nn.Conv2D:\n nn.initializer.XavierUniform(m.weight)\n net.apply(init_weights)\n net.to(device)\n optimizer = paddle.optimizer.SGD(learning_rate=lr, parameters=net.parameters())\n loss = nn.CrossEntropyLoss()\n animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], legend=['train loss', 'train acc', 'test acc'])\n timer, num_batches = d2l.Timer(), len(train_iter)\n for epoch in range(num_epochs):\n metric = d2l.Accumulator(3)\n net.train()\n for i, (X, y) in enumerate(train_iter):\n timer.start()\n optimizer.clear_grad()\n X, y = paddle.to_tensor(X, place=device), paddle.to_tensor(y, place=device)\n y_hat = net(X)\n l = loss(y_hat, y)\n l.backward()\n optimizer.step()\n with paddle.no_grad():\n metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])\n timer.stop()\n train_l = metric[0] / metric[2]\n train_acc = metric[1] / metric[2]\n if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:\n animator.add(epoch + (i + 1) / num_batches, (train_l, train_acc, None))\n test_acc = evaluate_accuracy_gpu(net, test_iter)\n animator.add(epoch + 1, (None, None, test_acc))"}}},{"rowIdx":172,"cells":{"id":{"kind":"number","value":173,"string":"173"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\nnet = nn.Sequential(\n nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),\n nn.MaxPool2d(kernel_size=3, stride=2),\n nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),\n nn.MaxPool2d(kernel_size=3, stride=2),\n nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),\n nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),\n nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),\n nn.MaxPool2d(kernel_size=3, stride=2),\n nn.Flatten(),\n nn.Linear(6400, 4096), nn.ReLU(),\n nn.Dropout(p=0.5),\n nn.Linear(4096, 4096), nn.ReLU(),\n nn.Dropout(p=0.5),\n nn.Linear(4096, 10))\nX = torch.randn(1, 1, 224, 224)\nfor layer in net:\n X=layer(X)\n print(layer.__class__.__name__,'output shape:\t',X.shape)"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nimport paddle.nn as nn\nnet = nn.Sequential(\n nn.Conv2D(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),\n nn.MaxPool2D(kernel_size=3, stride=2),\n nn.Conv2D(96, 256, kernel_size=5, padding=2), nn.ReLU(),\n nn.MaxPool2D(kernel_size=3, stride=2),\n nn.Conv2D(256, 384, kernel_size=3, padding=1), nn.ReLU(),\n nn.Conv2D(384, 384, kernel_size=3, padding=1), nn.ReLU(),\n nn.Conv2D(384, 256, kernel_size=3, padding=1), nn.ReLU(),\n nn.MaxPool2D(kernel_size=3, stride=2), nn.Flatten(),\n nn.Linear(6400, 4096), nn.ReLU(), nn.Dropout(p=0.5),\n nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5),\n nn.Linear(4096, 10))\nX = paddle.randn(shape=(1, 1, 224, 224))\nfor layer in net:\n X=layer(X)\n print(layer.__class__.__name__,'output shape:\t',X.shape)"}}},{"rowIdx":173,"cells":{"id":{"kind":"number","value":174,"string":"174"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\ndef vgg_block(num_convs, in_channels, out_channels):\n layers = []\n for _ in range(num_convs):\n layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))\n layers.append(nn.ReLU())\n in_channels = out_channels\n layers.append(nn.MaxPool2d(kernel_size=2,stride=2))\n return nn.Sequential(*layers)\ndef vgg(conv_arch):\n conv_blks = []\n in_channels = 1\n for (num_convs, out_channels) in conv_arch:\n conv_blks.append(vgg_block(num_convs, in_channels, out_channels))\n in_channels = out_channels\n return nn.Sequential(\n *conv_blks, nn.Flatten(),\n nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),\n nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),\n nn.Linear(4096, 10))\nnet = vgg(conv_arch)\nX = torch.randn(size=(1, 1, 224, 224))\nfor blk in net:\n X = blk(X)\n print(blk.__class__.__name__,'output shape:\t',X.shape)"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nimport paddle.nn as nn\ndef vgg_block(num_convs, in_channels, out_channels):\n layers = []\n for _ in range(num_convs):\n layers.append(nn.Conv2D(in_channels, out_channels, kernel_size=3, padding=1))\n layers.append(nn.ReLU())\n in_channels = out_channels\n layers.append(nn.MaxPool2D(kernel_size=2, stride=2))\n return nn.Sequential(*layers)\ndef vgg(conv_arch):\n conv_blks = []\n in_channels = 1\n for (num_convs, out_channels) in conv_arch:\n conv_blks.append(vgg_block(num_convs, in_channels, out_channels))\n in_channels = out_channels\n return nn.Sequential(*conv_blks, nn.Flatten(),\n nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(),\n nn.Dropout(0.5), nn.Linear(4096, 4096), nn.ReLU(),\n nn.Dropout(0.5), nn.Linear(4096, 10))\nnet = vgg(conv_arch)\nX = paddle.randn(shape=(1, 1, 224, 224))\nfor blk in net:\n X = blk(X)\n print(blk.__class__.__name__,'output shape:\t',X.shape)"}}},{"rowIdx":174,"cells":{"id":{"kind":"number","value":175,"string":"175"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\ndef nin_block(in_channels, out_channels, kernel_size, strides, padding):\n return nn.Sequential(\n nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),\n nn.ReLU(),\n nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),\n nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())\nnet = nn.Sequential(\n nin_block(1, 96, kernel_size=11, strides=4, padding=0),\n nn.MaxPool2d(3, stride=2),\n nin_block(96, 256, kernel_size=5, strides=1, padding=2),\n nn.MaxPool2d(3, stride=2),\n nin_block(256, 384, kernel_size=3, strides=1, padding=1),\n nn.MaxPool2d(3, stride=2),\n nn.Dropout(0.5),\n nin_block(384, 10, kernel_size=3, strides=1, padding=1),\n nn.AdaptiveAvgPool2d((1, 1)),\n nn.Flatten())\nX = torch.rand(size=(1, 1, 224, 224))\nfor layer in net:\n X = layer(X)\n print(layer.__class__.__name__,'output shape:\t', X.shape)"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nimport paddle.nn as nn\ndef nin_block(in_channels, out_channels, kernel_size, strides, padding):\n return nn.Sequential(\n nn.Conv2D(in_channels, out_channels, kernel_size, strides, padding),\n nn.ReLU(),\n nn.Conv2D(out_channels, out_channels, kernel_size=1),\n nn.ReLU(),\n nn.Conv2D(out_channels, out_channels, kernel_size=1),\n nn.ReLU())\nnet = nn.Sequential(\n nin_block(1, 96, kernel_size=11, strides=4, padding=0),\n nn.MaxPool2D(3, stride=2),\n nin_block(96, 256, kernel_size=5, strides=1, padding=2),\n nn.MaxPool2D(3, stride=2),\n nin_block(256, 384, kernel_size=3, strides=1, padding=1),\n nn.MaxPool2D(3, stride=2), nn.Dropout(0.5),\n nin_block(384, 10, kernel_size=3, strides=1, padding=1),\n nn.AdaptiveAvgPool2D((1, 1)),\n nn.Flatten())\nX = paddle.rand(shape=(1, 1, 224, 224))\nfor layer in net:\n X = layer(X)\n print(layer.__class__.__name__,'output shape:\t', X.shape)"}}},{"rowIdx":175,"cells":{"id":{"kind":"number","value":176,"string":"176"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom torch.nn import functional as F\nfrom d2l import torch as d2l\nclass Inception(nn.Module):\n def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):\n super(Inception, self).__init__(**kwargs)\n self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)\n self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)\n self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)\n self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)\n self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)\n self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)\n self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)\n def forward(self, x):\n p1 = F.relu(self.p1_1(x))\n p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))\n p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))\n p4 = F.relu(self.p4_2(self.p4_1(x)))\n return torch.cat((p1, p2, p3, p4), dim=1)\nb1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),\n nn.ReLU(),\n nn.MaxPool2d(kernel_size=3, stride=2, padding=1))\nb2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),\n nn.ReLU(),\n nn.Conv2d(64, 192, kernel_size=3, padding=1),\n nn.ReLU(),\n nn.MaxPool2d(kernel_size=3, stride=2, padding=1))\nb3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),\n Inception(256, 128, (128, 192), (32, 96), 64),\n nn.MaxPool2d(kernel_size=3, stride=2, padding=1))\nb4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),\n Inception(512, 160, (112, 224), (24, 64), 64),\n Inception(512, 128, (128, 256), (24, 64), 64),\n Inception(512, 112, (144, 288), (32, 64), 64),\n Inception(528, 256, (160, 320), (32, 128), 128),\n nn.MaxPool2d(kernel_size=3, stride=2, padding=1))\nb5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),\n Inception(832, 384, (192, 384), (48, 128), 128),\n nn.AdaptiveAvgPool2d((1,1)),\n nn.Flatten())\nnet = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))\nX = torch.rand(size=(1, 1, 96, 96))\nfor layer in net:\n X = layer(X)\n print(layer.__class__.__name__,'output shape:\t', X.shape)"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nimport paddle.nn as nn\nimport paddle.nn.functional as F\nclass Inception(nn.Layer):\n def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):\n super(Inception, self).__init__(**kwargs)\n self.p1_1 = nn.Conv2D(in_channels, c1, kernel_size=1)\n self.p2_1 = nn.Conv2D(in_channels, c2[0], kernel_size=1)\n self.p2_2 = nn.Conv2D(c2[0], c2[1], kernel_size=3, padding=1)\n self.p3_1 = nn.Conv2D(in_channels, c3[0], kernel_size=1)\n self.p3_2 = nn.Conv2D(c3[0], c3[1], kernel_size=5, padding=2)\n self.p4_1 = nn.MaxPool2D(kernel_size=3, stride=1, padding=1)\n self.p4_2 = nn.Conv2D(in_channels, c4, kernel_size=1)\n def forward(self, x):\n p1 = F.relu(self.p1_1(x))\n p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))\n p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))\n p4 = F.relu(self.p4_2(self.p4_1(x)))\n return paddle.concat(x=[p1, p2, p3, p4], axis=1)\nb1 = nn.Sequential(nn.Conv2D(1, 64, kernel_size=7, stride=2, padding=3),\n nn.ReLU(),\n nn.MaxPool2D(kernel_size=3, stride=2,padding=1))\nb2 = nn.Sequential(nn.Conv2D(64, 64, kernel_size=1),\n nn.ReLU(),\n nn.Conv2D(64, 192, kernel_size=3, padding=1),\n nn.ReLU(),\n nn.MaxPool2D(kernel_size=3, stride=2, padding=1))\nb3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),\n Inception(256, 128, (128, 192), (32, 96), 64),\n nn.MaxPool2D(kernel_size=3, stride=2, padding=1))\nb4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),\n Inception(512, 160, (112, 224), (24, 64), 64),\n Inception(512, 128, (128, 256), (24, 64), 64),\n Inception(512, 112, (144, 288), (32, 64), 64),\n Inception(528, 256, (160, 320), (32, 128), 128),\n nn.MaxPool2D(kernel_size=3, stride=2, padding=1))\nb5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),\n Inception(832, 384, (192, 384), (48, 128), 128),\n nn.AdaptiveAvgPool2D((1, 1)),\n nn.Flatten())\nnet = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))\nX = paddle.rand(shape=(1, 1, 96, 96))\nfor layer in net:\n X = layer(X)\n print(layer.__class__.__name__,'output shape:\t', X.shape)"}}},{"rowIdx":176,"cells":{"id":{"kind":"number","value":177,"string":"177"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\ndef batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):\n if not torch.is_grad_enabled():\n X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)\n else:\n assert len(X.shape) in (2, 4)\n if len(X.shape) == 2:\n mean = X.mean(dim=0)\n var = ((X - mean) ** 2).mean(dim=0)\n else:\n mean = X.mean(dim=(0, 2, 3), keepdim=True)\n var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)\n X_hat = (X - mean) / torch.sqrt(var + eps)\n moving_mean = momentum * moving_mean + (1.0 - momentum) * mean\n moving_var = momentum * moving_var + (1.0 - momentum) * var\n Y = gamma * X_hat + beta\n return Y, moving_mean.data, moving_var.data\nclass BatchNorm(nn.Module):\n def __init__(self, num_features, num_dims):\n super().__init__()\n if num_dims == 2:\n shape = (1, num_features)\n else:\n shape = (1, num_features, 1, 1)\n self.gamma = nn.Parameter(torch.ones(shape))\n self.beta = nn.Parameter(torch.zeros(shape))\n self.moving_mean = torch.zeros(shape)\n self.moving_var = torch.ones(shape)\n def forward(self, X):\n if self.moving_mean.device != X.device:\n self.moving_mean = self.moving_mean.to(X.device)\n self.moving_var = self.moving_var.to(X.device)\n Y, self.moving_mean, self.moving_var = batch_norm(\n X, self.gamma, self.beta, self.moving_mean,\n self.moving_var, eps=1e-5, momentum=0.9)\n return Y\nnet = nn.Sequential(\n nn.Conv2d(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),\n nn.AvgPool2d(kernel_size=2, stride=2),\n nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),\n nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),\n nn.Linear(16*4*4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),\n nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),\n nn.Linear(84, 10))\nnet[1].gamma.reshape((-1,)), net[1].beta.reshape((-1,))\nnet = nn.Sequential(\n nn.Conv2d(1, 6, kernel_size=5), nn.BatchNorm2d(6), nn.Sigmoid(),\n nn.AvgPool2d(kernel_size=2, stride=2),\n nn.Conv2d(6, 16, kernel_size=5), nn.BatchNorm2d(16), nn.Sigmoid(),\n nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),\n nn.Linear(256, 120), nn.BatchNorm1d(120), nn.Sigmoid(),\n nn.Linear(120, 84), nn.BatchNorm1d(84), nn.Sigmoid(),\n nn.Linear(84, 10))"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nimport paddle.nn as nn\ndef batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum, is_training=True):\n if not is_training:\n X_hat = (X - moving_mean) / (moving_var + eps) ** 0.5\n else:\n assert len(X.shape) in (2, 4)\n if len(X.shape) == 2:\n mean = paddle.mean(X)\n var = paddle.mean(((X - mean) ** 2))\n else:\n mean = paddle.mean(X, axis=(0, 2, 3), keepdim=True)\n var = paddle.mean(((X - mean) ** 2), axis=(0, 2, 3), keepdim=True)\n X_hat = (X - mean) / (var + eps) ** 0.5\n moving_mean = momentum * moving_mean + (1.0 - momentum) * mean\n moving_var = momentum * moving_var + (1.0 - momentum) * var\n Y = gamma * X_hat + beta\n return Y, moving_mean, moving_var\nclass BatchNorm(nn.Layer):\n def __init__(self, num_features, num_dims=4):\n super(BatchNorm, self).__init__()\n if num_dims == 2:\n shape = (1, num_features)\n else:\n shape = (1, num_features, 1, 1)\n self.gamma = self.create_parameter(\n attr=None,\n shape=shape,\n dtype='float32',\n is_bias=False,\n default_initializer=nn.initializer.Assign(paddle.ones(shape=shape, dtype='float32')))\n self.beta = self.create_parameter(\n attr=None,\n shape=shape,\n dtype='float32',\n is_bias=False,\n default_initializer=nn.initializer.Assign(paddle.zeros(shape=shape, dtype='float32')))\n self.moving_mean = paddle.zeros(shape=shape, dtype='float32')\n self.moving_var = paddle.zeros(shape=shape, dtype='float32')\n def forward(self, X):\n Y, self.moving_mean, self.moving_var = batch_norm(\n X, self.gamma, self.beta, self.moving_mean,\n self.moving_var, eps=1e-5, momentum=0.9, is_training=self.training)\n return Y\nnet = nn.Sequential(\n nn.Conv2D(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),\n nn.MaxPool2D(kernel_size=2, stride=2),\n nn.Conv2D(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),\n nn.MaxPool2D(kernel_size=2, stride=2),\n nn.Flatten(), nn.Linear(16 * 4 * 4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),\n nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),\n nn.Linear(84, 10))\nparam = net.parameters()\nprint('gamma:', param[2].numpy().reshape(-1))\nprint('beta:', param[3].numpy().reshape(-1))\nnet = nn.Sequential(\n nn.Conv2D(1, 6, kernel_size=5), nn.BatchNorm2D(6, momentum=0.1), nn.Sigmoid(),\n nn.MaxPool2D(kernel_size=2, stride=2),\n nn.Conv2D(6, 16, kernel_size=5), nn.BatchNorm2D(16, momentum=0.1), nn.Sigmoid(),\n nn.MaxPool2D(kernel_size=2, stride=2),\n nn.Flatten(),\n nn.Linear(256, 120), nn.BatchNorm1D(120, momentum=0.1), nn.Sigmoid(),\n nn.Linear(120, 84), nn.BatchNorm1D(84, momentum=0.1), nn.Sigmoid(),\n nn.Linear(84, 10))"}}},{"rowIdx":177,"cells":{"id":{"kind":"number","value":178,"string":"178"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom torch.nn import functional as F\nfrom d2l import torch as d2l\nclass Residual(nn.Module):\n def __init__(self, input_channels, num_channels, use_1x1conv=False, strides=1):\n super().__init__()\n self.conv1 = nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1, stride=strides)\n self.conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1)\n if use_1x1conv:\n self.conv3 = nn.Conv2d(input_channels, num_channels, kernel_size=1, stride=strides)\n else:\n self.conv3 = None\n self.bn1 = nn.BatchNorm2d(num_channels)\n self.bn2 = nn.BatchNorm2d(num_channels)\n def forward(self, X):\n Y = F.relu(self.bn1(self.conv1(X)))\n Y = self.bn2(self.conv2(Y))\n if self.conv3:\n X = self.conv3(X)\n Y += X\n return F.relu(Y)\nblk = Residual(3,3)\nX = torch.rand(4, 3, 6, 6)\nY = blk(X)\nY.shape\nblk = Residual(3,6, use_1x1conv=True, strides=2)\nblk(X).shape\nb1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),\n nn.BatchNorm2d(64), nn.ReLU(),\n nn.MaxPool2d(kernel_size=3, stride=2, padding=1))\nnet = nn.Sequential(b1, b2, b3, b4, b5,\n nn.AdaptiveAvgPool2d((1,1)),\n nn.Flatten(), nn.Linear(512, 10))\nX = torch.rand(size=(1, 1, 224, 224))\nfor layer in net:\n X = layer(X)\n print(layer.__class__.__name__,'output shape:\t', X.shape)"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nimport paddle.nn as nn\nfrom paddle.nn import functional as F\nclass Residual(nn.Layer):\n def __init__(self, input_channels, num_channels, use_1x1conv=False,\n strides=1):\n super(Residual, self).__init__()\n self.conv1 = nn.Conv2D(input_channels, num_channels, kernel_size=3, padding=1, stride=strides)\n self.conv2 = nn.Conv2D(num_channels, num_channels, kernel_size=3, padding=1)\n if use_1x1conv:\n self.conv3 = nn.Conv2D(input_channels, num_channels, kernel_size=1, stride=strides)\n else:\n self.conv3 = None\n self.bn1 = nn.BatchNorm2D(num_channels)\n self.bn2 = nn.BatchNorm2D(num_channels)\n self.relu = nn.ReLU()\n def forward(self, X):\n Y = F.relu(self.bn1(self.conv1(X)))\n Y = self.bn2(self.conv2(Y))\n if self.conv3:\n X = self.conv3(X)\n Y += X\n return F.relu(Y)\nblk = Residual(3, 3)\nX = paddle.rand([4, 3, 6, 6])\nY = blk(X)\nY.shape\nblk = Residual(3, 6, use_1x1conv=True, strides=2)\nblk(X).shape\nb1 = nn.Sequential(nn.Conv2D(1, 64, kernel_size=7, stride=2, padding=3),\n nn.BatchNorm2D(64), nn.ReLU(),\n nn.MaxPool2D(kernel_size=3, stride=2, padding=1))\nnet = nn.Sequential(b1, b2, b3, b4, b5,\n nn.AdaptiveAvgPool2D((1, 1)),\n nn.Flatten(), nn.Linear(512, 10))\nX = paddle.rand(shape=(1, 1, 224, 224))\nfor layer in net:\n X = layer(X)\n print(layer.__class__.__name__,'output shape:\t', X.shape)"}}},{"rowIdx":178,"cells":{"id":{"kind":"number","value":179,"string":"179"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\ndef conv_block(input_channels, num_channels):\n return nn.Sequential(\n nn.BatchNorm2d(input_channels), nn.ReLU(),\n nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1))\nclass DenseBlock(nn.Module):\n def __init__(self, num_convs, input_channels, num_channels):\n super(DenseBlock, self).__init__()\n layer = []\n for i in range(num_convs):\n layer.append(conv_block(num_channels * i + input_channels, num_channels))\n self.net = nn.Sequential(*layer)\n def forward(self, X):\n for blk in self.net:\n Y = blk(X)\n X = torch.cat((X, Y), dim=1)\n return X\nblk = DenseBlock(2, 3, 10)\nX = torch.randn(4, 3, 8, 8)\nY = blk(X)\nY.shape\ndef transition_block(input_channels, num_channels):\n return nn.Sequential(\n nn.BatchNorm2d(input_channels), nn.ReLU(),\n nn.Conv2d(input_channels, num_channels, kernel_size=1),\n nn.AvgPool2d(kernel_size=2, stride=2))\nb1 = nn.Sequential(\n nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),\n nn.BatchNorm2d(64), nn.ReLU(),\n nn.MaxPool2d(kernel_size=3, stride=2, padding=1))\nnet = nn.Sequential(\n b1, *blks,\n nn.BatchNorm2d(num_channels), nn.ReLU(),\n nn.AdaptiveAvgPool2d((1, 1)),\n nn.Flatten(),\n nn.Linear(num_channels, 10))"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nimport paddle.nn as nn\ndef conv_block(input_channels, num_channels):\n return nn.Sequential(\n nn.BatchNorm2D(input_channels), nn.ReLU(),\n nn.Conv2D(input_channels, num_channels, kernel_size=3, padding=1))\nclass DenseBlock(nn.Layer):\n def __init__(self, num_convs, input_channels, num_channels):\n super(DenseBlock, self).__init__()\n layer = []\n for i in range(num_convs):\n layer.append(conv_block(num_channels * i + input_channels, num_channels))\n self.net = nn.Sequential(*layer)\n def forward(self, X):\n for blk in self.net:\n Y = blk(X)\n X = paddle.concat(x=[X, Y], axis=1)\n return X\nblk = DenseBlock(2, 3, 10)\nX = paddle.randn([4, 3, 8, 8])\nY = blk(X)\nY.shape\ndef transition_block(input_channels, num_channels):\n return nn.Sequential(\n nn.BatchNorm2D(input_channels), nn.ReLU(),\n nn.Conv2D(input_channels, num_channels, kernel_size=1),\n nn.AvgPool2D(kernel_size=2, stride=2))\nb1 = nn.Sequential(\n nn.Conv2D(1, 64, kernel_size=7, stride=2, padding=3),\n nn.BatchNorm2D(64), nn.ReLU(),\n nn.MaxPool2D(kernel_size=3, stride=2, padding=1))\nnet = nn.Sequential(\n b1, *blks,\n nn.BatchNorm2D(num_channels), nn.ReLU(),\n nn.AdaptiveMaxPool2D((1, 1)),\n nn.Flatten(),\n nn.Linear(num_channels, 10))"}}},{"rowIdx":179,"cells":{"id":{"kind":"number","value":180,"string":"180"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"%matplotlib inline\nimport torch\nfrom torch import nn\nfrom d2l import torch as d2l\nT = 1000\ntime = torch.arange(1, T + 1, dtype=torch.float32)\nx = torch.sin(0.01 * time) + torch.normal(0, 0.2, (T,))\nd2l.plot(time, [x], 'time', 'x', xlim=[1, 1000], figsize=(6, 3))\ntau = 4\nfeatures = torch.zeros((T - tau, tau))\nfor i in range(tau):\n features[:, i] = x[i: T - tau + i]\nlabels = x[tau:].reshape((-1, 1))\nbatch_size, n_train = 16, 600\ntrain_iter = d2l.load_array((features[:n_train], labels[:n_train]), batch_size, is_train=True)\ndef init_weights(m):\n if type(m) == nn.Linear:\n nn.init.xavier_uniform_(m.weight)\ndef get_net():\n net = nn.Sequential(nn.Linear(4, 10),\n nn.ReLU(),\n nn.Linear(10, 1))\n net.apply(init_weights)\n return net\nloss = nn.MSELoss(reduction='none')\ndef train(net, train_iter, loss, epochs, lr):\n trainer = torch.optim.Adam(net.parameters(), lr)\n for epoch in range(epochs):\n for X, y in train_iter:\n trainer.zero_grad()\n l = loss(net(X), y)\n l.sum().backward()\n trainer.step()\nnet = get_net()\ntrain(net, train_iter, loss, 5, 0.01)\nmultistep_preds = torch.zeros(T)\nmultistep_preds[: n_train + tau] = x[: n_train + tau]\nfor i in range(n_train + tau, T):\n multistep_preds[i] = net(multistep_preds[i - tau:i].reshape((1, -1)))\nd2l.plot([time, time[tau:], time[n_train + tau:]],\n [x.detach().numpy(), onestep_preds.detach().numpy(),\n multistep_preds[n_train + tau:].detach().numpy()], 'time',\n 'x', legend=['data', '1-step preds', 'multistep preds'],\n xlim=[1, 1000], figsize=(6, 3))\nmax_steps = 64\nfeatures = torch.zeros((T - tau - max_steps + 1, tau + max_steps))\nfor i in range(tau):\n features[:, i] = x[i: i + T - tau - max_steps + 1]\nfor i in range(tau, tau + max_steps):\n features[:, i] = net(features[:, i - tau:i]).reshape(-1)\nsteps = (1, 4, 16, 64)\nd2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps],\n [features[:, tau + i - 1].detach().numpy() for i in steps], 'time', 'x',\n legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000],\n figsize=(6, 3))"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"%matplotlib inline\nimport warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom paddle import nn\nT = 1000\ntime = paddle.arange(1, T + 1, dtype=paddle.float32)\nx = paddle.sin(0.01 * time) + paddle.normal(0, 0.2, (T,))\nd2l.plot(time, [x], 'time', 'x', xlim=[1, 1000], figsize=(6, 3))\ntau = 4\nfeatures = paddle.zeros((T - tau, tau))\nfor i in range(tau):\n features[:, i] = x[i: T - tau + i]\nlabels = x[tau:].reshape((-1, 1))\nbatch_size, n_train = 16, 600\ntrain_iter = d2l.load_array((features[:n_train], labels[:n_train]), batch_size, is_train=True)\ndef init_weights(m):\n if type(m) == nn.Linear:\n nn.initializer.XavierUniform(m.weight)\ndef get_net():\n net = nn.Sequential(nn.Linear(4, 10),\n nn.ReLU(),\n nn.Linear(10, 1))\n net.apply(init_weights)\n return net\nloss = nn.MSELoss(reduction='none')\ndef train(net, train_iter, loss, epochs, lr):\n trainer = paddle.optimizer.Adam(learning_rate=lr, parameters=net.parameters())\n for epoch in range(epochs):\n for i,(X, y) in enumerate (train_iter()):\n trainer.clear_grad()\n l = loss(net(X), y)\n l.sum().backward()\n trainer.step()\nnet = get_net()\ntrain(net, train_iter, loss, 5, 0.01)\nmultistep_preds = paddle.zeros([T])\nmultistep_preds[: n_train + tau] = x[: n_train + tau]\nfor i in range(n_train + tau, T):\n multistep_preds[i] = net(multistep_preds[i - tau:i].reshape((1, -1)))\nd2l.plot([time, time[tau:], time[n_train + tau:]],\n [x.detach().numpy(), onestep_preds.detach().numpy(),\n multistep_preds[n_train + tau:].detach().numpy()], 'time',\n 'x', legend=['data', '1-step preds', 'multistep preds'],\n xlim=[1, 1000], figsize=(6, 3))\nmax_steps = 64\nfeatures = paddle.zeros((T - tau - max_steps + 1, tau + max_steps))\nfor i in range(tau):\n features[:, i] = x[i: i + T - tau - max_steps + 1]\nfor i in range(tau, tau + max_steps):\n features[:, i] = net(features[:, i - tau:i]).reshape([-1])\nsteps = (1, 4, 16, 64)\nd2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps],\n [features[:, tau + i - 1].detach().numpy() for i in steps], 'time', 'x',\n legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000],\n figsize=(6, 3))"}}},{"rowIdx":180,"cells":{"id":{"kind":"number","value":181,"string":"181"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import collections\nimport re\nfrom d2l import torch as d2l"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import collections\nimport re\nfrom d2l import paddle as d2l"}}},{"rowIdx":181,"cells":{"id":{"kind":"number","value":182,"string":"182"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import random\nimport torch\nfrom d2l import torch as d2l\ntokens = d2l.tokenize(d2l.read_time_machine())\ncorpus = [token for line in tokens for token in line]\nvocab = d2l.Vocab(corpus)\nvocab.token_freqs[:10]\ndef seq_data_iter_random(corpus, batch_size, num_steps):\n corpus = corpus[random.randint(0, num_steps - 1):]\n num_subseqs = (len(corpus) - 1) // num_steps\n initial_indices = list(range(0, num_subseqs * num_steps, num_steps))\n random.shuffle(initial_indices)\n def data(pos):\n return corpus[pos: pos + num_steps]\n num_batches = num_subseqs // batch_size\n for i in range(0, batch_size * num_batches, batch_size):\n initial_indices_per_batch = initial_indices[i: i + batch_size]\n X = [data(j) for j in initial_indices_per_batch]\n Y = [data(j + 1) for j in initial_indices_per_batch]\n yield torch.tensor(X), torch.tensor(Y)\ndef seq_data_iter_sequential(corpus, batch_size, num_steps):\n offset = random.randint(0, num_steps)\n num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size\n Xs = torch.tensor(corpus[offset: offset + num_tokens])\n Ys = torch.tensor(corpus[offset + 1: offset + 1 + num_tokens])\n Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1)\n num_batches = Xs.shape[1] // num_steps\n for i in range(0, num_steps * num_batches, num_steps):\n X = Xs[:, i: i + num_steps]\n Y = Ys[:, i: i + num_steps]\n yield X, Y"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport random\nimport paddle\ntokens = d2l.tokenize(d2l.read_time_machine())\ncorpus = [token for line in tokens for token in line]\nvocab = d2l.Vocab(corpus)\nvocab.token_freqs[:10]\ndef seq_data_iter_random(corpus, batch_size, num_steps):\n corpus = corpus[random.randint(0, num_steps - 1):]\n num_subseqs = (len(corpus) - 1) // num_steps\n initial_indices = list(range(0, num_subseqs * num_steps, num_steps))\n random.shuffle(initial_indices)\n def data(pos):\n return corpus[pos: pos + num_steps]\n num_batches = num_subseqs // batch_size\n for i in range(0, batch_size * num_batches, batch_size):\n initial_indices_per_batch = initial_indices[i: i + batch_size]\n X = [data(j) for j in initial_indices_per_batch]\n Y = [data(j + 1) for j in initial_indices_per_batch]\n yield paddle.to_tensor(X), paddle.to_tensor(Y)\ndef seq_data_iter_sequential(corpus, batch_size, num_steps):\n offset = random.randint(0, num_steps)\n num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size\n Xs = paddle.to_tensor(corpus[offset: offset + num_tokens])\n Ys = paddle.to_tensor(corpus[offset + 1: offset + 1 + num_tokens])\n Xs, Ys = Xs.reshape((batch_size, -1)), Ys.reshape((batch_size, -1))\n num_batches = Xs.shape[1] // num_steps\n for i in range(0, num_steps * num_batches, num_steps):\n X = Xs[:, i: i + num_steps]\n Y = Ys[:, i: i + num_steps]\n yield X, Y"}}},{"rowIdx":182,"cells":{"id":{"kind":"number","value":183,"string":"183"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom d2l import torch as d2l\nX, W_xh = torch.normal(0, 1, (3, 1)), torch.normal(0, 1, (1, 4))\nH, W_hh = torch.normal(0, 1, (3, 4)), torch.normal(0, 1, (4, 4))\ntorch.matmul(X, W_xh) + torch.matmul(H, W_hh)\ntorch.matmul(torch.cat((X, H), 1), torch.cat((W_xh, W_hh), 0))"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nX, W_xh = paddle.normal(0, 1, (3, 1)), paddle.normal(0, 1, (1, 4))\nH, W_hh = paddle.normal(0, 1, (3, 4)), paddle.normal(0, 1, (4, 4))\npaddle.matmul(X, W_xh) + paddle.matmul(H, W_hh)\npaddle.matmul(paddle.concat((X, H), 1), paddle.concat((W_xh, W_hh), 0))"}}},{"rowIdx":183,"cells":{"id":{"kind":"number","value":184,"string":"184"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"%matplotlib inline\nimport math\nimport torch\nfrom torch import nn\nfrom torch.nn import functional as F\nfrom d2l import torch as d2l\nbatch_size, num_steps = 32, 35\ntrain_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)\nF.one_hot(torch.tensor([0, 2]), len(vocab))\nX = torch.arange(10).reshape((2, 5))\nF.one_hot(X.T, 28).shape\ndef get_params(vocab_size, num_hiddens, device):\n num_inputs = num_outputs = vocab_size\n def normal(shape):\n return torch.randn(size=shape, device=device) * 0.01\n W_xh = normal((num_inputs, num_hiddens))\n W_hh = normal((num_hiddens, num_hiddens))\n b_h = torch.zeros(num_hiddens, device=device)\n W_hq = normal((num_hiddens, num_outputs))\n b_q = torch.zeros(num_outputs, device=device)\n params = [W_xh, W_hh, b_h, W_hq, b_q]\n for param in params:\n param.requires_grad_(True)\n return params\ndef init_rnn_state(batch_size, num_hiddens, device):\n return (torch.zeros((batch_size, num_hiddens), device=device), )\ndef rnn(inputs, state, params):\n W_xh, W_hh, b_h, W_hq, b_q = params\n H, = state\n outputs = []\n for X in inputs:\n H = torch.tanh(torch.mm(X, W_xh) + torch.mm(H, W_hh) + b_h)\n Y = torch.mm(H, W_hq) + b_q\n outputs.append(Y)\n return torch.cat(outputs, dim=0), (H,)\nclass RNNModelScratch:\n def __init__(self, vocab_size, num_hiddens, device, get_params, init_state, forward_fn):\n self.vocab_size, self.num_hiddens = vocab_size, num_hiddens\n self.params = get_params(vocab_size, num_hiddens, device)\n self.init_state, self.forward_fn = init_state, forward_fn\n def __call__(self, X, state):\n X = F.one_hot(X.T, self.vocab_size).type(torch.float32)\n return self.forward_fn(X, state, self.params)\n def begin_state(self, batch_size, device):\n return self.init_state(batch_size, self.num_hiddens, device)\nnum_hiddens = 512\nnet = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params, init_rnn_state, rnn)\nstate = net.begin_state(X.shape[0], d2l.try_gpu())\nY, new_state = net(X.to(d2l.try_gpu()), state)\nY.shape, len(new_state), new_state[0].shape\ndef predict_ch8(prefix, num_preds, net, vocab, device):\n state = net.begin_state(batch_size=1, device=device)\n outputs = [vocab[prefix[0]]]\n get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape((1, 1))\n for y in prefix[1:]:\n _, state = net(get_input(), state)\n outputs.append(vocab[y])\n for _ in range(num_preds):\n y, state = net(get_input(), state)\n outputs.append(int(y.argmax(dim=1).reshape(1)))\n return ''.join([vocab.idx_to_token[i] for i in outputs])\ndef grad_clipping(net, theta):\n if isinstance(net, nn.Module):\n params = [p for p in net.parameters() if p.requires_grad]\n else:\n params = net.params\n norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))\n if norm > theta:\n for param in params:\n param.grad[:] *= theta / norm\ndef train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):\n state, timer = None, d2l.Timer()\n metric = d2l.Accumulator(2)\n for X, Y in train_iter:\n if state is None or use_random_iter:\n state = net.begin_state(batch_size=X.shape[0], device=device)\n else:\n if isinstance(net, nn.Module) and not isinstance(state, tuple):\n state.detach_()\n else:\n for s in state:\n s.detach_()\n y = Y.T.reshape(-1)\n X, y = X.to(device), y.to(device)\n y_hat, state = net(X, state)\n l = loss(y_hat, y.long()).mean()\n if isinstance(updater, torch.optim.Optimizer):\n updater.zero_grad()\n l.backward()\n grad_clipping(net, 1)\n updater.step()\n else:\n l.backward()\n grad_clipping(net, 1)\n updater(batch_size=1)\n metric.add(l * y.numel(), y.numel())\n return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()\ndef train_ch8(net, train_iter, vocab, lr, num_epochs, device, use_random_iter=False):\n loss = nn.CrossEntropyLoss()\n animator = d2l.Animator(xlabel='epoch', ylabel='perplexity', legend=['train'], xlim=[10, num_epochs])\n if isinstance(net, nn.Module):\n updater = torch.optim.SGD(net.parameters(), lr)\n else:\n updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)\n predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)\n for epoch in range(num_epochs):\n ppl, speed = train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter)\n if (epoch + 1) % 10 == 0:\n animator.add(epoch + 1, [ppl])\nnet = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params, init_rnn_state, rnn)\ntrain_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(), use_random_iter=True)"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"%matplotlib inline\nimport warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport math\nimport paddle\nfrom paddle import nn\nfrom paddle.nn import functional as F\nbatch_size, num_steps = 32, 35\ntrain_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)\nF.one_hot(paddle.to_tensor([0, 2]), len(vocab))\nX = paddle.arange(10).reshape((2, 5))\nF.one_hot(X.T, 28).shape\ndef get_params(vocab_size, num_hiddens):\n num_inputs = num_outputs = vocab_size\n def normal(shape):\n return paddle.randn(shape=shape)* 0.01\n W_xh = normal([num_inputs, num_hiddens])\n W_hh = normal([num_hiddens, num_hiddens])\n b_h = paddle.zeros(shape=[num_hiddens])\n W_hq = normal([num_hiddens, num_outputs])\n b_q = paddle.zeros(shape=[num_outputs])\n params = [W_xh, W_hh, b_h, W_hq, b_q]\n for param in params:\n param.stop_gradient=False\n return params\ndef init_rnn_state(batch_size, num_hiddens):\n return (paddle.zeros(shape=[batch_size, num_hiddens]), )\ndef rnn(inputs, state, params):\n W_xh, W_hh, b_h, W_hq, b_q = params\n H, = state\n outputs = []\n for X in inputs:\n H = paddle.tanh(paddle.mm(X, W_xh) + paddle.mm(H, W_hh) + b_h)\n Y = paddle.mm(H, W_hq) + b_q\n outputs.append(Y)\n return paddle.concat(x=outputs, axis=0), (H,)\nclass RNNModelScratch:\n def __init__(self, vocab_size, num_hiddens, get_params, init_state, forward_fn):\n self.vocab_size, self.num_hiddens = vocab_size, num_hiddens\n self.params = get_params(vocab_size, num_hiddens)\n self.init_state, self.forward_fn = init_state, forward_fn\n def __call__(self, X, state):\n X = F.one_hot(X.T, self.vocab_size)\n return self.forward_fn(X, state, self.params)\n def begin_state(self, batch_size):\n return self.init_state(batch_size, self.num_hiddens)\nnum_hiddens = 512\nnet = RNNModelScratch(len(vocab), num_hiddens, get_params, init_rnn_state, rnn)\nstate = net.begin_state(X.shape[0])\nY, new_state = net(X, state)\nY.shape, len(new_state), new_state[0].shape\ndef predict_ch8(prefix, num_preds, net, vocab, device):\n state = net.begin_state(batch_size=1)\n outputs = [vocab[prefix[0]]]\n get_input = lambda: paddle.to_tensor(outputs[-1], place=device).reshape((1, 1))\n for y in prefix[1:]:\n _, state = net(get_input(), state)\n outputs.append(vocab[y])\n for _ in range(num_preds):\n y, state = net(get_input(), state)\n outputs.append(int(paddle.reshape(paddle.argmax(y,axis=1),shape=[1])))\n return ''.join([vocab.idx_to_token[i] for i in outputs])\ndef grad_clipping(net, theta):\n if isinstance(net, nn.Layer):\n params = [p for p in net.parameters() if not p.stop_gradient]\n else:\n params = net.params\n norm = paddle.sqrt(sum(paddle.sum((p.grad ** 2)) for p in params))\n if norm > theta:\n with paddle.no_grad():\n for param in params:\n param.grad.set_value(param.grad * theta / norm)\ndef train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):\n state, timer = None, d2l.Timer()\n metric = d2l.Accumulator(2)\n for X, Y in train_iter:\n if state is None or use_random_iter:\n state = net.begin_state(batch_size=X.shape[0])\n else:\n if isinstance(net, nn.Layer) and not isinstance(state, tuple):\n state.stop_gradient=True\n else:\n for s in state:\n s.stop_gradient=True\n y = paddle.reshape(Y.T,shape=[-1])\n X = paddle.to_tensor(X, place=device)\n y = paddle.to_tensor(y, place=device)\n y_hat, state = net(X, state)\n l = loss(y_hat, y).mean()\n if isinstance(updater, paddle.optimizer.Optimizer):\n updater.clear_grad()\n l.backward()\n grad_clipping(net, 1)\n updater.step()\n else:\n l.backward()\n grad_clipping(net, 1)\n updater(batch_size=1)\n metric.add(l * y.numel(), y.numel())\n return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()\ndef train_ch8(net, train_iter, vocab, lr, num_epochs, device, use_random_iter=False):\n loss = nn.CrossEntropyLoss()\n animator = d2l.Animator(xlabel='epoch', ylabel='perplexity', legend=['train'], xlim=[10, num_epochs])\n if isinstance(net, nn.Layer):\n updater = paddle.optimizer.SGD(learning_rate=lr, parameters=net.parameters())\n else:\n updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)\n predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)\n for epoch in range(num_epochs):\n ppl, speed = train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter)\n if (epoch + 1) % 10 == 0:\n animator.add(epoch + 1, [ppl])\nnet = RNNModelScratch(len(vocab), num_hiddens, get_params, init_rnn_state, rnn)\ntrain_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(), use_random_iter=True)"}}},{"rowIdx":184,"cells":{"id":{"kind":"number","value":185,"string":"185"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom torch.nn import functional as F\nfrom d2l import torch as d2l\nbatch_size, num_steps = 32, 35\ntrain_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)\nnum_hiddens = 256\nrnn_layer = nn.RNN(len(vocab), num_hiddens)\nstate = torch.zeros((1, batch_size, num_hiddens))\nstate.shape\nX = torch.rand(size=(num_steps, batch_size, len(vocab)))\nY, state_new = rnn_layer(X, state)\nY.shape, state_new.shape\nclass RNNModel(nn.Module):\n def __init__(self, rnn_layer, vocab_size, **kwargs):\n super(RNNModel, self).