Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code: DatasetGenerationError Exception: TypeError Message: Couldn't cast array of type string to null Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2261, in cast_table_to_schema arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2261, in <listcomp> arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1802, in wrapper return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1802, in <listcomp> return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2075, in cast_array_to_feature casted_array_values = _c(array.values, feature.feature) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1804, in wrapper return func(array, *args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2116, in cast_array_to_feature return array_cast( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1804, in wrapper return func(array, *args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1962, in array_cast raise TypeError(f"Couldn't cast array of type {_short_str(array.type)} to {_short_str(pa_type)}") TypeError: Couldn't cast array of type string to null The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1524, in compute_config_parquet_and_info_response parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet( File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1099, in stream_convert_to_parquet builder._prepare_split( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2038, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
paper_id
string | conference
string | decision
null | url
null | hasContent
string | hasReview
string | title
string | authors
sequence |
---|---|---|---|---|---|---|---|
ACL_2017_104
|
ACL
| null | null |
true
|
true
|
Bridging Text and Knowledge by Learning Multi-Prototype Entity Mention Embedding
|
[] |
ACL_2017_105
|
ACL
| null | null |
true
|
true
|
Morphological Inflection Generation with Hard Monotonic Attention
|
[] |
ACL_2017_107
|
ACL
| null | null |
true
|
true
|
Weakly Supervised Cross-Lingual Named Entity Recognition via Effective Annotation and Representation Projection
|
[] |
ACL_2017_108
|
ACL
| null | null |
true
|
true
|
A Multigraph-based Model for Overlapping Entity Recognition
|
[] |
ACL_2017_117
|
ACL
| null | null |
true
|
true
|
Improved Neural Relation Detection for Knowledge Base Question Answering
|
[] |
ACL_2017_122
|
ACL
| null | null |
true
|
true
|
Neural Belief Tracker: Data-Driven Dialogue State Tracking
|
[] |
ACL_2017_128
|
ACL
| null | null |
true
|
true
|
Knowledge as a Teacher: Knowledge-Guided Structural Attention Networks
|
[] |
ACL_2017_12
|
ACL
| null | null |
true
|
true
|
Time Expression Analysis and Recognition Using Syntactic Types and Simple Heuristic Rules
|
[] |
ACL_2017_130
|
ACL
| null | null |
true
|
true
|
Enriching Complex Networks with Word Embeddings for Detecting Mild Cognitive Impairment from Speech Transcripts
|
[] |
ACL_2017_134
|
ACL
| null | null |
true
|
true
|
Neural End-to-End Learning for Computational Argumentation Mining
|
[] |
ACL_2017_145
|
ACL
| null | null |
true
|
true
| null |
[] |
ACL_2017_148
|
ACL
| null | null |
true
|
true
|
Evaluation Metrics for Reading Comprehension: Prerequisite Skills and Readability
|
[] |
ACL_2017_150
|
ACL
| null | null |
true
|
true
|
Deep Character-Level Neural Machine Translation By Learning Morphology
|
[] |
ACL_2017_169
|
ACL
| null | null |
true
|
true
|
Automatic Annotation and Evaluation of Error Types for Grammatical Error Correction
|
[] |
ACL_2017_16
|
ACL
| null | null |
true
|
true
|
Exploiting Argument Information to Improve Event Detection via Supervised Attention Mechanisms
|
[] |
ACL_2017_173
|
ACL
