Datasets:

ArXiv:
hil / tests /rl /test_actor_learner.py
Anteid11's picture
Upload folder using huggingface_hub
7efe9d0 verified
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import socket
import threading
import time
import pytest
import torch
from torch.multiprocessing import Event, Queue
from lerobot.configs.train import TrainRLServerPipelineConfig
from lerobot.policies.sac.configuration_sac import SACConfig
from lerobot.utils.transition import Transition
from tests.utils import require_package
def create_test_transitions(count: int = 3) -> list[Transition]:
"""Create test transitions for integration testing."""
transitions = []
for i in range(count):
transition = Transition(
state={"observation": torch.randn(3, 64, 64), "state": torch.randn(10)},
action=torch.randn(5),
reward=torch.tensor(1.0 + i),
done=torch.tensor(i == count - 1), # Last transition is done
truncated=torch.tensor(False),
next_state={"observation": torch.randn(3, 64, 64), "state": torch.randn(10)},
complementary_info={"step": torch.tensor(i), "episode_id": i // 2},
)
transitions.append(transition)
return transitions
def create_test_interactions(count: int = 3) -> list[dict]:
"""Create test interactions for integration testing."""
interactions = []
for i in range(count):
interaction = {
"episode_reward": 10.0 + i * 5,
"step": i * 100,
"policy_fps": 30.0 + i,
"intervention_rate": 0.1 * i,
"episode_length": 200 + i * 50,
}
interactions.append(interaction)
return interactions
def find_free_port():
"""Finds a free port on the local machine."""
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind(("", 0)) # Bind to port 0 to let the OS choose a free port
s.listen(1)
port = s.getsockname()[1]
return port
@pytest.fixture
def cfg():
cfg = TrainRLServerPipelineConfig()
port = find_free_port()
policy_cfg = SACConfig()
policy_cfg.actor_learner_config.learner_host = "127.0.0.1"
policy_cfg.actor_learner_config.learner_port = port
policy_cfg.concurrency.actor = "threads"
policy_cfg.concurrency.learner = "threads"
policy_cfg.actor_learner_config.queue_get_timeout = 0.1
cfg.policy = policy_cfg
return cfg
@require_package("grpc")
@pytest.mark.timeout(10) # force cross-platform watchdog
def test_end_to_end_transitions_flow(cfg):
from lerobot.scripts.rl.actor import (
establish_learner_connection,
learner_service_client,
push_transitions_to_transport_queue,
send_transitions,
)
from lerobot.scripts.rl.learner import start_learner
from lerobot.transport.utils import bytes_to_transitions
from tests.transport.test_transport_utils import assert_transitions_equal
"""Test complete transitions flow from actor to learner."""
transitions_actor_queue = Queue()
transitions_learner_queue = Queue()
interactions_queue = Queue()
parameters_queue = Queue()
shutdown_event = Event()
learner_thread = threading.Thread(
target=start_learner,
args=(parameters_queue, transitions_learner_queue, interactions_queue, shutdown_event, cfg),
)
learner_thread.start()
policy_cfg = cfg.policy
learner_client, channel = learner_service_client(
host=policy_cfg.actor_learner_config.learner_host, port=policy_cfg.actor_learner_config.learner_port
)
assert establish_learner_connection(learner_client, shutdown_event, attempts=5)
send_transitions_thread = threading.Thread(
target=send_transitions, args=(cfg, transitions_actor_queue, shutdown_event, learner_client, channel)
)
send_transitions_thread.start()
input_transitions = create_test_transitions(count=5)
push_transitions_to_transport_queue(input_transitions, transitions_actor_queue)
# Wait for learner to start
time.sleep(0.1)
shutdown_event.set()
# Wait for learner to receive transitions
learner_thread.join()
send_transitions_thread.join()
channel.close()
received_transitions = []
while not transitions_learner_queue.empty():
received_transitions.extend(bytes_to_transitions(transitions_learner_queue.get()))
assert len(received_transitions) == len(input_transitions)
for i, transition in enumerate(received_transitions):
assert_transitions_equal(transition, input_transitions[i])
@require_package("grpc")
@pytest.mark.timeout(10)
def test_end_to_end_interactions_flow(cfg):
from lerobot.scripts.rl.actor import (
establish_learner_connection,
learner_service_client,
send_interactions,
)
from lerobot.scripts.rl.learner import start_learner
from lerobot.transport.utils import bytes_to_python_object, python_object_to_bytes
"""Test complete interactions flow from actor to learner."""