__init__(**kwargs)\n self.rnn = rnn_layer\n self.vocab_size = vocab_size\n self.num_hiddens = self.rnn.hidden_size\n if not self.rnn.bidirectional:\n self.num_directions = 1\n self.linear = nn.Linear(self.num_hiddens, self.vocab_size)\n else:\n self.num_directions = 2\n self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)\n def forward(self, inputs, state):\n X = F.one_hot(inputs.T.long(), self.vocab_size)\n X = X.to(torch.float32)\n Y, state = self.rnn(X, state)\n output = self.linear(Y.reshape((-1, Y.shape[-1])))\n return output, state\n def begin_state(self, device, batch_size=1):\n if not isinstance(self.rnn, nn.LSTM):\n return torch.zeros((self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device)\n else:\n return (torch.zeros((self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device),\n torch.zeros((self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device))\ndevice = d2l.try_gpu()\nnet = RNNModel(rnn_layer, vocab_size=len(vocab))\nnet = net.to(device)\nd2l.predict_ch8('time traveller', 10, net, vocab, device)\nnum_epochs, lr = 500, 1\nd2l.train_ch8(net, train_iter, vocab, lr, num_epochs, device)"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nfrom paddle import nn\nfrom paddle.nn import functional as F\nbatch_size, num_steps = 32, 35\ntrain_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)\nnum_hiddens = 256\nrnn_layer = nn.SimpleRNN(len(vocab), num_hiddens, time_major=True)\nstate = paddle.zeros(shape=[1, batch_size, num_hiddens])\nstate.shape\nX = paddle.rand(shape=[num_steps, batch_size, len(vocab)])\nY, state_new = rnn_layer(X, state)\nY.shape, state_new.shape\n def __init__(self, rnn_layer, vocab_size, **kwargs):\n super(RNNModel, self).__init__(**kwargs)\n self.rnn = rnn_layer\n self.vocab_size = vocab_size\n self.num_hiddens = self.rnn.hidden_size\n if self.rnn.num_directions==1:\n self.num_directions = 1\n self.linear = nn.Linear(self.num_hiddens, self.vocab_size)\n else:\n self.num_directions = 2\n self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)\n def forward(self, inputs, state):\n X = F.one_hot(inputs.T, self.vocab_size)\n Y, state = self.rnn(X, state)\n output = self.linear(Y.reshape((-1, Y.shape[-1])))\n return output, state\n def begin_state(self, batch_size=1):\n if not isinstance(self.rnn, nn.LSTM):\n return paddle.zeros(shape=[self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens])\n else:\n return (paddle.zeros(shape=[self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens]),\n paddle.zeros(shape=[self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens]))\ndevice = d2l.try_gpu()\nnet = RNNModel(rnn_layer, vocab_size=len(vocab))\nd2l.predict_ch8('time traveller', 10, net, vocab, device)\nnum_epochs, lr = 500, 1.0\nd2l.train_ch8(net, train_iter, vocab, lr, num_epochs, device)"}}},{"rowIdx":185,"cells":{"id":{"kind":"number","value":186,"string":"186"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\nbatch_size, num_steps = 32, 35\ntrain_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)\ndef get_params(vocab_size, num_hiddens, device):\n num_inputs = num_outputs = vocab_size\n def normal(shape):\n return torch.randn(size=shape, device=device)*0.01\n def three():\n return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), torch.zeros(num_hiddens, device=device))\n W_xz, W_hz, b_z = three()\n W_xr, W_hr, b_r = three()\n W_xh, W_hh, b_h = three()\n W_hq = normal((num_hiddens, num_outputs))\n b_q = torch.zeros(num_outputs, device=device)\n params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]\n for param in params:\n param.requires_grad_(True)\n return params\ndef init_gru_state(batch_size, num_hiddens, device):\n return (torch.zeros((batch_size, num_hiddens), device=device), )\ndef gru(inputs, state, params):\n W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params\n H, = state\n outputs = []\n for X in inputs:\n Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)\n R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)\n H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)\n H = Z * H + (1 - Z) * H_tilda\n Y = H @ W_hq + b_q\n outputs.append(Y)\n return torch.cat(outputs, dim=0), (H,)\nvocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()\nnum_epochs, lr = 500, 1\nmodel = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_params, init_gru_state, gru)\nd2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)\nnum_inputs = vocab_size\ngru_layer = nn.GRU(num_inputs, num_hiddens)\nmodel = d2l.RNNModel(gru_layer, len(vocab))\nmodel = model.to(device)\nd2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nimport paddle.nn.functional as F\nfrom paddle import nn\nbatch_size, num_steps = 32, 35\ntrain_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)\ndef get_params(vocab_size, num_hiddens):\n num_inputs = num_outputs = vocab_size\n def normal(shape):\n return paddle.randn(shape=shape)*0.01\n def three():\n return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), paddle.zeros([num_hiddens]))\n W_xz, W_hz, b_z = three()\n W_xr, W_hr, b_r = three()\n W_xh, W_hh, b_h = three()\n W_hq = normal((num_hiddens, num_outputs))\n b_q = paddle.zeros([num_outputs])\n params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]\n for param in params:\n param.stop_gradient = False\n return params\ndef init_gru_state(batch_size, num_hiddens):\n return (paddle.zeros([batch_size, num_hiddens]), )\ndef gru(inputs, state, params):\n W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params\n H,*_ = state\n outputs = []\n for X in inputs:\n Z = F.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)\n R = F.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)\n H_tilda = paddle.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)\n H = Z * H + (1 - Z) * H_tilda\n Y = H @ W_hq + b_q\n outputs.append(Y)\n return paddle.concat(outputs, axis=0), (H,*_)\nvocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()\nnum_epochs, lr = 500, 1.0\nmodel = d2l.RNNModelScratch(len(vocab), num_hiddens, get_params, init_gru_state, gru)\nd2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)\nnum_inputs = vocab_size\ngru_layer = nn.GRU(num_inputs, num_hiddens, time_major=True)\nmodel = d2l.RNNModel(gru_layer, len(vocab))\nd2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)"}}},{"rowIdx":186,"cells":{"id":{"kind":"number","value":187,"string":"187"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import torch\nfrom torch import nn\nfrom d2l import torch as d2l\nbatch_size, num_steps = 32, 35\ntrain_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)\ndef get_lstm_params(vocab_size, num_hiddens, device):\n num_inputs = num_outputs = vocab_size\n def normal(shape):\n return torch.randn(size=shape, device=device)*0.01\n def three():\n return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), torch.zeros(num_hiddens, device=device))\n W_xi, W_hi, b_i = three()\n W_xf, W_hf, b_f = three()\n W_xo, W_ho, b_o = three()\n W_xc, W_hc, b_c = three()\n W_hq = normal((num_hiddens, num_outputs))\n b_q = torch.zeros(num_outputs, device=device)\n params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q]\n for param in params:\n param.requires_grad_(True)\n return params\ndef init_lstm_state(batch_size, num_hiddens, device):\n return (torch.zeros((batch_size, num_hiddens), device=device), torch.zeros((batch_size, num_hiddens), device=device))\ndef lstm(inputs, state, params):\n [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,\n W_hq, b_q] = params\n (H, C) = state\n outputs = []\n for X in inputs:\n I = torch.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)\n F = torch.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)\n O = torch.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)\n C_tilda = torch.tanh((X @ W_xc) + (H @ W_hc) + b_c)\n C = F * C + I * C_tilda\n H = O * torch.tanh(C)\n Y = (H @ W_hq) + b_q\n outputs.append(Y)\n return torch.cat(outputs, dim=0), (H, C)\nvocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()\nnum_epochs, lr = 500, 1\nmodel = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_lstm_params, init_lstm_state, lstm)\nd2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)\nnum_inputs = vocab_size\nlstm_layer = nn.LSTM(num_inputs, num_hiddens)\nmodel = d2l.RNNModel(lstm_layer, len(vocab))\nmodel = model.to(device)\nd2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport paddle\nimport paddle.nn.functional as Function\nfrom paddle import nn\nbatch_size, num_steps = 32, 35\ntrain_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)\ndef get_lstm_params(vocab_size, num_hiddens):\n num_inputs = num_outputs = vocab_size\n def normal(shape):\n return paddle.randn(shape=shape)*0.01\n def three():\n return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), paddle.zeros([num_hiddens]))\n W_xi, W_hi, b_i = three()\n W_xf, W_hf, b_f = three()\n W_xo, W_ho, b_o = three()\n W_xc, W_hc, b_c = three()\n W_hq = normal((num_hiddens, num_outputs))\n b_q = paddle.zeros([num_outputs])\n params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q]\n for param in params:\n param.stop_gradient = False\n return params\ndef init_lstm_state(batch_size, num_hiddens):\n return (paddle.zeros([batch_size, num_hiddens]), paddle.zeros([batch_size, num_hiddens]))\ndef lstm(inputs, state, params):\n [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,\n W_hq, b_q] = params\n (H, C) = state\n outputs = []\n for X in inputs:\n I = Function.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)\n F = Function.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)\n O = Function.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)\n C_tilda = paddle.tanh((X @ W_xc) + (H @ W_hc) + b_c)\n C = F * C + I * C_tilda\n H = O * paddle.tanh(C)\n Y = (H @ W_hq) + b_q\n outputs.append(Y)\n return paddle.concat(outputs, axis=0), (H, C)\nvocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()\nnum_epochs, lr = 500, 1.0\nmodel = d2l.RNNModelScratch(len(vocab), num_hiddens, get_lstm_params, init_lstm_state, lstm)\nd2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)\nnum_inputs = vocab_size\nlstm_layer = nn.LSTM(num_inputs, num_hiddens, time_major=True)\nmodel = d2l.RNNModel(lstm_layer, len(vocab))\nd2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)"}}},{"rowIdx":187,"cells":{"id":{"kind":"number","value":188,"string":"188"},"tensorflow":{"kind":"null"},"pytorch":{"kind":"string","value":"import os\nimport torch\nfrom d2l import torch as d2l\ndef build_array_nmt(lines, vocab, num_steps):\n lines = [vocab[l] for l in lines]\n lines = [l + [vocab['']] for l in lines]\n array = torch.tensor([truncate_pad(l, num_steps, vocab['']) for l in lines])\n valid_len = (array != vocab['']).type(torch.int32).sum(1)\n return array, valid_len\ntrain_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)\nfor X, X_valid_len, Y, Y_valid_len in train_iter:\n print('X:', X.type(torch.int32))\n print('Valid length of X:', X_valid_len)\n print('Y:', Y.type(torch.int32))\n print('Valid length of Y:', Y_valid_len)\n break"},"mxnet":{"kind":"null"},"paddle":{"kind":"string","value":"import warnings\nfrom d2l import paddle as d2l\nwarnings.filterwarnings(\"ignore\")\nimport os\nimport paddle\ndef build_array_nmt(lines, vocab, num_steps):\n lines = [vocab[l] for l in lines]\n lines = [l + [vocab['']] for l in lines]\n array = paddle.to_tensor([truncate_pad(l, num_steps, vocab['']) for l in lines])\n valid_len = (array != vocab['']).astype(paddle.int32).sum(1)\n return array, valid_len\ntrain_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)\nfor X, X_valid_len, Y, Y_valid_len in train_iter:\n print('X:', X.astype(paddle.int32))\n print('Valid length of X:', X_valid_len)\n print('Y:', Y..astype(paddle.int32))\n print('Valid length of Y:', Y_valid_len)\n break"}}},{"rowIdx":188,"cells":{"id":{"kind":"number","value":189,"string":"189"},"tensorflow":{"kind":"string","value":"x = tf.range(12)\ntf.size(x)\nX = tf.reshape(x, (3, 4))\ntf.zeros((2, 3, 4))\ntf.ones((2, 3, 4))\ntf.random.normal(shape=[3, 4])\ntf.constant([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])\nx = tf.constant([1.0, 2, 4, 8])\ny = tf.constant([2.0, 2, 2, 2])\nx + y, x - y, x * y, x / y, x ** y\ntf.exp(x)\nX = tf.reshape(tf.range(12, dtype=tf.float32), (3, 4))\nY = tf.constant([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])\ntf.concat([X, Y], axis=0), tf.concat([X, Y], axis=1)\ntf.reduce_sum(X)\na = tf.reshape(tf.range(3), (3, 1))\nb = tf.reshape(tf.range(2), (1, 2))\nX_var = tf.Variable(X)\nX_var[1, 2].assign(9)\nX_var = tf.Variable(X)\nX_var[0:2, :].assign(tf.ones(X_var[0:2,:].shape, dtype = tf.float32) * 12)\nZ = tf.Variable(tf.zeros_like(Y))\nZ.assign(X + Y)\n@tf.function\ndef computation(X, Y):\n Z = tf.zeros_like(Y)\n A = X + Y\n B = A + Y\n C = B + Y\n return C + Y\ncomputation(X, Y)\nA = X.numpy()\nB = tf.constant(A)\na = tf.constant([3.5]).numpy()\nprint(a, a.item(), float(a), int(a))"},"pytorch":{"kind":"string","value":"x = torch.arange(12)\nx.numel()\nX = x.reshape(3, 4)\ntorch.zeros((2, 3, 4))\ntorch.ones((2, 3, 4))\ntorch.randn(3, 4)\ntorch.tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])\nx = torch.tensor([1.0, 2, 4, 8])\ny = torch.tensor([2, 2, 2, 2])\nx + y, x - y, x * y, x / y, x ** y\ntorch.exp(x)\nX = torch.arange(12, dtype=torch.float32).reshape((3,4))\nY = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])\ntorch.cat((X, Y), dim=0), torch.cat((X, Y), dim=1)\nX.sum()\na = torch.arange(3).reshape((3, 1))\nb = torch.arange(2).reshape((1, 2))\nX[1, 2] = 9\nX[0:2, :] = 12\nZ = torch.zeros_like(Y)\nZ[:] = X + Y\nbefore = id(X)\nX += Y\nid(X) == before\nA = X.numpy()\nB = torch.tensor(A)\na = torch.tensor([3.5])\nprint(a, a.item(), float(a), int(a))"},"mxnet":{"kind":"null"},"paddle":{"kind":"null"}}},{"rowIdx":189,"cells":{"id":{"kind":"number","value":190,"string":"190"},"tensorflow":{"kind":"string","value":"import tensorflow as tf\nX, y = tf.constant(inputs.values), tf.constant(outputs.values)"},"pytorch":{"kind":"string","value":"import torch\nX, y = torch.tensor(inputs.values), torch.tensor(outputs.values)"},"mxnet":{"kind":"null"},"paddle":{"kind":"null"}}},{"rowIdx":190,"cells":{"id":{"kind":"number","value":191,"string":"191"},"tensorflow":{"kind":"string","value":"import tensorflow as tf\nx = tf.constant(3.0)\ny = tf.constant(2.0)\nprint(x + y, x * y, x / y, x**y)\nx = tf.range(4)\nA = tf.reshape(tf.range(20), (5, 4))\ntf.transpose(A)\nB = tf.constant([[1, 2, 3], [2, 0, 4], [3, 4, 5]])\nB == tf.transpose(B)\nX = tf.reshape(tf.range(24), (2, 3, 4))\nA = tf.reshape(tf.range(20, dtype=tf.float32), (5, 4))\nB = A\nprint(A, A + B)\na = 2\nX = tf.reshape(tf.range(24), (2, 3, 4))\nprint(a + X, (a * X).shape)\nx = tf.range(4, dtype=tf.float32)\nprint(x, tf.reduce_sum(x))\na = tf.reduce_sum(A)\nA_sum_axis0 = tf.reduce_sum(A, axis=0)\nA_sum_axis1 = tf.reduce_sum(A, axis=1\ntf.reduce_sum(A, axis=[0, 1])\ntf.reduce_mean(A)\ntf.reduce_sum(A) / tf.size(A).numpy()\ntf.reduce_mean(A, axis=0)\ntf.reduce_sum(A, axis=0) / A.shape[0]\nsum_A = tf.reduce_sum(A, axis=1, keepdims=True)\ntf.cumsum(A, axis=0)\ny = tf.ones(4, dtype=tf.float32)\nprint(tf.tensordot(x, y, axes=1))\ntf.reduce_sum(x * y)\nA.shape, x.shape, tf.linalg.matvec(A, x)\nB = tf.ones((4, 3), tf.float32)\ntf.matmul(A, B)\nu = tf.constant([3.0, -4.0])\ntf.norm(u)\ntf.reduce_sum(tf.abs(u))\ntf.norm(tf.ones((4, 9)))"},"pytorch":{"kind":"string","value":"import torch\nx = torch.tensor(3.0)\ny = torch.tensor(2.0)\nprint(x + y, x * y, x / y, x**y)\nx = torch.arange(4)\nA = torch.arange(20).reshape(5, 4)\nA.T\nB = torch.tensor([[1, 2, 3], [2, 0, 4], [3, 4, 5]])\nB == B.T\nX = torch.arange(24).reshape(2, 3, 4)\nA = torch.arange(20, dtype=torch.float32).reshape(5, 4)\nB = A.clone()\nprint(A, A + B)\na = 2\nX = torch.arange(24).reshape(2, 3, 4)\nprint(a + X, (a * X).shape)\nx = torch.arange(4, dtype=torch.float32)\nprint(x, x.sum())\na = A.sum()\nA_sum_axis0 = A.sum(axis=0)\nA_sum_axis1 = A.sum(axis=1)\nA.sum(axis=[0, 1])\nA.mean()\nA.sum() / A.numel()\nA.mean(axis=0)\nA.sum(axis=0) / A.shape[0]\nsum_A = A.sum(axis=1, keepdims=True)\nA.cumsum(axis=0)\ny = torch.ones(4, dtype = torch.float32)\nprint(torch.dot(x, y))\ntorch.sum(x * y)\nA.shape, x.shape, torch.mv(A, x)\nB = torch.ones(4, 3)\ntorch.mm(A, B)\nu = torch.tensor([3.0, -4.0])\ntorch.norm(u)\ntorch.abs(u).sum()\ntorch.norm(torch.ones((4, 9)))"},"mxnet":{"kind":"null"},"paddle":{"kind":"null"}}},{"rowIdx":191,"cells":{"id":{"kind":"number","value":192,"string":"192"},"tensorflow":{"kind":"string","value":"%matplotlib inline\nimport numpy as np\nfrom matplotlib_inline import backend_inline\nfrom d2l import tensorflow as d2l\ndef f(x):\n return 3 * x ** 2 - 4 * x"},"pytorch":{"kind":"string","value":"%matplotlib inline\nimport numpy as np\nfrom matplotlib_inline import backend_inline\nfrom d2l import torch as d2l\ndef f(x):\n return 3 * x ** 2 - 4 * x"},"mxnet":{"kind":"null"},"paddle":{"kind":"null"}}},{"rowIdx":192,"cells":{"id":{"kind":"number","value":193,"string":"193"},"tensorflow":{"kind":"string","value":"import tensorflow as tf\nx = tf.range(4, dtype=tf.float32)\nx = tf.Variable(x)\nwith tf.GradientTape() as t:\n y = 2 * tf.tensordot(x, x, axes=1)\nx_grad = t.gradient(y, x)\nx_grad\nx_grad == 4 * x\nwith tf.GradientTape() as t:\n y = tf.reduce_sum(x)\nt.gradient(y, x)\nwith tf.GradientTape() as t:\n y = x * x\nt.gradient(y, x)\nwith tf.GradientTape(persistent=True) as t:\n y = x * x\n u = tf.stop_gradient(y)\n z = u * x\nx_grad = t.gradient(z, x)\nx_grad == u\nt.gradient(y, x) == 2 * x\ndef f(a):\n b = a * 2\n while tf.norm(b) < 1000:\n b = b * 2\n if tf.reduce_sum(b) > 0:\n c = b\n else:\n c = 100 * b\n return c\na = tf.Variable(tf.random.normal(shape=()))\nwith tf.GradientTape() as t:\n d = f(a)\nd_grad = t.gradient(d, a)\nd_grad\nd_grad == d / a"},"pytorch":{"kind":"string","value":"import torch\nx = torch.arange(4.0)\nx.requires_grad_(True)\nx.grad\ny = 2 * torch.dot(x, x)\ny.backward()\nx.grad\nx.grad == 4 * x\nx.grad.zero_()\ny = x.sum()\ny.backward()\nx.grad\nx.grad.zero_()\ny = x * x\ny.sum().backward()\nx.grad\nx.grad.zero_()\ny = x * x\nu = y.detach()\nz = u * x\nz.sum().backward()\nx.grad == u\nx.grad.zero_()\ny.sum().backward()\nx.grad == 2 * x\ndef f(a):\n b = a * 2\n while b.norm() < 1000:\n b = b * 2\n if b.sum() > 0:\n c = b\n else:\n c = 100 * b\n return c\na = torch.randn(size=(), requires_grad=True)\nd = f(a)\nd.backward()\na.grad == d / a"},"mxnet":{"kind":"null"},"paddle":{"kind":"null"}}},{"rowIdx":193,"cells":{"id":{"kind":"number","value":194,"string":"194"},"tensorflow":{"kind":"string","value":"%matplotlib inline\nimport numpy as np\nimport tensorflow as tf\nimport tensorflow_probability as tfp\nfrom d2l import tensorflow as d2l\nfair_probs = tf.ones(6) / 6\ntfp.distributions.Multinomial(1, fair_probs).sample()\ntfp.distributions.Multinomial(10, fair_probs).sample()\ncounts = tfp.distributions.Multinomial(1000, fair_probs).sample()"},"pytorch":{"kind":"string","value":"%matplotlib inline\nimport torch\nfrom torch.distributions import multinomial\nfrom d2l import torch as d2l\nfair_probs = torch.ones([6]) / 6\nmultinomial.Multinomial(1, fair_probs).sample()\nmultinomial.Multinomial(10, fair_probs).sample()\ncounts = multinomial.Multinomial(1000, fair_probs).sample()"},"mxnet":{"kind":"null"},"paddle":{"kind":"null"}}},{"rowIdx":194,"cells":{"id":{"kind":"number","value":195,"string":"195"},"tensorflow":{"kind":"string","value":"counts = tfp.distributions.Multinomial(10, fair_probs).sample(500)\ncum_counts = tf.cumsum(counts, axis=0)\nestimates = cum_counts / tf.reduce_sum(cum_counts, axis=1, keepdims=True)\nd2l.set_figsize((6, 4.5))\nfor i in range(6):\n d2l.plt.plot(estimates[:, i].numpy(), label=(\"P(die=\" + str(i + 1) + \")\"))\nd2l.plt.axhline(y=0.167, color='black', linestyle='dashed')\nd2l.plt.gca().set_xlabel('Groups of experiments')\nd2l.plt.gca().set_ylabel('Estimated probability')\nd2l.plt.legend();\nimport tensorflow as tf\na = dir(tf.random)\nhelp(tf.ones)\ntf.ones(4)"},"pytorch":{"kind":"string","value":"counts = multinomial.Multinomial(10, fair_probs).sample((500,))\ncum_counts = counts.cumsum(dim=0)\nestimates = cum_counts / cum_counts.sum(dim=1, keepdims=True)\nd2l.set_figsize((6, 4.5))\nfor i in range(6):\n d2l.plt.plot(estimates[:, i].numpy(), label=(\"P(die=\" + str(i + 1) + \")\"))\nd2l.plt.axhline(y=0.167, color='black', linestyle='dashed')\nd2l.plt.gca().set_xlabel('Groups of experiments')\nd2l.plt.gca().set_ylabel('Estimated probability')\nd2l.plt.legend();\nimport torch\na = dir(torch.distributions)\nhelp(torch.ones)\ntorch.ones(4)"},"mxnet":{"kind":"null"},"paddle":{"kind":"null"}}},{"rowIdx":195,"cells":{"id":{"kind":"number","value":196,"string":"196"},"tensorflow":{"kind":"string","value":"%matplotlib inline\nimport math\nimport time\nimport numpy as np\nimport tensorflow as tf\nfrom d2l import tensorflow as d2l\nn = 10000\na = tf.ones(n)\nb = tf.ones(n)\nc = tf.Variable(tf.zeros(n))\ntimer = Timer()\nfor i in range(n):\n c[i].assign(a[i] + b[i])"},"pytorch":{"kind":"string","value":"%matplotlib inline\nimport math\nimport time\nimport numpy as np\nimport torch\nfrom d2l import torch as d2l\nn = 10000\na = torch.ones(n)\nb = torch.ones(n)\nc = torch.zeros(n)\ntimer = Timer()\nfor i in range(n):\n c[i] = a[i] + b[i]"},"mxnet":{"kind":"null"},"paddle":{"kind":"null"}}},{"rowIdx":196,"cells":{"id":{"kind":"number","value":197,"string":"197"},"tensorflow":{"kind":"string","value":"%matplotlib inline\nimport random\nimport tensorflow as tf\nfrom d2l import tensorflow as d2l\ndef synthetic_data(w, b, num_examples):\n X = tf.zeros((num_examples, w.shape[0]))\n X += tf.random.normal(shape=X.shape)\n y = tf.matmul(X, tf.reshape(w, (-1, 1))) + b\n y += tf.random.normal(shape=y.shape, stddev=0.01)\n y = tf.reshape(y, (-1, 1))\n return X, y\ntrue_w = tf.constant([2, -3.4])\ntrue_b = 4.2\nfeatures, labels = synthetic_data(true_w, true_b, 1000)\nd2l.set_figsize()\nd2l.plt.scatter(features[:, (1)].numpy(), labels.numpy(), 1);\ndef data_iter(batch_size, features, labels):\n num_examples = len(features)\n indices = list(range(num_examples))\n random.shuffle(indices)\n for i in range(0, num_examples, batch_size):\n j = tf.constant(indices[i: min(i + batch_size, num_examples)])\n yield tf.gather(features, j), tf.gather(labels, j)\nw = tf.Variable(tf.random.normal(shape=(2, 1), mean=0, stddev=0.01), trainable=True)\nb = tf.Variable(tf.zeros(1), trainable=True)\ndef linreg(X, w, b):\n return tf.matmul(X, w) + b\ndef squared_loss(y_hat, y):\n return (y_hat - tf.reshape(y, y_hat.shape)) ** 2 / 2\ndef sgd(params, grads, lr, batch_size):\n for param, grad in zip(params, grads):\n param.assign_sub(lr*grad/batch_size)\nlr = 0.03\nnum_epochs = 3\nnet = linreg\nloss = squared_loss\nfor epoch in range(num_epochs):\n for X, y in data_iter(batch_size, features, labels):\n with tf.GradientTape() as g:\n l = loss(net(X, w, b), y)\n dw, db = g.gradient(l, [w, b])\n sgd([w, b], [dw, db], lr, batch_size)\n train_l = loss(net(features, w, b), labels)"},"pytorch":{"kind":"string","value":"%matplotlib inline\nimport random\nimport torch\nfrom d2l import torch as d2l\ndef synthetic_data(w, b, num_examples):\n X = torch.normal(0, 1, (num_examples, len(w)))\n y = torch.matmul(X, w) + b\n y += torch.normal(0, 0.01, y.shape)\n return X, y.reshape((-1, 1))\ntrue_w = torch.tensor([2, -3.4])\ntrue_b = 4.2\nfeatures, labels = synthetic_data(true_w, true_b, 1000)\nd2l.set_figsize()\nd2l.plt.scatter(features[:, (1)].detach().numpy(), labels.detach().numpy(), 1);\ndef data_iter(batch_size, features, labels):\n num_examples = len(features)\n indices = list(range(num_examples))\n random.shuffle(indices)\n for i in range(0, num_examples, batch_size):\n batch_indices = torch.tensor(indices[i: min(i + batch_size, num_examples)])\n yield features[batch_indices], labels[batch_indices]\nw = torch.normal(0, 0.01, size=(2,1), requires_grad=True)\nb = torch.zeros(1, requires_grad=True)\ndef linreg(X, w, b):\n return torch.matmul(X, w) + b\ndef squared_loss(y_hat, y):\n return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2\ndef sgd(params, lr, batch_size):\n with torch.no_grad():\n for param in params:\n param -= lr * param.grad / batch_size\n param.grad.zero_()\nlr = 0.03\nnum_epochs = 3\nnet = linreg\nloss = squared_loss\nfor epoch in range(num_epochs):\n for X, y in data_iter(batch_size, features, labels):\n l = loss(net(X, w, b), y)\n l.sum().backward()\n sgd([w, b], lr, batch_size)\n with torch.no_grad():\n train_l = loss(net(features, w, b), labels)"},"mxnet":{"kind":"null"},"paddle":{"kind":"null"}}},{"rowIdx":197,"cells":{"id":{"kind":"number","value":198,"string":"198"},"tensorflow":{"kind":"string","value":"import numpy as np\nimport tensorflow as tf\nfrom d2l import tensorflow as d2l\ntrue_w = tf.constant([2, -3.4])\ntrue_b = 4.2\nfeatures, labels = d2l.synthetic_data(true_w, true_b, 1000)\ndef load_array(data_arrays, batch_size, is_train=True):\n dataset = tf.data.Dataset.from_tensor_slices(data_arrays)\n if is_train:\n dataset = dataset.shuffle(buffer_size=1000)\n dataset = dataset.batch(batch_size)\n return dataset\nbatch_size = 10\ndata_iter = load_array((features, labels), batch_size)\nnet = tf.keras.Sequential()\nnet.add(tf.keras.layers.Dense(1))\ninitializer = tf.initializers.RandomNormal(stddev=0.01)\nnet = tf.keras.Sequential()\nnet.add(tf.keras.layers.Dense(1, kernel_initializer=initializer))\nloss = tf.keras.losses.MeanSquaredError()\ntrainer = tf.keras.optimizers.SGD(learning_rate=0.03)\nw = net.get_weights()[0]\nb = net.get_weights()[1]"},"pytorch":{"kind":"string","value":"import numpy as np\nimport torch\nfrom torch.utils import data\nfrom d2l import torch as d2l\ntrue_w = torch.tensor([2, -3.4])\ntrue_b = 4.2\nfeatures, labels = d2l.synthetic_data(true_w, true_b, 1000)\ndef load_array(data_arrays, batch_size, is_train=True):\n dataset = data.TensorDataset(*data_arrays)\n return data.DataLoader(dataset, batch_size, shuffle=is_train)\nbatch_size = 10\ndata_iter = load_array((features, labels), batch_size)\nfrom torch import nn\nnet = nn.Sequential(nn.Linear(2, 1))\nnet[0].weight.data.normal_(0, 0.01)\nnet[0].bias.data.fill_(0)\nloss = nn.MSELoss()\ntrainer = torch.optim.SGD(net.parameters(), lr=0.03)\nw = net[0].weight.data\nb = net[0].bias.data"},"mxnet":{"kind":"null"},"paddle":{"kind":"null"}}},{"rowIdx":198,"cells":{"id":{"kind":"number","value":199,"string":"199"},"tensorflow":{"kind":"string","value":"%matplotlib inline\nimport tensorflow as tf\nfrom d2l import tensorflow as d2l\nd2l.use_svg_display()\nmnist_train, mnist_test = tf.keras.datasets.fashion_mnist.load_data()\nlen(mnist_train[0]), len(mnist_test[0])\ndef show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):\n figsize = (num_cols * scale, num_rows * scale)\n _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)\n axes = axes.flatten()\n for i, (ax, img) in enumerate(zip(axes, imgs)):\n ax.imshow(img.numpy())\n ax.axes.get_xaxis().set_visible(False)\n ax.axes.get_yaxis().set_visible(False)\n if titles:\n ax.set_title(titles[i])\n return axes\nX = tf.constant(mnist_train[0][:18])\ny = tf.constant(mnist_train[1][:18])\nshow_images(X, 2, 9, titles=get_fashion_mnist_labels(y));\nbatch_size = 256\ntrain_iter = tf.data.Dataset.from_tensor_slices(mnist_train).batch(batch_size).shuffle(len(mnist_train[0]))\ndef load_data_fashion_mnist(batch_size, resize=None):\n mnist_train, mnist_test = tf.keras.datasets.fashion_mnist.load_data()\n process = lambda X, y: (tf.expand_dims(X, axis=3) / 255, tf.cast(y, dtype='int32'))\n resize_fn = lambda X, y: (tf.image.resize_with_pad(X, resize, resize) if resize else X, y)\n return (tf.data.Dataset.from_tensor_slices(process(*mnist_train)).batch(batch_size).shuffle(len(mnist_train[0])).map(resize_fn),\n tf.data.Dataset.from_tensor_slices(process(*mnist_test)).batch(batch_size).map(resize_fn))"},"pytorch":{"kind":"string","value":"%matplotlib inline\nimport torch\nimport torchvision\nfrom torch.utils import data\nfrom torchvision import transforms\nfrom d2l import torch as d2l\nd2l.use_svg_display()\ntrans = transforms.ToTensor()\nmnist_train = torchvision.datasets.FashionMNIST(\n root=\"../data\", train=True, transform=trans, download=True)\nmnist_test = torchvision.datasets.FashionMNIST(\n root=\"../data\", train=False, transform=trans, download=True)\nlen(mnist_train), len(mnist_test)\ndef show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):\n figsize = (num_cols * scale, num_rows * scale)\n _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)\n axes = axes.flatten()\n for i, (ax, img) in enumerate(zip(axes, imgs)):\n if torch.is_tensor(img):\n ax.imshow(img.numpy())\n else:\n ax.imshow(img)\n ax.axes.get_xaxis().set_visible(False)\n ax.axes.get_yaxis().set_visible(False)\n if titles:\n ax.set_title(titles[i])\n return axes\nX, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))\nshow_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y));\nbatch_size = 256\n return 4\ntrain_iter = data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers())\ndef load_data_fashion_mnist(batch_size, resize=None):\n trans = [transforms.ToTensor()]\n if resize:\n trans.insert(0, transforms.Resize(resize))\n trans = transforms.Compose(trans)\n mnist_train = torchvision.datasets.FashionMNIST(root=\"../data\", train=True, transform=trans, download=True)\n mnist_test = torchvision.datasets.FashionMNIST(root=\"../data\", train=False, transform=trans, download=True)\n return (data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers()),\n data.DataLoader(mnist_test, batch_size, shuffle=False, num_workers=get_dataloader_workers()))"},"mxnet":{"kind":"null"},"paddle":{"kind":"null"}}},{"rowIdx":199,"cells":{"id":{"kind":"number","value":200,"string":"200"},"tensorflow":{"kind":"string","value":"import tensorflow as tf\nfrom IPython import display\nfrom d2l import tensorflow as d2l\nbatch_size = 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nnum_inputs = 784\nnum_outputs = 10\nW = tf.Variable(tf.random.normal(shape=(num_inputs, num_outputs), mean=0, stddev=0.01))\nb = tf.Variable(tf.zeros(num_outputs))\nX = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])\ntf.reduce_sum(X, 0, keepdims=True), tf.reduce_sum(X, 1, keepdims=True)\ndef softmax(X):\n X_exp = tf.exp(X)\n partition = tf.reduce_sum(X_exp, 1, keepdims=True)\n return X_exp / partition\nX = tf.random.normal((2, 5), 0, 1)\nX_prob = softmax(X)\nX_prob, tf.reduce_sum(X_prob, 1)\ndef net(X):\n return softmax(tf.matmul(tf.reshape(X, (-1, W.shape[0])), W) + b)\ny_hat = tf.constant([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])\ny = tf.constant([0, 2])\ntf.boolean_mask(y_hat, tf.one_hot(y, depth=y_hat.shape[-1]))\ndef cross_entropy(y_hat, y):\n return -tf.math.log(tf.boolean_mask(y_hat, tf.one_hot(y, depth=y_hat.shape[-1])))\ncross_entropy(y_hat, y)\ndef accuracy(y_hat, y):\n if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:\n y_hat = tf.argmax(y_hat, axis=1)\n cmp = tf.cast(y_hat, y.dtype) == y\n return float(tf.reduce_sum(tf.cast(cmp, y.dtype)))\ndef evaluate_accuracy(net, data_iter):\n metric = Accumulator(2)\n for X, y in data_iter:\n metric.add(accuracy(net(X), y), d2l.size(y))\n return metric[0] / metric[1]\ndef train_epoch_ch3(net, train_iter, loss, updater):\n metric = Accumulator(3)\n for X, y in train_iter:\n with tf.GradientTape() as tape:\n y_hat = net(X)\n if isinstance(loss, tf.keras.losses.Loss):\n l = loss(y, y_hat)\n else:\n l = loss(y_hat, y)\n if isinstance(updater, tf.keras.optimizers.Optimizer):\n params = net.trainable_variables\n grads = tape.gradient(l, params)\n updater.apply_gradients(zip(grads, params))\n else:\n updater(X.shape[0], tape.gradient(l, updater.params))\n l_sum = l * float(tf.size(y)) if isinstance(loss, tf.keras.losses.Loss) else tf.reduce_sum(l)\n metric.add(l_sum, accuracy(y_hat, y), tf.size(y))\n return metric[0] / metric[2], metric[1] / metric[2]\nclass Updater():\n def __init__(self, params, lr):\n self.params = params\n self.lr = lr\n def __call__(self, batch_size, grads):\n d2l.sgd(self.params, grads, self.lr, batch_size)\nupdater = Updater([W, b], lr=0.1)\ndef predict_ch3(net, test_iter, n=6):\n for X, y in test_iter:\n break\n trues = d2l.get_fashion_mnist_labels(y)\n preds = d2l.get_fashion_mnist_labels(tf.argmax(net(X), axis=1))\n titles = [true +'\\n' + pred for true, pred in zip(trues, preds)]\n d2l.show_images(tf.reshape(X[0:n], (n, 28, 28)), 1, n, titles=titles[0:n])\npredict_ch3(net, test_iter)"},"pytorch":{"kind":"string","value":"import torch\nfrom IPython import display\nfrom d2l import torch as d2l\nbatch_size = 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\nnum_inputs = 784\nnum_outputs = 10\nW = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)\nb = torch.zeros(num_outputs, requires_grad=True)\nX = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])\nX.sum(0, keepdim=True), X.sum(1, keepdim=True)\ndef softmax(X):\n X_exp = torch.exp(X)\n partition = X_exp.sum(1, keepdim=True)\n return X_exp / partition\nX = torch.normal(0, 1, (2, 5))\nX_prob = softmax(X)\nX_prob, X_prob.sum(1)\ndef net(X):\n return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)\ny = torch.tensor([0, 2])\ny_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])\ny_hat[[0, 1], y]\ndef cross_entropy(y_hat, y):\n return - torch.log(y_hat[range(len(y_hat)), y])\ncross_entropy(y_hat, y)\ndef accuracy(y_hat, y):\n if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:\n y_hat = y_hat.argmax(axis=1)\n cmp = y_hat.type(y.dtype) == y\n return float(cmp.type(y.dtype).sum())\ndef evaluate_accuracy(net, data_iter):\n if isinstance(net, torch.nn.Module):\n net.eval()\n metric = Accumulator(2)\n with torch.no_grad():\n for X, y in data_iter:\n metric.add(accuracy(net(X), y), y.numel())\n return metric[0] / metric[1]\ndef train_epoch_ch3(net, train_iter, loss, updater):\n if isinstance(net, torch.nn.Module):\n net.train()\n metric = Accumulator(3)\n for X, y in train_iter:\n y_hat = net(X)\n l = loss(y_hat, y)\n if isinstance(updater, torch.optim.Optimizer):\n updater.zero_grad()\n l.mean().backward()\n updater.step()\n else:\n l.sum().backward()\n updater(X.shape[0])\n metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())\n return metric[0] / metric[2], metric[1] / metric[2]\nlr = 0.1\ndef updater(batch_size):\n return d2l.sgd([W, b], lr, batch_size)\ndef predict_ch3(net, test_iter, n=6):\n for X, y in test_iter:\n break\n trues = d2l.get_fashion_mnist_labels(y)\n preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))\n titles = [true +'\\n' + pred for true, pred in zip(trues, preds)]\n d2l.show_images(X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])\npredict_ch3(net, test_iter)"},"mxnet":{"kind":"null"},"paddle":{"kind":"null"}}}],"truncated":false,"partial":false},"paginationData":{"pageIndex":1,"numItemsPerPage":100,"numTotalItems":564,"offset":100,"length":100}},"jwt":"eyJhbGciOiJFZERTQSJ9.eyJyZWFkIjp0cnVlLCJwZXJtaXNzaW9ucyI6eyJyZXBvLmNvbnRlbnQucmVhZCI6dHJ1ZX0sImlhdCI6MTc1NTE4NTM1Niwic3ViIjoiL2RhdGFzZXRzL093b3MvQ29kZVRyYW5zT2NlYW4tY29weSIsImV4cCI6MTc1NTE4ODk1NiwiaXNzIjoiaHR0cHM6Ly9odWdnaW5nZmFjZS5jbyJ9.92ZTEfjiCzsAwPn7kGLrPQ97sa7Bp40B9SunZkOS97soVJnbfdp4QxiaaYmpJCHBPPPjBlLlTZG0IF6yHhTfBA","displayUrls":true},"discussionsStats":{"closed":0,"open":1,"total":1},"fullWidth":true,"hasGatedAccess":true,"hasFullAccess":true,"isEmbedded":false,"savedQueries":{"community":[],"user":[]}}">