| null | null |
true
|
true
|
Determining Gains Acquired from Word Embedding Quantitatively using Discrete Distribution Clustering
|
[] |
ACL_2017_178
|
ACL
| null | null |
true
|
true
|
A Weakly-Supervised Method for Jointly Embedding Concepts, Phrases, and Words
|
[] |
ACL_2017_180
|
ACL
| null | null |
true
|
true
|
Identifying Products in Online Cybercrime Marketplaces: A Dataset and Fine-grained Domain Adaptation Task
|
[] |
ACL_2017_182
|
ACL
| null | null |
true
|
true
|
Modeling Contextual Relationships Among Utterances for Multimodal Sentiment Analysis
|
[] |
ACL_2017_18
|
ACL
| null | null |
true
|
true
|
Attention-over-Attention Neural Networks for Reading Comprehension
|
[] |
ACL_2017_193
|
ACL
| null | null |
true
|
true
| null |
[] |
ACL_2017_19
|
ACL
| null | null |
true
|
true
|
Generating and Exploiting Large-scale Pseudo Training Data for Zero Pronoun Resolution
|
[] |
ACL_2017_201
|
ACL
| null | null |
true
|
true
|
Investigating Different Context Types and Representations for Learning Word Embeddings
|
[] |
ACL_2017_214
|
ACL
| null | null |
true
|
true
|
Exploring Macro Discourse Structure with Macro-micro Unified Primary-secondary Relationship
|
[] |
ACL_2017_216
|
ACL
| null | null |
true
|
true
|
Topical Coherence in LDA-based Models through Induced Segmentation
|
[] |
ACL_2017_21
|
ACL
| null | null |
true
|
true
|
Transductive Non-linear Learning for Chinese Hypernym Prediction
|
[] |
ACL_2017_220
|
ACL
| null | null |
true
|
true
| null |
[] |
ACL_2017_222
|
ACL
| null | null |
true
|
true
|
Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme
|
[] |
ACL_2017_226
|
ACL
| null | null |
true
|
true
| null |
[] |
ACL_2017_237
|
ACL
| null | null |
true
|
true
|
A New Approach for Measuring Sentiment Orientation based on Multi-Dimensional Vector Space
|
[] |
ACL_2017_239
|
ACL
| null | null |
true
|
true
|
How to evaluate word embeddings? On importance of data efficiency and simple supervised tasks
|
[] |
ACL_2017_251
|
ACL
| null | null |
true
|
true
| null |
[] |
ACL_2017_256
|
ACL
| null | null |
true
|
true
|
Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders
|
[] |
ACL_2017_266
|
ACL
| null | null |
true
|
true
|
Improving sentiment classification with task-specific data
|
[] |
ACL_2017_26
|
ACL
| null | null |
true
|
true
|
An End-to-End Model for Question Answering over Knowledge Base with Cross-Attention Combining Global Knowledge
|
[] |
ACL_2017_270
|
ACL
| null | null |
true
|
true
|
Enhanced LSTM for Natural Language Inference
|
[] |
ACL_2017_276
|
ACL
| null | null |
true
|
true
|
Semi-supervised Multitask Learning for Sequence Labeling
|
[] |
ACL_2017_288
|
ACL
| null | null |
true
|
true
|
The Effect of Different Writing Tasks on Linguistic Style: A Case Study of the ROC Story Cloze Task
|
[] |
ACL_2017_318
|
ACL
| null | null |
true
|
true
|
Improved Word Representation Learning with Sememes
|
[] |
ACL_2017_31
|
ACL
| null | null |
true
|
true
|
Event Factuality Identification via Deep Neural Networks
|
[] |
ACL_2017_323
|
ACL
| null | null |
true
|
true
|
A Neural Local Coherence Model
|
[] |
ACL_2017_326
|
ACL
| null | null |
true
|
true
|
Adversarial Multi-Criteria Learning for Chinese Word Segmentation
|
[] |
ACL_2017_331
|
ACL
| null | null |
true
|
true
|
Connecting the dots: Summarizing and Structuring Large Document Collections Using Concept Maps
|
[] |
ACL_2017_333
|
ACL
| null | null |
true
|
true
|
Selective Encoding for Abstractive Sentence Summarization
|
[] |
ACL_2017_335
|
ACL
| null | null |
true
|
true
|
Gated Self-Matching Networks for Reading Comprehension and Question Answering
|
[] |
ACL_2017_338
|
ACL
| null | null |
true
|
true
|
