Object Detection
Birder
PyTorch
hassonofer commited on
Commit
e556a30
·
verified ·
1 Parent(s): 5217e51

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -0
README.md CHANGED
@@ -11,6 +11,8 @@ license: apache-2.0
11
 
12
  A Deformable DETR with box refinement object detection model with ConvNeXt v2 Tiny backbone (pre-trained on ImageNet-21k) and trained on COCO 2017 dataset.
13
 
 
 
14
  ## Model Details
15
 
16
  - **Model Type:** Object detection
@@ -21,6 +23,7 @@ A Deformable DETR with box refinement object detection model with ConvNeXt v2 Ti
21
 
22
  - **Papers:**
23
  - Deformable DETR: Deformable Transformers for End-to-End Object Detection: <https://arxiv.org/abs/2010.04159>
 
24
  - ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders: <https://arxiv.org/abs/2301.00808>
25
 
26
  - **Metrics:**
@@ -39,6 +42,7 @@ import birder
39
  from birder.inference.detection import infer_image
40
 
41
  (net, model_info) = birder.load_pretrained_model("deformable_detr_boxref_coco_convnext_v2_tiny_imagenet21k", inference=True)
 
42
 
43
  # Get the image size the model was trained on
44
  size = birder.get_size_from_signature(model_info.signature)
@@ -67,6 +71,16 @@ detections = infer_image(net, image, transform)
67
  url={https://arxiv.org/abs/2010.04159},
68
  }
69
 
 
 
 
 
 
 
 
 
 
 
70
  @misc{woo2023convnextv2codesigningscaling,
71
  title={ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders},
72
  author={Sanghyun Woo and Shoubhik Debnath and Ronghang Hu and Xinlei Chen and Zhuang Liu and In So Kweon and Saining Xie},
 
11
 
12
  A Deformable DETR with box refinement object detection model with ConvNeXt v2 Tiny backbone (pre-trained on ImageNet-21k) and trained on COCO 2017 dataset.
13
 
14
+ **Custom Kernels**: This model uses optimized custom kernels for Soft-NMS and Deformable Attention operations. If you encounter compilation issues or prefer to use pure PyTorch implementations, set the environment variable `DISABLE_CUSTOM_KERNELS=1` before loading the model.
15
+
16
  ## Model Details
17
 
18
  - **Model Type:** Object detection
 
23
 
24
  - **Papers:**
25
  - Deformable DETR: Deformable Transformers for End-to-End Object Detection: <https://arxiv.org/abs/2010.04159>
26
+ - Soft-NMS -- Improving Object Detection With One Line of Code: <https://arxiv.org/abs/1704.04503>
27
  - ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders: <https://arxiv.org/abs/2301.00808>
28
 
29
  - **Metrics:**
 
42
  from birder.inference.detection import infer_image
43
 
44
  (net, model_info) = birder.load_pretrained_model("deformable_detr_boxref_coco_convnext_v2_tiny_imagenet21k", inference=True)
45
+ # Can also load model with Soft-NMS by passing custom_config={"soft_nms": True}
46
 
47
  # Get the image size the model was trained on
48
  size = birder.get_size_from_signature(model_info.signature)
 
71
  url={https://arxiv.org/abs/2010.04159},
72
  }
73
 
74
+ @misc{bodla2017softnmsimprovingobject,
75
+ title={Soft-NMS -- Improving Object Detection With One Line of Code},
76
+ author={Navaneeth Bodla and Bharat Singh and Rama Chellappa and Larry S. Davis},
77
+ year={2017},
78
+ eprint={1704.04503},
79
+ archivePrefix={arXiv},
80
+ primaryClass={cs.CV},
81
+ url={https://arxiv.org/abs/1704.04503},
82
+ }
83
+
84
  @misc{woo2023convnextv2codesigningscaling,
85
  title={ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders},
86
  author={Sanghyun Woo and Shoubhik Debnath and Ronghang Hu and Xinlei Chen and Zhuang Liu and In So Kweon and Saining Xie},