id
int64 1
564
| tensorflow
stringclasses 52
values | pytorch
stringclasses 81
values | mxnet
stringclasses 66
values | paddle
stringclasses 73
values |
---|---|---|---|---|
101 | null |
counts = multinomial.Multinomial(10, fair_probs).sample((500,))
cum_counts = counts.cumsum(dim=0)
estimates = cum_counts / cum_counts.sum(dim=1, keepdims=True)
d2l.set_figsize((6, 4.5))
for i in range(6):
d2l.plt.plot(estimates[:, i].numpy(), label=("P(die=" + str(i + 1) + ")"))
d2l.plt.axhline(y=0.167, color='black', linestyle='dashed')
d2l.plt.gca().set_xlabel('Groups of experiments')
d2l.plt.gca().set_ylabel('Estimated probability')
d2l.plt.legend();
import torch
a = dir(torch.distributions)
help(torch.ones)
torch.ones(4)
|
counts = np.random.multinomial(10, fair_probs, size=500)
cum_counts = counts.astype(np.float32).cumsum(axis=0)
estimates = cum_counts / cum_counts.sum(axis=1, keepdims=True)
d2l.set_figsize((6, 4.5))
for i in range(6):
d2l.plt.plot(estimates[:, i].asnumpy(), label=("P(die=" + str(i + 1) + ")"))
d2l.plt.axhline(y=0.167, color='black', linestyle='dashed')
d2l.plt.gca().set_xlabel('Groups of experiments')
d2l.plt.gca().set_ylabel('Estimated probability')
d2l.plt.legend();
from mxnet import np
a = dir(np.random)
help(np.ones)
np.ones(4)
| null |
102 | null |
%matplotlib inline
import math
import time
import numpy as np
import torch
from d2l import torch as d2l
n = 10000
a = torch.ones(n)
b = torch.ones(n)
c = torch.zeros(n)
timer = Timer()
for i in range(n):
c[i] = a[i] + b[i]
x = np.arange(-7, 7, 0.01)
params = [(0, 1), (0, 2), (3, 1)]
d2l.plot(x, [normal(x, mu, sigma) for mu, sigma in params], xlabel='x', ylabel='p(x)', figsize=(4.5, 2.5), legend=[f'mean {mu}, std {sigma}' for mu, sigma in params])
|
%matplotlib inline
import math
import time
from mxnet import np
from d2l import mxnet as d2l
n = 10000
a = np.ones(n)
b = np.ones(n)
c = np.zeros(n)
timer = Timer()
for i in range(n):
c[i] = a[i] + b[i]
x = np.arange(-7, 7, 0.01)
params = [(0, 1), (0, 2), (3, 1)]
d2l.plot(x.asnumpy(), [normal(x, mu, sigma).asnumpy() for mu, sigma in params], xlabel='x', ylabel='p(x)', figsize=(4.5, 2.5), legend=[f'mean {mu}, std {sigma}' for mu, sigma in params])
| null |
103 | null |
%matplotlib inline
import random
import torch
from d2l import torch as d2l
def synthetic_data(w, b, num_examples):
X = torch.normal(0, 1, (num_examples, len(w)))
y = torch.matmul(X, w) + b
y += torch.normal(0, 0.01, y.shape)
return X, y.reshape((-1, 1))
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
d2l.set_figsize()
d2l.plt.scatter(features[:, (1)].detach().numpy(), labels.detach().numpy(), 1);
def data_iter(batch_size, features, labels):
num_examples = len(features)
indices = list(range(num_examples))
random.shuffle(indices)
for i in range(0, num_examples, batch_size):
batch_indices = torch.tensor(indices[i: min(i + batch_size, num_examples)])
yield features[batch_indices], labels[batch_indices]
w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
def linreg(X, w, b):
return torch.matmul(X, w) + b
def sgd(params, lr, batch_size):
with torch.no_grad():
for param in params:
param -= lr * param.grad / batch_size
param.grad.zero_()
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):
for X, y in data_iter(batch_size, features, labels):
l = loss(net(X, w, b), y)
l.sum().backward()
sgd([w, b], lr, batch_size)
with torch.no_grad():
train_l = loss(net(features, w, b), labels)
|
%matplotlib inline
import random
from mxnet import autograd, np, npx
from d2l import mxnet as d2l
npx.set_np()
def synthetic_data(w, b, num_examples):
X = np.random.normal(0, 1, (num_examples, len(w)))
y = np.dot(X, w) + b
y += np.random.normal(0, 0.01, y.shape)
return X, y.reshape((-1, 1))
true_w = np.array([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
d2l.set_figsize()
d2l.plt.scatter(features[:, (1)].asnumpy(), labels.asnumpy(), 1);
def data_iter(batch_size, features, labels):
num_examples = len(features)
indices = list(range(num_examples))
random.shuffle(indices)
for i in range(0, num_examples, batch_size):
batch_indices = np.array(indices[i: min(i + batch_size, num_examples)])
yield features[batch_indices], labels[batch_indices]
w = np.random.normal(0, 0.01, (2, 1))
b = np.zeros(1)
w.attach_grad()
b.attach_grad()
def linreg(X, w, b):
return np.dot(X, w) + b
def sgd(params, lr, batch_size):
for param in params:
param[:] = param - lr * param.grad / batch_size
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):
for X, y in data_iter(batch_size, features, labels):
with autograd.record():
l = loss(net(X, w, b), y)
l.backward()
sgd([w, b], lr, batch_size)
train_l = loss(net(features, w, b), labels)
| null |
104 | null |
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)
def load_array(data_arrays, batch_size, is_train=True):
dataset = data.TensorDataset(*data_arrays)
return data.DataLoader(dataset, batch_size, shuffle=is_train)
batch_size = 10
data_iter = load_array((features, labels), batch_size)
from torch import nn
net = nn.Sequential(nn.Linear(2, 1))
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)
loss = nn.MSELoss()
trainer = torch.optim.SGD(net.parameters(), lr=0.03)
w = net[0].weight.data
b = net[0].bias.data
|
from mxnet import autograd, gluon, np, npx
from d2l import mxnet as d2l
npx.set_np()
true_w = np.array([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)
def load_array(data_arrays, batch_size, is_train=True):
dataset = gluon.data.ArrayDataset(*data_arrays)
return gluon.data.DataLoader(dataset, batch_size, shuffle=is_train)
batch_size = 10
data_iter = load_array((features, labels), batch_size)
from mxnet.gluon import nn
net = nn.Sequential()
net.add(nn.Dense(1))
from mxnet import init
net.initialize(init.Normal(sigma=0.01))
loss = gluon.loss.L2Loss()
from mxnet import gluon
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.03})
w = net[0].weight.data()
b = net[0].bias.data()
| null |
105 | null |
%matplotlib inline
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l
d2l.use_svg_display()
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(
root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
root="../data", train=False, transform=trans, download=True)
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
if torch.is_tensor(img):
ax.imshow(img.numpy())
else:
ax.imshow(img)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:
ax.set_title(titles[i])
return axes
X, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))
show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y));
batch_size = 256
return 4
train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers())
def load_data_fashion_mnist(batch_size, resize=None):
trans = [transforms.ToTensor()]
if resize:
trans.insert(0, transforms.Resize(resize))
trans = transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(root="../data", train=False, transform=trans, download=True)
return (data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers()),
data.DataLoader(mnist_test, batch_size, shuffle=False, num_workers=get_dataloader_workers()))
|
%matplotlib inline
import sys
from mxnet import gluon
from d2l import mxnet as d2l
d2l.use_svg_display()
mnist_train = gluon.data.vision.FashionMNIST(train=True)
mnist_test = gluon.data.vision.FashionMNIST(train=False)
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
ax.imshow(img.asnumpy())
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:
ax.set_title(titles[i])
return axes
X, y = mnist_train[:18]
show_images(X.squeeze(axis=-1), 2, 9, titles=get_fashion_mnist_labels(y));
batch_size = 256
return 0 if sys.platform.startswith('win') else 4
transformer = gluon.data.vision.transforms.ToTensor()
train_iter = gluon.data.DataLoader(mnist_train.transform_first(transformer), batch_size, shuffle=True, num_workers=get_dataloader_workers())
def load_data_fashion_mnist(batch_size, resize=None):
dataset = gluon.data.vision
trans = [dataset.transforms.ToTensor()]
if resize:
trans.insert(0, dataset.transforms.Resize(resize))
trans = dataset.transforms.Compose(trans)
mnist_train = dataset.FashionMNIST(train=True).transform_first(trans)
mnist_test = dataset.FashionMNIST(train=False).transform_first(trans)
return (gluon.data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers()),
gluon.data.DataLoader(mnist_test, batch_size, shuffle=False, num_workers=get_dataloader_workers()))
| null |
106 | null |
import torch
from IPython import display
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs = 784
num_outputs = 10
W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)
X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdim=True), X.sum(1, keepdim=True)
def softmax(X):
X_exp = torch.exp(X)
partition = X_exp.sum(1, keepdim=True)
return X_exp / partition
X = torch.normal(0, 1, (2, 5))
X_prob = softmax(X)
X_prob, X_prob.sum(1)
def net(X):
return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)
y = torch.tensor([0, 2])
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y_hat[[0, 1], y]
def cross_entropy(y_hat, y):
return - torch.log(y_hat[range(len(y_hat)), y])
cross_entropy(y_hat, y)
def accuracy(y_hat, y):
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1)
cmp = y_hat.type(y.dtype) == y
return float(cmp.type(y.dtype).sum())
def evaluate_accuracy(net, data_iter):
if isinstance(net, torch.nn.Module):
net.eval()
metric = Accumulator(2)
with torch.no_grad():
for X, y in data_iter:
metric.add(accuracy(net(X), y), y.numel())
return metric[0] / metric[1]
def train_epoch_ch3(net, train_iter, loss, updater):
if isinstance(net, torch.nn.Module):
net.train()
metric = Accumulator(3)
for X, y in train_iter:
y_hat = net(X)
l = loss(y_hat, y)
if isinstance(updater, torch.optim.Optimizer):
updater.zero_grad()
l.mean().backward()
updater.step()
else:
l.sum().backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
return metric[0] / metric[2], metric[1] / metric[2]
|
from IPython import display
from mxnet import autograd, gluon, np, npx
from d2l import mxnet as d2l
npx.set_np()
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs = 784
num_outputs = 10
W = np.random.normal(0, 0.01, (num_inputs, num_outputs))
b = np.zeros(num_outputs)
W.attach_grad()
b.attach_grad()
X = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdims=True), X.sum(1, keepdims=True)
def softmax(X):
X_exp = np.exp(X)
partition = X_exp.sum(1, keepdims=True)
return X_exp / partition
X = np.random.normal(0, 1, (2, 5))
X_prob = softmax(X)
X_prob, X_prob.sum(1)
def net(X):
return softmax(np.dot(X.reshape((-1, W.shape[0])), W) + b)
y = np.array([0, 2])
y_hat = np.array([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y_hat[[0, 1], y]
def cross_entropy(y_hat, y):
return - np.log(y_hat[range(len(y_hat)), y])
cross_entropy(y_hat, y)
def accuracy(y_hat, y):
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1)
cmp = y_hat.astype(y.dtype) == y
return float(cmp.astype(y.dtype).sum())
def evaluate_accuracy(net, data_iter):
metric = Accumulator(2)
for X, y in data_iter:
metric.add(accuracy(net(X), y), d2l.size(y))
return metric[0] / metric[1]
def train_epoch_ch3(net, train_iter, loss, updater):
metric = Accumulator(3)
if isinstance(updater, gluon.Trainer):
updater = updater.step
for X, y in train_iter:
with autograd.record():
y_hat = net(X)
l = loss(y_hat, y)
l.backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.size)
return metric[0] / metric[2], metric[1] / metric[2]
| null |
107 | null |
import torch
from torch import nn
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights);
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=0.1)
|
from mxnet import gluon, init, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
net = nn.Sequential()
net.add(nn.Dense(10))
net.initialize(init.Normal(sigma=0.01))
loss = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.1})
| null |
108 | null |
%matplotlib inline
import torch
from d2l import torch as d2l
x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = torch.relu(x)
d2l.plot(x.detach(), y.detach(), 'x', 'relu(x)', figsize=(5, 2.5))
y.backward(torch.ones_like(x), retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of relu', figsize=(5, 2.5))
y = torch.sigmoid(x)
d2l.plot(x.detach(), y.detach(), 'x', 'sigmoid(x)', figsize=(5, 2.5))
x.grad.data.zero_()
y.backward(torch.ones_like(x),retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of sigmoid', figsize=(5, 2.5))
y = torch.tanh(x)
d2l.plot(x.detach(), y.detach(), 'x', 'tanh(x)', figsize=(5, 2.5))
x.grad.data.zero_()
y.backward(torch.ones_like(x),retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of tanh', figsize=(5, 2.5))
|
%matplotlib inline
from mxnet import autograd, np, npx
from d2l import mxnet as d2l
npx.set_np()
x = np.arange(-8.0, 8.0, 0.1)
x.attach_grad()
with autograd.record():
y = npx.relu(x)
d2l.plot(x, y, 'x', 'relu(x)', figsize=(5, 2.5))
y.backward()
d2l.plot(x, x.grad, 'x', 'grad of relu', figsize=(5, 2.5))
with autograd.record():
y = npx.sigmoid(x)
d2l.plot(x, y, 'x', 'sigmoid(x)', figsize=(5, 2.5))
y.backward()
d2l.plot(x, x.grad, 'x', 'grad of sigmoid', figsize=(5, 2.5))
with autograd.record():
y = np.tanh(x)
d2l.plot(x, y, 'x', 'tanh(x)', figsize=(5, 2.5))
y.backward()
d2l.plot(x, x.grad, 'x', 'grad of tanh', figsize=(5, 2.5))
| null |
109 | null |
import torch
from torch import nn
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = nn.Parameter(torch.randn(
num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(
num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))
params = [W1, b1, W2, b2]
def relu(X):
a = torch.zeros_like(X)
return torch.max(X, a)
def net(X):
X = X.reshape((-1, num_inputs))
H = relu(X@W1 + b1)
return (H@W2 + b2)
loss = nn.CrossEntropyLoss(reduction='none')
num_epochs, lr = 10, 0.1
updater = torch.optim.SGD(params, lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)
|
from mxnet import gluon, np, npx
from d2l import mxnet as d2l
npx.set_np()
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = np.random.normal(scale=0.01, size=(num_inputs, num_hiddens))
b1 = np.zeros(num_hiddens)
W2 = np.random.normal(scale=0.01, size=(num_hiddens, num_outputs))
b2 = np.zeros(num_outputs)
params = [W1, b1, W2, b2]
for param in params:
param.attach_grad()
def relu(X):
return np.maximum(X, 0)
def net(X):
X = X.reshape((-1, num_inputs))
H = relu(np.dot(X, W1) + b1)
return np.dot(H, W2) + b2
loss = gluon.loss.SoftmaxCrossEntropyLoss()
num_epochs, lr = 10, 0.1
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, lambda batch_size: d2l.sgd(params, lr, batch_size))
| null |
110 | null |
import torch
from torch import nn
from d2l import torch as d2l
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 10))
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights);
batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=lr)
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
|
from mxnet import gluon, init, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
net = nn.Sequential()
net.add(nn.Dense(256, activation='relu'), nn.Dense(10))
net.initialize(init.Normal(sigma=0.01))
batch_size, lr, num_epochs = 256, 0.1, 10
loss = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
| null |
111 | null |
import math
import numpy as np
import torch
from torch import nn
from d2l import torch as d2l
true_w, features, poly_features, labels = [torch.tensor(x, dtype=torch.float32) for x in [true_w, features, poly_features, labels]]
features[:2], poly_features[:2, :], labels[:2]
def evaluate_loss(net, data_iter, loss):
metric = d2l.Accumulator(2)
for X, y in data_iter:
out = net(X)
y = y.reshape(out.shape)
l = loss(out, y)
metric.add(l.sum(), l.numel())
return metric[0] / metric[1]
def train(train_features, test_features, train_labels, test_labels, num_epochs=400):
loss = nn.MSELoss(reduction='none')
input_shape = train_features.shape[-1]
net = nn.Sequential(nn.Linear(input_shape, 1, bias=False))
batch_size = min(10, train_labels.shape[0])
train_iter = d2l.load_array((train_features, train_labels.reshape(-1,1)), batch_size)
test_iter = d2l.load_array((test_features, test_labels.reshape(-1,1)), batch_size, is_train=False)
trainer = torch.optim.SGD(net.parameters(), lr=0.01)
animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log', xlim=[1, num_epochs], ylim=[1e-3, 1e2], legend=['train', 'test'])
for epoch in range(num_epochs):
d2l.train_epoch_ch3(net, train_iter, loss, trainer)
if epoch == 0 or (epoch + 1) % 20 == 0:
animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss), evaluate_loss(net, test_iter, loss)))
|
import math
from mxnet import gluon, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
features[:2], poly_features[:2, :], labels[:2]
def evaluate_loss(net, data_iter, loss):
metric = d2l.Accumulator(2)
for X, y in data_iter:
l = loss(net(X), y)
metric.add(l.sum(), d2l.size(l))
return metric[0] / metric[1]
def train(train_features, test_features, train_labels, test_labels, num_epochs=400):
loss = gluon.loss.L2Loss()
net = nn.Sequential()
net.add(nn.Dense(1, use_bias=False))
net.initialize()
batch_size = min(10, train_labels.shape[0])
train_iter = d2l.load_array((train_features, train_labels), batch_size)
test_iter = d2l.load_array((test_features, test_labels), batch_size, is_train=False)
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.01})
animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log', xlim=[1, num_epochs], ylim=[1e-3, 1e2], legend=['train', 'test'])
for epoch in range(num_epochs):
d2l.train_epoch_ch3(net, train_iter, loss, trainer)
if epoch == 0 or (epoch + 1) % 20 == 0:
animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss), evaluate_loss(net, test_iter, loss)))
| null |
112 | null |
%matplotlib inline
import torch
from torch import nn
from d2l import torch as d2l
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)
def init_params():
w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
return [w, b]
def l2_penalty(w):
return torch.sum(w.pow(2)) / 2
def train(lambd):
w, b = init_params()
net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
num_epochs, lr = 100, 0.003
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
l = loss(net(X), y) + lambd * l2_penalty(w)
l.sum().backward()
d2l.sgd([w, b], lr, batch_size)
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))
def train_concise(wd):
net = nn.Sequential(nn.Linear(num_inputs, 1))
for param in net.parameters():
param.data.normal_()
loss = nn.MSELoss(reduction='none')
num_epochs, lr = 100, 0.003
trainer = torch.optim.SGD([{"params":net[0].weight,'weight_decay': wd}, {"params":net[0].bias}], lr=lr)
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
trainer.zero_grad()
l = loss(net(X), y)
l.mean().backward()
trainer.step()
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1,
(d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))
|
%matplotlib inline
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = np.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)
def init_params():
w = np.random.normal(scale=1, size=(num_inputs, 1))
b = np.zeros(1)
w.attach_grad()
b.attach_grad()
return [w, b]
def l2_penalty(w):
return (w**2).sum() / 2
def train(lambd):
w, b = init_params()
net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
num_epochs, lr = 100, 0.003
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
with autograd.record():
l = loss(net(X), y) + lambd * l2_penalty(w)
l.backward()
d2l.sgd([w, b], lr, batch_size)
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))
def train_concise(wd):
net = nn.Sequential()
net.add(nn.Dense(1))
net.initialize(init.Normal(sigma=1))
loss = gluon.loss.L2Loss()
num_epochs, lr = 100, 0.003
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr, 'wd': wd})
net.collect_params('.*bias').setattr('wd_mult', 0)
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
with autograd.record():
l = loss(net(X), y)
l.backward()
trainer.step(batch_size)
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))
| null |
113 | null |
import torch
from torch import nn
from d2l import torch as d2l
def dropout_layer(X, dropout):
assert 0 <= dropout <= 1
if dropout == 1:
return torch.zeros_like(X)
if dropout == 0:
return X
mask = (torch.rand(X.shape) > dropout).float()
return mask * X / (1.0 - dropout)
X= torch.arange(16, dtype = torch.float32).reshape((2, 8))
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256
dropout1, dropout2 = 0.2, 0.5
class Net(nn.Module):
def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2, is_training = True):
super(Net, self).__init__()
self.num_inputs = num_inputs
self.training = is_training
self.lin1 = nn.Linear(num_inputs, num_hiddens1)
self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)
self.lin3 = nn.Linear(num_hiddens2, num_outputs)
self.relu = nn.ReLU()
def forward(self, X):
H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))
if self.training == True:
H1 = dropout_layer(H1, dropout1)
H2 = self.relu(self.lin2(H1))
if self.training == True:
H2 = dropout_layer(H2, dropout2)
out = self.lin3(H2)
return out
net = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)
num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss(reduction='none')
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
net = nn.Sequential(nn.Flatten(),
nn.Linear(784, 256),
nn.ReLU(),
nn.Dropout(dropout1),
nn.Linear(256, 256),
nn.ReLU(),
nn.Dropout(dropout2),
nn.Linear(256, 10))
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights);
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
|
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
def dropout_layer(X, dropout):
assert 0 <= dropout <= 1
if dropout == 1:
return np.zeros_like(X)
if dropout == 0:
return X
mask = np.random.uniform(0, 1, X.shape) > dropout
return mask.astype(np.float32) * X / (1.0 - dropout)
X = np.arange(16).reshape(2, 8)
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256
W1 = np.random.normal(scale=0.01, size=(num_inputs, num_hiddens1))
b1 = np.zeros(num_hiddens1)
W2 = np.random.normal(scale=0.01, size=(num_hiddens1, num_hiddens2))
b2 = np.zeros(num_hiddens2)
W3 = np.random.normal(scale=0.01, size=(num_hiddens2, num_outputs))
b3 = np.zeros(num_outputs)
params = [W1, b1, W2, b2, W3, b3]
for param in params:
param.attach_grad()
dropout1, dropout2 = 0.2, 0.5
def net(X):
X = X.reshape(-1, num_inputs)
H1 = npx.relu(np.dot(X, W1) + b1)
if autograd.is_training():
H1 = dropout_layer(H1, dropout1)
H2 = npx.relu(np.dot(H1, W2) + b2)
if autograd.is_training():
H2 = dropout_layer(H2, dropout2)
return np.dot(H2, W3) + b3
num_epochs, lr, batch_size = 10, 0.5, 256
loss = gluon.loss.SoftmaxCrossEntropyLoss()
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, lambda batch_size: d2l.sgd(params, lr, batch_size))
net = nn.Sequential()
net.add(nn.Dense(256, activation="relu"),
nn.Dropout(dropout1),
nn.Dense(256, activation="relu"),
nn.Dropout(dropout2),
nn.Dense(10))
net.initialize(init.Normal(sigma=0.01))
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
| null |
114 | null |
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
%matplotlib inline
import torch
from d2l import torch as d2l
x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = torch.sigmoid(x)
y.backward(torch.ones_like(x))
d2l.plot(x.detach().numpy(), [y.detach().numpy(), x.grad.numpy()], legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5))
M = torch.normal(0, 1, size=(4,4))
for i in range(100):
M = torch.mm(M,torch.normal(0, 1, size=(4, 4)))
|
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
%matplotlib inline
from mxnet import autograd, np, npx
from d2l import mxnet as d2l
npx.set_np()
x = np.arange(-8.0, 8.0, 0.1)
x.attach_grad()
with autograd.record():
y = npx.sigmoid(x)
y.backward()
d2l.plot(x, [y, x.grad], legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5))
M = np.random.normal(size=(4, 4))
for i in range(100):
M = np.dot(M, np.random.normal(size=(4, 4)))
| null |
115 | null |
%matplotlib inline
import numpy as np
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l
n_train = train_data.shape[0]
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32)
train_labels = torch.tensor(train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32)
loss = nn.MSELoss()
in_features = train_features.shape[1]
def get_net():
net = nn.Sequential(nn.Linear(in_features,1))
return net
def log_rmse(net, features, labels):
clipped_preds = torch.clamp(net(features), 1, float('inf'))
rmse = torch.sqrt(loss(torch.log(clipped_preds), torch.log(labels)))
return rmse.item()
def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size):
train_ls, test_ls = [], []
train_iter = d2l.load_array((train_features, train_labels), batch_size)
optimizer = torch.optim.Adam(net.parameters(), lr = learning_rate, weight_decay = weight_decay)
for epoch in range(num_epochs):
for X, y in train_iter:
optimizer.zero_grad()
l = loss(net(X), y)
l.backward()
optimizer.step()
train_ls.append(log_rmse(net, train_features, train_labels))
if test_labels is not None:
test_ls.append(log_rmse(net, test_features, test_labels))
return train_ls, test_ls
def get_k_fold_data(k, i, X, y):
assert k > 1
fold_size = X.shape[0] // k
X_train, y_train = None, None
for j in range(k):
idx = slice(j * fold_size, (j + 1) * fold_size)
X_part, y_part = X[idx, :], y[idx]
if j == i:
X_valid, y_valid = X_part, y_part
elif X_train is None:
X_train, y_train = X_part, y_part
else:
X_train = torch.cat([X_train, X_part], 0)
y_train = torch.cat([y_train, y_part], 0)
return X_train, y_train, X_valid, y_valid
def train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size):
net = get_net()
train_ls, _ = train(net, train_features, train_labels, None, None, num_epochs, lr, weight_decay, batch_size)
d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch', ylabel='log rmse', xlim=[1, num_epochs], yscale='log')
preds = net(test_features).detach().numpy()
test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
submission.to_csv('submission.csv', index=False)
|
%matplotlib inline
import pandas as pd
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
n_train = train_data.shape[0]
train_features = np.array(all_features[:n_train].values, dtype=np.float32)
test_features = np.array(all_features[n_train:].values, dtype=np.float32)
train_labels = np.array(train_data.SalePrice.values.reshape(-1, 1), dtype=np.float32)
loss = gluon.loss.L2Loss()
def get_net():
net = nn.Sequential()
net.add(nn.Dense(1))
net.initialize()
return net
def log_rmse(net, features, labels):
clipped_preds = np.clip(net(features), 1, float('inf'))
return np.sqrt(2 * loss(np.log(clipped_preds), np.log(labels)).mean())
def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size):
train_ls, test_ls = [], []
train_iter = d2l.load_array((train_features, train_labels), batch_size)
trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': learning_rate, 'wd': weight_decay})
for epoch in range(num_epochs):
for X, y in train_iter:
with autograd.record():
l = loss(net(X), y)
l.backward()
trainer.step(batch_size)
train_ls.append(log_rmse(net, train_features, train_labels))
if test_labels is not None:
test_ls.append(log_rmse(net, test_features, test_labels))
return train_ls, test_ls
def get_k_fold_data(k, i, X, y):
assert k > 1
fold_size = X.shape[0] // k
X_train, y_train = None, None
for j in range(k):
idx = slice(j * fold_size, (j + 1) * fold_size)
X_part, y_part = X[idx, :], y[idx]
if j == i:
X_valid, y_valid = X_part, y_part
elif X_train is None:
X_train, y_train = X_part, y_part
else:
X_train = np.concatenate([X_train, X_part], 0)
y_train = np.concatenate([y_train, y_part], 0)
return X_train, y_train, X_valid, y_valid
def train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size):
net = get_net()
train_ls, _ = train(net, train_features, train_labels, None, None, num_epochs, lr, weight_decay, batch_size)
d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch', ylabel='log rmse', xlim=[1, num_epochs], yscale='log')
preds = net(test_features).asnumpy()
test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
submission.to_csv('submission.csv', index=False)
| null |
116 | null |
import torch
from torch import nn
from torch.nn import functional as F
net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
X = torch.rand(2, 20)
net(X)
class MLP(nn.Module):
def __init__(self):
super().__init__()
self.hidden = nn.Linear(20, 256)
self.out = nn.Linear(256, 10)
def forward(self, X):
return self.out(F.relu(self.hidden(X)))
net = MLP()
net(X)
class MySequential(nn.Module):
def __init__(self, *args):
super().__init__()
for idx, module in enumerate(args):
self._modules[str(idx)] = module
def forward(self, X):
for block in self._modules.values():
X = block(X)
return X
net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
net(X)
class FixedHiddenMLP(nn.Module):
def __init__(self):
super().__init__()
self.rand_weight = torch.rand((20, 20), requires_grad=False)
self.linear = nn.Linear(20, 20)
def forward(self, X):
X = self.linear(X)
X = F.relu(torch.mm(X, self.rand_weight) + 1)
X = self.linear(X)
while X.abs().sum() > 1:
X /= 2
return X.sum()
net = FixedHiddenMLP()
net(X)
class NestMLP(nn.Module):
def __init__(self):
super().__init__()
self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU())
self.linear = nn.Linear(32, 16)
def forward(self, X):
return self.linear(self.net(X))
chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
chimera(X)
|
from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()
net = nn.Sequential()
net.add(nn.Dense(256, activation='relu'))
net.add(nn.Dense(10))
net.initialize()
X = np.random.uniform(size=(2, 20))
net(X)
class MLP(nn.Block):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.hidden = nn.Dense(256, activation='relu')
self.out = nn.Dense(10)
def forward(self, X):
return self.out(self.hidden(X))
net = MLP()
net.initialize()
net(X)
class MySequential(nn.Block):
def add(self, block):
self._children[block.name] = block
def forward(self, X):
for block in self._children.values():
X = block(X)
return X
net = MySequential()
net.add(nn.Dense(256, activation='relu'))
net.add(nn.Dense(10))
net.initialize()
net(X)
class FixedHiddenMLP(nn.Block):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.rand_weight = self.params.get_constant('rand_weight', np.random.uniform(size=(20, 20)))
self.dense = nn.Dense(20, activation='relu')
def forward(self, X):
X = self.dense(X)
X = npx.relu(np.dot(X, self.rand_weight.data()) + 1)
X = self.dense(X)
while np.abs(X).sum() > 1:
X /= 2
return X.sum()
net = FixedHiddenMLP()
net.initialize()
net(X)
class NestMLP(nn.Block):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.net = nn.Sequential()