Handling Cold-Start Problem in Review Spam Detection by Jointly Embedding Texts and Behaviors
|
[] |
ACL_2017_33
|
ACL
| null | null |
true
|
true
|
Linguistically Regularized LSTM for Sentiment Classification
|
[] |
ACL_2017_343
|
ACL
| null | null |
true
|
true
|
Neural Word Segmentation with Rich Pretraining
|
[] |
ACL_2017_350
|
ACL
| null | null |
true
|
true
| null |
[] |
ACL_2017_352
|
ACL
| null | null |
true
|
true
| null |
[] |
ACL_2017_355
|
ACL
| null | null |
true
|
true
|
Neural Modeling of Multi-Predicate Interactions for Japanese Predicate Argument Structure Analysis
|
[] |
ACL_2017_365
|
ACL
| null | null |
true
|
true
|
Learning attention for historical text normalization by learning to pronounce
|
[] |
ACL_2017_367
|
ACL
| null | null |
true
|
true
| null |
[] |
ACL_2017_369
|
ACL
| null | null |
true
|
true
|
Morphology Generation for Statistical Machine Translation using Deep Learning Techniques
|
[] |
ACL_2017_371
|
ACL
| null | null |
true
|
true
| null |
[] |
ACL_2017_375
|
ACL
| null | null |
true
|
true
|
CANE: Context-Aware Network Embedding for Relation Modeling
|
[] |
ACL_2017_376
|
ACL
| null | null |
true
|
true
|
Event-based, Recursive Neural Networks for the Extraction and Aggregation of International Alliance Relations
|
[] |
ACL_2017_37
|
ACL
| null | null |
true
|
true
|
Sequential Matching Network: A New Architecture for Multi-turn Response Selection in Retrieval-based Chatbots
|
[] |
ACL_2017_382
|
ACL
| null | null |
true
|
true
|
Creating Training Corpora for NLG Micro-Planning
|
[] |
ACL_2017_384
|
ACL
| null | null |
true
|
true
|
Identifying 1950s American Jazz Composers: Fine-Grained IsA Extraction via Modifier Composition
|
[] |
ACL_2017_387
|
ACL
| null | null |
true
|
true
|
Learning Cognitive Features from Gaze Data for Sentiment and Sarcasm Classification using Convolutional Neural Network
|
[] |
ACL_2017_388
|
ACL
| null | null |
true
|
true
| null |
[] |
ACL_2017_395
|
ACL
| null | null |
true
|
true
|
DRL-Sense: Deep Reinforcement Learning for Multi-Sense Word Representations
|
[] |
ACL_2017_419
|
ACL
| null | null |
true
|
true
|
One-Shot Neural Cross-Lingual Transfer for Paradigm Completion
|
[] |
ACL_2017_433
|
ACL
| null | null |
true
|
true
| null |
[] |
ACL_2017_435
|
ACL
| null | null |
true
|
true
|
Neural Disambiguation of Causal Lexical Markers based on Context
|
[] |
ACL_2017_440
|
ACL
| null | null |
true
|
true
| null |
[] |
ACL_2017_444
|
ACL
| null | null |
true
|
true
|
Evaluating Creative Language Generation: The Case of Rap Lyric Ghostwriting
|
[] |
ACL_2017_447
|
ACL
| null | null |
true
|
true
|
Neural Discourse Structure for Text Categorization
|
[] |
ACL_2017_462
|
ACL
| null | null |
true
|
true
|
Volatility Prediction using Financial Disclosures Sentiments with Word Embedding-based IR Models
|
[] |
ACL_2017_467
|
ACL
| null | null |
true
|
true
| null |
[] |
ACL_2017_477
|
ACL
| null | null |
true
|
true
|
From Characters to Words to in Between: Do We Capture Morphology?
|
[] |
ACL_2017_481
|
ACL
| null | null |
true
|
true
| null |
[] |
ACL_2017_483
|
ACL
| null | null |
true
|
true
|
Here’s My Point: Argumentation Mining with Pointer Networks
|
[] |
ACL_2017_484
|
ACL
| null | null |
true
|
true
| null |
[] |
ACL_2017_489
|
ACL
| null | null |
true
|
true
|
Combining distributional and referential information for naming objects through cross-modal mapping and direct word prediction
|
[] |
ACL_2017_494
|
ACL
| null | null |
true
|
true
|
Morph-fitting: Fine-Tuning Word Vector Spaces with Simple Language-Specific Rules
|
[] |
ACL_2017_496
|
ACL
| null | null |
true
|
true
|
What do Neural Machine Translation Models Learn about Morphology?