# Queues for actor-learner communication
interactions_actor_queue = Queue()
interactions_learner_queue = Queue()
# Other queues required by the learner
parameters_queue = Queue()
transitions_learner_queue = Queue()
shutdown_event = Event()
# Start the learner in a separate thread
learner_thread = threading.Thread(
target=start_learner,
args=(parameters_queue, transitions_learner_queue, interactions_learner_queue, shutdown_event, cfg),
)
learner_thread.start()
# Establish connection from actor to learner
policy_cfg = cfg.policy
learner_client, channel = learner_service_client(
host=policy_cfg.actor_learner_config.learner_host, port=policy_cfg.actor_learner_config.learner_port
)
assert establish_learner_connection(learner_client, shutdown_event, attempts=5)
# Start the actor's interaction sending process in a separate thread
send_interactions_thread = threading.Thread(
target=send_interactions,
args=(cfg, interactions_actor_queue, shutdown_event, learner_client, channel),
)
send_interactions_thread.start()
# Create and push test interactions to the actor's queue
input_interactions = create_test_interactions(count=5)
for interaction in input_interactions:
interactions_actor_queue.put(python_object_to_bytes(interaction))
# Wait for the communication to happen
time.sleep(0.1)
# Signal shutdown and wait for threads to complete
shutdown_event.set()
learner_thread.join()
send_interactions_thread.join()
channel.close()
# Verify that the learner received the interactions
received_interactions = []
while not interactions_learner_queue.empty():
received_interactions.append(bytes_to_python_object(interactions_learner_queue.get()))
assert len(received_interactions) == len(input_interactions)
# Sort by a unique key to handle potential reordering in queues
received_interactions.sort(key=lambda x: x["step"])
input_interactions.sort(key=lambda x: x["step"])
for received, expected in zip(received_interactions, input_interactions, strict=False):
assert received == expected
@require_package("grpc")
@pytest.mark.parametrize("data_size", ["small", "large"])
@pytest.mark.timeout(10)
def test_end_to_end_parameters_flow(cfg, data_size):
from lerobot.scripts.rl.actor import establish_learner_connection, learner_service_client, receive_policy
from lerobot.scripts.rl.learner import start_learner
from lerobot.transport.utils import bytes_to_state_dict, state_to_bytes
"""Test complete parameter flow from learner to actor, with small and large data."""
# Actor's local queue to receive params
parameters_actor_queue = Queue()
# Learner's queue to send params from
parameters_learner_queue = Queue()
# Other queues required by the learner
transitions_learner_queue = Queue()
interactions_learner_queue = Queue()
shutdown_event = Event()
# Start the learner in a separate thread
learner_thread = threading.Thread(
target=start_learner,
args=(
parameters_learner_queue,
transitions_learner_queue,
interactions_learner_queue,
shutdown_event,
cfg,
),
)
learner_thread.start()
# Establish connection from actor to learner
policy_cfg = cfg.policy
learner_client, channel = learner_service_client(
host=policy_cfg.actor_learner_config.learner_host, port=policy_cfg.actor_learner_config.learner_port
)
assert establish_learner_connection(learner_client, shutdown_event, attempts=5)
# Start the actor's parameter receiving process in a separate thread
receive_params_thread = threading.Thread(
target=receive_policy,
args=(cfg, parameters_actor_queue, shutdown_event, learner_client, channel),
)
receive_params_thread.start()
# Create test parameters based on parametrization
if data_size == "small":
input_params = {"layer.weight": torch.randn(128, 64)}
else: # "large"
# CHUNK_SIZE is 2MB, so this tensor (4MB) will force chunking
input_params = {"large_layer.weight": torch.randn(1024, 1024)}
# Simulate learner having new parameters to send
parameters_learner_queue.put(state_to_bytes(input_params))
# Wait for the actor to receive the parameters
time.sleep(0.1)
# Signal shutdown and wait for threads to complete
shutdown_event.set()
learner_thread.join()
receive_params_thread.join()
channel.close()
# Verify that the actor received the parameters correctly
received_params = bytes_to_state_dict(parameters_actor_queue.get())
assert received_params.keys() == input_params.keys()
for key in input_params:
assert torch.allclose(received_params[key], input_params[key])