self.net.add(nn.Dense(64, activation='relu'), nn.Dense(32, activation='relu'))
self.dense = nn.Dense(16, activation='relu')
def forward(self, X):
return self.dense(self.net(X))
chimera = nn.Sequential()
chimera.add(NestMLP(), nn.Dense(20), FixedHiddenMLP())
chimera.initialize()
chimera(X)
| null |
117 | null |
import torch
from torch import nn
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)
net.state_dict()['2.bias'].data
def block1():
return nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 4), nn.ReLU())
def block2():
net = nn.Sequential()
for i in range(4):
net.add_module(f'block {i}', block1())
return net
rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)
def init_normal(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, mean=0, std=0.01)
nn.init.zeros_(m.bias)
net.apply(init_normal)
net[0].weight.data[0], net[0].bias.data[0]
def init_constant(m):
if type(m) == nn.Linear:
nn.init.constant_(m.weight, 1)
nn.init.zeros_(m.bias)
net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]
def init_xavier(m):
if type(m) == nn.Linear:
nn.init.xavier_uniform_(m.weight)
def init_42(m):
if type(m) == nn.Linear:
nn.init.constant_(m.weight, 42)
net[0].apply(init_xavier)
net[2].apply(init_42)
def my_init(m):
if type(m) == nn.Linear:
nn.init.uniform_(m.weight, -10, 10)
m.weight.data *= m.weight.data.abs() >= 5
net.apply(my_init)
net[0].weight[:2]
net[0].weight.data[:] += 1
net[0].weight.data[0, 0] = 42
net[0].weight.data[0]
layer = CenteredLayer()
layer(torch.FloatTensor([1, 2, 3, 4, 5]))
net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())
|
from mxnet import init, np, npx
from mxnet.gluon import nn
npx.set_np()
net = nn.Sequential()
net.add(nn.Dense(8, activation='relu'))
net.add(nn.Dense(1))
net.initialize()
X = np.random.uniform(size=(2, 4))
net(X)
net.collect_params()['dense1_bias'].data()
def block1():
net = nn.Sequential()
net.add(nn.Dense(32, activation='relu'))
net.add(nn.Dense(16, activation='relu'))
return net
def block2():
net = nn.Sequential()
for _ in range(4):
net.add(block1())
return net
rgnet = nn.Sequential()
rgnet.add(block2())
rgnet.add(nn.Dense(10))
rgnet.initialize()
rgnet(X)
net.initialize(init=init.Normal(sigma=0.01), force_reinit=True)
net[0].weight.data()[0]
net.initialize(init=init.Constant(1), force_reinit=True)
net[0].weight.data()[0]
net[0].weight.initialize(init=init.Xavier(), force_reinit=True)
net[1].initialize(init=init.Constant(42), force_reinit=True)
class MyInit(init.Initializer):
def _init_weight(self, name, data):
data[:] = np.random.uniform(-10, 10, data.shape)
data *= np.abs(data) >= 5
net.initialize(MyInit(), force_reinit=True)
net[0].weight.data()[:2]
net[0].weight.data()[:] += 1
net[0].weight.data()[0, 0] = 42
net[0].weight.data()[0]
layer = CenteredLayer()
layer(np.array([1, 2, 3, 4, 5]))
net = nn.Sequential()
net.add(nn.Dense(128), CenteredLayer())
net.initialize()
| null |
118 | null |
import torch
import torch.nn.functional as F
from torch import nn
class CenteredLayer(nn.Module):
def __init__(self):
super().__init__()
def forward(self, X):
return X - X.mean()
Y = net(torch.rand(4, 8))
Y.mean()
class MyLinear(nn.Module):
def __init__(self, in_units, units):
super().__init__()
self.weight = nn.Parameter(torch.randn(in_units, units))
self.bias = nn.Parameter(torch.randn(units,))
def forward(self, X):
linear = torch.matmul(X, self.weight.data) + self.bias.data
return F.relu(linear)
linear = MyLinear(5, 3)
linear.weight
linear(torch.rand(2, 5))
net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))
net(torch.rand(2, 64))
|
from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()
class CenteredLayer(nn.Block):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def forward(self, X):
return X - X.mean()
Y = net(np.random.uniform(size=(4, 8)))
Y.mean()
class MyDense(nn.Block):
def __init__(self, units, in_units, **kwargs):
super().__init__(**kwargs)
self.weight = self.params.get('weight', shape=(in_units, units))
self.bias = self.params.get('bias', shape=(units,))
def forward(self, x):
linear = np.dot(x, self.weight.data(ctx=x.ctx)) + self.bias.data(
ctx=x.ctx)
return npx.relu(linear)
dense = MyDense(units=3, in_units=5)
dense.params
dense.initialize()
dense(np.random.uniform(size=(2, 5)))
net = nn.Sequential()
net.add(MyDense(8, in_units=64), MyDense(1, in_units=8))
net.initialize()
net(np.random.uniform(size=(2, 64)))
| null |
119 | null |
import torch
from torch import nn
from torch.nn import functional as F
x = torch.arange(4)
torch.save(x, 'x-file')
x2 = torch.load('x-file')
y = torch.zeros(4)
torch.save([x, y],'x-files')
x2, y2 = torch.load('x-files')
mydict = {'x': x, 'y': y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
class MLP(nn.Module):
def __init__(self):
super().__init__()
self.hidden = nn.Linear(20, 256)
self.output = nn.Linear(256, 10)
def forward(self, x):
return self.output(F.relu(self.hidden(x)))
net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)
torch.save(net.state_dict(), 'mlp.params')
clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval()
|
from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()
x = np.arange(4)
npx.save('x-file', x)
x2 = npx.load('x-file')
y = np.zeros(4)
npx.save('x-files', [x, y])
x2, y2 = npx.load('x-files')
mydict = {'x': x, 'y': y}
npx.save('mydict', mydict)
mydict2 = npx.load('mydict')
class MLP(nn.Block):
def __init__(self, **kwargs):
super(MLP, self).__init__(**kwargs)
self.hidden = nn.Dense(256, activation='relu')
self.output = nn.Dense(10)
def forward(self, x):
return self.output(self.hidden(x))
net = MLP()
net.initialize()
X = np.random.uniform(size=(2, 20))
Y = net(X)
net.save_parameters('mlp.params')
clone = MLP()
clone.load_parameters('mlp.params')
| null |
120 | null |
import torch
from torch import nn
torch.device('cpu'), torch.device('cuda'), torch.device('cuda:1')
torch.cuda.device_count()
def try_gpu(i=0):
if torch.cuda.device_count() >= i + 1:
return devices = [torch.device(f'cuda:{i}')
return torch.device('cpu')
def try_all_gpus(): devices = [torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())]
return devices if devices else [torch.device('cpu')]
try_gpu(), try_gpu(10), try_all_gpus()
x = torch.tensor([1, 2, 3])
x.device
X = torch.ones(2, 3, device=try_gpu())
Y = torch.rand(2, 3, device=try_gpu(1))
Z = X.cuda(1)
Z.cuda(1) is Z
net = nn.Sequential(nn.Linear(3, 1))
net = net.to(device=try_gpu())
net[0].weight.data.device
|
from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()
npx.cpu(), npx.gpu(), npx.gpu(1)
npx.num_gpus()
def try_gpu(i=0):
return npx.gpu(i) if npx.num_gpus() >= i + 1 else npx.cpu()
def try_all_gpus():
devices = [npx.gpu(i) for i in range(npx.num_gpus())]
return devices if devices else [npx.cpu()]
try_gpu(), try_gpu(10), try_all_gpus()
x = np.array([1, 2, 3])
x.ctx
X = np.ones((2, 3), ctx=try_gpu())
Y = np.random.uniform(size=(2, 3), ctx=try_gpu(1))
Z = X.copyto(try_gpu(1))
Z.as_in_ctx(try_gpu(1)) is Z
net = nn.Sequential()
net.add(nn.Dense(1))
net.initialize(ctx=try_gpu())
net[0].weight.data().ctx
| null |
121 | null |
import torch
from torch import nn
from d2l import torch as d2l
def corr2d(X, K):
h, w = K.shape
Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
Y[i, j] = (X[i:i + h, j:j + w] * K).sum()
return Y
X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
corr2d(X, K)
class Conv2D(nn.Module):
def __init__(self, kernel_size):
super().__init__()
self.weight = nn.Parameter(torch.rand(kernel_size))
self.bias = nn.Parameter(torch.zeros(1))
def forward(self, x):
return corr2d(x, self.weight) + self.bias
X = torch.ones((6, 8))
X[:, 2:6] = 0
K = torch.tensor([[1.0, -1.0]])
corr2d(X.t(), K)
conv2d = nn.Conv2d(1,1, kernel_size=(1, 2), bias=False)
X = X.reshape((1, 1, 6, 8))
Y = Y.reshape((1, 1, 6, 7))
lr = 3e-2
for i in range(10):
Y_hat = conv2d(X)
l = (Y_hat - Y) ** 2
conv2d.zero_grad()
l.sum().backward()
conv2d.weight.data[:] -= lr * conv2d.weight.grad
conv2d.weight.data.reshape((1, 2))
|
from mxnet import autograd, np, npx from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
def corr2d(X, K):
h, w = K.shape
Y = np.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
Y[i, j] = (X[i:i + h, j:j + w] * K).sum()
return Y
X = np.array([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = np.array([[0.0, 1.0], [2.0, 3.0]])
corr2d(X, K)
class Conv2D(nn.Block):
def __init__(self, kernel_size, **kwargs):
super().__init__(**kwargs)
self.weight = self.params.get('weight', shape=kernel_size)
self.bias = self.params.get('bias', shape=(1,))
def forward(self, x):
return corr2d(x, self.weight.data()) + self.bias.data()
X = np.ones((6, 8))
X[:, 2:6] = 0
K = np.array([[1.0, -1.0]])
corr2d(d2l.transpose(X), K)
conv2d = nn.Conv2D(1, kernel_size=(1, 2), use_bias=False)
conv2d.initialize()
X = X.reshape(1, 1, 6, 8)
Y = Y.reshape(1, 1, 6, 7)
lr = 3e-2
for i in range(10):
with autograd.record():
Y_hat = conv2d(X)
l = (Y_hat - Y) ** 2
l.backward()
conv2d.weight.data()[:] -= lr * conv2d.weight.grad()
conv2d.weight.data().reshape((1, 2))
| null |
122 | null |
import torch
from torch import nn
def comp_conv2d(conv2d, X):
X = X.reshape((1, 1) + X.shape)
Y = conv2d(X)
return Y.reshape(Y.shape[2:])
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1)
X = torch.rand(size=(8, 8))
comp_conv2d(conv2d, X).shape
conv2d = nn.Conv2d(1, 1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, X).shape
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)
comp_conv2d(conv2d, X).shape
conv2d = nn.Conv2d(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))
comp_conv2d(conv2d, X).shape
|
from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()
def comp_conv2d(conv2d, X):
conv2d.initialize()
X = X.reshape((1, 1) + X.shape)
Y = conv2d(X)
return Y.reshape(Y.shape[2:])
conv2d = nn.Conv2D(1, kernel_size=3, padding=1)
X = np.random.uniform(size=(8, 8))
comp_conv2d(conv2d, X).shape
conv2d = nn.Conv2D(1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, X).shape
conv2d = nn.Conv2D(1, kernel_size=3, padding=1, strides=2)
comp_conv2d(conv2d, X).shape
conv2d = nn.Conv2D(1, kernel_size=(3, 5), padding=(0, 1), strides=(3, 4))
comp_conv2d(conv2d, X).shape
| null |
123 | null |
import torch
from d2l import torch as d2l
def corr2d_multi_in(X, K):
return sum(d2l.corr2d(x, k) for x, k in zip(X, K))
X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]], [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = torch.tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])
corr2d_multi_in(X, K)
def corr2d_multi_in_out(X, K):
return torch.stack([corr2d_multi_in(X, k) for k in K], 0)
K = torch.stack((K, K + 1, K + 2), 0)
K.shape
def corr2d_multi_in_out_1x1(X, K):
c_i, h, w = X.shape
c_o = K.shape[0]
X = X.reshape((c_i, h * w))
K = K.reshape((c_o, c_i))
Y = torch.matmul(K, X)
return Y.reshape((c_o, h, w))
X = torch.normal(0, 1, (3, 3, 3))
K = torch.normal(0, 1, (2, 3, 1, 1))
Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
assert float(torch.abs(Y1 - Y2).sum()) < 1e-6
|
from mxnet import np, npx
from d2l import mxnet as d2l
npx.set_np()
def corr2d_multi_in(X, K):
return sum(d2l.corr2d(x, k) for x, k in zip(X, K))
X = np.array([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]], [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = np.array([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])
corr2d_multi_in(X, K)
def corr2d_multi_in_out(X, K):
return np.stack([corr2d_multi_in(X, k) for k in K], 0)
K = np.stack((K, K + 1, K + 2), 0)
K.shape
def corr2d_multi_in_out_1x1(X, K):
c_i, h, w = X.shape
c_o = K.shape[0]
X = X.reshape((c_i, h * w))
K = K.reshape((c_o, c_i))
Y = np.dot(K, X)
return Y.reshape((c_o, h, w))
X = np.random.normal(0, 1, (3, 3, 3))
K = np.random.normal(0, 1, (2, 3, 1, 1))
Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
assert float(np.abs(Y1 - Y2).sum()) < 1e-6
| null |
124 | null |
import torch
from torch import nn
from d2l import torch as d2l
def pool2d(X, pool_size, mode='max'):
p_h, p_w = pool_size
Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
if mode == 'max':
Y[i, j] = X[i: i + p_h, j: j + p_w].max()
elif mode == 'avg':
Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
return Y
X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
pool2d(X, (2, 2))
X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))
pool2d = nn.MaxPool2d(3)
pool2d(X)
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
pool2d = nn.MaxPool2d((2, 3), stride=(2, 3), padding=(0, 1))
pool2d(X)
X = torch.cat((X, X + 1), 1)
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
|
from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
def pool2d(X, pool_size, mode='max'):
p_h, p_w = pool_size
Y = np.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
if mode == 'max':
Y[i, j] = X[i: i + p_h, j: j + p_w].max()
elif mode == 'avg':
Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
return Y
X = np.array([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
pool2d(X, (2, 2))
X = np.arange(16, dtype=np.float32).reshape((1, 1, 4, 4))
pool2d = nn.MaxPool2D(3)
pool2d(X)
pool2d = nn.MaxPool2D(3, padding=1, strides=2)
pool2d(X)
pool2d = nn.MaxPool2D((2, 3), padding=(0, 1), strides=(2, 3))
pool2d(X)
X = np.concatenate((X, X + 1), 1)
pool2d = nn.MaxPool2D(3, padding=1, strides=2)
pool2d(X)
| null |
125 | null |
import torch
from torch import nn
from d2l import torch as d2l
net = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Flatten(),
nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
nn.Linear(120, 84), nn.Sigmoid(),
nn.Linear(84, 10))
X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape: ',X.shape)
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
def init_weights(m):
if type(m) == nn.Linear or type(m) == nn.Conv2d:
nn.init.xavier_uniform_(m.weight)
net.apply(init_weights)
net.to(device)
optimizer = torch.optim.SGD(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss()
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], legend=['train loss', 'train acc', 'test acc'])
timer, num_batches = d2l.Timer(), len(train_iter)
for epoch in range(num_epochs):
metric = d2l.Accumulator(3)
net.train()
for i, (X, y) in enumerate(train_iter):
timer.start()
optimizer.zero_grad()
X, y = X.to(device), y.to(device)
y_hat = net(X)
l = loss(y_hat, y)
l.backward()
optimizer.step()
with torch.no_grad():
metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
timer.stop()
train_l = metric[0] / metric[2]
train_acc = metric[1] / metric[2]
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches, (train_l, train_acc, None))
test_acc = evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch + 1, (None, None, test_acc))
|
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
net = nn.Sequential()
net.add(nn.Conv2D(channels=6, kernel_size=5, padding=2, activation='sigmoid'),
nn.AvgPool2D(pool_size=2, strides=2),
nn.Conv2D(channels=16, kernel_size=5, activation='sigmoid'),
nn.AvgPool2D(pool_size=2, strides=2),
nn.Dense(120, activation='sigmoid'),
nn.Dense(84, activation='sigmoid'),
nn.Dense(10))
X = np.random.uniform(size=(1, 1, 28, 28))
net.initialize()
for layer in net:
X = layer(X)
print(layer.name, 'output shape: ', X.shape)
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
net.initialize(force_reinit=True, ctx=device, init=init.Xavier())
loss = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], legend=['train loss', 'train acc', 'test acc'])
timer, num_batches = d2l.Timer(), len(train_iter)
for epoch in range(num_epochs):
metric = d2l.Accumulator(3)
for i, (X, y) in enumerate(train_iter):
timer.start()
X, y = X.as_in_ctx(device), y.as_in_ctx(device)
with autograd.record():
y_hat = net(X)
l = loss(y_hat, y)
l.backward()
trainer.step(X.shape[0])
metric.add(l.sum(), d2l.accuracy(y_hat, y), X.shape[0])
timer.stop()
train_l = metric[0] / metric[2]
train_acc = metric[1] / metric[2]
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches, (train_l, train_acc, None))
test_acc = evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch + 1, (None, None, test_acc))
| null |
126 | null |
import torch
from torch import nn
from d2l import torch as d2l
net = nn.Sequential(
nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Flatten(),
nn.Linear(6400, 4096), nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(4096, 4096), nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(4096, 10))
X = torch.randn(1, 1, 224, 224)
for layer in net:
X=layer(X)
print(layer.__class__.__name__,'output shape: ',X.shape)
|
from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
net = nn.Sequential()
net.add(
nn.Conv2D(96, kernel_size=11, strides=4, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
nn.Conv2D(256, kernel_size=5, padding=2, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
nn.Conv2D(256, kernel_size=3, padding=1, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
nn.Dense(4096, activation='relu'), nn.Dropout(0.5),
nn.Dense(4096, activation='relu'), nn.Dropout(0.5),
nn.Dense(10))
X = np.random.uniform(size=(1, 1, 224, 224))
net.initialize()
for layer in net:
X = layer(X)
print(layer.name, 'output shape: ', X.shape)
| null |
127 | null |
import torch
from torch import nn
from d2l import torch as d2l
def vgg_block(num_convs, in_channels, out_channels):
layers = []
for _ in range(num_convs):
layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))
layers.append(nn.ReLU())
in_channels = out_channels
layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
return nn.Sequential(*layers)
def vgg(conv_arch):
conv_blks = []
in_channels = 1
for (num_convs, out_channels) in conv_arch:
conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
in_channels = out_channels
return nn.Sequential(
*conv_blks, nn.Flatten(),
nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
nn.Linear(4096, 10))
net = vgg(conv_arch)
X = torch.randn(size=(1, 1, 224, 224))
for blk in net:
X = blk(X)
print(blk.__class__.__name__,'output shape: ',X.shape)
|
from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
def vgg_block(num_convs, num_channels):
blk = nn.Sequential()
for _ in range(num_convs):
blk.add(nn.Conv2D(num_channels, kernel_size=3, padding=1, activation='relu'))
blk.add(nn.MaxPool2D(pool_size=2, strides=2))
return blk
def vgg(conv_arch):
net = nn.Sequential()
for (num_convs, num_channels) in conv_arch:
net.add(vgg_block(num_convs, num_channels))
net.add(nn.Dense(4096, activation='relu'), nn.Dropout(0.5),
nn.Dense(4096, activation='relu'), nn.Dropout(0.5),
nn.Dense(10))
return net
net = vgg(conv_arch)
net.initialize()
X = np.random.uniform(size=(1, 1, 224, 224))
for blk in net:
X = blk(X)
print(blk.name, 'output shape: ', X.shape)
| null |
128 | null |
import torch
from torch import nn
from d2l import torch as d2l
def nin_block(in_channels, out_channels, kernel_size, strides, padding):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),
nn.ReLU(),
nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),
nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())
net = nn.Sequential(
nin_block(1, 96, kernel_size=11, strides=4, padding=0),
nn.MaxPool2d(3, stride=2),
nin_block(96, 256, kernel_size=5, strides=1, padding=2),
nn.MaxPool2d(3, stride=2),
nin_block(256, 384, kernel_size=3, strides=1, padding=1),
nn.MaxPool2d(3, stride=2),
nn.Dropout(0.5),
nin_block(384, 10, kernel_size=3, strides=1, padding=1),
nn.AdaptiveAvgPool2d((1, 1)),
nn.Flatten())
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape: ', X.shape)
|
from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
def nin_block(num_channels, kernel_size, strides, padding):
blk = nn.Sequential()
blk.add(nn.Conv2D(num_channels, kernel_size, strides, padding, activation='relu'),
nn.Conv2D(num_channels, kernel_size=1, activation='relu'),
nn.Conv2D(num_channels, kernel_size=1, activation='relu'))
return blk
net = nn.Sequential()
net.add(nin_block(96, kernel_size=11, strides=4, padding=0),
nn.MaxPool2D(pool_size=3, strides=2),
nin_block(256, kernel_size=5, strides=1, padding=2),
nn.MaxPool2D(pool_size=3, strides=2),
nin_block(384, kernel_size=3, strides=1, padding=1),
nn.MaxPool2D(pool_size=3, strides=2),
nn.Dropout(0.5),
nin_block(10, kernel_size=3, strides=1, padding=1),
nn.GlobalAvgPool2D(),
nn.Flatten())
X = np.random.uniform(size=(1, 1, 224, 224))
net.initialize()
for layer in net:
X = layer(X)
print(layer.name, 'output shape: ', X.shape)
| null |
129 | null |
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
class Inception(nn.Module):
def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):
super(Inception, self).__init__(**kwargs)
self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)
self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)
self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)
self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)
def forward(self, x):
p1 = F.relu(self.p1_1(x))
p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
p4 = F.relu(self.p4_2(self.p4_1(x)))
return torch.cat((p1, p2, p3, p4), dim=1)
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
nn.ReLU(),
nn.Conv2d(64, 192, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
Inception(256, 128, (128, 192), (32, 96), 64),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
Inception(512, 160, (112, 224), (24, 64), 64),
Inception(512, 128, (128, 256), (24, 64), 64),
Inception(512, 112, (144, 288), (32, 64), 64),
Inception(528, 256, (160, 320), (32, 128), 128),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
Inception(832, 384, (192, 384), (48, 128), 128),
nn.AdaptiveAvgPool2d((1,1)),
nn.Flatten())
net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))
X = torch.rand(size=(1, 1, 96, 96))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape: ', X.shape)
|
from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
class Inception(nn.Block):
def __init__(self, c1, c2, c3, c4, **kwargs):
super(Inception, self).__init__(**kwargs)
self.p1_1 = nn.Conv2D(c1, kernel_size=1, activation='relu')
self.p2_1 = nn.Conv2D(c2[0], kernel_size=1, activation='relu')
self.p2_2 = nn.Conv2D(c2[1], kernel_size=3, padding=1, activation='relu')
self.p3_1 = nn.Conv2D(c3[0], kernel_size=1, activation='relu')
self.p3_2 = nn.Conv2D(c3[1], kernel_size=5, padding=2, activation='relu')
self.p4_1 = nn.MaxPool2D(pool_size=3, strides=1, padding=1)
self.p4_2 = nn.Conv2D(c4, kernel_size=1, activation='relu')
def forward(self, x):
p1 = self.p1_1(x)
p2 = self.p2_2(self.p2_1(x))
p3 = self.p3_2(self.p3_1(x))
p4 = self.p4_2(self.p4_1(x))
return np.concatenate((p1, p2, p3, p4), axis=1)
b1 = nn.Sequential()
b1.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))
b2 = nn.Sequential()
b2.add(nn.Conv2D(64, kernel_size=1, activation='relu'),
nn.Conv2D(192, kernel_size=3, padding=1, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))
b3 = nn.Sequential()
b3.add(Inception(64, (96, 128), (16, 32), 32),
Inception(128, (128, 192), (32, 96), 64),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))
b4 = nn.Sequential()
b4.add(Inception(192, (96, 208), (16, 48), 64),
Inception(160, (112, 224), (24, 64), 64),
Inception(128, (128, 256), (24, 64), 64),
Inception(112, (144, 288), (32, 64), 64),
Inception(256, (160, 320), (32, 128), 128),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))
b5 = nn.Sequential()
b5.add(Inception(256, (160, 320), (32, 128), 128),
Inception(384, (192, 384), (48, 128), 128),
nn.GlobalAvgPool2D())
net = nn.Sequential()
net.add(b1, b2, b3, b4, b5, nn.Dense(10))
X = np.random.uniform(size=(1, 1, 96, 96))
net.initialize()
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape: ', X.shape)
| null |
130 | null |
import torch
from torch import nn
from d2l import torch as d2l
def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):
if not torch.is_grad_enabled():
X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
else:
assert len(X.shape) in (2, 4)
if len(X.shape) == 2:
mean = X.mean(dim=0)
var = ((X - mean) ** 2).mean(dim=0)
else:
mean = X.mean(dim=(0, 2, 3), keepdim=True)
var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)
X_hat = (X - mean) / torch.sqrt(var + eps)
moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
moving_var = momentum * moving_var + (1.0 - momentum) * var
Y = gamma * X_hat + beta
return Y, moving_mean.data, moving_var.data
class BatchNorm(nn.Module):
def __init__(self, num_features, num_dims):
super().__init__()
if num_dims == 2:
shape = (1, num_features)
else:
shape = (1, num_features, 1, 1)
self.gamma = nn.Parameter(torch.ones(shape))
self.beta = nn.Parameter(torch.zeros(shape))
self.moving_mean = torch.zeros(shape)
self.moving_var = torch.ones(shape)
def forward(self, X):
if self.moving_mean.device != X.device:
self.moving_mean = self.moving_mean.to(X.device)
self.moving_var = self.moving_var.to(X.device)
Y, self.moving_mean, self.moving_var = batch_norm(
X, self.gamma, self.beta, self.moving_mean,
self.moving_var, eps=1e-5, momentum=0.9)
return Y
net = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
nn.Linear(16*4*4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),
nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),
nn.Linear(84, 10))
net[1].gamma.reshape((-1,)), net[1].beta.reshape((-1,))
net = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5), nn.BatchNorm2d(6), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), nn.BatchNorm2d(16), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
nn.Linear(256, 120), nn.BatchNorm1d(120), nn.Sigmoid(),
nn.Linear(120, 84), nn.BatchNorm1d(84), nn.Sigmoid(),
nn.Linear(84, 10))
|
from mxnet import autograd, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):
if not autograd.is_training():
X_hat = (X - moving_mean) / np.sqrt(moving_var + eps)
else:
assert len(X.shape) in (2, 4)
if len(X.shape) == 2:
mean = X.mean(axis=0)
var = ((X - mean) ** 2).mean(axis=0)
else:
mean = X.mean(axis=(0, 2, 3), keepdims=True)
var = ((X - mean) ** 2).mean(axis=(0, 2, 3), keepdims=True)
X_hat = (X - mean) / np.sqrt(var + eps)
moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
moving_var = momentum * moving_var + (1.0 - momentum) * var
Y = gamma * X_hat + beta
return Y, moving_mean, moving_var
class BatchNorm(nn.Block):
def __init__(self, num_features, num_dims, **kwargs):
super().__init__(**kwargs)
if num_dims == 2:
shape = (1, num_features)
else:
shape = (1, num_features, 1, 1)
self.gamma = self.params.get('gamma', shape=shape, init=init.One())
self.beta = self.params.get('beta', shape=shape, init=init.Zero())
self.moving_mean = np.zeros(shape)
self.moving_var = np.ones(shape)
def forward(self, X):
if self.moving_mean.ctx != X.ctx:
self.moving_mean = self.moving_mean.copyto(X.ctx)
self.moving_var = self.moving_var.copyto(X.ctx)
Y, self.moving_mean, self.moving_var = batch_norm(
X, self.gamma.data(), self.beta.data(), self.moving_mean,
self.moving_var, eps=1e-12, momentum=0.9)
return Y
net = nn.Sequential()
net.add(nn.Conv2D(6, kernel_size=5),
BatchNorm(6, num_dims=4),
nn.Activation('sigmoid'),
nn.AvgPool2D(pool_size=2, strides=2),
nn.Conv2D(16, kernel_size=5),
BatchNorm(16, num_dims=4),
nn.Activation('sigmoid'),
nn.AvgPool2D(pool_size=2, strides=2),
nn.Dense(120),
BatchNorm(120, num_dims=2),
nn.Activation('sigmoid'),
nn.Dense(84),
BatchNorm(84, num_dims=2),
nn.Activation('sigmoid'),
nn.Dense(10))
net[1].gamma.data().reshape(-1,), net[1].beta.data().reshape(-1,)
net = nn.Sequential()
net.add(nn.Conv2D(6, kernel_size=5),
nn.BatchNorm(),
nn.Activation('sigmoid'),
nn.AvgPool2D(pool_size=2, strides=2),
nn.Conv2D(16, kernel_size=5),
nn.BatchNorm(),
nn.Activation('sigmoid'),
nn.AvgPool2D(pool_size=2, strides=2),
nn.Dense(120),
nn.BatchNorm(),
nn.Activation('sigmoid'),
nn.Dense(84),
nn.BatchNorm(),
nn.Activation('sigmoid'),
nn.Dense(10))
| null |
131 | null |
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
class Residual(nn.Module):
def __init__(self, input_channels, num_channels, use_1x1conv=False, strides=1):
super().__init__()
self.conv1 = nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1, stride=strides)
self.conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1)
if use_1x1conv:
self.conv3 = nn.Conv2d(input_channels, num_channels, kernel_size=1, stride=strides)
else:
self.conv3 = None
self.bn1 = nn.BatchNorm2d(num_channels)
self.bn2 = nn.BatchNorm2d(num_channels)
def forward(self, X):
Y = F.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:
X = self.conv3(X)
Y += X
return F.relu(Y)
blk = Residual(3,3)
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
Y.shape
blk = Residual(3,6, use_1x1conv=True, strides=2)
blk(X).shape
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
def resnet_block(input_channels, num_channels, num_residuals, first_block=False):
blk = []
for i in range(num_residuals):
if i == 0 and not first_block:
blk.append(Residual(input_channels, num_channels, use_1x1conv=True, strides=2))
else:
blk.append(Residual(num_channels, num_channels))
return blk
b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))
net = nn.Sequential(b1, b2, b3, b4, b5,
nn.AdaptiveAvgPool2d((1,1)),
nn.Flatten(), nn.Linear(512, 10))
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape: ', X.shape)
|
from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
class Residual(nn.Block):
def __init__(self, num_channels, use_1x1conv=False, strides=1, **kwargs):
super().__init__(**kwargs)
self.conv1 = nn.Conv2D(num_channels, kernel_size=3, padding=1, strides=strides)
self.conv2 = nn.Conv2D(num_channels, kernel_size=3, padding=1)
if use_1x1conv:
self.conv3 = nn.Conv2D(num_channels, kernel_size=1, strides=strides)
else:
self.conv3 = None
self.bn1 = nn.BatchNorm()
self.bn2 = nn.BatchNorm()
def forward(self, X):
Y = npx.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:
X = self.conv3(X)
return npx.relu(Y + X)
blk = Residual(3)
blk.initialize()
X = np.random.uniform(size=(4, 3, 6, 6))
blk(X).shape
blk = Residual(6, use_1x1conv=True, strides=2)
blk.initialize()
blk(X).shape
net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3),
nn.BatchNorm(), nn.Activation('relu'),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))
def resnet_block(num_channels, num_residuals, first_block=False):
blk = nn.Sequential()
for i in range(num_residuals):
if i == 0 and not first_block:
blk.add(Residual(num_channels, use_1x1conv=True, strides=2))
else:
blk.add(Residual(num_channels))
return blk
net.add(resnet_block(64, 2, first_block=True),
resnet_block(128, 2),
resnet_block(256, 2),
resnet_block(512, 2))
net.add(nn.GlobalAvgPool2D(), nn.Dense(10))
X = np.random.uniform(size=(1, 1, 224, 224))
net.initialize()
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape: ', X.shape)
| null |
132 | null |
import torch
from torch import nn
from d2l import torch as d2l
def conv_block(input_channels, num_channels):
return nn.Sequential(
nn.BatchNorm2d(input_channels), nn.ReLU(),
nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1))
class DenseBlock(nn.Module):
def __init__(self, num_convs, input_channels, num_channels):
super(DenseBlock, self).__init__()
layer = []
for i in range(num_convs):
layer.append(conv_block(num_channels * i + input_channels, num_channels))
self.net = nn.Sequential(*layer)
def forward(self, X):
for blk in self.net:
Y = blk(X)
X = torch.cat((X, Y), dim=1)
return X
blk = DenseBlock(2, 3, 10)
X = torch.randn(4, 3, 8, 8)
Y = blk(X)
Y.shape
def transition_block(input_channels, num_channels):
return nn.Sequential(
nn.BatchNorm2d(input_channels), nn.ReLU(),
nn.Conv2d(input_channels, num_channels, kernel_size=1),
nn.AvgPool2d(kernel_size=2, stride=2))
blk = transition_block(23, 10)
blk(Y).shape
b1 = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
num_channels, growth_rate = 64, 32
num_convs_in_dense_blocks = [4, 4, 4, 4]
blks = []
for i, num_convs in enumerate(num_convs_in_dense_blocks):
blks.append(DenseBlock(num_convs, num_channels, growth_rate))
num_channels += num_convs * growth_rate
if i != len(num_convs_in_dense_blocks) - 1:
blks.append(transition_block(num_channels, num_channels // 2))
num_channels = num_channels // 2
net = nn.Sequential(
b1, *blks,
nn.BatchNorm2d(num_channels), nn.ReLU(),
nn.AdaptiveAvgPool2d((1, 1)),
nn.Flatten(),
nn.Linear(num_channels, 10))
|
from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
def conv_block(num_channels):
blk = nn.Sequential()
blk.add(nn.BatchNorm(),
nn.Activation('relu'),
nn.Conv2D(num_channels, kernel_size=3, padding=1))
return blk
class DenseBlock(nn.Block):
def __init__(self, num_convs, num_channels, **kwargs):
super().__init__(**kwargs)
self.net = nn.Sequential()
for _ in range(num_convs):
self.net.add(conv_block(num_channels))
def forward(self, X):
for blk in self.net:
Y = blk(X)
X = np.concatenate((X, Y), axis=1)
return X
blk = DenseBlock(2, 10)
blk.initialize()
X = np.random.uniform(size=(4, 3, 8, 8))
Y = blk(X)
Y.shape
def transition_block(num_channels):
blk = nn.Sequential()
blk.add(nn.BatchNorm(), nn.Activation('relu'),
nn.Conv2D(num_channels, kernel_size=1),
nn.AvgPool2D(pool_size=2, strides=2))
return blk
blk = transition_block(10)
blk.initialize()
blk(Y).shape
net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3),
nn.BatchNorm(), nn.Activation('relu'),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))
num_channels, growth_rate = 64, 32
num_convs_in_dense_blocks = [4, 4, 4, 4]
for i, num_convs in enumerate(num_convs_in_dense_blocks):
net.add(DenseBlock(num_convs, growth_rate))
num_channels += num_convs * growth_rate
if i != len(num_convs_in_dense_blocks) - 1:
num_channels //= 2
net.add(transition_block(num_channels))
net.add(nn.BatchNorm(),
nn.Activation('relu'),
nn.GlobalAvgPool2D(),
nn.Dense(10))
| null |
133 | null |
%matplotlib inline
import torch
from torch import nn
from d2l import torch as d2l
T = 1000
time = torch.arange(1, T + 1, dtype=torch.float32)
x = torch.sin(0.01 * time) + torch.normal(0, 0.2, (T,))
d2l.plot(time, [x], 'time', 'x', xlim=[1, 1000], figsize=(6, 3))
tau = 4
features = torch.zeros((T - tau, tau))
for i in range(tau):
features[:, i] = x[i: T - tau + i]
labels = x[tau:].reshape((-1, 1))
batch_size, n_train = 16, 600
train_iter = d2l.load_array((features[:n_train], labels[:n_train]), batch_size, is_train=True)
def init_weights(m):
if type(m) == nn.Linear:
nn.init.xavier_uniform_(m.weight)
def get_net():
net = nn.Sequential(nn.Linear(4, 10),
nn.ReLU(),
nn.Linear(10, 1))
net.apply(init_weights)
return net
loss = nn.MSELoss(reduction='none')
def train(net, train_iter, loss, epochs, lr):
trainer = torch.optim.Adam(net.parameters(), lr)
for epoch in range(epochs):
for X, y in train_iter:
trainer.zero_grad()
l = loss(net(X), y)
l.sum().backward()
trainer.step()
net = get_net()
train(net, train_iter, loss, 5, 0.01)
onestep_preds = net(features)
d2l.plot([time, time[tau:]],
[x.detach().numpy(), onestep_preds.detach().numpy()], 'time',
'x', legend=['data', '1-step preds'], xlim=[1, 1000],
figsize=(6, 3))
multistep_preds = torch.zeros(T)
multistep_preds[: n_train + tau] = x[: n_train + tau]
for i in range(n_train + tau, T):
multistep_preds[i] = net(multistep_preds[i - tau:i].reshape((1, -1)))
d2l.plot([time, time[tau:], time[n_train + tau:]],
[x.detach().numpy(), onestep_preds.detach().numpy(),