|
[] |
ACL_2017_49
|
ACL
| null | null |
true
|
true
|
Chunk-based Decoder for Neural Machine Translation
|
[] |
ACL_2017_501
|
ACL
| null | null |
true
|
true
|
Understanding Image and Text Simultaneously: a Dual Vision-Language Machine Comprehension Task
|
[] |
ACL_2017_503
|
ACL
| null | null |
true
|
true
|
Probabilistic Regular Graph Languages
|
[] |
ACL_2017_516
|
ACL
| null | null |
true
|
true
|
Tandem Anchoring: a Multiword Anchor Approach for Interactive Topic Modeling
|
[] |
ACL_2017_520
|
ACL
| null | null |
true
|
true
|
SHAPEWORLD: A new test methodology for multimodal language understanding
|
[] |
ACL_2017_524
|
ACL
| null | null |
true
|
true
|
A Comparison of Robust Parsing Methods for HPSG
|
[] |
ACL_2017_543
|
ACL
| null | null |
true
|
true
|
Learning Character-level Compositionality with Visual Features
|
[] |
ACL_2017_553
|
ACL
| null | null |
true
|
true
| null |
[] |
ACL_2017_554
|
ACL
| null | null |
true
|
true
|
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
|
[] |
ACL_2017_557
|
ACL
| null | null |
true
|
true
|
End-to-End Neural Relation Extraction with Global Optimization
|
[] |
ACL_2017_561
|
ACL
| null | null |
true
|
true
|
Semi-supervised sequence tagging with bidirectional language models
|
[] |
ACL_2017_562
|
ACL
| null | null |
true
|
true
|
Zero-Shot Relation Extraction via Reading Comprehension
|
[] |
ACL_2017_563
|
ACL
| null | null |
true
|
true
|
Exploring Vector Spaces for Semantic Relations
|
[] |
ACL_2017_564
|
ACL
| null | null |
true
|
true
|
Lexically Constrained Decoding for Sequence Generation Using Grid Beam Search
|
[] |
ACL_2017_56
|
ACL
| null | null |
true
|
true
|
Ngram2vec: Learning Improved Word Representations from Ngram Co-occurrence Statistics
|
[] |
ACL_2017_578
|
ACL
| null | null |
true
|
true
|
Robust Incremental Neural Semantic Graph Parsing
|
[] |
ACL_2017_579
|
ACL
| null | null |
true
|
true
|
MinIE: Minimizing Facts in Open Information Extraction
|
[] |
ACL_2017_588
|
ACL
| null | null |
true
|
true
|
Rare Entity Prediction: Language Understanding with External Knowledge using Hierarchical LSTMs
|
[
"Peter Ackroyd"
] |
ACL_2017_606
|
ACL
| null | null |
true
|
true
|
Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision
|
[] |
ACL_2017_614
|
ACL
| null | null |
true
|
true
| null |
[] |
ACL_2017_619
|
ACL
| null | null |
true
|
true
|
A Corpus of Annotated Revisions for Studying Argumentative Writing
|
[] |
ACL_2017_627
|
ACL
| null | null |
true
|
true
|
Towards End-to-End Reinforcement Learning of Dialogue Agents for Information Access
|
[] |
End of preview.
Raw Review Dataset for Reviewer2
This is the raw version of our dataset. The cleaned data files that can be directly used for fine-tuning is in this directory.
Dataset Structure
The folders are structured in the following way:
venue
|--venue_year
|--venue_year_metadata
|--venue_year_id1_metadata.json
|--venue_year_id2_metadata.json
...
|--venue_year_paper
|--venue_year_id1_paper.json
|--venue_year_id2_paper.json
...
|--venue_year_review
|--venue_year_id1_review.json
|--venue_year_id2_review.json
...
|--venue_year_pdf
|--venue_year_id1_pdf.pdf
|--venue_year_id2_pdf.pdf
...
Dataset Content
Paper Contents
- title: title of the paper
- authors: list of author names
- emails: list of author emails
- sections: list of sections of the paper
- heading: heading of the section
- text: text of the section
- references: list of references of the paper
- title: title of the reference
- author: list of author names of the reference
- venue: venue of the reference
- citeRegEx: citation expression
- shortCiteRegEx: short citation expression
- year: publication year of the reference
- referenceMentions: the location of the reference
in the paper
- referenceID: numerical reference id
- context: context of the reference in the paper
- startOffset: start index of the context
- endOffset: end index of the context
- year: year of publication
- abstractText: abstract of the paper
Metadata Contents
- id: unique id of the paper
- conference: venue for the paper
- decision: final decision for the paper (accept/reject)
- url: link to the PDF of the paper
- review_url: link to the review of the paper
- title: title of the paper
- authors: list of the authors of the paper
Dataset Sources
We incorporate parts of the PeerRead and NLPeer datasets along with an update-to-date crawl from ICLR and NeurIPS on OpenReview and NeurIPS Proceedings.
Citation
If you find this dataset useful in your research, please cite the following paper:
@misc{gao2024reviewer2,
title={Reviewer2: Optimizing Review Generation Through Prompt Generation},
author={Zhaolin Gao and Kianté Brantley and Thorsten Joachims},
year={2024},
eprint={2402.10886},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 42