File size: 10,712 Bytes
7efe9d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import socket
import threading
import time
import pytest
import torch
from torch.multiprocessing import Event, Queue
from lerobot.configs.train import TrainRLServerPipelineConfig
from lerobot.policies.sac.configuration_sac import SACConfig
from lerobot.utils.transition import Transition
from tests.utils import require_package
def create_test_transitions(count: int = 3) -> list[Transition]:
"""Create test transitions for integration testing."""
transitions = []
for i in range(count):
transition = Transition(
state={"observation": torch.randn(3, 64, 64), "state": torch.randn(10)},
action=torch.randn(5),
reward=torch.tensor(1.0 + i),
done=torch.tensor(i == count - 1), # Last transition is done
truncated=torch.tensor(False),
next_state={"observation": torch.randn(3, 64, 64), "state": torch.randn(10)},
complementary_info={"step": torch.tensor(i), "episode_id": i // 2},
)
transitions.append(transition)
return transitions
def create_test_interactions(count: int = 3) -> list[dict]:
"""Create test interactions for integration testing."""
interactions = []
for i in range(count):
interaction = {
"episode_reward": 10.0 + i * 5,
"step": i * 100,
"policy_fps": 30.0 + i,
"intervention_rate": 0.1 * i,
"episode_length": 200 + i * 50,
}
interactions.append(interaction)
return interactions
def find_free_port():
"""Finds a free port on the local machine."""
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind(("", 0)) # Bind to port 0 to let the OS choose a free port
s.listen(1)
port = s.getsockname()[1]
return port
@pytest.fixture
def cfg():
cfg = TrainRLServerPipelineConfig()
port = find_free_port()
policy_cfg = SACConfig()
policy_cfg.actor_learner_config.learner_host = "127.0.0.1"
policy_cfg.actor_learner_config.learner_port = port
policy_cfg.concurrency.actor = "threads"
policy_cfg.concurrency.learner = "threads"
policy_cfg.actor_learner_config.queue_get_timeout = 0.1
cfg.policy = policy_cfg
return cfg
@require_package("grpc")
@pytest.mark.timeout(10) # force cross-platform watchdog
def test_end_to_end_transitions_flow(cfg):
from lerobot.scripts.rl.actor import (
establish_learner_connection,
learner_service_client,
push_transitions_to_transport_queue,
send_transitions,
)
from lerobot.scripts.rl.learner import start_learner
from lerobot.transport.utils import bytes_to_transitions
from tests.transport.test_transport_utils import assert_transitions_equal
"""Test complete transitions flow from actor to learner."""
transitions_actor_queue = Queue()
transitions_learner_queue = Queue()
interactions_queue = Queue()
parameters_queue = Queue()
shutdown_event = Event()
learner_thread = threading.Thread(
target=start_learner,
args=(parameters_queue, transitions_learner_queue, interactions_queue, shutdown_event, cfg),
)
learner_thread.start()
policy_cfg = cfg.policy
learner_client, channel = learner_service_client(
host=policy_cfg.actor_learner_config.learner_host, port=policy_cfg.actor_learner_config.learner_port
)
assert establish_learner_connection(learner_client, shutdown_event, attempts=5)
send_transitions_thread = threading.Thread(
target=send_transitions, args=(cfg, transitions_actor_queue, shutdown_event, learner_client, channel)
)
send_transitions_thread.start()
input_transitions = create_test_transitions(count=5)
push_transitions_to_transport_queue(input_transitions, transitions_actor_queue)
# Wait for learner to start
time.sleep(0.1)
shutdown_event.set()
# Wait for learner to receive transitions
learner_thread.join()
send_transitions_thread.join()
channel.close()
received_transitions = []
while not transitions_learner_queue.empty():
received_transitions.extend(bytes_to_transitions(transitions_learner_queue.get()))
assert len(received_transitions) == len(input_transitions)
for i, transition in enumerate(received_transitions):
assert_transitions_equal(transition, input_transitions[i])
@require_package("grpc")
@pytest.mark.timeout(10)
def test_end_to_end_interactions_flow(cfg):
from lerobot.scripts.rl.actor import (
establish_learner_connection,
learner_service_client,
send_interactions,
)
from lerobot.scripts.rl.learner import start_learner
from lerobot.transport.utils import bytes_to_python_object, python_object_to_bytes
"""Test complete interactions flow from actor to learner."""