multistep_preds[n_train + tau:].detach().numpy()], 'time',
'x', legend=['data', '1-step preds', 'multistep preds'],
xlim=[1, 1000], figsize=(6, 3))
max_steps = 64
features = torch.zeros((T - tau - max_steps + 1, tau + max_steps))
for i in range(tau):
features[:, i] = x[i: i + T - tau - max_steps + 1]
for i in range(tau, tau + max_steps):
features[:, i] = net(features[:, i - tau:i]).reshape(-1)
steps = (1, 4, 16, 64)
d2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps],
[features[:, tau + i - 1].detach().numpy() for i in steps], 'time', 'x',
legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000],
figsize=(6, 3))
|
%matplotlib inline
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
T = 1000
time = np.arange(1, T + 1, dtype=np.float32)
x = np.sin(0.01 * time) + np.random.normal(0, 0.2, (T,))
d2l.plot(time, [x], 'time', 'x', xlim=[1, 1000], figsize=(6, 3))
tau = 4
features = np.zeros((T - tau, tau))
for i in range(tau):
features[:, i] = x[i: T - tau + i]
labels = x[tau:].reshape((-1, 1))
batch_size, n_train = 16, 600
train_iter = d2l.load_array((features[:n_train], labels[:n_train]), batch_size, is_train=True)
def get_net():
net = nn.Sequential()
net.add(nn.Dense(10, activation='relu'),
nn.Dense(1))
net.initialize(init.Xavier())
return net
loss = gluon.loss.L2Loss()
def train(net, train_iter, loss, epochs, lr):
trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': lr})
for epoch in range(epochs):
for X, y in train_iter:
with autograd.record():
l = loss(net(X), y)
l.backward()
trainer.step(batch_size)
net = get_net()
train(net, train_iter, loss, 5, 0.01)
onestep_preds = net(features)
d2l.plot([time, time[tau:]],
[x.asnumpy(), onestep_preds.asnumpy()], 'time',
'x', legend=['data', '1-step preds'], xlim=[1, 1000],
figsize=(6, 3))
multistep_preds = np.zeros(T)
multistep_preds[: n_train + tau] = x[: n_train + tau]
for i in range(n_train + tau, T):
multistep_preds[i] = net(multistep_preds[i - tau:i].reshape((1, -1)))
d2l.plot([time, time[tau:], time[n_train + tau:]],
[x.asnumpy(), onestep_preds.asnumpy(),
multistep_preds[n_train + tau:].asnumpy()], 'time',
'x', legend=['data', '1-step preds', 'multistep preds'],
xlim=[1, 1000], figsize=(6, 3))
max_steps = 64
features = np.zeros((T - tau - max_steps + 1, tau + max_steps))
for i in range(tau):
features[:, i] = x[i: i + T - tau - max_steps + 1]
for i in range(tau, tau + max_steps):
features[:, i] = net(features[:, i - tau:i]).reshape(-1)
steps = (1, 4, 16, 64)
d2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps],
[features[:, tau + i - 1].asnumpy() for i in steps], 'time', 'x',
legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000],
figsize=(6, 3))
| null |
134 | null |
import collections
import re
from d2l import torch as d2l
|
import collections
import re
from d2l import mxnet as d2l
| null |
135 | null |
import random
import torch
from d2l import torch as d2l
tokens = d2l.tokenize(d2l.read_time_machine())
corpus = [token for line in tokens for token in line]
vocab = d2l.Vocab(corpus)
vocab.token_freqs[:10]
def seq_data_iter_random(corpus, batch_size, num_steps):
corpus = corpus[random.randint(0, num_steps - 1):]
num_subseqs = (len(corpus) - 1) // num_steps
initial_indices = list(range(0, num_subseqs * num_steps, num_steps))
random.shuffle(initial_indices)
def data(pos):
return corpus[pos: pos + num_steps]
num_batches = num_subseqs // batch_size
for i in range(0, batch_size * num_batches, batch_size):
initial_indices_per_batch = initial_indices[i: i + batch_size]
X = [data(j) for j in initial_indices_per_batch]
Y = [data(j + 1) for j in initial_indices_per_batch]
yield torch.tensor(X), torch.tensor(Y)
def seq_data_iter_sequential(corpus, batch_size, num_steps):
offset = random.randint(0, num_steps)
num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size
Xs = torch.tensor(corpus[offset: offset + num_tokens])
Ys = torch.tensor(corpus[offset + 1: offset + 1 + num_tokens])
Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1)
num_batches = Xs.shape[1] // num_steps
for i in range(0, num_steps * num_batches, num_steps):
X = Xs[:, i: i + num_steps]
Y = Ys[:, i: i + num_steps]
yield X, Y
|
import random
from mxnet import np, npx
from d2l import mxnet as d2l
npx.set_np()
tokens = d2l.tokenize(d2l.read_time_machine())
corpus = [token for line in tokens for token in line]
vocab = d2l.Vocab(corpus)
vocab.token_freqs[:10]
def seq_data_iter_random(corpus, batch_size, num_steps):
corpus = corpus[random.randint(0, num_steps - 1):]
num_subseqs = (len(corpus) - 1) // num_steps
initial_indices = list(range(0, num_subseqs * num_steps, num_steps))
random.shuffle(initial_indices)
def data(pos):
return corpus[pos: pos + num_steps]
num_batches = num_subseqs // batch_size
for i in range(0, batch_size * num_batches, batch_size):
initial_indices_per_batch = initial_indices[i: i + batch_size]
X = [data(j) for j in initial_indices_per_batch]
Y = [data(j + 1) for j in initial_indices_per_batch]
yield np.array(X), np.array(Y)
def seq_data_iter_sequential(corpus, batch_size, num_steps):
offset = random.randint(0, num_steps)
num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size
Xs = np.array(corpus[offset: offset + num_tokens])
Ys = np.array(corpus[offset + 1: offset + 1 + num_tokens])
Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1)
num_batches = Xs.shape[1] // num_steps
for i in range(0, num_steps * num_batches, num_steps):
X = Xs[:, i: i + num_steps]
Y = Ys[:, i: i + num_steps]
yield X, Y
| null |
136 | null |
import torch
from d2l import torch as d2l
X, W_xh = torch.normal(0, 1, (3, 1)), torch.normal(0, 1, (1, 4))
H, W_hh = torch.normal(0, 1, (3, 4)), torch.normal(0, 1, (4, 4))
torch.matmul(X, W_xh) + torch.matmul(H, W_hh)
torch.matmul(torch.cat((X, H), 1), torch.cat((W_xh, W_hh), 0))
|
from mxnet import np, npx
from d2l import mxnet as d2l
npx.set_np()
X, W_xh = np.random.normal(0, 1, (3, 1)), np.random.normal(0, 1, (1, 4))
H, W_hh = np.random.normal(0, 1, (3, 4)), np.random.normal(0, 1, (4, 4))
np.dot(X, W_xh) + np.dot(H, W_hh)
np.dot(np.concatenate((X, H), 1), np.concatenate((W_xh, W_hh), 0))
| null |
137 | null |
%matplotlib inline
import math
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
F.one_hot(torch.tensor([0, 2]), len(vocab))
X = torch.arange(10).reshape((2, 5))
F.one_hot(X.T, 28).shape
def get_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return torch.randn(size=shape, device=device) * 0.01
W_xh = normal((num_inputs, num_hiddens))
W_hh = normal((num_hiddens, num_hiddens))
b_h = torch.zeros(num_hiddens, device=device)
W_hq = normal((num_hiddens, num_outputs))
b_q = torch.zeros(num_outputs, device=device)
params = [W_xh, W_hh, b_h, W_hq, b_q]
for param in params:
param.requires_grad_(True)
return params
def init_rnn_state(batch_size, num_hiddens, device):
return (torch.zeros((batch_size, num_hiddens), device=device), )
def rnn(inputs, state, params):
W_xh, W_hh, b_h, W_hq, b_q = params
H, = state
outputs = []
for X in inputs:
H = torch.tanh(torch.mm(X, W_xh) + torch.mm(H, W_hh) + b_h)
Y = torch.mm(H, W_hq) + b_q
outputs.append(Y)
return torch.cat(outputs, dim=0), (H,)
class RNNModelScratch:
def __init__(self, vocab_size, num_hiddens, device, get_params, init_state, forward_fn):
self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
self.params = get_params(vocab_size, num_hiddens, device)
self.init_state, self.forward_fn = init_state, forward_fn
def __call__(self, X, state):
X = F.one_hot(X.T, self.vocab_size).type(torch.float32)
return self.forward_fn(X, state, self.params)
def begin_state(self, batch_size, device):
return self.init_state(batch_size, self.num_hiddens, device)
num_hiddens = 512
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params, init_rnn_state, rnn)
state = net.begin_state(X.shape[0], d2l.try_gpu())
Y, new_state = net(X.to(d2l.try_gpu()), state)
Y.shape, len(new_state), new_state[0].shape
def predict_ch8(prefix, num_preds, net, vocab, device):
state = net.begin_state(batch_size=1, device=device)
outputs = [vocab[prefix[0]]]
get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape((1, 1))
for y in prefix[1:]:
_, state = net(get_input(), state)
outputs.append(vocab[y])
for _ in range(num_preds):
y, state = net(get_input(), state)
outputs.append(int(y.argmax(dim=1).reshape(1)))
return ''.join([vocab.idx_to_token[i] for i in outputs])
def grad_clipping(net, theta):
if isinstance(net, nn.Module):
params = [p for p in net.parameters() if p.requires_grad]
else:
params = net.params
norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))
if norm > theta:
for param in params:
param.grad[:] *= theta / norm
def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):
state, timer = None, d2l.Timer()
metric = d2l.Accumulator(2)
for X, Y in train_iter:
if state is None or use_random_iter:
state = net.begin_state(batch_size=X.shape[0], device=device)
else:
if isinstance(net, nn.Module) and not isinstance(state, tuple):
state.detach_()
else:
for s in state:
s.detach_()
y = Y.T.reshape(-1)
X, y = X.to(device), y.to(device)
y_hat, state = net(X, state)
l = loss(y_hat, y.long()).mean()
if isinstance(updater, torch.optim.Optimizer):
updater.zero_grad()
l.backward()
grad_clipping(net, 1)
updater.step()
else:
l.backward()
grad_clipping(net, 1)
updater(batch_size=1)
metric.add(l * y.numel(), y.numel())
return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()
def train_ch8(net, train_iter, vocab, lr, num_epochs, device, use_random_iter=False):
loss = nn.CrossEntropyLoss()
animator = d2l.Animator(xlabel='epoch', ylabel='perplexity', legend=['train'], xlim=[10, num_epochs])
if isinstance(net, nn.Module):
updater = torch.optim.SGD(net.parameters(), lr)
else:
updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)
predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)
for epoch in range(num_epochs):
ppl, speed = train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter)
if (epoch + 1) % 10 == 0:
animator.add(epoch + 1, [ppl])
|
%matplotlib inline
import math
from mxnet import autograd, gluon, np, npx
from d2l import mxnet as d2l
npx.set_np()
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
npx.one_hot(np.array([0, 2]), len(vocab))
X = np.arange(10).reshape((2, 5))
npx.one_hot(X.T, 28).shape
def get_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return np.random.normal(scale=0.01, size=shape, ctx=device)
W_xh = normal((num_inputs, num_hiddens))
W_hh = normal((num_hiddens, num_hiddens))
b_h = np.zeros(num_hiddens, ctx=device)
W_hq = normal((num_hiddens, num_outputs))
b_q = np.zeros(num_outputs, ctx=device)
params = [W_xh, W_hh, b_h, W_hq, b_q]
for param in params:
param.attach_grad()
return params
def init_rnn_state(batch_size, num_hiddens, device):
return (np.zeros((batch_size, num_hiddens), ctx=device), )
def rnn(inputs, state, params):
W_xh, W_hh, b_h, W_hq, b_q = params
H, = state
outputs = []
for X in inputs:
H = np.tanh(np.dot(X, W_xh) + np.dot(H, W_hh) + b_h)
Y = np.dot(H, W_hq) + b_q
outputs.append(Y)
return np.concatenate(outputs, axis=0), (H,)
class RNNModelScratch:
def __init__(self, vocab_size, num_hiddens, device, get_params, init_state, forward_fn):
self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
self.params = get_params(vocab_size, num_hiddens, device)
self.init_state, self.forward_fn = init_state, forward_fn
def __call__(self, X, state):
X = npx.one_hot(X.T, self.vocab_size)
return self.forward_fn(X, state, self.params)
def begin_state(self, batch_size, ctx):
return self.init_state(batch_size, self.num_hiddens, ctx)
num_hiddens = 512
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params, init_rnn_state, rnn)
state = net.begin_state(X.shape[0], d2l.try_gpu())
Y, new_state = net(X.as_in_context(d2l.try_gpu()), state)
Y.shape, len(new_state), new_state[0].shape
def predict_ch8(prefix, num_preds, net, vocab, device):
state = net.begin_state(batch_size=1, ctx=device)
outputs = [vocab[prefix[0]]]
get_input = lambda: np.array([outputs[-1]], ctx=device).reshape((1, 1))
for y in prefix[1:]:
_, state = net(get_input(), state)
outputs.append(vocab[y])
for _ in range(num_preds):
y, state = net(get_input(), state)
outputs.append(int(y.argmax(axis=1).reshape(1)))
return ''.join([vocab.idx_to_token[i] for i in outputs])
def grad_clipping(net, theta):
if isinstance(net, gluon.Block):
params = [p.data() for p in net.collect_params().values()]
else:
params = net.params
norm = math.sqrt(sum((p.grad ** 2).sum() for p in params))
if norm > theta:
for param in params:
param.grad[:] *= theta / norm
def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):
state, timer = None, d2l.Timer()
metric = d2l.Accumulator(2)
for X, Y in train_iter:
if state is None or use_random_iter:
state = net.begin_state(batch_size=X.shape[0], ctx=device)
else:
for s in state:
s.detach()
y = Y.T.reshape(-1)
X, y = X.as_in_ctx(device), y.as_in_ctx(device)
with autograd.record():
y_hat, state = net(X, state)
l = loss(y_hat, y).mean()
l.backward()
grad_clipping(net, 1)
updater(batch_size=1)
metric.add(l * d2l.size(y), d2l.size(y))
return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()
def train_ch8(net, train_iter, vocab, lr, num_epochs, device, use_random_iter=False):
loss = gluon.loss.SoftmaxCrossEntropyLoss()
animator = d2l.Animator(xlabel='epoch', ylabel='perplexity', legend=['train'], xlim=[10, num_epochs])
if isinstance(net, gluon.Block):
net.initialize(ctx=device, force_reinit=True, init=init.Normal(0.01))
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
updater = lambda batch_size: trainer.step(batch_size)
else:
updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)
predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)
for epoch in range(num_epochs):
ppl, speed = train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter)
if (epoch + 1) % 10 == 0:
animator.add(epoch + 1, [ppl])
| null |
138 | null |
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
num_hiddens = 256
rnn_layer = nn.RNN(len(vocab), num_hiddens)
state = torch.zeros((1, batch_size, num_hiddens))
state.shape
X = torch.rand(size=(num_steps, batch_size, len(vocab)))
Y, state_new = rnn_layer(X, state)
Y.shape, state_new.shape
class RNNModel(nn.Module):
def __init__(self, rnn_layer, vocab_size, **kwargs):
super(RNNModel, self).__init__(**kwargs)
self.rnn = rnn_layer
self.vocab_size = vocab_size
self.num_hiddens = self.rnn.hidden_size
if not self.rnn.bidirectional:
self.num_directions = 1
self.linear = nn.Linear(self.num_hiddens, self.vocab_size)
else:
self.num_directions = 2
self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)
def forward(self, inputs, state):
X = F.one_hot(inputs.T.long(), self.vocab_size)
X = X.to(torch.float32)
Y, state = self.rnn(X, state)
output = self.linear(Y.reshape((-1, Y.shape[-1])))
return output, state
def begin_state(self, device, batch_size=1):
if not isinstance(self.rnn, nn.LSTM):
return torch.zeros((self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device)
else:
return (torch.zeros((self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device),
torch.zeros((self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device))
device = d2l.try_gpu()
net = RNNModel(rnn_layer, vocab_size=len(vocab))
net = net.to(device)
d2l.predict_ch8('time traveller', 10, net, vocab, device)
|
from mxnet import np, npx
from mxnet.gluon import nn, rnn
from d2l import mxnet as d2l
npx.set_np()
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
num_hiddens = 256
rnn_layer = rnn.RNN(num_hiddens)
rnn_layer.initialize()
state = rnn_layer.begin_state(batch_size=batch_size)
len(state), state[0].shape
X = np.random.uniform(size=(num_steps, batch_size, len(vocab)))
Y, state_new = rnn_layer(X, state)
Y.shape, len(state_new), state_new[0].shape
class RNNModel(nn.Block):
def __init__(self, rnn_layer, vocab_size, **kwargs):
super(RNNModel, self).__init__(**kwargs)
self.rnn = rnn_layer
self.vocab_size = vocab_size
self.dense = nn.Dense(vocab_size)
def forward(self, inputs, state):
X = npx.one_hot(inputs.T, self.vocab_size)
Y, state = self.rnn(X, state)
output = self.dense(Y.reshape(-1, Y.shape[-1]))
return output, state
def begin_state(self, *args, **kwargs):
return self.rnn.begin_state(*args, **kwargs)
device = d2l.try_gpu()
net = RNNModel(rnn_layer, len(vocab))
net.initialize(force_reinit=True, ctx=device)
d2l.predict_ch8('time traveller', 10, net, vocab, device)
| null |
139 | null |
import torch
from torch import nn
from d2l import torch as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
def get_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return torch.randn(size=shape, device=device)*0.01
def three():
return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), torch.zeros(num_hiddens, device=device))
W_xz, W_hz, b_z = three()
W_xr, W_hr, b_r = three()
W_xh, W_hh, b_h = three()
W_hq = normal((num_hiddens, num_outputs))
b_q = torch.zeros(num_outputs, device=device)
params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
for param in params:
param.requires_grad_(True)
return params
def init_gru_state(batch_size, num_hiddens, device):
return (torch.zeros((batch_size, num_hiddens), device=device), )
def gru(inputs, state, params):
W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
H, = state
outputs = []
for X in inputs:
Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)
R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)
H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)
H = Z * H + (1 - Z) * H_tilda
Y = H @ W_hq + b_q
outputs.append(Y)
return torch.cat(outputs, dim=0), (H,)
num_inputs = vocab_size
gru_layer = nn.GRU(num_inputs, num_hiddens)
model = d2l.RNNModel(gru_layer, len(vocab))
model = model.to(device)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
|
from mxnet import np, npx
from mxnet.gluon import rnn
from d2l import mxnet as d2l
npx.set_np()
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
def get_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return np.random.normal(scale=0.01, size=shape, ctx=device)
def three():
return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), np.zeros(num_hiddens, ctx=device))
W_xz, W_hz, b_z = three()
W_xr, W_hr, b_r = three()
W_xh, W_hh, b_h = three()
W_hq = normal((num_hiddens, num_outputs))
b_q = np.zeros(num_outputs, ctx=device)
params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
for param in params:
param.attach_grad()
return params
def init_gru_state(batch_size, num_hiddens, device):
return (np.zeros(shape=(batch_size, num_hiddens), ctx=device), )
def gru(inputs, state, params):
W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
H, = state
outputs = []
for X in inputs:
Z = npx.sigmoid(np.dot(X, W_xz) + np.dot(H, W_hz) + b_z)
R = npx.sigmoid(np.dot(X, W_xr) + np.dot(H, W_hr) + b_r)
H_tilda = np.tanh(np.dot(X, W_xh) + np.dot(R * H, W_hh) + b_h)
H = Z * H + (1 - Z) * H_tilda
Y = np.dot(H, W_hq) + b_q
outputs.append(Y)
return np.concatenate(outputs, axis=0), (H,)
gru_layer = rnn.GRU(num_hiddens)
model = d2l.RNNModel(gru_layer, len(vocab))
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
| null |
140 | null |
import torch
from torch import nn
from d2l import torch as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
def get_lstm_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return torch.randn(size=shape, device=device)*0.01
def three():
return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), torch.zeros(num_hiddens, device=device))
W_xi, W_hi, b_i = three()
W_xf, W_hf, b_f = three()
W_xo, W_ho, b_o = three()
W_xc, W_hc, b_c = three()
W_hq = normal((num_hiddens, num_outputs))
b_q = torch.zeros(num_outputs, device=device)
params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q]
for param in params:
param.requires_grad_(True)
return params
def init_lstm_state(batch_size, num_hiddens, device):
return (torch.zeros((batch_size, num_hiddens), device=device), torch.zeros((batch_size, num_hiddens), device=device))
def lstm(inputs, state, params):
[W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,
W_hq, b_q] = params
(H, C) = state
outputs = []
for X in inputs:
I = torch.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)
F = torch.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)
O = torch.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)
C_tilda = torch.tanh((X @ W_xc) + (H @ W_hc) + b_c)
C = F * C + I * C_tilda
H = O * torch.tanh(C)
Y = (H @ W_hq) + b_q
outputs.append(Y)
return torch.cat(outputs, dim=0), (H, C)
num_inputs = vocab_size
lstm_layer = nn.LSTM(num_inputs, num_hiddens)
model = d2l.RNNModel(lstm_layer, len(vocab))
model = model.to(device)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
|
from mxnet import np, npx
from mxnet.gluon import rnn
from d2l import mxnet as d2l
npx.set_np()
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
def get_lstm_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return np.random.normal(scale=0.01, size=shape, ctx=device)
def three():
return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), np.zeros(num_hiddens, ctx=device))
W_xi, W_hi, b_i = three()
W_xf, W_hf, b_f = three()
W_xo, W_ho, b_o = three()
W_xc, W_hc, b_c = three()
W_hq = normal((num_hiddens, num_outputs))
b_q = np.zeros(num_outputs, ctx=device)
params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q]
for param in params:
param.attach_grad()
return params
def init_lstm_state(batch_size, num_hiddens, device):
return (np.zeros((batch_size, num_hiddens), ctx=device), np.zeros((batch_size, num_hiddens), ctx=device))
def lstm(inputs, state, params):
[W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,
W_hq, b_q] = params
(H, C) = state
outputs = []
for X in inputs:
I = npx.sigmoid(np.dot(X, W_xi) + np.dot(H, W_hi) + b_i)
F = npx.sigmoid(np.dot(X, W_xf) + np.dot(H, W_hf) + b_f)
O = npx.sigmoid(np.dot(X, W_xo) + np.dot(H, W_ho) + b_o)
C_tilda = np.tanh(np.dot(X, W_xc) + np.dot(H, W_hc) + b_c)
C = F * C + I * C_tilda
H = O * np.tanh(C)
Y = np.dot(H, W_hq) + b_q
outputs.append(Y)
return np.concatenate(outputs, axis=0), (H, C)
lstm_layer = rnn.LSTM(num_hiddens)
model = d2l.RNNModel(lstm_layer, len(vocab))
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
| null |
141 | null |
import os
import torch
from d2l import torch as d2l
def build_array_nmt(lines, vocab, num_steps):
lines = [vocab[l] for l in lines]
lines = [l + [vocab['<eos>']] for l in lines]
array = torch.tensor([truncate_pad(l, num_steps, vocab['<pad>']) for l in lines])
valid_len = (array != vocab['<pad>']).type(torch.int32).sum(1)
return array, valid_len
train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)
for X, X_valid_len, Y, Y_valid_len in train_iter:
print('X:', X.type(torch.int32))
print('Valid length of X:', X_valid_len)
print('Y:', Y.type(torch.int32))
print('Valid length of Y:', Y_valid_len)
break
|
import os
from mxnet import np, npx
from d2l import mxnet as d2l
npx.set_np()
def build_array_nmt(lines, vocab, num_steps):
lines = [vocab[l] for l in lines]
lines = [l + [vocab['<eos>']] for l in lines]
array = np.array([truncate_pad(l, num_steps, vocab['<pad>']) for l in lines])
valid_len = (array != vocab['<pad>']).astype(np.int32).sum(1)
return array, valid_len
train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)
for X, X_valid_len, Y, Y_valid_len in train_iter:
print('X:', X.astype(np.int32))
print('Valid length of X:', X_valid_len)
print('Y:', Y.astype(np.int32))
print('Valid length of Y:', Y_valid_len)
break
| null |
142 | null |
x = torch.arange(12)
X = x.reshape(3, 4)
torch.zeros((2, 3, 4))
torch.ones((2, 3, 4))
torch.randn(3, 4)
torch.tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
x = torch.tensor([1.0, 2, 4, 8])
y = torch.tensor([2, 2, 2, 2])
x + y, x - y, x * y, x / y, x ** y
torch.exp(x)
X = torch.arange(12, dtype=torch.float32).reshape((3,4))
Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
torch.cat((X, Y), dim=0), torch.cat((X, Y), dim=1)
a = torch.arange(3).reshape((3, 1))
b = torch.arange(2).reshape((1, 2))
Z = torch.zeros_like(Y)
Z[:] = X + Y
A = X.numpy()
B = torch.tensor(A)
a = torch.tensor([3.5])
print(a, a.item(), float(a), int(a))
| null |
x = paddle.arange(12)
X = paddle.reshape(x, (3, 4))
paddle.zeros((2, 3, 4))
paddle.ones((2, 3, 4))
paddle.randn((3, 4),'float32')
paddle.to_tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
x = paddle.to_tensor([1.0, 2, 4, 8])
y = paddle.to_tensor([2, 2, 2, 2])
x + y, x - y, x * y, x / y, x**y
paddle.exp(x)
X = paddle.arange(12, dtype='float32').reshape((3, 4))
Y = paddle.to_tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
paddle.concat((X, Y), axis=0), paddle.concat((X, Y), axis=1)
a = paddle.reshape(paddle.arange(3), (3, 1))
b = paddle.reshape(paddle.arange(2), (1, 2))
Z = paddle.zeros_like(Y)
Z = X + Y
A = X.numpy()
B = paddle.to_tensor(A)
type(A), type(B)
a = paddle.to_tensor([3.5])
a, a.item(), float(a), int(a)
|
143 | null |
import torch
X, y = torch.tensor(inputs.values), torch.tensor(outputs.values)
| null |
import warnings
warnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")
import paddle
X, y = paddle.to_tensor(inputs.values), paddle.to_tensor(outputs.values)
|
144 | null |
import torch
x = torch.tensor(3.0)
y = torch.tensor(2.0)
print(x + y, x * y, x / y, x**y)
x = torch.arange(4)
A = torch.arange(20).reshape(5, 4)
A.T
B = torch.tensor([[1, 2, 3], [2, 0, 4], [3, 4, 5]])
B == B.T
X = torch.arange(24).reshape(2, 3, 4)
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
B = A.clone()
print(A, A + B)
a = 2
X = torch.arange(24).reshape(2, 3, 4)
print(a + X, (a * X).shape)
x = torch.arange(4, dtype=torch.float32)
print(x, x.sum())
a = A.sum()
A.mean()
A.sum() / A.numel()
A.mean(axis=0)
A.sum(axis=0) / A.shape[0]
sum_A = A.sum(axis=1, keepdims=True)
y = torch.ones(4, dtype = torch.float32)
print(torch.dot(x, y))
torch.sum(x * y)
A.shape, x.shape, torch.mv(A, x)
B = torch.ones(4, 3)
torch.mm(A, B)
u = torch.tensor([3.0, -4.0])
torch.norm(u)
torch.abs(u).sum()
torch.norm(torch.ones((4, 9)))
| null |
import warnings
warnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")
import paddle
x = paddle.to_tensor([3.0])
y = paddle.to_tensor([2.0])
x + y, x * y, x / y, x**y
x = paddle.arange(4)
A = paddle.reshape(paddle.arange(20), (5, 4))
paddle.transpose(A, perm=[1, 0])
B = paddle.to_tensor([[1, 2, 3], [2, 0, 4], [3, 4, 5]])
B == paddle.transpose(B, perm=[1, 0])
X = paddle.reshape(paddle.arange(24), (2, 3, 4))
A = paddle.reshape(paddle.arange(20, dtype=paddle.float32), (5, 4))
B = A.clone()
A, A + B
a = 2
X = paddle.reshape(paddle.arange(24), (2, 3, 4))
a + X, (a * X).shape
x = paddle.arange(4, dtype=paddle.float32)
print(x, x.sum())
A.shape, A.sum()
A.mean(), A.sum() / A.numel()
A.mean(axis=0), A.sum(axis=0) / A.shape[0]
sum_A = paddle.sum(A, axis=1, keepdim=True)
y = paddle.ones(shape=[4], dtype='float32')
x, y, paddle.dot(x, y)
paddle.sum(x * y)
A.shape, x.shape, paddle.mv(A, x)
B = paddle.ones(shape=[4, 3], dtype='float32')
paddle.mm(A, B)
u = paddle.to_tensor([3.0, -4.0])
paddle.norm(u)
paddle.abs(u).sum()
paddle.norm(paddle.ones(shape=[4, 9], dtype='float32'))
|
145 | null |
%matplotlib inline
import numpy as np
from matplotlib_inline import backend_inline
from d2l import torch as d2l
def f(x):
return 3 * x ** 2 - 4 * x
def numerical_lim(f, x, h):
return (f(x + h) - f(x)) / h
h = 0.1
for i in range(5):
print(f'h={h:.5f}, numerical limit={numerical_lim(f, 1, h):.5f}')
h *= 0.1
| null |
%matplotlib inline
import numpy as np
from matplotlib_inline import backend_inline
from d2l import paddle as d2l
def f(x):
return 3 * x ** 2 - 4 * x
def numerical_lim(f, x, h):
return (f(x + h) - f(x)) / h
h = 0.1
for i in range(5):
print(f'h={h:.5f}, numerical limit={numerical_lim(f, 1, h):.5f}')
h *= 0.1
|
146 | null |
import torch
x = torch.arange(4.0)
x.requires_grad_(True)
x.grad
y = 2 * torch.dot(x, x)
x.grad.zero_()
y = x.sum()
y.backward()
x.grad
x.grad.zero_()
y = x * x
y.sum().backward()
x.grad
x.grad.zero_()
y = x * x
u = y.detach()
z = u * x
z.sum().backward()
x.grad == u
x.grad.zero_()
y.sum().backward()
x.grad == 2 * x
def f(a):
b = a * 2
while b.norm() < 1000:
b = b * 2
if b.sum() > 0:
c = b
else:
c = 100 * b
return c
a = torch.randn(size=(), requires_grad=True)
d = f(a)
d.backward()
| null |
import warnings
warnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")
import paddle
x = paddle.arange(4, dtype='float32')
x = paddle.to_tensor(x, stop_gradient=False)
y = 2 * paddle.dot(x, x)
x.clear_gradient()
y = paddle.sum(x)
y.backward()
x.grad
x.clear_gradient()
y = x * x
paddle.sum(y).backward()
x.grad
x.clear_gradient()
y = x * x
u = y.detach()
z = u * x
paddle.sum(z).backward()
x.grad == u
x.clear_gradient()
paddle.sum(y).backward()
x.grad == 2 * x
def f(a):
b = a * 2
while paddle.norm(b) < 1000:
b = b * 2
if paddle.sum(b) > 0:
c = b
else:
c = 100 * b
return c
a = paddle.to_tensor(paddle.randn(shape=[1]), stop_gradient=False)
d = f(a)
d.backward()
|
147 | null |
%matplotlib inline
import torch
from torch.distributions import multinomial
from d2l import torch as d2l
fair_probs = torch.ones([6]) / 6
multinomial.Multinomial(1, fair_probs).sample()
multinomial.Multinomial(10, fair_probs).sample()
counts = multinomial.Multinomial(1000, fair_probs).sample()
| null |
%matplotlib inline
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import random
import numpy as np
import paddle
fair_probs = [1.0 / 6] * 6
paddle.distribution.Multinomial(1, paddle.to_tensor(fair_probs)).sample()
counts = paddle.distribution.Multinomial(1000, paddle.to_tensor(fair_probs)).sample()
counts / 1000
counts = paddle.distribution.Multinomial(1000, paddle.to_tensor(fair_probs)).sample()
counts / 1000
|
148 | null |
counts = multinomial.Multinomial(10, fair_probs).sample((500,))
cum_counts = counts.cumsum(dim=0)
estimates = cum_counts / cum_counts.sum(dim=1, keepdims=True)
d2l.set_figsize((6, 4.5))
for i in range(6):
d2l.plt.plot(estimates[:, i].numpy(), label=("P(die=" + str(i + 1) + ")"))
d2l.plt.axhline(y=0.167, color='black', linestyle='dashed')
d2l.plt.gca().set_xlabel('Groups of experiments')
d2l.plt.gca().set_ylabel('Estimated probability')
d2l.plt.legend();
import torch
a = dir(torch.distributions)
help(torch.ones)
torch.ones(4)
| null |
counts = paddle.distribution.Multinomial(10, paddle.to_tensor(fair_probs)).sample((500,1))
cum_counts = counts.cumsum(axis=0)
cum_counts = cum_counts.squeeze(axis=1)
estimates = cum_counts / cum_counts.sum(axis=1, keepdim=True)
d2l.set_figsize((6, 4.5))
for i in range(6):
d2l.plt.plot(estimates[:, i],
label=("P(die=" + str(i + 1) + ")"))
d2l.plt.axhline(y=0.167, color='black', linestyle='dashed')
d2l.plt.gca().set_xlabel('Groups of experiments')
d2l.plt.gca().set_ylabel('Estimated probability')
d2l.plt.legend()
import warnings
warnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")
import paddle
help(paddle.ones)
paddle.ones([4], dtype='float32')
|
149 | null |
%matplotlib inline
import math
import time
import numpy as np
import torch
from d2l import torch as d2l
n = 10000
a = torch.ones(n)
b = torch.ones(n)
c = torch.zeros(n)
timer = Timer()
for i in range(n):
c[i] = a[i] + b[i]
x = np.arange(-7, 7, 0.01)
params = [(0, 1), (0, 2), (3, 1)]
d2l.plot(x, [normal(x, mu, sigma) for mu, sigma in params], xlabel='x', ylabel='p(x)', figsize=(4.5, 2.5), legend=[f'mean {mu}, std {sigma}' for mu, sigma in params])
| null |
%matplotlib inline
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import math
import time
import numpy as np
import paddle
n = 10000
a = paddle.ones([n])
b = paddle.ones([n])
c = paddle.zeros([n])
timer = Timer()
for i in range(n):
c[i] = a[i] + b[i]
x = np.arange(-7, 7, 0.01)
params = [(0, 1), (0, 2), (3, 1)]
d2l.plot(x, [normal(x, mu, sigma) for mu, sigma in params], xlabel='x',
ylabel='p(x)', figsize=(4.5, 2.5), legend=[f'mean {mu}, std {sigma}' for mu, sigma in params])
|
150 | null |
%matplotlib inline
import random
import torch
from d2l import torch as d2l
def synthetic_data(w, b, num_examples):
X = torch.normal(0, 1, (num_examples, len(w)))
y = torch.matmul(X, w) + b
y += torch.normal(0, 0.01, y.shape)
return X, y.reshape((-1, 1))
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
d2l.set_figsize()
d2l.plt.scatter(features[:, (1)].detach().numpy(), labels.detach().numpy(), 1);
def data_iter(batch_size, features, labels):
num_examples = len(features)
indices = list(range(num_examples))
random.shuffle(indices)
for i in range(0, num_examples, batch_size):
batch_indices = torch.tensor(indices[i: min(i + batch_size, num_examples)])
yield features[batch_indices], labels[batch_indices]
batch_size = 10
for X, y in data_iter(batch_size, features, labels):
print(X, '
', y)
break
w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
def linreg(X, w, b):
return torch.matmul(X, w) + b
def sgd(params, lr, batch_size):
with torch.no_grad():
for param in params:
param -= lr * param.grad / batch_size
param.grad.zero_()
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):
for X, y in data_iter(batch_size, features, labels):
l = loss(net(X, w, b), y)
l.sum().backward()
sgd([w, b], lr, batch_size)
with torch.no_grad():
train_l = loss(net(features, w, b), labels)
| null |
%matplotlib inline
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import random
import paddle
def synthetic_data(w, b, num_examples):
X = paddle.normal(0, 1, (num_examples, len(w)))
y = paddle.matmul(X, w) + b
y += paddle.normal(0, 0.01, y.shape)
return X, y.reshape((-1, 1))
true_w = paddle.to_tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
d2l.set_figsize()
d2l.plt.scatter(features[:, 1].detach().numpy(), labels.detach().numpy(), 1);
def data_iter(batch_size, features, labels):
num_examples = len(features)
indices = list(range(num_examples))
random.shuffle(indices)
for i in range(0, num_examples, batch_size):
batch_indices = paddle.to_tensor(indices[i: min(i + batch_size, num_examples)])
yield features[batch_indices], labels[batch_indices]
batch_size = 10
for X, y in data_iter(batch_size, features, labels):
break
w = paddle.normal(0, 0.01, shape=(2,1))
b = paddle.zeros(shape=[1])
w.stop_gradient = False
b.stop_gradient = False
def linreg(X, w, b):
return paddle.matmul(X, w) + b
with paddle.no_grad():
for i, param in enumerate(params):
param -= lr * params[i].grad / batch_size
params[i].set_value(param)
params[i].clear_gradient()
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):
for X, y in data_iter(batch_size, features, labels):
l = loss(net(X, w, b), y)
l.sum().backward()
sgd([w, b], lr, batch_size)
with paddle.no_grad():
train_l = loss(net(features, w, b), labels)
|
151 | null |
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)
def load_array(data_arrays, batch_size, is_train=True):
dataset = data.TensorDataset(*data_arrays)
return data.DataLoader(dataset, batch_size, shuffle=is_train)
batch_size = 10
data_iter = load_array((features, labels), batch_size)
from torch import nn
net = nn.Sequential(nn.Linear(2, 1))
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)
trainer = torch.optim.SGD(net.parameters(), lr=0.03)
w = net[0].weight.data
b = net[0].bias.data
| null |
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import numpy as np
