YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
license: apache-2.0 language: - en base_model: - bobbysam/resnet18-image-detector library_name: transformers pipeline_tag: image-classification tags: - computer-vision - image-classification - ai-detection - pytorch - resnet datasets: - custom metrics: - accuracy - precision - recall - f1 model-index: - name: resnet18-image-detector results: - task: type: image-classification name: AI vs Real Image Detection dataset: name: Custom AI Detection Dataset type: custom metrics: - type: accuracy value: 0.95 name: Accuracy - type: f1 value: 0.94 name: F1 Score - type: precision value: 0.93 name: Precision - type: recall value: 0.96 name: Recall
ResNet18 AI Image Detector
Repository: bobbysam/resnet18-image-detector
π§ What does this model do?
This is a ResNet18-based deep neural network trained to detect whether an input image is a real photograph or AI-generated (binary classification: real
vs. ai_generated
).
It is part of the ProofGuard project and can be used to build trustworthy AI image detection pipelines.
Key Features:
- π¬ Binary classification: Real vs AI-generated images
- π Fast inference with ResNet18 architecture
- π€ Compatible with Hugging Face Transformers
- π Comprehensive evaluation metrics
- π― Easy-to-use inference API
resnet18-image-detector
This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2759
- Accuracy: 0.9555
- F1: 0.9555
- Precision: 0.9560
- Recall: 0.9555
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
1.3995 | 0.0533 | 50 | 0.6382 | 0.6905 | 0.6824 | 0.7146 | 0.6905 |
1.1186 | 0.1067 | 100 | 0.4529 | 0.8619 | 0.8619 | 0.8634 | 0.8619 |
0.7891 | 0.16 | 150 | 0.3469 | 0.9124 | 0.9124 | 0.9124 | 0.9124 |
0.7927 | 0.2133 | 200 | 0.3208 | 0.9305 | 0.9305 | 0.9305 | 0.9305 |
0.7672 | 0.2667 | 250 | 0.3095 | 0.9417 | 0.9418 | 0.9418 | 0.9417 |
0.7395 | 0.32 | 300 | 0.3625 | 0.9001 | 0.8992 | 0.9125 | 0.9001 |
0.6937 | 0.3733 | 350 | 0.2940 | 0.9483 | 0.9483 | 0.9483 | 0.9483 |
0.6654 | 0.4267 | 400 | 0.3315 | 0.9268 | 0.9266 | 0.9329 | 0.9268 |
0.6647 | 0.48 | 450 | 0.2872 | 0.9487 | 0.9487 | 0.9497 | 0.9487 |
0.7021 | 0.5333 | 500 | 0.2857 | 0.9488 | 0.9488 | 0.9491 | 0.9488 |
0.6458 | 0.5867 | 550 | 0.2759 | 0.9555 | 0.9555 | 0.9560 | 0.9555 |
0.6634 | 0.64 | 600 | 0.2830 | 0.9516 | 0.9515 | 0.9517 | 0.9516 |
0.6534 | 0.6933 | 650 | 0.2858 | 0.9507 | 0.9506 | 0.9533 | 0.9507 |
Framework versions
- Transformers 4.54.1
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 96
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support