YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

license: apache-2.0 language: - en base_model: - bobbysam/resnet18-image-detector library_name: transformers pipeline_tag: image-classification tags: - computer-vision - image-classification - ai-detection - pytorch - resnet datasets: - custom metrics: - accuracy - precision - recall - f1 model-index: - name: resnet18-image-detector results: - task: type: image-classification name: AI vs Real Image Detection dataset: name: Custom AI Detection Dataset type: custom metrics: - type: accuracy value: 0.95 name: Accuracy - type: f1 value: 0.94 name: F1 Score - type: precision value: 0.93 name: Precision - type: recall value: 0.96 name: Recall

ResNet18 AI Image Detector

Repository: bobbysam/resnet18-image-detector

Train Deploy


🧠 What does this model do?

This is a ResNet18-based deep neural network trained to detect whether an input image is a real photograph or AI-generated (binary classification: real vs. ai_generated).
It is part of the ProofGuard project and can be used to build trustworthy AI image detection pipelines.

Key Features:

  • πŸ”¬ Binary classification: Real vs AI-generated images
  • πŸš€ Fast inference with ResNet18 architecture
  • πŸ€— Compatible with Hugging Face Transformers
  • πŸ“Š Comprehensive evaluation metrics
  • 🎯 Easy-to-use inference API

resnet18-image-detector

This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2759
  • Accuracy: 0.9555
  • F1: 0.9555
  • Precision: 0.9560
  • Recall: 0.9555

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.3995 0.0533 50 0.6382 0.6905 0.6824 0.7146 0.6905
1.1186 0.1067 100 0.4529 0.8619 0.8619 0.8634 0.8619
0.7891 0.16 150 0.3469 0.9124 0.9124 0.9124 0.9124
0.7927 0.2133 200 0.3208 0.9305 0.9305 0.9305 0.9305
0.7672 0.2667 250 0.3095 0.9417 0.9418 0.9418 0.9417
0.7395 0.32 300 0.3625 0.9001 0.8992 0.9125 0.9001
0.6937 0.3733 350 0.2940 0.9483 0.9483 0.9483 0.9483
0.6654 0.4267 400 0.3315 0.9268 0.9266 0.9329 0.9268
0.6647 0.48 450 0.2872 0.9487 0.9487 0.9497 0.9487
0.7021 0.5333 500 0.2857 0.9488 0.9488 0.9491 0.9488
0.6458 0.5867 550 0.2759 0.9555 0.9555 0.9560 0.9555
0.6634 0.64 600 0.2830 0.9516 0.9515 0.9517 0.9516
0.6534 0.6933 650 0.2858 0.9507 0.9506 0.9533 0.9507

Framework versions

  • Transformers 4.54.1
  • Pytorch 2.7.1+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
96
Safetensors
Model size
11.3M params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support