import paddle
true_w = paddle.to_tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)
def load_array(data_arrays, batch_size, is_train=True):
dataset = paddle.io.TensorDataset(data_arrays)
return paddle.io.DataLoader(dataset, batch_size=batch_size, shuffle=is_train, return_list=True)
batch_size = 10
data_iter = load_array((features, labels), batch_size)
from paddle import nn
net = nn.Sequential(nn.Linear(2, 1))
weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Normal(0, 0.01))
bias_attr = paddle.ParamAttr(initializer=None)
net = nn.Sequential(nn.Linear(2, 1, weight_attr=weight_attr, bias_attr=bias_attr))
trainer = paddle.optimizer.SGD(learning_rate=0.03, parameters=net.parameters())
w = net[0].weight
b = net[0].bias
|
152 | null |
%matplotlib inline
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l
d2l.use_svg_display()
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(
root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
root="../data", train=False, transform=trans, download=True)
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
if torch.is_tensor(img):
ax.imshow(img.numpy())
else:
ax.imshow(img)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:
ax.set_title(titles[i])
return axes
X, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))
show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y));
batch_size = 256
return 4
train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers())
def load_data_fashion_mnist(batch_size, resize=None):
trans = [transforms.ToTensor()]
if resize:
trans.insert(0, transforms.Resize(resize))
trans = transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(root="../data", train=False, transform=trans, download=True)
return (data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers()),
data.DataLoader(mnist_test, batch_size, shuffle=False, num_workers=get_dataloader_workers()))
| null |
%matplotlib inline
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import sys
import paddle
from paddle.vision import transforms
d2l.use_svg_display()
trans = transforms.ToTensor()
mnist_train = paddle.vision.datasets.FashionMNIST(mode="train", transform=trans)
mnist_test = paddle.vision.datasets.FashionMNIST(mode="test", transform=trans)
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
if paddle.is_tensor(img):
ax.imshow(img.numpy())
else:
ax.imshow(img)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:
ax.set_title(titles[i])
return axes
X, y = next(iter(paddle.io.DataLoader(mnist_train, batch_size=18)))
show_images(X.reshape([18, 28, 28]), 2, 9, titles=get_fashion_mnist_labels(y));
batch_size = 256
return 4
train_iter = paddle.io.DataLoader(dataset=mnist_train, batch_size=batch_size, shuffle=True, return_list=True, num_workers=get_dataloader_workers())
trans = [transforms.ToTensor()]
if resize:
trans.insert(0, transforms.Resize(resize))
trans = transforms.Compose(trans)
mnist_train = paddle.vision.datasets.FashionMNIST(mode="train", transform=trans)
mnist_test = paddle.vision.datasets.FashionMNIST(mode="test", transform=trans)
return (paddle.io.DataLoader(dataset=mnist_train, batch_size=batch_size, shuffle=True, return_list=True, num_workers=get_dataloader_workers()),
paddle.io.DataLoader(dataset=mnist_test, batch_size=batch_size, return_list=True, shuffle=True, num_workers=get_dataloader_workers()))
|
153 | null |
import torch
from IPython import display
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs = 784
num_outputs = 10
W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)
X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdim=True), X.sum(1, keepdim=True)
def softmax(X):
X_exp = torch.exp(X)
partition = X_exp.sum(1, keepdim=True)
return X_exp / partition
X = torch.normal(0, 1, (2, 5))
X_prob = softmax(X)
X_prob, X_prob.sum(1)
def net(X):
return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)
y = torch.tensor([0, 2])
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y_hat[[0, 1], y]
def cross_entropy(y_hat, y):
return - torch.log(y_hat[range(len(y_hat)), y])
cross_entropy(y_hat, y)
def accuracy(y_hat, y):
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1)
cmp = y_hat.type(y.dtype) == y
return float(cmp.type(y.dtype).sum())
def evaluate_accuracy(net, data_iter):
if isinstance(net, torch.nn.Module):
net.eval()
metric = Accumulator(2)
with torch.no_grad():
for X, y in data_iter:
metric.add(accuracy(net(X), y), y.numel())
return metric[0] / metric[1]
def train_epoch_ch3(net, train_iter, loss, updater):
if isinstance(net, torch.nn.Module):
net.train()
metric = Accumulator(3)
for X, y in train_iter:
y_hat = net(X)
l = loss(y_hat, y)
if isinstance(updater, torch.optim.Optimizer):
updater.zero_grad()
l.mean().backward()
updater.step()
else:
l.sum().backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
return metric[0] / metric[2], metric[1] / metric[2]
| null |
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
from IPython import display
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs = 784
num_outputs = 10
W = paddle.normal(0, 0.01, shape=(num_inputs, num_outputs))
b = paddle.zeros(shape=(num_outputs,))
W.stop_gradient=False
b.stop_gradient=False
X = paddle.to_tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdim=True), X.sum(1, keepdim=True)
def softmax(X):
X_exp = paddle.exp(X)
partition = X_exp.sum(1, keepdim=True)
return X_exp / partition
X = paddle.normal(0, 1, (2, 5))
X_prob = softmax(X)
X_prob, X_prob.sum(1)
def net(X):
return softmax(paddle.matmul(X.reshape((-1, W.shape[0])), W) + b)
y = paddle.to_tensor([0, 2])
y_hat = paddle.to_tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y_hat[[0, 1], y]
def cross_entropy(y_hat, y):
return - paddle.log(y_hat[[i for i in range(len(y_hat))], y.squeeze()])
cross_entropy(y_hat, y)
def accuracy(y_hat, y):
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1)
if len(y_hat.shape) < len(y.shape):
cmp = y_hat.astype(y.dtype) == y.squeeze()
else:
cmp = y_hat.astype(y.dtype) == y
return float(cmp.astype(y.dtype).sum())
def evaluate_accuracy(net, data_iter):
if isinstance(net, paddle.nn.Layer):
net.eval()
metric = Accumulator(2)
with paddle.no_grad():
for X, y in data_iter:
metric.add(accuracy(net(X), y), y.numel())
return metric[0] / metric[1]
def train_epoch_ch3(net, train_iter, loss, updater):
if isinstance(net, paddle.nn.Layer):
net.train()
metric = Accumulator(3)
for X, y in train_iter:
y_hat = net(X)
l = loss(y_hat, y)
if isinstance(updater, paddle.optimizer.Optimizer):
updater.clear_grad()
l.mean().backward()
updater.step()
else:
l.sum().backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
return metric[0] / metric[2], metric[1] / metric[2]
|
154 | null |
import torch
from torch import nn
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights);
trainer = torch.optim.SGD(net.parameters(), lr=0.1)
| null |
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
from paddle import nn
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))
def init_weights(m):
if type(m) == nn.Linear:
nn.initializer.Normal(m.weight, std=0.01)
net.apply(init_weights);
trainer = paddle.optimizer.SGD(learning_rate=0.1, parameters=net.parameters())
|
155 | null |
%matplotlib inline
import torch
from d2l import torch as d2l
x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = torch.relu(x)
d2l.plot(x.detach(), y.detach(), 'x', 'relu(x)', figsize=(5, 2.5))
y.backward(torch.ones_like(x), retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of relu', figsize=(5, 2.5))
y = torch.sigmoid(x)
d2l.plot(x.detach(), y.detach(), 'x', 'sigmoid(x)', figsize=(5, 2.5))
x.grad.data.zero_()
y.backward(torch.ones_like(x),retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of sigmoid', figsize=(5, 2.5))
y = torch.tanh(x)
d2l.plot(x.detach(), y.detach(), 'x', 'tanh(x)', figsize=(5, 2.5))
x.grad.data.zero_()
y.backward(torch.ones_like(x),retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of tanh', figsize=(5, 2.5))
| null |
%matplotlib inline
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
x = paddle.arange(-8.0, 8.0, 0.1, dtype='float32')
x.stop_gradient = False
y = paddle.nn.functional.relu(x)
d2l.plot(x.detach().numpy(), y.detach().numpy(), 'x', 'relu(x)', figsize=(5, 2.5))
y.backward(paddle.ones_like(x), retain_graph=True)
d2l.plot(x.detach().numpy(), x.grad.numpy(), 'x', 'grad of relu', figsize=(5, 2.5))
y = paddle.nn.functional.sigmoid(x)
d2l.plot(x.detach().numpy(), y.detach().numpy(), 'x', 'sigmoid(x)', figsize=(5, 2.5))
x.clear_gradient()
y.backward(paddle.ones_like(x), retain_graph=True)
d2l.plot(x.detach().numpy(), x.grad.numpy(), 'x', 'grad of sigmoid', figsize=(5, 2.5))
y = paddle.tanh(x)
d2l.plot(x.detach().numpy(), y.detach().numpy(), 'x', 'tanh(x)', figsize=(5, 2.5))
x.clear_gradient()
y.backward(paddle.ones_like(x), retain_graph=True)
d2l.plot(x.detach().numpy(), x.grad.numpy(), 'x', 'grad of tanh', figsize=(5, 2.5))
|
156 | null |
import torch
from torch import nn
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = nn.Parameter(torch.randn(
num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(
num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))
params = [W1, b1, W2, b2]
def relu(X):
a = torch.zeros_like(X)
return torch.max(X, a)
num_epochs, lr = 10, 0.1
updater = torch.optim.SGD(params, lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)
| null |
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
from paddle import nn
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = paddle.randn([num_inputs, num_hiddens]) * 0.01
W1.stop_gradient = False
b1 = paddle.zeros([num_hiddens])
b1.stop_gradient = False
W2 = paddle.randn([num_hiddens, num_outputs]) * 0.01
W2.stop_gradient = False
b2 = paddle.zeros([num_outputs])
b2.stop_gradient = False
params = [W1, b1, W2, b2]
def relu(X):
a = paddle.zeros_like(X)
return paddle.maximum(X, a)
num_epochs, lr = 10, 0.1
updater = paddle.optimizer.SGD(learning_rate=lr, parameters=params)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)
|
157 | null |
import torch
from torch import nn
from d2l import torch as d2l
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 10))
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights);
batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=lr)
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
| null |
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
from paddle import nn
net = nn.Sequential(nn.Flatten(),
nn.Linear(784, 256),
nn.ReLU(),
nn.Linear(256, 10))
for layer in net:
if type(layer) == nn.Linear:
weight_attr = paddle.framework.ParamAttr(initializer=paddle.nn.initializer.Normal(mean=0.0, std=0.01))
layer.weight_attr = weight_attr
batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
trainer = paddle.optimizer.SGD(parameters=net.parameters(), learning_rate=lr)
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
|
158 | null |
import math
import numpy as np
import torch
from torch import nn
from d2l import torch as d2l
true_w, features, poly_features, labels = [torch.tensor(x, dtype=torch.float32) for x in [true_w, features, poly_features, labels]]
features[:2], poly_features[:2, :], labels[:2]
def train(train_features, test_features, train_labels, test_labels, num_epochs=400):
loss = nn.MSELoss(reduction='none')
input_shape = train_features.shape[-1]
net = nn.Sequential(nn.Linear(input_shape, 1, bias=False))
batch_size = min(10, train_labels.shape[0])
train_iter = d2l.load_array((train_features, train_labels.reshape(-1,1)), batch_size)
test_iter = d2l.load_array((test_features, test_labels.reshape(-1,1)), batch_size, is_train=False)
trainer = torch.optim.SGD(net.parameters(), lr=0.01)
animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log', xlim=[1, num_epochs], ylim=[1e-3, 1e2], legend=['train', 'test'])
for epoch in range(num_epochs):
d2l.train_epoch_ch3(net, train_iter, loss, trainer)
if epoch == 0 or (epoch + 1) % 20 == 0:
animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss), evaluate_loss(net, test_iter, loss)))
train(poly_features[:n_train, :2], poly_features[n_train:, :2], labels[:n_train], labels[n_train:])
train(poly_features[:n_train, :], poly_features[n_train:, :], labels[:n_train], labels[n_train:], num_epochs=1500)
| null |
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import math
import numpy as np
import paddle
from paddle import nn
true_w, features, poly_features, labels = [paddle.to_tensor(x, dtype=
paddle.float32) for x in [true_w, features, poly_features, labels]]
features[:2], poly_features[:2, :], labels[:2]
def train(train_features, test_features, train_labels, test_labels,
num_epochs=400):
loss = nn.MSELoss()
input_shape = train_features.shape[-1]
net = nn.Sequential(nn.Linear(input_shape, 1, bias_attr=False))
batch_size = min(10, train_labels.shape[0])
train_iter = d2l.load_array(((train_features, train_labels.reshape([-1,1]))), batch_size)
test_iter = d2l.load_array((test_features, test_labels.reshape([-1,1])), batch_size, is_train=False)
trainer = paddle.optimizer.SGD(parameters=net.parameters(), learning_rate=0.01)
animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log', xlim=[1, num_epochs], ylim=[1e-3, 1e2], legend=['train', 'test'])
for epoch in range(num_epochs):
d2l.train_epoch_ch3(net, train_iter, loss, trainer)
if epoch == 0 or (epoch + 1) % 20 == 0:
animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss), evaluate_loss(net, test_iter, loss)))
train(poly_features[:n_train, :2], poly_features[n_train:, :2],
labels[:n_train], labels[n_train:])
train(poly_features[:n_train, :], poly_features[n_train:, :],
labels[:n_train], labels[n_train:], num_epochs=1500)
|
159 | null |
%matplotlib inline
import torch
from torch import nn
from d2l import torch as d2l
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)
def init_params():
w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
return [w, b]
def l2_penalty(w):
return torch.sum(w.pow(2)) / 2
def train(lambd):
w, b = init_params()
net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
num_epochs, lr = 100, 0.003
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
l = loss(net(X), y) + lambd * l2_penalty(w)
l.sum().backward()
d2l.sgd([w, b], lr, batch_size)
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))
def train_concise(wd):
net = nn.Sequential(nn.Linear(num_inputs, 1))
for param in net.parameters():
param.data.normal_()
loss = nn.MSELoss(reduction='none')
num_epochs, lr = 100, 0.003
trainer = torch.optim.SGD([{"params":net[0].weight,'weight_decay': wd}, {"params":net[0].bias}], lr=lr)
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
trainer.zero_grad()
l = loss(net(X), y)
l.mean().backward()
trainer.step()
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1,
(d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))
| null |
%matplotlib inline
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
from paddle import nn
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = paddle.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)
def init_params():
w = paddle.normal(0, 1, shape=(num_inputs, 1))
w.stop_gradient = False
b = paddle.zeros(shape=[1])
b.stop_gradient = False
return [w, b]
def l2_penalty(w):
return paddle.sum(w.pow(2)) / 2
def train(lambd):
w, b = init_params()
net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
num_epochs, lr = 100, 0.003
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter():
l = loss(net(X), y) + lambd * l2_penalty(w)
l.sum().backward()
d2l.sgd([w, b], lr, batch_size)
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))
def train_concise(wd):
weight_attr = paddle.framework.ParamAttr(initializer=paddle.nn.initializer.Normal(mean=0.0, std=1.0))
bias_attr = paddle.framework.ParamAttr(initializer=paddle.nn.initializer.Normal(mean=0.0, std=1.0))
net = nn.Sequential(nn.Linear(num_inputs, 1, weight_attr=weight_attr, bias_attr=bias_attr))
loss = nn.MSELoss()
num_epochs, lr = 100, 0.003
trainer = paddle.optimizer.SGD(parameters=net[0].parameters(), learning_rate=lr, weight_decay=wd*1.0)
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
l = loss(net(X), y)
l.backward()
trainer.step()
trainer.clear_grad()
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))
|
160 | null |
import torch
from torch import nn
from d2l import torch as d2l
def dropout_layer(X, dropout):
assert 0 <= dropout <= 1
if dropout == 1:
return torch.zeros_like(X)
if dropout == 0:
return X
mask = (torch.rand(X.shape) > dropout).float()
return mask * X / (1.0 - dropout)
X= torch.arange(16, dtype = torch.float32).reshape((2, 8))
dropout1, dropout2 = 0.2, 0.5
class Net(nn.Module):
def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2, is_training = True):
super(Net, self).__init__()
self.num_inputs = num_inputs
self.training = is_training
self.lin1 = nn.Linear(num_inputs, num_hiddens1)
self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)
self.lin3 = nn.Linear(num_hiddens2, num_outputs)
self.relu = nn.ReLU()
def forward(self, X):
H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))
if self.training == True:
H1 = dropout_layer(H1, dropout1)
H2 = self.relu(self.lin2(H1))
if self.training == True:
H2 = dropout_layer(H2, dropout2)
out = self.lin3(H2)
return out
net = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)
num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss(reduction='none')
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
net = nn.Sequential(nn.Flatten(),
nn.Linear(784, 256),
nn.ReLU(),
nn.Dropout(dropout1),
nn.Linear(256, 256),
nn.ReLU(),
nn.Dropout(dropout2),
nn.Linear(256, 10))
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights);
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
| null |
import warnings
warnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")
import random
import paddle
from paddle import nn
warnings.filterwarnings("ignore", category=DeprecationWarning)
from d2l import paddle as d2l
def dropout_layer(X, dropout):
assert 0 <= dropout <= 1
if dropout == 1:
return paddle.zeros_like(X)
if dropout == 0:
return X
mask = (paddle.to_tensor(paddle.uniform(X.shape)) > dropout).astype('float32')
return mask * X / (1.0 - dropout)
X= paddle.arange(16, dtype = paddle.float32).reshape((2, 8))
dropout1, dropout2 = 0.2, 0.5
class Net(nn.Layer):
def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2,
is_training = True):
super(Net, self).__init__()
self.num_inputs = num_inputs
self.training = is_training
self.lin1 = nn.Linear(num_inputs, num_hiddens1)
self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)
self.lin3 = nn.Linear(num_hiddens2, num_outputs)
self.relu = nn.ReLU()
def forward(self, X):
H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))
if self.training == True:
H1 = dropout_layer(H1, dropout1)
H2 = self.relu(self.lin2(H1))
if self.training == True:
H2 = dropout_layer(H2, dropout2)
out = self.lin3(H2)
return out
net = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)
num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss(reduction='none')
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = paddle.optimizer.SGD(learning_rate=lr, parameters=net.parameters())
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Normal(std=0.01))
net = nn.Sequential(nn.Flatten(),
nn.Linear(784, 256, weight_attr=weight_attr),
nn.ReLU(),
nn.Dropout(dropout1),
nn.Linear(256, 256, weight_attr=weight_attr),
nn.ReLU(),
nn.Dropout(dropout2),
nn.Linear(256, 10, weight_attr=weight_attr))
trainer = paddle.optimizer.SGD(learning_rate=0.5, parameters=net.parameters())
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
|
161 | null |
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
%matplotlib inline
import torch
from d2l import torch as d2l
x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = torch.sigmoid(x)
y.backward(torch.ones_like(x))
d2l.plot(x.detach().numpy(), [y.detach().numpy(), x.grad.numpy()], legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5))
M = torch.normal(0, 1, size=(4,4))
for i in range(100):
M = torch.mm(M,torch.normal(0, 1, size=(4, 4)))
| null |
trainer = paddle.optimizer.SGD(learning_rate=0.5, parameters=net.parameters())
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
%matplotlib inline
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
x = paddle.arange(start=-8.0, end=8.0, step=0.1, dtype='float32')
x.stop_gradient = False
y = paddle.nn.functional.sigmoid(x)
y.backward(paddle.ones_like(x))
d2l.plot(x.detach().numpy(), [y.detach().numpy(), x.grad.numpy()],
legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5))
M = paddle.normal(0, 1, shape=(4,4))
for i in range(100):
M = paddle.mm(M, paddle.normal(0, 1, shape=(4, 4)))
|
162 | null |
%matplotlib inline
import numpy as np
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l
n_train = train_data.shape[0]
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32)
train_labels = torch.tensor(train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32)
def log_rmse(net, features, labels):
clipped_preds = torch.clamp(net(features), 1, float('inf'))
rmse = torch.sqrt(loss(torch.log(clipped_preds), torch.log(labels)))
return rmse.item()
def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size):
train_ls, test_ls = [], []
train_iter = d2l.load_array((train_features, train_labels), batch_size)
optimizer = torch.optim.Adam(net.parameters(), lr = learning_rate, weight_decay = weight_decay)
for epoch in range(num_epochs):
for X, y in train_iter:
optimizer.zero_grad()
l = loss(net(X), y)
l.backward()
optimizer.step()
train_ls.append(log_rmse(net, train_features, train_labels))
if test_labels is not None:
test_ls.append(log_rmse(net, test_features, test_labels))
return train_ls, test_ls
def get_k_fold_data(k, i, X, y):
assert k > 1
fold_size = X.shape[0] // k
X_train, y_train = None, None
for j in range(k):
idx = slice(j * fold_size, (j + 1) * fold_size)
X_part, y_part = X[idx, :], y[idx]
if j == i:
X_valid, y_valid = X_part, y_part
elif X_train is None:
X_train, y_train = X_part, y_part
else:
X_train = torch.cat([X_train, X_part], 0)
y_train = torch.cat([y_train, y_part], 0)
return X_train, y_train, X_valid, y_valid
| null |
%matplotlib inline
import warnings
import numpy as np
import pandas as pd
warnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")
import paddle
from paddle import nn
warnings.filterwarnings("ignore", category=DeprecationWarning)
from d2l import paddle as d2l
n_train = train_data.shape[0]
train_features = paddle.to_tensor(all_features[:n_train].values, dtype=paddle.float32)
test_features = paddle.to_tensor(all_features[n_train:].values, dtype=paddle.float32)
train_labels = paddle.to_tensor(
train_data.SalePrice.values.reshape(-1, 1), dtype=paddle.float32)
def log_rmse(net, features, labels):
clipped_preds = paddle.clip(net(features), 1, float('inf'))
rmse = paddle.sqrt(loss(paddle.log(clipped_preds), paddle.log(labels)))
return rmse.item()
def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size):
train_ls, test_ls = [], []
train_iter = d2l.load_array((train_features, train_labels), batch_size)
optimizer = paddle.optimizer.Adam(learning_rate=learning_rate*1.0, parameters=net.parameters(), weight_decay=weight_decay*1.0)
for epoch in range(num_epochs):
for X, y in train_iter:
l = loss(net(X), y)
l.backward()
optimizer.step()
optimizer.clear_grad()
train_ls.append(log_rmse(net, train_features, train_labels))
if test_labels is not None:
test_ls.append(log_rmse(net, test_features, test_labels))
return train_ls, test_ls
def get_k_fold_data(k, i, X, y):
assert k > 1
fold_size = X.shape[0] // k
X_train, y_train = None, None
for j in range(k):
idx = slice(j * fold_size, (j + 1) * fold_size)
X_part, y_part = X[idx, :], y[idx]
if j == i:
X_valid, y_valid = X_part, y_part
elif X_train is None:
X_train, y_train = X_part, y_part
else:
X_train = paddle.concat([X_train, X_part], 0)
y_train = paddle.concat([y_train, y_part], 0)
return X_train, y_train, X_valid, y_valid
|
163 | null |
import torch
from torch import nn
from torch.nn import functional as F
net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
X = torch.rand(2, 20)
net(X)
class MLP(nn.Module):
def __init__(self):
super().__init__()
self.hidden = nn.Linear(20, 256)
self.out = nn.Linear(256, 10)
def forward(self, X):
return self.out(F.relu(self.hidden(X)))
class MySequential(nn.Module):
def __init__(self, *args):
super().__init__()
for idx, module in enumerate(args):
self._modules[str(idx)] = module
def forward(self, X):
for block in self._modules.values():
X = block(X)
return X
class FixedHiddenMLP(nn.Module):
def __init__(self):
super().__init__()
self.rand_weight = torch.rand((20, 20), requires_grad=False)
self.linear = nn.Linear(20, 20)
def forward(self, X):
X = self.linear(X)
X = F.relu(torch.mm(X, self.rand_weight) + 1)
X = self.linear(X)
while X.abs().sum() > 1:
X /= 2
return X.sum()
class NestMLP(nn.Module):
def __init__(self):
super().__init__()
self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU())
self.linear = nn.Linear(32, 16)
def forward(self, X):
return self.linear(self.net(X))
chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
chimera(X)
| null |
import warnings
warnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")
import paddle
from paddle import nn
from paddle.nn import functional as F
net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
X = paddle.rand([2, 20])
net(X)
class MLP(nn.Layer):
def __init__(self):
super().__init__()
self.hidden = nn.Linear(20, 256)
self.out = nn.Linear(256, 10)
def forward(self, X):
return self.out(F.relu(self.hidden(X)))
class MySequential(nn.Layer):
def __init__(self, *layers):
super(MySequential, self).__init__()
if len(layers) > 0 and isinstance(layers[0], tuple):
for name, layer in layers:
self.add_sublayer(name, layer)
else:
for idx, layer in enumerate(layers):
self.add_sublayer(str(idx), layer)
def forward(self, X):
for layer in self._sub_layers.values():
X = layer(X)
return X
class FixedHiddenMLP(nn.Layer):
def __init__(self):
super().__init__()
self.rand_weight = paddle.rand([20, 20])
self.linear = nn.Linear(20, 20)
def forward(self, X):
X = self.linear(X)
X = F.relu(paddle.tensor.mm(X, self.rand_weight) + 1)
X = self.linear(X)
while X.abs().sum() > 1:
X /= 2
return X.sum()
class NestMLP(nn.Layer):
def __init__(self):
super().__init__()
self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),
nn.Linear(64, 32), nn.ReLU())
self.linear = nn.Linear(32, 16)
def forward(self, X):
return self.linear(self.net(X))
chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
chimera(X)
|
164 | null |
import torch
from torch import nn
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)
net.state_dict()['2.bias'].data
def block1():
return nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 4), nn.ReLU())
def block2():
net = nn.Sequential()
for i in range(4):
net.add_module(f'block {i}', block1())
return net
rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)
def init_normal(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, mean=0, std=0.01)
nn.init.zeros_(m.bias)
net.apply(init_normal)
net[0].weight.data[0], net[0].bias.data[0]
def init_constant(m):
if type(m) == nn.Linear:
nn.init.constant_(m.weight, 1)
nn.init.zeros_(m.bias)
net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]
def init_xavier(m):
if type(m) == nn.Linear:
nn.init.xavier_uniform_(m.weight)
def init_42(m):
if type(m) == nn.Linear:
nn.init.constant_(m.weight, 42)
net[0].apply(init_xavier)
net[2].apply(init_42)
def my_init(m):
if type(m) == nn.Linear:
nn.init.uniform_(m.weight, -10, 10)
m.weight.data *= m.weight.data.abs() >= 5
net.apply(my_init)
net[0].weight[:2]
net[0].weight.data[:] += 1
net[0].weight.data[0, 0] = 42
net[0].weight.data[0]
layer = CenteredLayer()
layer(torch.FloatTensor([1, 2, 3, 4, 5]))
| null |
import warnings
warnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")
import paddle
from paddle import nn
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = paddle.rand([2, 4])
net(X)
net.state_dict()['2.bias']
def block1():
return nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 4), nn.ReLU())
def block2():
net = nn.Sequential()
for i in range(4):
net.add_sublayer(f'block {i}', block1())
return net
rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)
def init_normal(m):
if type(m) == nn.Linear:
paddle.nn.initializer.Normal(mean=0.0, std=0.01)
paddle.zeros(m.bias)
net.apply(init_normal)
net[0].weight[0],net[0].state_dict()['bias']
def init_constant(m):
if type(m) == nn.Linear:
paddle.nn.initializer.Constant(value = 1)
paddle.zeros(m.bias)
net.apply(init_constant)
net[0].weight[0],net[0].state_dict()['bias']
def xavier(m):
if type(m) == nn.Linear:
paddle.nn.initializer.XavierUniform(m.weight)
def init_42(m):
if type(m) == nn.Linear:
paddle.nn.initializer.Constant(42)
net[0].apply(xavier)
net[2].apply(init_42)
def my_init(m):
if type(m) == nn.Linear:
for name, param in m.named_parameters()][0])
paddle.nn.initializer.XavierUniform(m.weight, -10, 10)
h = paddle.abs(m.weight) >= 5
h = paddle.to_tensor(h)
m = paddle.to_tensor(m.weight)
m *= h
net.apply(my_init)
net[0].weight[:2]
net[0].weight.set_value(net[0].weight.numpy() + 1)
val = net[0].weight.numpy()
val[0, 0] = 42
net[0].weight.set_value(val)
net[0].weight[0]
layer = CenteredLayer()
layer(paddle.to_tensor([1, 2, 3, 4, 5], dtype='float32'))
|
165 | null |
import torch
import torch.nn.functional as F
from torch import nn
class CenteredLayer(nn.Module):
def __init__(self):
super().__init__()
def forward(self, X):
return X - X.mean()
Y = net(torch.rand(4, 8))
Y.mean()
class MyLinear(nn.Module):
def __init__(self, in_units, units):
super().__init__()
self.weight = nn.Parameter(torch.randn(in_units, units))
self.bias = nn.Parameter(torch.randn(units,))
def forward(self, X):
linear = torch.matmul(X, self.weight.data) + self.bias.data
return F.relu(linear)
linear(torch.rand(2, 5))
net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))
net(torch.rand(2, 64))
| null |
import warnings
warnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")
import paddle
import paddle.nn.functional as F
from paddle import nn
class CenteredLayer(nn.Layer):
def __init__(self):
super().__init__()
def forward(self, X):
return X - X.mean()
Y = net(paddle.rand([4, 8]))
Y.mean()
class MyLinear(nn.Layer):
def __init__(self, in_units, units):
super().__init__()
self.weight = paddle.create_parameter(shape=(in_units, units), dtype='float32')
self.bias = paddle.create_parameter(shape=(units,), dtype='float32')
def forward(self, X):
linear = paddle.matmul(X, self.weight) + self.bias
return F.relu(linear)
linear(paddle.randn([2, 5]))
net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))
net(paddle.rand([2, 64]))
|
166 | null |
import torch
from torch import nn
from torch.nn import functional as F
x = torch.arange(4)
torch.save(x, 'x-file')
x2 = torch.load('x-file')
y = torch.zeros(4)
torch.save([x, y],'x-files')
x2, y2 = torch.load('x-files')
mydict = {'x': x, 'y': y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
class MLP(nn.Module):
def __init__(self):
super().__init__()
self.hidden = nn.Linear(20, 256)
self.output = nn.Linear(256, 10)
def forward(self, x):
return self.output(F.relu(self.hidden(x)))
net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)
torch.save(net.state_dict(), 'mlp.params')
clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval()
| null |
import warnings
warnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")
import paddle
from paddle import nn
from paddle.nn import functional as F
x = paddle.arange(4)
paddle.save(x, 'x-file')
x2 = paddle.load('x-file')
y = paddle.zeros([4])
paddle.save([x,y], 'x-file')
x2, y2 = paddle.load('x-file')
mydict = {'x': x, 'y': y}
paddle.save(mydict, 'mydict')
mydict2 = paddle.load('mydict')
class MLP(nn.Layer):
def __init__(self):
super().__init__()
self.hidden = nn.Linear(20, 256)
self.output = nn.Linear(256, 10)
def forward(self, x):
return self.output(F.relu(self.hidden(x)))
net = MLP()
X = paddle.randn(shape=[2, 20])
Y = net(X)
paddle.save(net.state_dict(), 'mlp.pdparams')
clone = MLP()
clone.set_state_dict(paddle.load('mlp.pdparams'))
clone.eval()
|
167 | null |
import torch
from torch import nn
torch.device('cpu'), torch.device('cuda'), torch.device('cuda:1')
torch.cuda.device_count()
def try_gpu(i=0):
if torch.cuda.device_count() >= i + 1:
return devices = [torch.device(f'cuda:{i}')
return torch.device('cpu')
def try_all_gpus(): devices = [torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())]
return devices if devices else [torch.device('cpu')]
try_gpu(), try_gpu(10), try_all_gpus()
x = torch.tensor([1, 2, 3])
x.device
X = torch.ones(2, 3, device=try_gpu())
Y = torch.rand(2, 3, device=try_gpu(1))
net = nn.Sequential(nn.Linear(3, 1))
net = net.to(device=try_gpu())
net[0].weight.data.device
| null |
import paddle
from paddle import nn
paddle.device.set_device("cpu"), paddle.CUDAPlace(0), paddle.CUDAPlace(1)
paddle.device.cuda.device_count()
if paddle.device.cuda.device_count() >= i + 1:
return paddle.CUDAPlace(i)
return paddle.CPUPlace()
def try_all_gpus():
devices = [paddle.CUDAPlace(i) for i in range(paddle.device.cuda.device_count())]
return devices if devices else paddle.CPUPlace()
try_gpu(),try_gpu(10),try_all_gpus()
x = paddle.to_tensor([1, 2, 3])
x.place
X = paddle.to_tensor(paddle.ones(shape=[2, 3]), place=try_gpu())
Y = paddle.to_tensor(paddle.rand([2, 3]), place=try_gpu(1))
net = nn.Sequential(nn.Linear(3, 1))
net=net.to(try_gpu())
net[0].weight.place
|
168 | null |
import torch
from torch import nn
from d2l import torch as d2l
def corr2d(X, K):
h, w = K.shape
Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
Y[i, j] = (X[i:i + h, j:j + w] * K).sum()
return Y
X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
corr2d(X, K)
class Conv2D(nn.Module):
def __init__(self, kernel_size):
super().__init__()
self.weight = nn.Parameter(torch.rand(kernel_size))
self.bias = nn.Parameter(torch.zeros(1))
def forward(self, x):
return corr2d(x, self.weight) + self.bias
X = torch.ones((6, 8))
X[:, 2:6] = 0
K = torch.tensor([[1.0, -1.0]])
conv2d = nn.Conv2d(1,1, kernel_size=(1, 2), bias=False)
X = X.reshape((1, 1, 6, 8))
Y = Y.reshape((1, 1, 6, 7))
lr = 3e-2
for i in range(10):
Y_hat = conv2d(X)
l = (Y_hat - Y) ** 2
conv2d.zero_grad()
l.sum().backward()
conv2d.weight.data[:] -= lr * conv2d.weight.grad
conv2d.weight.data.reshape((1, 2))
| null |
import warningsfrom d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
from paddle import nn
def corr2d(X, K):
h, w = K.shape
Y = paddle.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
Y[i, j] = (X[i:i + h, j:j + w] * K).sum()
return Y
X = paddle.to_tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = paddle.to_tensor([[0.0, 1.0], [2.0, 3.0]])
corr2d(X, K)
class Conv2D(nn.Layer):
def __init__(self, kernel_size):
super().__init__()
self.weight = paddle.ParamAttr(paddle.rand(kernel_size))
self.bias = paddle.ParamAttr(paddle.zeros(1))
def forward(self, x):
return corr2d(x, self.weight) + self.bias
X = paddle.ones((6, 8))
X[:, 2:6] = 0
K = paddle.to_tensor([[1.0, -1.0]])
conv2d = nn.Conv2D(1, 1, kernel_size=(1, 2))
