Update README.md
Browse files
README.md
CHANGED
@@ -11,6 +11,8 @@ license: apache-2.0
|
|
11 |
|
12 |
A Deformable DETR with box refinement object detection model with ConvNeXt v2 Tiny backbone (pre-trained on ImageNet-21k) and trained on COCO 2017 dataset.
|
13 |
|
|
|
|
|
14 |
## Model Details
|
15 |
|
16 |
- **Model Type:** Object detection
|
@@ -21,6 +23,7 @@ A Deformable DETR with box refinement object detection model with ConvNeXt v2 Ti
|
|
21 |
|
22 |
- **Papers:**
|
23 |
- Deformable DETR: Deformable Transformers for End-to-End Object Detection: <https://arxiv.org/abs/2010.04159>
|
|
|
24 |
- ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders: <https://arxiv.org/abs/2301.00808>
|
25 |
|
26 |
- **Metrics:**
|
@@ -39,6 +42,7 @@ import birder
|
|
39 |
from birder.inference.detection import infer_image
|
40 |
|
41 |
(net, model_info) = birder.load_pretrained_model("deformable_detr_boxref_coco_convnext_v2_tiny_imagenet21k", inference=True)
|
|
|
42 |
|
43 |
# Get the image size the model was trained on
|
44 |
size = birder.get_size_from_signature(model_info.signature)
|
@@ -67,6 +71,16 @@ detections = infer_image(net, image, transform)
|
|
67 |
url={https://arxiv.org/abs/2010.04159},
|
68 |
}
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
@misc{woo2023convnextv2codesigningscaling,
|
71 |
title={ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders},
|
72 |
author={Sanghyun Woo and Shoubhik Debnath and Ronghang Hu and Xinlei Chen and Zhuang Liu and In So Kweon and Saining Xie},
|
|
|
11 |
|
12 |
A Deformable DETR with box refinement object detection model with ConvNeXt v2 Tiny backbone (pre-trained on ImageNet-21k) and trained on COCO 2017 dataset.
|
13 |
|
14 |
+
**Custom Kernels**: This model uses optimized custom kernels for Soft-NMS and Deformable Attention operations. If you encounter compilation issues or prefer to use pure PyTorch implementations, set the environment variable `DISABLE_CUSTOM_KERNELS=1` before loading the model.
|
15 |
+
|
16 |
## Model Details
|
17 |
|
18 |
- **Model Type:** Object detection
|
|
|
23 |
|
24 |
- **Papers:**
|
25 |
- Deformable DETR: Deformable Transformers for End-to-End Object Detection: <https://arxiv.org/abs/2010.04159>
|
26 |
+
- Soft-NMS -- Improving Object Detection With One Line of Code: <https://arxiv.org/abs/1704.04503>
|
27 |
- ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders: <https://arxiv.org/abs/2301.00808>
|
28 |
|
29 |
- **Metrics:**
|
|
|
42 |
from birder.inference.detection import infer_image
|
43 |
|
44 |
(net, model_info) = birder.load_pretrained_model("deformable_detr_boxref_coco_convnext_v2_tiny_imagenet21k", inference=True)
|
45 |
+
# Can also load model with Soft-NMS by passing custom_config={"soft_nms": True}
|
46 |
|
47 |
# Get the image size the model was trained on
|
48 |
size = birder.get_size_from_signature(model_info.signature)
|
|
|
71 |
url={https://arxiv.org/abs/2010.04159},
|
72 |
}
|
73 |
|
74 |
+
@misc{bodla2017softnmsimprovingobject,
|
75 |
+
title={Soft-NMS -- Improving Object Detection With One Line of Code},
|
76 |
+
author={Navaneeth Bodla and Bharat Singh and Rama Chellappa and Larry S. Davis},
|
77 |
+
year={2017},
|
78 |
+
eprint={1704.04503},
|
79 |
+
archivePrefix={arXiv},
|
80 |
+
primaryClass={cs.CV},
|
81 |
+
url={https://arxiv.org/abs/1704.04503},
|
82 |
+
}
|
83 |
+
|
84 |
@misc{woo2023convnextv2codesigningscaling,
|
85 |
title={ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders},
|
86 |
author={Sanghyun Woo and Shoubhik Debnath and Ronghang Hu and Xinlei Chen and Zhuang Liu and In So Kweon and Saining Xie},
|