# Queues for actor-learner communication
interactions_actor_queue = Queue()
interactions_learner_queue = Queue()
# Other queues required by the learner
parameters_queue = Queue()
transitions_learner_queue = Queue()
shutdown_event = Event()
# Start the learner in a separate thread
learner_thread = threading.Thread(
target=start_learner,
args=(parameters_queue, transitions_learner_queue, interactions_learner_queue, shutdown_event, cfg),
)
learner_thread.start()
# Establish connection from actor to learner
policy_cfg = cfg.policy
learner_client, channel = learner_service_client(
host=policy_cfg.actor_learner_config.learner_host, port=policy_cfg.actor_learner_config.learner_port
)
assert establish_learner_connection(learner_client, shutdown_event, attempts=5)
# Start the actor's interaction sending process in a separate thread
send_interactions_thread = threading.Thread(
target=send_interactions,
args=(cfg, interactions_actor_queue, shutdown_event, learner_client, channel),
)
send_interactions_thread.start()
# Create and push test interactions to the actor's queue
input_interactions = create_test_interactions(count=5)
for interaction in input_interactions:
interactions_actor_queue.put(python_object_to_bytes(interaction))
# Wait for the communication to happen
time.sleep(0.1)
# Signal shutdown and wait for threads to complete
shutdown_event.set()
learner_thread.join()
send_interactions_thread.join()
channel.close()
# Verify that the learner received the interactions
received_interactions = []
while not interactions_learner_queue.empty():
received_interactions.append(bytes_to_python_object(interactions_learner_queue.get()))
assert len(received_interactions) == len(input_interactions)
# Sort by a unique key to handle potential reordering in queues
received_interactions.sort(key=lambda x: x["step"])
input_interactions.sort(key=lambda x: x["step"])
for received, expected in zip(received_interactions, input_interactions, strict=False):
assert received == expected
@require_package("grpc")
@pytest.mark.parametrize("data_size", ["small", "large"])
@pytest.mark.timeout(10)
def test_end_to_end_parameters_flow(cfg, data_size):
from lerobot.scripts.rl.actor import establish_learner_connection, learner_service_client, receive_policy
from lerobot.scripts.rl.learner import start_learner
from lerobot.transport.utils import bytes_to_state_dict, state_to_bytes
"""Test complete parameter flow from learner to actor, with small and large data."""
# Actor's local queue to receive params
parameters_actor_queue = Queue()
# Learner's queue to send params from
parameters_learner_queue = Queue()
# Other queues required by the learner
transitions_learner_queue = Queue()
interactions_learner_queue = Queue()
shutdown_event = Event()
# Start the learner in a separate thread
learner_thread = threading.Thread(
target=start_learner,
args=(
parameters_learner_queue,
transitions_learner_queue,
interactions_learner_queue,
shutdown_event,
cfg,
),
)
learner_thread.start()
# Establish connection from actor to learner
policy_cfg = cfg.policy
learner_client, channel = learner_service_client(
host=policy_cfg.actor_learner_config.learner_host, port=policy_cfg.actor_learner_config.learner_port
)
assert establish_learner_connection(learner_client, shutdown_event, attempts=5)
# Start the actor's parameter receiving process in a separate thread
receive_params_thread = threading.Thread(
target=receive_policy,
args=(cfg, parameters_actor_queue, shutdown_event, learner_client, channel),
)
receive_params_thread.start()
# Create test parameters based on parametrization
if data_size == "small":
input_params = {"layer.weight": torch.randn(128, 64)}
else: # "large"
# CHUNK_SIZE is 2MB, so this tensor (4MB) will force chunking
input_params = {"large_layer.weight": torch.randn(1024, 1024)}
# Simulate learner having new parameters to send
parameters_learner_queue.put(state_to_bytes(input_params))
# Wait for the actor to receive the parameters
time.sleep(0.1)
# Signal shutdown and wait for threads to complete
shutdown_event.set()
learner_thread.join()
receive_params_thread.join()
channel.close()
# Verify that the actor received the parameters correctly
received_params = bytes_to_state_dict(parameters_actor_queue.get())
assert received_params.keys() == input_params.keys()
for key in input_params:
assert torch.allclose(received_params[key], input_params[key])
|