X = X.reshape((1, 1, 6, 8))
Y = Y.reshape((1, 1, 6, 7))
lr = 3e-2
for i in range(10):
Y_hat = conv2d(X)
l = (Y_hat - Y) ** 2
conv2d.clear_gradients()
l.sum().backward()
with paddle.no_grad():
conv2d.weight[:] -= lr * conv2d.weight.grad
conv2d.weight.reshape((1, 2))
|
169 | null |
import torch
from torch import nn
def comp_conv2d(conv2d, X):
X = X.reshape((1, 1) + X.shape)
Y = conv2d(X)
return Y.reshape(Y.shape[2:])
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1)
X = torch.rand(size=(8, 8))
comp_conv2d(conv2d, X).shape
conv2d = nn.Conv2d(1, 1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, X).shape
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)
comp_conv2d(conv2d, X).shape
conv2d = nn.Conv2d(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))
comp_conv2d(conv2d, X).shape
| null |
import warnings
warnings.filterwarnings(action="https://huggingface.co/datasets/Owos/CodeTransOcean-copy/viewer/dl_trans/ignore")
import paddle
from paddle import nn
def comp_conv2d(conv2d, X):
X = paddle.reshape(X, [1, 1] + X.shape)
Y = conv2d(X)
return Y.reshape(Y.shape[2:])
conv2d = nn.Conv2D(in_channels=1, out_channels=1, kernel_size=3, padding=1)
X = paddle.rand((8, 8))
comp_conv2d(conv2d, X).shape
conv2d = nn.Conv2D(in_channels=1, out_channels=1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, X).shape
conv2d = nn.Conv2D(1, 1, kernel_size=3, padding=1, stride=2)
comp_conv2d(conv2d, X).shape
conv2d = nn.Conv2D(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))
comp_conv2d(conv2d, X).shape
|
170 | null |
import torch
from d2l import torch as d2l
def corr2d_multi_in(X, K):
return sum(d2l.corr2d(x, k) for x, k in zip(X, K))
X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]], [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = torch.tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])
corr2d_multi_in(X, K)
def corr2d_multi_in_out(X, K):
return torch.stack([corr2d_multi_in(X, k) for k in K], 0)
K = torch.stack((K, K + 1, K + 2), 0)
K.shape
def corr2d_multi_in_out_1x1(X, K):
c_i, h, w = X.shape
c_o = K.shape[0]
X = X.reshape((c_i, h * w))
K = K.reshape((c_o, c_i))
Y = torch.matmul(K, X)
return Y.reshape((c_o, h, w))
X = torch.normal(0, 1, (3, 3, 3))
K = torch.normal(0, 1, (2, 3, 1, 1))
Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
assert float(torch.abs(Y1 - Y2).sum()) < 1e-6
| null |
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
def corr2d_multi_in(X, K):
return sum(d2l.corr2d(x, k) for x, k in zip(X, K))
X = paddle.to_tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]], [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = paddle.to_tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])
corr2d_multi_in(X, K)
def corr2d_multi_in_out(X, K):
return paddle.stack([corr2d_multi_in(X, k) for k in K], 0)
K = paddle.stack((K, K + 1, K + 2), 0)
K.shape
def corr2d_multi_in_out_1x1(X, K):
c_i, h, w = X.shape
c_o = K.shape[0]
X = X.reshape((c_i, h * w))
K = K.reshape((c_o, c_i))
Y = paddle.matmul(K, X)
return Y.reshape((c_o, h, w))
X = paddle.normal(0, 1, (3, 3, 3))
K = paddle.normal(0, 1, (2, 3, 1, 1))
Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
assert float(paddle.abs(Y1 - Y2).sum()) < 1e-6
|
171 | null |
import torch
from torch import nn
from d2l import torch as d2l
def pool2d(X, pool_size, mode='max'):
p_h, p_w = pool_size
Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
if mode == 'max':
Y[i, j] = X[i: i + p_h, j: j + p_w].max()
elif mode == 'avg':
Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
return Y
X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
pool2d(X, (2, 2))
X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))
pool2d = nn.MaxPool2d(3)
pool2d(X)
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
pool2d = nn.MaxPool2d((2, 3), stride=(2, 3), padding=(0, 1))
pool2d(X)
X = torch.cat((X, X + 1), 1)
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
| null |
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
from paddle import nn
def pool2d(X, pool_size, mode='max'):
p_h, p_w = pool_size
Y = paddle.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
if mode == 'max':
Y[i, j] = X[i: i + p_h, j: j + p_w].max()
elif mode == 'avg':
Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
return Y
X = paddle.to_tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
pool2d(X, (2, 2))
X = paddle.arange(16, dtype="float32").reshape((1, 1, 4, 4))
pool2d = nn.MaxPool2D(3, stride=3)
pool2d(X)
pool2d = nn.MaxPool2D(3, padding=1, stride=2)
pool2d(X)
pool2d = nn.MaxPool2D((2, 3), padding=(0, 1), stride=(2, 3))
pool2d(X)
X = paddle.concat((X, X + 1), 1)
pool2d = paddle.nn.MaxPool2D(3, padding=1, stride=2)
pool2d(X)
|
172 | null |
import torch
from torch import nn
from d2l import torch as d2l
net = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Flatten(),
nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
nn.Linear(120, 84), nn.Sigmoid(),
nn.Linear(84, 10))
X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape: ',X.shape)
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
def init_weights(m):
if type(m) == nn.Linear or type(m) == nn.Conv2d:
nn.init.xavier_uniform_(m.weight)
net.apply(init_weights)
net.to(device)
optimizer = torch.optim.SGD(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss()
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], legend=['train loss', 'train acc', 'test acc'])
timer, num_batches = d2l.Timer(), len(train_iter)
for epoch in range(num_epochs):
metric = d2l.Accumulator(3)
net.train()
for i, (X, y) in enumerate(train_iter):
timer.start()
optimizer.zero_grad()
X, y = X.to(device), y.to(device)
y_hat = net(X)
l = loss(y_hat, y)
l.backward()
optimizer.step()
with torch.no_grad():
metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
timer.stop()
train_l = metric[0] / metric[2]
train_acc = metric[1] / metric[2]
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches, (train_l, train_acc, None))
test_acc = evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch + 1, (None, None, test_acc))
| null |
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
from paddle import nn, optimizer
net = nn.Sequential(
nn.Conv2D(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
nn.AvgPool2D(kernel_size=2, stride=2),
nn.Conv2D(6, 16, kernel_size=5), nn.Sigmoid(),
nn.AvgPool2D(kernel_size=2, stride=2),
nn.Flatten(),
nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
nn.Linear(120, 84), nn.Sigmoid(),
nn.Linear(84, 10))
X = paddle.rand((1, 1, 28, 28), 'float32')
for layer in net:
X = layer(X)
print(layer.__class__.__name__, 'output shape: ', X.shape)
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
def init_weights(m):
if type(m) == nn.Linear or type(m) == nn.Conv2D:
nn.initializer.XavierUniform(m.weight)
net.apply(init_weights)
net.to(device)
optimizer = paddle.optimizer.SGD(learning_rate=lr, parameters=net.parameters())
loss = nn.CrossEntropyLoss()
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], legend=['train loss', 'train acc', 'test acc'])
timer, num_batches = d2l.Timer(), len(train_iter)
for epoch in range(num_epochs):
metric = d2l.Accumulator(3)
net.train()
for i, (X, y) in enumerate(train_iter):
timer.start()
optimizer.clear_grad()
X, y = paddle.to_tensor(X, place=device), paddle.to_tensor(y, place=device)
y_hat = net(X)
l = loss(y_hat, y)
l.backward()
optimizer.step()
with paddle.no_grad():
metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
timer.stop()
train_l = metric[0] / metric[2]
train_acc = metric[1] / metric[2]
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches, (train_l, train_acc, None))
test_acc = evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch + 1, (None, None, test_acc))
|
173 | null |
import torch
from torch import nn
from d2l import torch as d2l
net = nn.Sequential(
nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Flatten(),
nn.Linear(6400, 4096), nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(4096, 4096), nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(4096, 10))
X = torch.randn(1, 1, 224, 224)
for layer in net:
X=layer(X)
print(layer.__class__.__name__,'output shape: ',X.shape)
| null |
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
import paddle.nn as nn
net = nn.Sequential(
nn.Conv2D(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
nn.MaxPool2D(kernel_size=3, stride=2),
nn.Conv2D(96, 256, kernel_size=5, padding=2), nn.ReLU(),
nn.MaxPool2D(kernel_size=3, stride=2),
nn.Conv2D(256, 384, kernel_size=3, padding=1), nn.ReLU(),
nn.Conv2D(384, 384, kernel_size=3, padding=1), nn.ReLU(),
nn.Conv2D(384, 256, kernel_size=3, padding=1), nn.ReLU(),
nn.MaxPool2D(kernel_size=3, stride=2), nn.Flatten(),
nn.Linear(6400, 4096), nn.ReLU(), nn.Dropout(p=0.5),
nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5),
nn.Linear(4096, 10))
X = paddle.randn(shape=(1, 1, 224, 224))
for layer in net:
X=layer(X)
print(layer.__class__.__name__,'output shape: ',X.shape)
|
174 | null |
import torch
from torch import nn
from d2l import torch as d2l
def vgg_block(num_convs, in_channels, out_channels):
layers = []
for _ in range(num_convs):
layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))
layers.append(nn.ReLU())
in_channels = out_channels
layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
return nn.Sequential(*layers)
def vgg(conv_arch):
conv_blks = []
in_channels = 1
for (num_convs, out_channels) in conv_arch:
conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
in_channels = out_channels
return nn.Sequential(
*conv_blks, nn.Flatten(),
nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
nn.Linear(4096, 10))
net = vgg(conv_arch)
X = torch.randn(size=(1, 1, 224, 224))
for blk in net:
X = blk(X)
print(blk.__class__.__name__,'output shape: ',X.shape)
| null |
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
import paddle.nn as nn
def vgg_block(num_convs, in_channels, out_channels):
layers = []
for _ in range(num_convs):
layers.append(nn.Conv2D(in_channels, out_channels, kernel_size=3, padding=1))
layers.append(nn.ReLU())
in_channels = out_channels
layers.append(nn.MaxPool2D(kernel_size=2, stride=2))
return nn.Sequential(*layers)
def vgg(conv_arch):
conv_blks = []
in_channels = 1
for (num_convs, out_channels) in conv_arch:
conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
in_channels = out_channels
return nn.Sequential(*conv_blks, nn.Flatten(),
nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(),
nn.Dropout(0.5), nn.Linear(4096, 4096), nn.ReLU(),
nn.Dropout(0.5), nn.Linear(4096, 10))
net = vgg(conv_arch)
X = paddle.randn(shape=(1, 1, 224, 224))
for blk in net:
X = blk(X)
print(blk.__class__.__name__,'output shape: ',X.shape)
|
175 | null |
import torch
from torch import nn
from d2l import torch as d2l
def nin_block(in_channels, out_channels, kernel_size, strides, padding):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),
nn.ReLU(),
nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),
nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())
net = nn.Sequential(
nin_block(1, 96, kernel_size=11, strides=4, padding=0),
nn.MaxPool2d(3, stride=2),
nin_block(96, 256, kernel_size=5, strides=1, padding=2),
nn.MaxPool2d(3, stride=2),
nin_block(256, 384, kernel_size=3, strides=1, padding=1),
nn.MaxPool2d(3, stride=2),
nn.Dropout(0.5),
nin_block(384, 10, kernel_size=3, strides=1, padding=1),
nn.AdaptiveAvgPool2d((1, 1)),
nn.Flatten())
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape: ', X.shape)
| null |
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
import paddle.nn as nn
def nin_block(in_channels, out_channels, kernel_size, strides, padding):
return nn.Sequential(
nn.Conv2D(in_channels, out_channels, kernel_size, strides, padding),
nn.ReLU(),
nn.Conv2D(out_channels, out_channels, kernel_size=1),
nn.ReLU(),
nn.Conv2D(out_channels, out_channels, kernel_size=1),
nn.ReLU())
net = nn.Sequential(
nin_block(1, 96, kernel_size=11, strides=4, padding=0),
nn.MaxPool2D(3, stride=2),
nin_block(96, 256, kernel_size=5, strides=1, padding=2),
nn.MaxPool2D(3, stride=2),
nin_block(256, 384, kernel_size=3, strides=1, padding=1),
nn.MaxPool2D(3, stride=2), nn.Dropout(0.5),
nin_block(384, 10, kernel_size=3, strides=1, padding=1),
nn.AdaptiveAvgPool2D((1, 1)),
nn.Flatten())
X = paddle.rand(shape=(1, 1, 224, 224))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape: ', X.shape)
|
176 | null |
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
class Inception(nn.Module):
def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):
super(Inception, self).__init__(**kwargs)
self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)
self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)
self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)
self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)
def forward(self, x):
p1 = F.relu(self.p1_1(x))
p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
p4 = F.relu(self.p4_2(self.p4_1(x)))
return torch.cat((p1, p2, p3, p4), dim=1)
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
nn.ReLU(),
nn.Conv2d(64, 192, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
Inception(256, 128, (128, 192), (32, 96), 64),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
Inception(512, 160, (112, 224), (24, 64), 64),
Inception(512, 128, (128, 256), (24, 64), 64),
Inception(512, 112, (144, 288), (32, 64), 64),
Inception(528, 256, (160, 320), (32, 128), 128),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
Inception(832, 384, (192, 384), (48, 128), 128),
nn.AdaptiveAvgPool2d((1,1)),
nn.Flatten())
net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))
X = torch.rand(size=(1, 1, 96, 96))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape: ', X.shape)
| null |
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class Inception(nn.Layer):
def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):
super(Inception, self).__init__(**kwargs)
self.p1_1 = nn.Conv2D(in_channels, c1, kernel_size=1)
self.p2_1 = nn.Conv2D(in_channels, c2[0], kernel_size=1)
self.p2_2 = nn.Conv2D(c2[0], c2[1], kernel_size=3, padding=1)
self.p3_1 = nn.Conv2D(in_channels, c3[0], kernel_size=1)
self.p3_2 = nn.Conv2D(c3[0], c3[1], kernel_size=5, padding=2)
self.p4_1 = nn.MaxPool2D(kernel_size=3, stride=1, padding=1)
self.p4_2 = nn.Conv2D(in_channels, c4, kernel_size=1)
def forward(self, x):
p1 = F.relu(self.p1_1(x))
p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
p4 = F.relu(self.p4_2(self.p4_1(x)))
return paddle.concat(x=[p1, p2, p3, p4], axis=1)
b1 = nn.Sequential(nn.Conv2D(1, 64, kernel_size=7, stride=2, padding=3),
nn.ReLU(),
nn.MaxPool2D(kernel_size=3, stride=2,padding=1))
b2 = nn.Sequential(nn.Conv2D(64, 64, kernel_size=1),
nn.ReLU(),
nn.Conv2D(64, 192, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2D(kernel_size=3, stride=2, padding=1))
b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
Inception(256, 128, (128, 192), (32, 96), 64),
nn.MaxPool2D(kernel_size=3, stride=2, padding=1))
b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
Inception(512, 160, (112, 224), (24, 64), 64),
Inception(512, 128, (128, 256), (24, 64), 64),
Inception(512, 112, (144, 288), (32, 64), 64),
Inception(528, 256, (160, 320), (32, 128), 128),
nn.MaxPool2D(kernel_size=3, stride=2, padding=1))
b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
Inception(832, 384, (192, 384), (48, 128), 128),
nn.AdaptiveAvgPool2D((1, 1)),
nn.Flatten())
net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))
X = paddle.rand(shape=(1, 1, 96, 96))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape: ', X.shape)
|
177 | null |
import torch
from torch import nn
from d2l import torch as d2l
def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):
if not torch.is_grad_enabled():
X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
else:
assert len(X.shape) in (2, 4)
if len(X.shape) == 2:
mean = X.mean(dim=0)
var = ((X - mean) ** 2).mean(dim=0)
else:
mean = X.mean(dim=(0, 2, 3), keepdim=True)
var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)
X_hat = (X - mean) / torch.sqrt(var + eps)
moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
moving_var = momentum * moving_var + (1.0 - momentum) * var
Y = gamma * X_hat + beta
return Y, moving_mean.data, moving_var.data
class BatchNorm(nn.Module):
def __init__(self, num_features, num_dims):
super().__init__()
if num_dims == 2:
shape = (1, num_features)
else:
shape = (1, num_features, 1, 1)
self.gamma = nn.Parameter(torch.ones(shape))
self.beta = nn.Parameter(torch.zeros(shape))
self.moving_mean = torch.zeros(shape)
self.moving_var = torch.ones(shape)
def forward(self, X):
if self.moving_mean.device != X.device:
self.moving_mean = self.moving_mean.to(X.device)
self.moving_var = self.moving_var.to(X.device)
Y, self.moving_mean, self.moving_var = batch_norm(
X, self.gamma, self.beta, self.moving_mean,
self.moving_var, eps=1e-5, momentum=0.9)
return Y
net = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
nn.Linear(16*4*4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),
nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),
nn.Linear(84, 10))
net[1].gamma.reshape((-1,)), net[1].beta.reshape((-1,))
net = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5), nn.BatchNorm2d(6), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), nn.BatchNorm2d(16), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
nn.Linear(256, 120), nn.BatchNorm1d(120), nn.Sigmoid(),
nn.Linear(120, 84), nn.BatchNorm1d(84), nn.Sigmoid(),
nn.Linear(84, 10))
| null |
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
import paddle.nn as nn
def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum, is_training=True):
if not is_training:
X_hat = (X - moving_mean) / (moving_var + eps) ** 0.5
else:
assert len(X.shape) in (2, 4)
if len(X.shape) == 2:
mean = paddle.mean(X)
var = paddle.mean(((X - mean) ** 2))
else:
mean = paddle.mean(X, axis=(0, 2, 3), keepdim=True)
var = paddle.mean(((X - mean) ** 2), axis=(0, 2, 3), keepdim=True)
X_hat = (X - mean) / (var + eps) ** 0.5
moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
moving_var = momentum * moving_var + (1.0 - momentum) * var
Y = gamma * X_hat + beta
return Y, moving_mean, moving_var
class BatchNorm(nn.Layer):
def __init__(self, num_features, num_dims=4):
super(BatchNorm, self).__init__()
if num_dims == 2:
shape = (1, num_features)
else:
shape = (1, num_features, 1, 1)
self.gamma = self.create_parameter(
attr=None,
shape=shape,
dtype='float32',
is_bias=False,
default_initializer=nn.initializer.Assign(paddle.ones(shape=shape, dtype='float32')))
self.beta = self.create_parameter(
attr=None,
shape=shape,
dtype='float32',
is_bias=False,
default_initializer=nn.initializer.Assign(paddle.zeros(shape=shape, dtype='float32')))
self.moving_mean = paddle.zeros(shape=shape, dtype='float32')
self.moving_var = paddle.zeros(shape=shape, dtype='float32')
def forward(self, X):
Y, self.moving_mean, self.moving_var = batch_norm(
X, self.gamma, self.beta, self.moving_mean,
self.moving_var, eps=1e-5, momentum=0.9, is_training=self.training)
return Y
net = nn.Sequential(
nn.Conv2D(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),
nn.MaxPool2D(kernel_size=2, stride=2),
nn.Conv2D(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),
nn.MaxPool2D(kernel_size=2, stride=2),
nn.Flatten(), nn.Linear(16 * 4 * 4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),
nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),
nn.Linear(84, 10))
param = net.parameters()
print('gamma:', param[2].numpy().reshape(-1))
print('beta:', param[3].numpy().reshape(-1))
net = nn.Sequential(
nn.Conv2D(1, 6, kernel_size=5), nn.BatchNorm2D(6, momentum=0.1), nn.Sigmoid(),
nn.MaxPool2D(kernel_size=2, stride=2),
nn.Conv2D(6, 16, kernel_size=5), nn.BatchNorm2D(16, momentum=0.1), nn.Sigmoid(),
nn.MaxPool2D(kernel_size=2, stride=2),
nn.Flatten(),
nn.Linear(256, 120), nn.BatchNorm1D(120, momentum=0.1), nn.Sigmoid(),
nn.Linear(120, 84), nn.BatchNorm1D(84, momentum=0.1), nn.Sigmoid(),
nn.Linear(84, 10))
|
178 | null |
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
class Residual(nn.Module):
def __init__(self, input_channels, num_channels, use_1x1conv=False, strides=1):
super().__init__()
self.conv1 = nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1, stride=strides)
self.conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1)
if use_1x1conv:
self.conv3 = nn.Conv2d(input_channels, num_channels, kernel_size=1, stride=strides)
else:
self.conv3 = None
self.bn1 = nn.BatchNorm2d(num_channels)
self.bn2 = nn.BatchNorm2d(num_channels)
def forward(self, X):
Y = F.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:
X = self.conv3(X)
Y += X
return F.relu(Y)
blk = Residual(3,3)
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
Y.shape
blk = Residual(3,6, use_1x1conv=True, strides=2)
blk(X).shape
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
net = nn.Sequential(b1, b2, b3, b4, b5,
nn.AdaptiveAvgPool2d((1,1)),
nn.Flatten(), nn.Linear(512, 10))
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape: ', X.shape)
| null |
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
import paddle.nn as nn
from paddle.nn import functional as F
class Residual(nn.Layer):
def __init__(self, input_channels, num_channels, use_1x1conv=False,
strides=1):
super(Residual, self).__init__()
self.conv1 = nn.Conv2D(input_channels, num_channels, kernel_size=3, padding=1, stride=strides)
self.conv2 = nn.Conv2D(num_channels, num_channels, kernel_size=3, padding=1)
if use_1x1conv:
self.conv3 = nn.Conv2D(input_channels, num_channels, kernel_size=1, stride=strides)
else:
self.conv3 = None
self.bn1 = nn.BatchNorm2D(num_channels)
self.bn2 = nn.BatchNorm2D(num_channels)
self.relu = nn.ReLU()
def forward(self, X):
Y = F.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:
X = self.conv3(X)
Y += X
return F.relu(Y)
blk = Residual(3, 3)
X = paddle.rand([4, 3, 6, 6])
Y = blk(X)
Y.shape
blk = Residual(3, 6, use_1x1conv=True, strides=2)
blk(X).shape
b1 = nn.Sequential(nn.Conv2D(1, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2D(64), nn.ReLU(),
nn.MaxPool2D(kernel_size=3, stride=2, padding=1))
net = nn.Sequential(b1, b2, b3, b4, b5,
nn.AdaptiveAvgPool2D((1, 1)),
nn.Flatten(), nn.Linear(512, 10))
X = paddle.rand(shape=(1, 1, 224, 224))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape: ', X.shape)
|
179 | null |
import torch
from torch import nn
from d2l import torch as d2l
def conv_block(input_channels, num_channels):
return nn.Sequential(
nn.BatchNorm2d(input_channels), nn.ReLU(),
nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1))
class DenseBlock(nn.Module):
def __init__(self, num_convs, input_channels, num_channels):
super(DenseBlock, self).__init__()
layer = []
for i in range(num_convs):
layer.append(conv_block(num_channels * i + input_channels, num_channels))
self.net = nn.Sequential(*layer)
def forward(self, X):
for blk in self.net:
Y = blk(X)
X = torch.cat((X, Y), dim=1)
return X
blk = DenseBlock(2, 3, 10)
X = torch.randn(4, 3, 8, 8)
Y = blk(X)
Y.shape
def transition_block(input_channels, num_channels):
return nn.Sequential(
nn.BatchNorm2d(input_channels), nn.ReLU(),
nn.Conv2d(input_channels, num_channels, kernel_size=1),
nn.AvgPool2d(kernel_size=2, stride=2))
b1 = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
net = nn.Sequential(
b1, *blks,
nn.BatchNorm2d(num_channels), nn.ReLU(),
nn.AdaptiveAvgPool2d((1, 1)),
nn.Flatten(),
nn.Linear(num_channels, 10))
| null |
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
import paddle.nn as nn
def conv_block(input_channels, num_channels):
return nn.Sequential(
nn.BatchNorm2D(input_channels), nn.ReLU(),
nn.Conv2D(input_channels, num_channels, kernel_size=3, padding=1))
class DenseBlock(nn.Layer):
def __init__(self, num_convs, input_channels, num_channels):
super(DenseBlock, self).__init__()
layer = []
for i in range(num_convs):
layer.append(conv_block(num_channels * i + input_channels, num_channels))
self.net = nn.Sequential(*layer)
def forward(self, X):
for blk in self.net:
Y = blk(X)
X = paddle.concat(x=[X, Y], axis=1)
return X
blk = DenseBlock(2, 3, 10)
X = paddle.randn([4, 3, 8, 8])
Y = blk(X)
Y.shape
def transition_block(input_channels, num_channels):
return nn.Sequential(
nn.BatchNorm2D(input_channels), nn.ReLU(),
nn.Conv2D(input_channels, num_channels, kernel_size=1),
nn.AvgPool2D(kernel_size=2, stride=2))
b1 = nn.Sequential(
nn.Conv2D(1, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2D(64), nn.ReLU(),
nn.MaxPool2D(kernel_size=3, stride=2, padding=1))
net = nn.Sequential(
b1, *blks,
nn.BatchNorm2D(num_channels), nn.ReLU(),
nn.AdaptiveMaxPool2D((1, 1)),
nn.Flatten(),
nn.Linear(num_channels, 10))
|
180 | null |
%matplotlib inline
import torch
from torch import nn
from d2l import torch as d2l
T = 1000
time = torch.arange(1, T + 1, dtype=torch.float32)
x = torch.sin(0.01 * time) + torch.normal(0, 0.2, (T,))
d2l.plot(time, [x], 'time', 'x', xlim=[1, 1000], figsize=(6, 3))
tau = 4
features = torch.zeros((T - tau, tau))
for i in range(tau):
features[:, i] = x[i: T - tau + i]
labels = x[tau:].reshape((-1, 1))
batch_size, n_train = 16, 600
train_iter = d2l.load_array((features[:n_train], labels[:n_train]), batch_size, is_train=True)
def init_weights(m):
if type(m) == nn.Linear:
nn.init.xavier_uniform_(m.weight)
def get_net():
net = nn.Sequential(nn.Linear(4, 10),
nn.ReLU(),
nn.Linear(10, 1))
net.apply(init_weights)
return net
loss = nn.MSELoss(reduction='none')
def train(net, train_iter, loss, epochs, lr):
trainer = torch.optim.Adam(net.parameters(), lr)
for epoch in range(epochs):
for X, y in train_iter:
trainer.zero_grad()
l = loss(net(X), y)
l.sum().backward()
trainer.step()
net = get_net()
train(net, train_iter, loss, 5, 0.01)
multistep_preds = torch.zeros(T)
multistep_preds[: n_train + tau] = x[: n_train + tau]
for i in range(n_train + tau, T):
multistep_preds[i] = net(multistep_preds[i - tau:i].reshape((1, -1)))
d2l.plot([time, time[tau:], time[n_train + tau:]],
[x.detach().numpy(), onestep_preds.detach().numpy(),
multistep_preds[n_train + tau:].detach().numpy()], 'time',
'x', legend=['data', '1-step preds', 'multistep preds'],
xlim=[1, 1000], figsize=(6, 3))
max_steps = 64
features = torch.zeros((T - tau - max_steps + 1, tau + max_steps))
for i in range(tau):
features[:, i] = x[i: i + T - tau - max_steps + 1]
for i in range(tau, tau + max_steps):
features[:, i] = net(features[:, i - tau:i]).reshape(-1)
steps = (1, 4, 16, 64)
d2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps],
[features[:, tau + i - 1].detach().numpy() for i in steps], 'time', 'x',
legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000],
figsize=(6, 3))
| null |
%matplotlib inline
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
from paddle import nn
T = 1000
time = paddle.arange(1, T + 1, dtype=paddle.float32)
x = paddle.sin(0.01 * time) + paddle.normal(0, 0.2, (T,))
d2l.plot(time, [x], 'time', 'x', xlim=[1, 1000], figsize=(6, 3))
tau = 4
features = paddle.zeros((T - tau, tau))
for i in range(tau):
features[:, i] = x[i: T - tau + i]
labels = x[tau:].reshape((-1, 1))
batch_size, n_train = 16, 600
train_iter = d2l.load_array((features[:n_train], labels[:n_train]), batch_size, is_train=True)
def init_weights(m):
if type(m) == nn.Linear:
nn.initializer.XavierUniform(m.weight)
def get_net():
net = nn.Sequential(nn.Linear(4, 10),
nn.ReLU(),
nn.Linear(10, 1))
net.apply(init_weights)
return net
loss = nn.MSELoss(reduction='none')
def train(net, train_iter, loss, epochs, lr):
trainer = paddle.optimizer.Adam(learning_rate=lr, parameters=net.parameters())
for epoch in range(epochs):
for i,(X, y) in enumerate (train_iter()):
trainer.clear_grad()
l = loss(net(X), y)
l.sum().backward()
trainer.step()
net = get_net()
train(net, train_iter, loss, 5, 0.01)
multistep_preds = paddle.zeros([T])
multistep_preds[: n_train + tau] = x[: n_train + tau]
for i in range(n_train + tau, T):
multistep_preds[i] = net(multistep_preds[i - tau:i].reshape((1, -1)))
d2l.plot([time, time[tau:], time[n_train + tau:]],
[x.detach().numpy(), onestep_preds.detach().numpy(),
multistep_preds[n_train + tau:].detach().numpy()], 'time',
'x', legend=['data', '1-step preds', 'multistep preds'],
xlim=[1, 1000], figsize=(6, 3))
max_steps = 64
features = paddle.zeros((T - tau - max_steps + 1, tau + max_steps))
for i in range(tau):
features[:, i] = x[i: i + T - tau - max_steps + 1]
for i in range(tau, tau + max_steps):
features[:, i] = net(features[:, i - tau:i]).reshape([-1])
steps = (1, 4, 16, 64)
d2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps],
[features[:, tau + i - 1].detach().numpy() for i in steps], 'time', 'x',
legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000],
figsize=(6, 3))
|
181 | null |
import collections
import re
from d2l import torch as d2l
| null |
import collections
import re
from d2l import paddle as d2l
|
182 | null |
import random
import torch
from d2l import torch as d2l
tokens = d2l.tokenize(d2l.read_time_machine())
corpus = [token for line in tokens for token in line]
vocab = d2l.Vocab(corpus)
vocab.token_freqs[:10]
def seq_data_iter_random(corpus, batch_size, num_steps):
corpus = corpus[random.randint(0, num_steps - 1):]
num_subseqs = (len(corpus) - 1) // num_steps
initial_indices = list(range(0, num_subseqs * num_steps, num_steps))
random.shuffle(initial_indices)
def data(pos):
return corpus[pos: pos + num_steps]
num_batches = num_subseqs // batch_size
for i in range(0, batch_size * num_batches, batch_size):
initial_indices_per_batch = initial_indices[i: i + batch_size]
X = [data(j) for j in initial_indices_per_batch]
Y = [data(j + 1) for j in initial_indices_per_batch]
yield torch.tensor(X), torch.tensor(Y)
def seq_data_iter_sequential(corpus, batch_size, num_steps):
offset = random.randint(0, num_steps)
num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size
Xs = torch.tensor(corpus[offset: offset + num_tokens])
Ys = torch.tensor(corpus[offset + 1: offset + 1 + num_tokens])
Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1)
num_batches = Xs.shape[1] // num_steps
for i in range(0, num_steps * num_batches, num_steps):
X = Xs[:, i: i + num_steps]
Y = Ys[:, i: i + num_steps]
yield X, Y
| null |
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import random
import paddle
tokens = d2l.tokenize(d2l.read_time_machine())
corpus = [token for line in tokens for token in line]
vocab = d2l.Vocab(corpus)
vocab.token_freqs[:10]
def seq_data_iter_random(corpus, batch_size, num_steps):
corpus = corpus[random.randint(0, num_steps - 1):]
num_subseqs = (len(corpus) - 1) // num_steps
initial_indices = list(range(0, num_subseqs * num_steps, num_steps))
random.shuffle(initial_indices)
def data(pos):
return corpus[pos: pos + num_steps]
num_batches = num_subseqs // batch_size
for i in range(0, batch_size * num_batches, batch_size):
initial_indices_per_batch = initial_indices[i: i + batch_size]
X = [data(j) for j in initial_indices_per_batch]
Y = [data(j + 1) for j in initial_indices_per_batch]
yield paddle.to_tensor(X), paddle.to_tensor(Y)
def seq_data_iter_sequential(corpus, batch_size, num_steps):
offset = random.randint(0, num_steps)
num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size
Xs = paddle.to_tensor(corpus[offset: offset + num_tokens])
Ys = paddle.to_tensor(corpus[offset + 1: offset + 1 + num_tokens])
Xs, Ys = Xs.reshape((batch_size, -1)), Ys.reshape((batch_size, -1))
num_batches = Xs.shape[1] // num_steps
for i in range(0, num_steps * num_batches, num_steps):
X = Xs[:, i: i + num_steps]
Y = Ys[:, i: i + num_steps]
yield X, Y
|
183 | null |
import torch
from d2l import torch as d2l
X, W_xh = torch.normal(0, 1, (3, 1)), torch.normal(0, 1, (1, 4))
H, W_hh = torch.normal(0, 1, (3, 4)), torch.normal(0, 1, (4, 4))
torch.matmul(X, W_xh) + torch.matmul(H, W_hh)
torch.matmul(torch.cat((X, H), 1), torch.cat((W_xh, W_hh), 0))
| null |
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
X, W_xh = paddle.normal(0, 1, (3, 1)), paddle.normal(0, 1, (1, 4))
H, W_hh = paddle.normal(0, 1, (3, 4)), paddle.normal(0, 1, (4, 4))
paddle.matmul(X, W_xh) + paddle.matmul(H, W_hh)
paddle.matmul(paddle.concat((X, H), 1), paddle.concat((W_xh, W_hh), 0))
|
184 | null |
%matplotlib inline
import math
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
F.one_hot(torch.tensor([0, 2]), len(vocab))
X = torch.arange(10).reshape((2, 5))
F.one_hot(X.T, 28).shape
def get_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return torch.randn(size=shape, device=device) * 0.01
W_xh = normal((num_inputs, num_hiddens))
W_hh = normal((num_hiddens, num_hiddens))
b_h = torch.zeros(num_hiddens, device=device)
W_hq = normal((num_hiddens, num_outputs))
b_q = torch.zeros(num_outputs, device=device)
params = [W_xh, W_hh, b_h, W_hq, b_q]
for param in params:
param.requires_grad_(True)
return params
def init_rnn_state(batch_size, num_hiddens, device):
return (torch.zeros((batch_size, num_hiddens), device=device), )
def rnn(inputs, state, params):
W_xh, W_hh, b_h, W_hq, b_q = params
H, = state
outputs = []
for X in inputs:
H = torch.tanh(torch.mm(X, W_xh) + torch.mm(H, W_hh) + b_h)
Y = torch.mm(H, W_hq) + b_q
outputs.append(Y)
return torch.cat(outputs, dim=0), (H,)
class RNNModelScratch:
def __init__(self, vocab_size, num_hiddens, device, get_params, init_state, forward_fn):
self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
self.params = get_params(vocab_size, num_hiddens, device)
self.init_state, self.forward_fn = init_state, forward_fn
def __call__(self, X, state):
X = F.one_hot(X.T, self.vocab_size).type(torch.float32)
return self.forward_fn(X, state, self.params)
def begin_state(self, batch_size, device):
return self.init_state(batch_size, self.num_hiddens, device)
num_hiddens = 512
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params, init_rnn_state, rnn)
state = net.begin_state(X.shape[0], d2l.try_gpu())
Y, new_state = net(X.to(d2l.try_gpu()), state)
Y.shape, len(new_state), new_state[0].shape
def predict_ch8(prefix, num_preds, net, vocab, device):
state = net.begin_state(batch_size=1, device=device)
outputs = [vocab[prefix[0]]]
get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape((1, 1))
for y in prefix[1:]:
_, state = net(get_input(), state)
outputs.append(vocab[y])
for _ in range(num_preds):
y, state = net(get_input(), state)
outputs.append(int(y.argmax(dim=1).reshape(1)))
return ''.join([vocab.idx_to_token[i] for i in outputs])
def grad_clipping(net, theta):
if isinstance(net, nn.Module):
params = [p for p in net.parameters() if p.requires_grad]
else:
params = net.params
norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))
if norm > theta:
for param in params:
param.grad[:] *= theta / norm
def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):
state, timer = None, d2l.Timer()
metric = d2l.Accumulator(2)
for X, Y in train_iter:
if state is None or use_random_iter:
state = net.begin_state(batch_size=X.shape[0], device=device)
else:
if isinstance(net, nn.Module) and not isinstance(state, tuple):
state.detach_()
else:
for s in state:
s.detach_()
y = Y.T.reshape(-1)
X, y = X.to(device), y.to(device)
y_hat, state = net(X, state)
l = loss(y_hat, y.long()).mean()
if isinstance(updater, torch.optim.Optimizer):
updater.zero_grad()
l.backward()
grad_clipping(net, 1)
updater.step()
else:
l.backward()
grad_clipping(net, 1)
updater(batch_size=1)
metric.add(l * y.numel(), y.numel())
return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()
def train_ch8(net, train_iter, vocab, lr, num_epochs, device, use_random_iter=False):
loss = nn.CrossEntropyLoss()
animator = d2l.Animator(xlabel='epoch', ylabel='perplexity', legend=['train'], xlim=[10, num_epochs])
if isinstance(net, nn.Module):
updater = torch.optim.SGD(net.parameters(), lr)
else:
updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)
predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)
for epoch in range(num_epochs):
ppl, speed = train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter)
if (epoch + 1) % 10 == 0:
animator.add(epoch + 1, [ppl])
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params, init_rnn_state, rnn)
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(), use_random_iter=True)
| null |
%matplotlib inline
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import math
import paddle
from paddle import nn
from paddle.nn import functional as F
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
F.one_hot(paddle.to_tensor([0, 2]), len(vocab))
X = paddle.arange(10).reshape((2, 5))
F.one_hot(X.T, 28).shape
def get_params(vocab_size, num_hiddens):
num_inputs = num_outputs = vocab_size
def normal(shape):
return paddle.randn(shape=shape)* 0.01
W_xh = normal([num_inputs, num_hiddens])
W_hh = normal([num_hiddens, num_hiddens])
b_h = paddle.zeros(shape=[num_hiddens])
W_hq = normal([num_hiddens, num_outputs])
b_q = paddle.zeros(shape=[num_outputs])
params = [W_xh, W_hh, b_h, W_hq, b_q]
for param in params:
param.stop_gradient=False
return params
def init_rnn_state(batch_size, num_hiddens):
return (paddle.zeros(shape=[batch_size, num_hiddens]), )
def rnn(inputs, state, params):
W_xh, W_hh, b_h, W_hq, b_q = params
H, = state
outputs = []
for X in inputs:
H = paddle.tanh(paddle.mm(X, W_xh) + paddle.mm(H, W_hh) + b_h)
Y = paddle.mm(H, W_hq) + b_q
outputs.append(Y)
return paddle.concat(x=outputs, axis=0), (H,)
class RNNModelScratch:
def __init__(self, vocab_size, num_hiddens, get_params, init_state, forward_fn):
self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
self.params = get_params(vocab_size, num_hiddens)
self.init_state, self.forward_fn = init_state, forward_fn
def __call__(self, X, state):
X = F.one_hot(X.T, self.vocab_size)
return self.forward_fn(X, state, self.params)
def begin_state(self, batch_size):
return self.init_state(batch_size, self.num_hiddens)
num_hiddens = 512
net = RNNModelScratch(len(vocab), num_hiddens, get_params, init_rnn_state, rnn)
state = net.begin_state(X.shape[0])
Y, new_state = net(X, state)
Y.shape, len(new_state), new_state[0].shape
def predict_ch8(prefix, num_preds, net, vocab, device):
state = net.begin_state(batch_size=1)
outputs = [vocab[prefix[0]]]
get_input = lambda: paddle.to_tensor(outputs[-1], place=device).reshape((1, 1))
for y in prefix[1:]:
_, state = net(get_input(), state)
outputs.append(vocab[y])
for _ in range(num_preds):
y, state = net(get_input(), state)
outputs.append(int(paddle.reshape(paddle.argmax(y,axis=1),shape=[1])))
return ''.join([vocab.idx_to_token[i] for i in outputs])
def grad_clipping(net, theta):
if isinstance(net, nn.Layer):
params = [p for p in net.parameters() if not p.stop_gradient]
else:
params = net.params
norm = paddle.sqrt(sum(paddle.sum((p.grad ** 2)) for p in params))
if norm > theta:
with paddle.no_grad():
for param in params:
param.grad.set_value(param.grad * theta / norm)
def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):
state, timer = None, d2l.Timer()
metric = d2l.Accumulator(2)
for X, Y in train_iter:
if state is None or use_random_iter:
state = net.begin_state(batch_size=X.shape[0])
else:
if isinstance(net, nn.Layer) and not isinstance(state, tuple):
state.stop_gradient=True
else:
for s in state:
s.stop_gradient=True
y = paddle.reshape(Y.T,shape=[-1])
X = paddle.to_tensor(X, place=device)
y = paddle.to_tensor(y, place=device)
y_hat, state = net(X, state)
l = loss(y_hat, y).mean()
if isinstance(updater, paddle.optimizer.Optimizer):
updater.clear_grad()
l.backward()
grad_clipping(net, 1)
updater.step()
else:
l.backward()
grad_clipping(net, 1)
updater(batch_size=1)
metric.add(l * y.numel(), y.numel())
return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()
def train_ch8(net, train_iter, vocab, lr, num_epochs, device, use_random_iter=False):
loss = nn.CrossEntropyLoss()
animator = d2l.Animator(xlabel='epoch', ylabel='perplexity', legend=['train'], xlim=[10, num_epochs])
if isinstance(net, nn.Layer):
updater = paddle.optimizer.SGD(learning_rate=lr, parameters=net.parameters())
else:
updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)
predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)
for epoch in range(num_epochs):
ppl, speed = train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter)
if (epoch + 1) % 10 == 0:
animator.add(epoch + 1, [ppl])
net = RNNModelScratch(len(vocab), num_hiddens, get_params, init_rnn_state, rnn)
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(), use_random_iter=True)
|
185 | null |
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
num_hiddens = 256
rnn_layer = nn.RNN(len(vocab), num_hiddens)
state = torch.zeros((1, batch_size, num_hiddens))
state.shape
X = torch.rand(size=(num_steps, batch_size, len(vocab)))
Y, state_new = rnn_layer(X, state)
Y.shape, state_new.shape
class RNNModel(nn.Module):
def __init__(self, rnn_layer, vocab_size, **kwargs):
super(RNNModel, self).__init__(**kwargs)
self.rnn = rnn_layer
self.vocab_size = vocab_size
self.num_hiddens = self.rnn.hidden_size
if not self.rnn.bidirectional:
self.num_directions = 1
self.linear = nn.Linear(self.num_hiddens, self.vocab_size)
else:
self.num_directions = 2
self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)
def forward(self, inputs, state):
X = F.one_hot(inputs.T.long(), self.vocab_size)
X = X.to(torch.float32)
Y, state = self.rnn(X, state)
output = self.linear(Y.reshape((-1, Y.shape[-1])))
return output, state
def begin_state(self, device, batch_size=1):
if not isinstance(self.rnn, nn.LSTM):
return torch.zeros((self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device)
else:
return (torch.zeros((self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device),
torch.zeros((self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device))
device = d2l.try_gpu()
net = RNNModel(rnn_layer, vocab_size=len(vocab))
net = net.to(device)
d2l.predict_ch8('time traveller', 10, net, vocab, device)
num_epochs, lr = 500, 1
d2l.train_ch8(net, train_iter, vocab, lr, num_epochs, device)
| null |
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
from paddle import nn
from paddle.nn import functional as F
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
num_hiddens = 256
rnn_layer = nn.SimpleRNN(len(vocab), num_hiddens, time_major=True)
state = paddle.zeros(shape=[1, batch_size, num_hiddens])
state.shape
X = paddle.rand(shape=[num_steps, batch_size, len(vocab)])
Y, state_new = rnn_layer(X, state)
Y.shape, state_new.shape
def __init__(self, rnn_layer, vocab_size, **kwargs):
super(RNNModel, self).__init__(**kwargs)
self.rnn = rnn_layer
self.vocab_size = vocab_size
self.num_hiddens = self.rnn.hidden_size
if self.rnn.num_directions==1:
self.num_directions = 1
self.linear = nn.Linear(self.num_hiddens, self.vocab_size)
else:
self.num_directions = 2
self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)
def forward(self, inputs, state):
X = F.one_hot(inputs.T, self.vocab_size)
Y, state = self.rnn(X, state)
output = self.linear(Y.reshape((-1, Y.shape[-1])))
return output, state
def begin_state(self, batch_size=1):
if not isinstance(self.rnn, nn.LSTM):
return paddle.zeros(shape=[self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens])
else:
return (paddle.zeros(shape=[self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens]),
paddle.zeros(shape=[self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens]))
device = d2l.try_gpu()
net = RNNModel(rnn_layer, vocab_size=len(vocab))
d2l.predict_ch8('time traveller', 10, net, vocab, device)
num_epochs, lr = 500, 1.0
d2l.train_ch8(net, train_iter, vocab, lr, num_epochs, device)
|
186 | null |
import torch
from torch import nn
from d2l import torch as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
def get_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return torch.randn(size=shape, device=device)*0.01
def three():
return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), torch.zeros(num_hiddens, device=device))
W_xz, W_hz, b_z = three()
W_xr, W_hr, b_r = three()
W_xh, W_hh, b_h = three()
W_hq = normal((num_hiddens, num_outputs))
b_q = torch.zeros(num_outputs, device=device)
params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
for param in params:
param.requires_grad_(True)
return params
def init_gru_state(batch_size, num_hiddens, device):
return (torch.zeros((batch_size, num_hiddens), device=device), )
def gru(inputs, state, params):
W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
H, = state
outputs = []
for X in inputs:
Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)
R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)
H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)
H = Z * H + (1 - Z) * H_tilda
Y = H @ W_hq + b_q
outputs.append(Y)
return torch.cat(outputs, dim=0), (H,)
vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_params, init_gru_state, gru)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
num_inputs = vocab_size
gru_layer = nn.GRU(num_inputs, num_hiddens)
model = d2l.RNNModel(gru_layer, len(vocab))
model = model.to(device)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
| null |
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
import paddle.nn.functional as F
from paddle import nn
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
def get_params(vocab_size, num_hiddens):
num_inputs = num_outputs = vocab_size
def normal(shape):
return paddle.randn(shape=shape)*0.01
def three():
return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), paddle.zeros([num_hiddens]))
W_xz, W_hz, b_z = three()
W_xr, W_hr, b_r = three()
W_xh, W_hh, b_h = three()
W_hq = normal((num_hiddens, num_outputs))
b_q = paddle.zeros([num_outputs])
params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
for param in params:
param.stop_gradient = False
return params
def init_gru_state(batch_size, num_hiddens):
return (paddle.zeros([batch_size, num_hiddens]), )
def gru(inputs, state, params):
W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
H,*_ = state
outputs = []
for X in inputs:
Z = F.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)
R = F.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)
H_tilda = paddle.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)
H = Z * H + (1 - Z) * H_tilda
Y = H @ W_hq + b_q
outputs.append(Y)
return paddle.concat(outputs, axis=0), (H,*_)
vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1.0
model = d2l.RNNModelScratch(len(vocab), num_hiddens, get_params, init_gru_state, gru)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
num_inputs = vocab_size
gru_layer = nn.GRU(num_inputs, num_hiddens, time_major=True)
model = d2l.RNNModel(gru_layer, len(vocab))
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
|
187 | null |
import torch
from torch import nn
from d2l import torch as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
def get_lstm_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return torch.randn(size=shape, device=device)*0.01
def three():
return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), torch.zeros(num_hiddens, device=device))
W_xi, W_hi, b_i = three()
W_xf, W_hf, b_f = three()
W_xo, W_ho, b_o = three()
W_xc, W_hc, b_c = three()
W_hq = normal((num_hiddens, num_outputs))
b_q = torch.zeros(num_outputs, device=device)
params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q]
for param in params:
param.requires_grad_(True)
return params
def init_lstm_state(batch_size, num_hiddens, device):
return (torch.zeros((batch_size, num_hiddens), device=device), torch.zeros((batch_size, num_hiddens), device=device))
def lstm(inputs, state, params):
[W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,
W_hq, b_q] = params
(H, C) = state
outputs = []
for X in inputs:
I = torch.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)
F = torch.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)
O = torch.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)
C_tilda = torch.tanh((X @ W_xc) + (H @ W_hc) + b_c)
C = F * C + I * C_tilda
H = O * torch.tanh(C)
Y = (H @ W_hq) + b_q
outputs.append(Y)
return torch.cat(outputs, dim=0), (H, C)
vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_lstm_params, init_lstm_state, lstm)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
num_inputs = vocab_size
lstm_layer = nn.LSTM(num_inputs, num_hiddens)
model = d2l.RNNModel(lstm_layer, len(vocab))
model = model.to(device)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
| null |
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
import paddle.nn.functional as Function
from paddle import nn
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
def get_lstm_params(vocab_size, num_hiddens):
num_inputs = num_outputs = vocab_size
def normal(shape):
return paddle.randn(shape=shape)*0.01
def three():
return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), paddle.zeros([num_hiddens]))
W_xi, W_hi, b_i = three()
W_xf, W_hf, b_f = three()
W_xo, W_ho, b_o = three()
W_xc, W_hc, b_c = three()
W_hq = normal((num_hiddens, num_outputs))
b_q = paddle.zeros([num_outputs])
params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q]
for param in params:
param.stop_gradient = False
return params
def init_lstm_state(batch_size, num_hiddens):
return (paddle.zeros([batch_size, num_hiddens]), paddle.zeros([batch_size, num_hiddens]))
def lstm(inputs, state, params):
[W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,
W_hq, b_q] = params
(H, C) = state
outputs = []
for X in inputs:
I = Function.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)
F = Function.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)
O = Function.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)
C_tilda = paddle.tanh((X @ W_xc) + (H @ W_hc) + b_c)
C = F * C + I * C_tilda
H = O * paddle.tanh(C)
Y = (H @ W_hq) + b_q
outputs.append(Y)
return paddle.concat(outputs, axis=0), (H, C)
vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1.0
model = d2l.RNNModelScratch(len(vocab), num_hiddens, get_lstm_params, init_lstm_state, lstm)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
num_inputs = vocab_size
lstm_layer = nn.LSTM(num_inputs, num_hiddens, time_major=True)
model = d2l.RNNModel(lstm_layer, len(vocab))
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
|
188 | null |
import os
import torch
from d2l import torch as d2l
def build_array_nmt(lines, vocab, num_steps):
lines = [vocab[l] for l in lines]
lines = [l + [vocab['<eos>']] for l in lines]
array = torch.tensor([truncate_pad(l, num_steps, vocab['<pad>']) for l in lines])
valid_len = (array != vocab['<pad>']).type(torch.int32).sum(1)
return array, valid_len
train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)
for X, X_valid_len, Y, Y_valid_len in train_iter:
print('X:', X.type(torch.int32))
print('Valid length of X:', X_valid_len)
print('Y:', Y.type(torch.int32))
print('Valid length of Y:', Y_valid_len)
break
| null |
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import os
import paddle
def build_array_nmt(lines, vocab, num_steps):
lines = [vocab[l] for l in lines]
lines = [l + [vocab['<eos>']] for l in lines]
array = paddle.to_tensor([truncate_pad(l, num_steps, vocab['<pad>']) for l in lines])
valid_len = (array != vocab['<pad>']).astype(paddle.int32).sum(1)
return array, valid_len
train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)
for X, X_valid_len, Y, Y_valid_len in train_iter:
print('X:', X.astype(paddle.int32))
print('Valid length of X:', X_valid_len)
print('Y:', Y..astype(paddle.int32))
print('Valid length of Y:', Y_valid_len)
break
|
189 |
x = tf.range(12)
tf.size(x)
X = tf.reshape(x, (3, 4))
tf.zeros((2, 3, 4))
tf.ones((2, 3, 4))
tf.random.normal(shape=[3, 4])
tf.constant([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
x = tf.constant([1.0, 2, 4, 8])
y = tf.constant([2.0, 2, 2, 2])
x + y, x - y, x * y, x / y, x ** y
tf.exp(x)
X = tf.reshape(tf.range(12, dtype=tf.float32), (3, 4))
Y = tf.constant([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
tf.concat([X, Y], axis=0), tf.concat([X, Y], axis=1)
tf.reduce_sum(X)
a = tf.reshape(tf.range(3), (3, 1))
b = tf.reshape(tf.range(2), (1, 2))
X_var = tf.Variable(X)
X_var[1, 2].assign(9)
X_var = tf.Variable(X)
X_var[0:2, :].assign(tf.ones(X_var[0:2,:].shape, dtype = tf.float32) * 12)
Z = tf.Variable(tf.zeros_like(Y))
Z.assign(X + Y)
@tf.function
def computation(X, Y):
Z = tf.zeros_like(Y)
A = X + Y
B = A + Y
C = B + Y
return C + Y
computation(X, Y)
A = X.numpy()
B = tf.constant(A)
a = tf.constant([3.5]).numpy()
print(a, a.item(), float(a), int(a))
|
x = torch.arange(12)
x.numel()
X = x.reshape(3, 4)
torch.zeros((2, 3, 4))
torch.ones((2, 3, 4))
torch.randn(3, 4)
torch.tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
x = torch.tensor([1.0, 2, 4, 8])
y = torch.tensor([2, 2, 2, 2])
x + y, x - y, x * y, x / y, x ** y
torch.exp(x)
X = torch.arange(12, dtype=torch.float32).reshape((3,4))
Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
torch.cat((X, Y), dim=0), torch.cat((X, Y), dim=1)
X.sum()
a = torch.arange(3).reshape((3, 1))
b = torch.arange(2).reshape((1, 2))
X[1, 2] = 9
X[0:2, :] = 12
Z = torch.zeros_like(Y)
Z[:] = X + Y
before = id(X)
X += Y
id(X) == before
A = X.numpy()
B = torch.tensor(A)
a = torch.tensor([3.5])
print(a, a.item(), float(a), int(a))
| null | null |
190 |
import tensorflow as tf
X, y = tf.constant(inputs.values), tf.constant(outputs.values)
|
import torch
X, y = torch.tensor(inputs.values), torch.tensor(outputs.values)
| null | null |
191 |
import tensorflow as tf
x = tf.constant(3.0)
y = tf.constant(2.0)
print(x + y, x * y, x / y, x**y)
x = tf.range(4)
A = tf.reshape(tf.range(20), (5, 4))
tf.transpose(A)
B = tf.constant([[1, 2, 3], [2, 0, 4], [3, 4, 5]])
B == tf.transpose(B)
X = tf.reshape(tf.range(24), (2, 3, 4))
A = tf.reshape(tf.range(20, dtype=tf.float32), (5, 4))
B = A
print(A, A + B)
a = 2
X = tf.reshape(tf.range(24), (2, 3, 4))
print(a + X, (a * X).shape)
x = tf.range(4, dtype=tf.float32)
print(x, tf.reduce_sum(x))
a = tf.reduce_sum(A)
A_sum_axis0 = tf.reduce_sum(A, axis=0)
A_sum_axis1 = tf.reduce_sum(A, axis=1
tf.reduce_sum(A, axis=[0, 1])
tf.reduce_mean(A)
tf.reduce_sum(A) / tf.size(A).numpy()
tf.reduce_mean(A, axis=0)
tf.reduce_sum(A, axis=0) / A.shape[0]
sum_A = tf.reduce_sum(A, axis=1, keepdims=True)
tf.cumsum(A, axis=0)
y = tf.ones(4, dtype=tf.float32)
print(tf.tensordot(x, y, axes=1))
tf.reduce_sum(x * y)
A.shape, x.shape, tf.linalg.matvec(A, x)
B = tf.ones((4, 3), tf.float32)
tf.matmul(A, B)
u = tf.constant([3.0, -4.0])
tf.norm(u)
tf.reduce_sum(tf.abs(u))
tf.norm(tf.ones((4, 9)))
|
import torch
x = torch.tensor(3.0)
y = torch.tensor(2.0)
print(x + y, x * y, x / y, x**y)
x = torch.arange(4)
A = torch.arange(20).reshape(5, 4)
A.T
B = torch.tensor([[1, 2, 3], [2, 0, 4], [3, 4, 5]])
B == B.T
X = torch.arange(24).reshape(2, 3, 4)
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
B = A.clone()
print(A, A + B)
a = 2
X = torch.arange(24).reshape(2, 3, 4)
print(a + X, (a * X).shape)
x = torch.arange(4, dtype=torch.float32)
print(x, x.sum())
a = A.sum()
A_sum_axis0 = A.sum(axis=0)
A_sum_axis1 = A.sum(axis=1)
A.sum(axis=[0, 1])
A.mean()
A.sum() / A.numel()
A.mean(axis=0)
A.sum(axis=0) / A.shape[0]
sum_A = A.sum(axis=1, keepdims=True)
A.cumsum(axis=0)
y = torch.ones(4, dtype = torch.float32)
print(torch.dot(x, y))
torch.sum(x * y)
A.shape, x.shape, torch.mv(A, x)
B = torch.ones(4, 3)
torch.mm(A, B)
u = torch.tensor([3.0, -4.0])
torch.norm(u)
torch.abs(u).sum()
torch.norm(torch.ones((4, 9)))
| null | null |
192 |
%matplotlib inline
import numpy as np
from matplotlib_inline import backend_inline
from d2l import tensorflow as d2l
def f(x):
return 3 * x ** 2 - 4 * x
|
%matplotlib inline
import numpy as np
from matplotlib_inline import backend_inline
from d2l import torch as d2l
def f(x):
return 3 * x ** 2 - 4 * x
| null | null |
193 |
import tensorflow as tf
x = tf.range(4, dtype=tf.float32)
x = tf.Variable(x)
with tf.GradientTape() as t:
y = 2 * tf.tensordot(x, x, axes=1)
x_grad = t.gradient(y, x)
x_grad
x_grad == 4 * x
with tf.GradientTape() as t:
y = tf.reduce_sum(x)
t.gradient(y, x)
with tf.GradientTape() as t:
y = x * x
t.gradient(y, x)
with tf.GradientTape(persistent=True) as t:
y = x * x
u = tf.stop_gradient(y)
z = u * x
x_grad = t.gradient(z, x)
x_grad == u
t.gradient(y, x) == 2 * x
def f(a):
b = a * 2
while tf.norm(b) < 1000:
b = b * 2
if tf.reduce_sum(b) > 0:
c = b
else:
c = 100 * b
return c
a = tf.Variable(tf.random.normal(shape=()))
with tf.GradientTape() as t:
d = f(a)
d_grad = t.gradient(d, a)
d_grad
d_grad == d / a
|
import torch
x = torch.arange(4.0)
x.requires_grad_(True)
x.grad
y = 2 * torch.dot(x, x)
y.backward()
x.grad
x.grad == 4 * x
x.grad.zero_()
y = x.sum()
y.backward()
x.grad
x.grad.zero_()
y = x * x
y.sum().backward()
x.grad
x.grad.zero_()
y = x * x
u = y.detach()
z = u * x
z.sum().backward()
x.grad == u
x.grad.zero_()
y.sum().backward()
x.grad == 2 * x
def f(a):
b = a * 2
while b.norm() < 1000:
b = b * 2
if b.sum() > 0:
c = b
else:
c = 100 * b
return c
a = torch.randn(size=(), requires_grad=True)
d = f(a)
d.backward()
a.grad == d / a
| null | null |
194 |
%matplotlib inline
import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
from d2l import tensorflow as d2l
fair_probs = tf.ones(6) / 6
tfp.distributions.Multinomial(1, fair_probs).sample()
tfp.distributions.Multinomial(10, fair_probs).sample()
counts = tfp.distributions.Multinomial(1000, fair_probs).sample()
|
%matplotlib inline
import torch
from torch.distributions import multinomial
from d2l import torch as d2l
fair_probs = torch.ones([6]) / 6
multinomial.Multinomial(1, fair_probs).sample()
multinomial.Multinomial(10, fair_probs).sample()
counts = multinomial.Multinomial(1000, fair_probs).sample()
| null | null |
195 |
counts = tfp.distributions.Multinomial(10, fair_probs).sample(500)
cum_counts = tf.cumsum(counts, axis=0)
estimates = cum_counts / tf.reduce_sum(cum_counts, axis=1, keepdims=True)
d2l.set_figsize((6, 4.5))
for i in range(6):
d2l.plt.plot(estimates[:, i].numpy(), label=("P(die=" + str(i + 1) + ")"))
d2l.plt.axhline(y=0.167, color='black', linestyle='dashed')
d2l.plt.gca().set_xlabel('Groups of experiments')
d2l.plt.gca().set_ylabel('Estimated probability')
d2l.plt.legend();
import tensorflow as tf
a = dir(tf.random)
help(tf.ones)
tf.ones(4)
|
counts = multinomial.Multinomial(10, fair_probs).sample((500,))
cum_counts = counts.cumsum(dim=0)
estimates = cum_counts / cum_counts.sum(dim=1, keepdims=True)
d2l.set_figsize((6, 4.5))
for i in range(6):
d2l.plt.plot(estimates[:, i].numpy(), label=("P(die=" + str(i + 1) + ")"))
d2l.plt.axhline(y=0.167, color='black', linestyle='dashed')
d2l.plt.gca().set_xlabel('Groups of experiments')
d2l.plt.gca().set_ylabel('Estimated probability')
d2l.plt.legend();
import torch
a = dir(torch.distributions)
help(torch.ones)
torch.ones(4)
| null | null |
196 |
%matplotlib inline
import math
import time
import numpy as np
import tensorflow as tf
from d2l import tensorflow as d2l
n = 10000
a = tf.ones(n)
b = tf.ones(n)
c = tf.Variable(tf.zeros(n))
timer = Timer()
for i in range(n):
c[i].assign(a[i] + b[i])
|
%matplotlib inline
import math
import time
import numpy as np
import torch
from d2l import torch as d2l
n = 10000
a = torch.ones(n)
b = torch.ones(n)
c = torch.zeros(n)
timer = Timer()
for i in range(n):
c[i] = a[i] + b[i]
| null | null |
197 |
%matplotlib inline
import random
import tensorflow as tf
from d2l import tensorflow as d2l
def synthetic_data(w, b, num_examples):
X = tf.zeros((num_examples, w.shape[0]))
X += tf.random.normal(shape=X.shape)
y = tf.matmul(X, tf.reshape(w, (-1, 1))) + b
y += tf.random.normal(shape=y.shape, stddev=0.01)
y = tf.reshape(y, (-1, 1))
return X, y
true_w = tf.constant([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
d2l.set_figsize()
d2l.plt.scatter(features[:, (1)].numpy(), labels.numpy(), 1);
def data_iter(batch_size, features, labels):
num_examples = len(features)
indices = list(range(num_examples))
random.shuffle(indices)
for i in range(0, num_examples, batch_size):
j = tf.constant(indices[i: min(i + batch_size, num_examples)])
yield tf.gather(features, j), tf.gather(labels, j)
w = tf.Variable(tf.random.normal(shape=(2, 1), mean=0, stddev=0.01), trainable=True)
b = tf.Variable(tf.zeros(1), trainable=True)
def linreg(X, w, b):
return tf.matmul(X, w) + b
def squared_loss(y_hat, y):
return (y_hat - tf.reshape(y, y_hat.shape)) ** 2 / 2
def sgd(params, grads, lr, batch_size):
for param, grad in zip(params, grads):
param.assign_sub(lr*grad/batch_size)
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):
for X, y in data_iter(batch_size, features, labels):
with tf.GradientTape() as g:
l = loss(net(X, w, b), y)
dw, db = g.gradient(l, [w, b])
sgd([w, b], [dw, db], lr, batch_size)
train_l = loss(net(features, w, b), labels)
|
%matplotlib inline
import random
import torch
from d2l import torch as d2l
def synthetic_data(w, b, num_examples):
X = torch.normal(0, 1, (num_examples, len(w)))
y = torch.matmul(X, w) + b
y += torch.normal(0, 0.01, y.shape)
return X, y.reshape((-1, 1))
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
d2l.set_figsize()
d2l.plt.scatter(features[:, (1)].detach().numpy(), labels.detach().numpy(), 1);
def data_iter(batch_size, features, labels):
num_examples = len(features)
indices = list(range(num_examples))
random.shuffle(indices)
for i in range(0, num_examples, batch_size):
batch_indices = torch.tensor(indices[i: min(i + batch_size, num_examples)])
yield features[batch_indices], labels[batch_indices]
w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
def linreg(X, w, b):
return torch.matmul(X, w) + b
def squared_loss(y_hat, y):
return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2
def sgd(params, lr, batch_size):
with torch.no_grad():
for param in params:
param -= lr * param.grad / batch_size
param.grad.zero_()
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):
for X, y in data_iter(batch_size, features, labels):
l = loss(net(X, w, b), y)
l.sum().backward()
sgd([w, b], lr, batch_size)
with torch.no_grad():
train_l = loss(net(features, w, b), labels)
| null | null |
198 |
import numpy as np
import tensorflow as tf
from d2l import tensorflow as d2l
true_w = tf.constant([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)
def load_array(data_arrays, batch_size, is_train=True):
dataset = tf.data.Dataset.from_tensor_slices(data_arrays)
if is_train:
dataset = dataset.shuffle(buffer_size=1000)
dataset = dataset.batch(batch_size)
return dataset
batch_size = 10
data_iter = load_array((features, labels), batch_size)
net = tf.keras.Sequential()
net.add(tf.keras.layers.Dense(1))
initializer = tf.initializers.RandomNormal(stddev=0.01)
net = tf.keras.Sequential()
net.add(tf.keras.layers.Dense(1, kernel_initializer=initializer))
loss = tf.keras.losses.MeanSquaredError()
trainer = tf.keras.optimizers.SGD(learning_rate=0.03)
w = net.get_weights()[0]
b = net.get_weights()[1]
|
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)
def load_array(data_arrays, batch_size, is_train=True):
dataset = data.TensorDataset(*data_arrays)
return data.DataLoader(dataset, batch_size, shuffle=is_train)
batch_size = 10
data_iter = load_array((features, labels), batch_size)
from torch import nn
net = nn.Sequential(nn.Linear(2, 1))
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)
loss = nn.MSELoss()
trainer = torch.optim.SGD(net.parameters(), lr=0.03)
w = net[0].weight.data
b = net[0].bias.data
| null | null |
199 |
%matplotlib inline
import tensorflow as tf
from d2l import tensorflow as d2l
d2l.use_svg_display()
mnist_train, mnist_test = tf.keras.datasets.fashion_mnist.load_data()
len(mnist_train[0]), len(mnist_test[0])
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
ax.imshow(img.numpy())
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:
ax.set_title(titles[i])
return axes
X = tf.constant(mnist_train[0][:18])
y = tf.constant(mnist_train[1][:18])
show_images(X, 2, 9, titles=get_fashion_mnist_labels(y));
batch_size = 256
train_iter = tf.data.Dataset.from_tensor_slices(mnist_train).batch(batch_size).shuffle(len(mnist_train[0]))
def load_data_fashion_mnist(batch_size, resize=None):
mnist_train, mnist_test = tf.keras.datasets.fashion_mnist.load_data()
process = lambda X, y: (tf.expand_dims(X, axis=3) / 255, tf.cast(y, dtype='int32'))
resize_fn = lambda X, y: (tf.image.resize_with_pad(X, resize, resize) if resize else X, y)
return (tf.data.Dataset.from_tensor_slices(process(*mnist_train)).batch(batch_size).shuffle(len(mnist_train[0])).map(resize_fn),
tf.data.Dataset.from_tensor_slices(process(*mnist_test)).batch(batch_size).map(resize_fn))
|
%matplotlib inline
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l
d2l.use_svg_display()
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(
root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
root="../data", train=False, transform=trans, download=True)
len(mnist_train), len(mnist_test)
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
if torch.is_tensor(img):
ax.imshow(img.numpy())
else:
ax.imshow(img)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:
ax.set_title(titles[i])
return axes
X, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))
show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y));
batch_size = 256
return 4
train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers())
def load_data_fashion_mnist(batch_size, resize=None):
trans = [transforms.ToTensor()]
if resize:
trans.insert(0, transforms.Resize(resize))
trans = transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(root="../data", train=False, transform=trans, download=True)
return (data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers()),
data.DataLoader(mnist_test, batch_size, shuffle=False, num_workers=get_dataloader_workers()))
| null | null |
200 |
import tensorflow as tf
from IPython import display
from d2l import tensorflow as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs = 784
num_outputs = 10
W = tf.Variable(tf.random.normal(shape=(num_inputs, num_outputs), mean=0, stddev=0.01))
b = tf.Variable(tf.zeros(num_outputs))
X = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
tf.reduce_sum(X, 0, keepdims=True), tf.reduce_sum(X, 1, keepdims=True)
def softmax(X):
X_exp = tf.exp(X)
partition = tf.reduce_sum(X_exp, 1, keepdims=True)
return X_exp / partition
X = tf.random.normal((2, 5), 0, 1)
X_prob = softmax(X)
X_prob, tf.reduce_sum(X_prob, 1)
def net(X):
return softmax(tf.matmul(tf.reshape(X, (-1, W.shape[0])), W) + b)
y_hat = tf.constant([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y = tf.constant([0, 2])
tf.boolean_mask(y_hat, tf.one_hot(y, depth=y_hat.shape[-1]))
def cross_entropy(y_hat, y):
return -tf.math.log(tf.boolean_mask(y_hat, tf.one_hot(y, depth=y_hat.shape[-1])))
cross_entropy(y_hat, y)
def accuracy(y_hat, y):
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = tf.argmax(y_hat, axis=1)
cmp = tf.cast(y_hat, y.dtype) == y
return float(tf.reduce_sum(tf.cast(cmp, y.dtype)))
def evaluate_accuracy(net, data_iter):
metric = Accumulator(2)
for X, y in data_iter:
metric.add(accuracy(net(X), y), d2l.size(y))
return metric[0] / metric[1]
def train_epoch_ch3(net, train_iter, loss, updater):
metric = Accumulator(3)
for X, y in train_iter:
with tf.GradientTape() as tape:
y_hat = net(X)
if isinstance(loss, tf.keras.losses.Loss):
l = loss(y, y_hat)
else:
l = loss(y_hat, y)
if isinstance(updater, tf.keras.optimizers.Optimizer):
params = net.trainable_variables
grads = tape.gradient(l, params)
updater.apply_gradients(zip(grads, params))
else:
updater(X.shape[0], tape.gradient(l, updater.params))
l_sum = l * float(tf.size(y)) if isinstance(loss, tf.keras.losses.Loss) else tf.reduce_sum(l)
metric.add(l_sum, accuracy(y_hat, y), tf.size(y))
return metric[0] / metric[2], metric[1] / metric[2]
class Updater():
def __init__(self, params, lr):
self.params = params
self.lr = lr
def __call__(self, batch_size, grads):
d2l.sgd(self.params, grads, self.lr, batch_size)
updater = Updater([W, b], lr=0.1)
def predict_ch3(net, test_iter, n=6):
for X, y in test_iter:
break
trues = d2l.get_fashion_mnist_labels(y)
preds = d2l.get_fashion_mnist_labels(tf.argmax(net(X), axis=1))
titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
d2l.show_images(tf.reshape(X[0:n], (n, 28, 28)), 1, n, titles=titles[0:n])
predict_ch3(net, test_iter)
|
import torch
from IPython import display
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs = 784
num_outputs = 10
W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)
X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdim=True), X.sum(1, keepdim=True)
def softmax(X):
X_exp = torch.exp(X)
partition = X_exp.sum(1, keepdim=True)
return X_exp / partition
X = torch.normal(0, 1, (2, 5))
X_prob = softmax(X)
X_prob, X_prob.sum(1)
def net(X):
return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)
y = torch.tensor([0, 2])
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y_hat[[0, 1], y]
def cross_entropy(y_hat, y):
return - torch.log(y_hat[range(len(y_hat)), y])
cross_entropy(y_hat, y)
def accuracy(y_hat, y):
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1)
cmp = y_hat.type(y.dtype) == y
return float(cmp.type(y.dtype).sum())
def evaluate_accuracy(net, data_iter):
if isinstance(net, torch.nn.Module):
net.eval()
metric = Accumulator(2)
with torch.no_grad():
for X, y in data_iter:
metric.add(accuracy(net(X), y), y.numel())
return metric[0] / metric[1]
def train_epoch_ch3(net, train_iter, loss, updater):
if isinstance(net, torch.nn.Module):
net.train()
metric = Accumulator(3)
for X, y in train_iter:
y_hat = net(X)
l = loss(y_hat, y)
if isinstance(updater, torch.optim.Optimizer):
updater.zero_grad()
l.mean().backward()
updater.step()
else:
l.sum().backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
return metric[0] / metric[2], metric[1] / metric[2]
lr = 0.1
def updater(batch_size):
return d2l.sgd([W, b], lr, batch_size)
def predict_ch3(net, test_iter, n=6):
for X, y in test_iter:
break
trues = d2l.get_fashion_mnist_labels(y)
preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
d2l.show_images(X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])
predict_ch3(net, test_iter)
| null | null |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.